51
|
Luszczki JJ, Andres-Mach MM, Ratnaraj N, Patsalos PN, Czuczwar SJ. Levetiracetam and felbamate interact both pharmacodynamically and pharmacokinetically: an isobolographic analysis in the mouse maximal electroshock model. Epilepsia 2007; 48:806-15. [PMID: 17284299 DOI: 10.1111/j.1528-1167.2006.00964.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE Polytherapy with two or more antiepileptic drugs (AEDs) is generally required for approximately 30% of patients with epilepsy, who do not respond satisfactorily to monotherapy. The potential usefulness of AED combinations, producing synergistic anticonvulsant efficacy and minimal adverse effects, is therefore of significant importance. The present study sought to ascertain the potential usefulness of levetiracetam (LEV) and felbamate (FBM) in combination in the mouse maximal electroshock (MES)-induced seizure model. METHODS The anticonvulsant interaction profile between LEV and FBM in the mouse MES-induced seizure model was determined using type II isobolographic analysis. Acute adverse effects (motor performance) were ascertained by use of the chimney test. LEV and FBM brain concentrations were measured by HPLC in order to determine any pharmacokinetic contribution to the observed antiseizure effect. RESULTS LEV in combination with FBM, at the fixed ratios of 1:2, 1:1, 2:1, and 4:1, were supraadditive, whereas at the fixed ratio of 1:4, additivity was observed in the mouse MES model. Furthermore, none of the investigated combinations altered motor performance in the chimney test. Brain FBM concentrations were unaffected by concomitant LEV administration. In contrast, FBM significantly increased LEV brain concentrations. CONCLUSIONS LEV in combination with FBM was associated with pharmacodynamic supraadditivity in the MES test. However, this anticonvulsant supraadditivity was associated with a concurrent increase in brain LEV concentrations indicating a pharmacokinetic contribution to the observed pharmacodynamic interaction between LEV and FBM.
Collapse
Affiliation(s)
- Jarogniew J Luszczki
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego, Lublin, Poland
| | | | | | | | | |
Collapse
|
52
|
Abstract
Principles of complex mechanisms of action of anticonvulsants including latest reports concerning new antiepileptic drugs (AED) are considered. Different aspects of new anticonvulsant drugs (2nd generation) from preclinical and clinical testing, pharmacokinetics, and mono or combination therapy in children and adults are summarized. In the following condensed synopsis pharmacological and clinical characteristics of gabapentin (GBP), lamotrigine (LTG), levetiracetam (LEV), oxcarbazepine (OXC), pregabalin (PGB) and tiagabine (TGB) as well as topiramate (TPM) and zonisamide (ZNS) are discussed. In addition to the mechanisms of action, pharmacokinetics, interactions, indications and dosages as well as side effects are considered. Important data concerning the effect and tolerability of anticonvulsant drugs can be obtained from controlled studies. In comparison to drugs of the first generation (phenobarbital [PB], primidon [PRD], phenytoin [PHT], carbamazepine [CBZ] and valproic acid [VPA]) the potential for interactions and side effects due to enzyme induction or inhibition is reduced by most of the anticonvulsant drugs of the second generation. New anticonvulsant drugs increase the spectrum of treatment and represent further steps with regard to the optimization of an individual therapy of the epilepsies.
Collapse
Affiliation(s)
- H Stefan
- University Clinic Erlangen, Epilepsy Center-Neurological Department, Schwabachanlage 6, D-91054 Erlangen, Germany
| | | |
Collapse
|
53
|
Archer DP, Lamberty Y, Wang B, Davis MJ, Samanani N, Roth SH. Levetiracetam Reduces Anesthetic-Induced Hyperalgesia in Rats. Anesth Analg 2007; 104:180-5. [PMID: 17179267 DOI: 10.1213/01.ane.0000247788.57318.1f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND As part of an increase in excitability, small doses of pentobarbital, propofol, and midazolam induce an increased sensitivity to pain. Specific therapy to prevent or reduce this excitability may offer advantages over current clinical management with analgesics and sedatives. The pharmacological profile of the novel antiepileptic drug, levetiracetam, suggests that it may reduce the intensity of the excitatory stages of anesthesia. METHODS We examined the influence of levetiracetam on the reduction of the nociceptive reflex threshold in rats by sedative doses of pentobarbital, propofol, and midazolam. Measurements of nociceptive reflex threshold to pressure and heat were made and then repeated after intraperitoneal injection of saline or one of three doses of levetiracetam (100, 200, 500 mg/kg). Pentobarbital (30 mg/kg), propofol (30 mg/kg), or midazolam (1.9 mg/kg) were then administered. The reflex threshold was measured every 10 min, starting at 5 min after the sedative injection, until 65 min had elapsed. RESULTS Levetiracetam did not alter nociceptive reflex threshold in nonsedated animals (P = 0.11) or influence the degree or duration of sedation. The three anesthetic/sedative drugs reduced the nociceptive reflex threshold by 20%-30% of control values. Levetiracetam reduced the hyperreflexia associated with pentobarbital and midazolam (P < 0.05), but not propofol. CONCLUSIONS These findings support further investigation into the role of levetiracetam in the prevention of anesthetic-induced excitability.
Collapse
Affiliation(s)
- David P Archer
- Department of Anesthesiology, Faculty of Medicine, University of Calgary, Calgary, Canada.
| | | | | | | | | | | |
Collapse
|
54
|
Gibbs JE, Walker MC, Cock HR. Levetiracetam: antiepileptic properties and protective effects on mitochondrial dysfunction in experimental status epilepticus. Epilepsia 2006; 47:469-78. [PMID: 16529608 DOI: 10.1111/j.1528-1167.2006.00454.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE To assess the anticonvulsant activity of the novel antiepileptic drug, levetiracetam (LEV) in a model of self-sustaining limbic status epilepticus, and to measure the consequence of LEV treatment on the pattern of mitochondrial dysfunction known to occur after status epilepticus (SE). METHODS The rat perforant pathway was stimulated for 2 h to induce self-sustaining status epilepticus (SSSE). Stimulated rats were assigned to one of three treatment groups, receiving intraperitoneal injections of saline, 200 mg/kg LEV, or 1,000 mg/kg LEV, 15 min into SSSE and at 3 times over the next 44-h period. All animals received diazepam after 3-h SSSE to terminate seizures. Forty-four hours later, the hippocampi were extracted and prepared for electrochemical high-performance liquid chromatography (HPLC), to measure reduced glutathione levels, and for spectrophotometric assays to measure activities of mitochondrial enzymes (aconitase, alpha-ketoglutarate dehydrogenase, citrate synthase, complex I, and complex II/III). These parameters were compared between treatment groups and with sham-operated rats. RESULTS LEV administration did not terminate seizures or have any significant effect on spike frequency, although rats that received 1,000 mg/kg LEV did exhibit improved behavioral seizure parameters. Significant biochemical changes occurred in saline-treated stimulated rats compared with shams: with reductions in glutathione, alpha-ketoglutarate dehydrogenase, aconitase, citrate synthase, and complex I activities. Complex II/III activities were unchanged throughout. Rats that received 1,000 mg/kg LEV had significantly improved biochemical parameters, in many instances, comparable to sham control levels. CONCLUSIONS Despite continuing seizures, administration of LEV (1,000 mg/kg) protects against mitochondrial dysfunction, indicating that in addition to its antiepileptic actions, LEV may have neuroprotective effects.
Collapse
Affiliation(s)
- Julie E Gibbs
- Centre for Clinical Neurosciences, St George's, University of London, Tooting, London, England
| | | | | |
Collapse
|
55
|
Ji-qun C, Ishihara K, Nagayama T, Serikawa T, Sasa M. Long-lasting antiepileptic effects of levetiracetam against epileptic seizures in the spontaneously epileptic rat (SER): differentiation of levetiracetam from conventional antiepileptic drugs. Epilepsia 2005; 46:1362-70. [PMID: 16146430 DOI: 10.1111/j.1528-1167.2005.29604.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
PURPOSE Some evidence suggests that levetiracetam (LEV) possesses antiepileptogenic characteristics. The purpose of this study was to investigate the time course of seizure protection by LEV compared with that of phenytoin (PHT), phenobarbital (PB), valproate (VPA), and carbamazepine (CBZ) in the spontaneously epileptic rat (SER). The SER is a double mutant (tm/tm, zi/zi) showing both tonic convulsions and absence-like seizures. METHODS The effect of single (40, 80, and 160 mg/kg, i.p.) and 5-day (80 mg/kg/day, i.p.) administration of LEV on tonic convulsions and absence-like seizures in SERs were studied. Tonic convulsions induced by blowing air onto the animal's head at 5-min intervals for 30 min and spontaneous absence-like seizures characterized by 5- to 7-Hz spike-wave-like complexes in the cortical and hippocampal EEG were recorded for 30 min. In the single-administration study, observations for seizure activity were performed once before and 3 times (45, 75, and 135 min) after drug administration. In the 5-day administration study, seizure observation was performed 4 times for 30 min (once before and 3 times after drug administration) during the 5-day drug-administration period, and continued once a day until 8 days after the final administration. The antiepileptic effects of 5-day administration of conventional AEDs (PHT, PB, VPA, and CBZ) were examined by using similar methods. RESULTS Tonic convulsions and absence-like seizures were inhibited by a single administration of LEV at 80 and 160 mg/kg, i.p., but not significantly at 40 mg/kg, i.p. When LEV was repeatedly administered at 80 mg/kg/day, i.p., for 5 days to SERs, the inhibitory effects on seizures increased with administration time. The number of tonic convulsions and absence-like seizures were significantly reduced to 39.1% and 38.4% compared with previous values, respectively, after 5-day LEV administration. Furthermore, significant inhibition of tonic convulsions was detected <or=3 days after the final administration, and significant inhibition of absence-like seizures was still observed 8 days after the final injection of LEV. This demonstrates long-lasting seizure protection by LEV after cessation of treatment. PHT, PB, VPA, and CBZ inhibited tonic convulsions more potently compared with LEV in SERs. The maximal antiseizure effects of these drugs were reached after the initial administration, with almost the same antiseizure effects observed through day 5, despite continued drug administration. Moreover, a long-lasting treatment effect was not observed with any of these drugs except for PHT and CBZ, both of which showed moderately prolonged antiseizure effects. CONCLUSIONS These results show that LEV is effective in the treatment of both convulsive and absence-like seizures in SERs after single- and multiple-dose administration. Interestingly, in the 5-day administration study, it was found that the antiepileptic effects for tonic convulsions and absence-like seizures were observed both during the drug-administration period and <or=8 days after the final administration of LEV. This long-lasting effect suggests that LEV may possess an antiepileptogenic effect that it does not share with PHT, PB, VPA, and CBZ.
Collapse
Affiliation(s)
- Cai Ji-qun
- Department of Pharmacology, Hiroshima University School of Medicine, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
56
|
Yan HD, Ji-qun C, Ishihara K, Nagayama T, Serikawa T, Sasa M. Separation of Antiepileptogenic and Antiseizure Effects of Levetiracetam in the Spontaneously Epileptic Rat (SER). Epilepsia 2005; 46:1170-7. [PMID: 16060925 DOI: 10.1111/j.1528-1167.2005.35204.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE The long-lasting antiseizure effects of levetiracetam (LEV) have been observed in the spontaneously epileptic rat (SER) that expresses both tonic and absence-like seizures. Furthermore, the antiepileptogenic effects of LEV in addition to antiseizure effects have been reported in the amygdala-kindling model in rats. This suggests that the long-lasting seizure protection of LEV may be at least partly due to its antiepileptogenic effects. Therefore this study aimed to differentiate the antiseizure and potential antiepileptogenic effects of LEV by administering LEV continuously to SERs before the appearance of any seizure expression. METHODS LEV was administered to the SERs at 80 mg/kg/day (i.p.) from postnatal weeks 5 to 8. The period of observation for tonic convulsions was from postnatal week 5 to 13. Absence-like seizures were recorded by using conventional EEG in weeks 12 and 13. RESULTS After age 7-8 weeks, SERs exhibit spontaneous tonic convulsions. Development of tonic convulsions was significantly inhibited in the LEV group, compared with the control group, by the middle of week 9. A significant reduction of tonic convulsions also was observed in the LEV group until week 13 (5 weeks after termination of the administration). In week 12, the absence-like seizures were significantly lower in the LEV group, compared with the control group. CONCLUSIONS This study demonstrates a significant inhibition of seizures after prolonged treatment with LEV before the developmental expression of seizure activity in SERs. This effect is suggested to be due to an antiepileptogenic effect and not an antiseizure effect of LEV, because the half-life of the drug in plasma is short (2-3 h in rats) after single and long-term administration. Furthermore, the inhibition of seizure expression in SERs was still apparent 5 weeks after termination of LEV treatment. These results further suggest that LEV possesses not only antiseizure effects but also antiepileptogenic properties.
Collapse
Affiliation(s)
- Hai-Dun Yan
- Department of Pharmacology, Hiroshima University School of Medicine, Hiroshima, Japan
| | | | | | | | | | | |
Collapse
|
57
|
Abstract
Since 1989, eight new antiepileptic drugs (AEDs) have been licensed for clinical use. Levetiracetam is the latest to be licensed and is used as adjunctive therapy for the treatment of adult patients with partial seizures with or without secondary generalisation that are refractory to other established first-line AEDs. Pharmacokinetic studies of levetiracetam have been conducted in healthy volunteers, in adults, children and elderly patients with epilepsy, and in patients with renal and hepatic impairment. After oral ingestion, levetiracetam is rapidly absorbed, with peak concentration occurring after 1.3 hours, and its bioavailability is >95%. Co-ingestion of food slows the rate but not the extent of absorption. Levetiracetam is not bound to plasma proteins and has a volume of distribution of 0.5-0.7 L/kg. Plasma concentrations increase in proportion to dose over the clinically relevant dose range (500-5000 mg) and there is no evidence of accumulation during multiple administration. Steady-state blood concentrations are achieved within 24-48 hours. The elimination half-life in adult volunteers, adults with epilepsy, children with epilepsy and elderly volunteers is 6-8, 6-8, 5-7 and 10-11 hours, respectively. Approximately 34% of a levetiracetam dose is metabolised and 66% is excreted in urine unmetabolised; however, the metabolism is not hepatic but occurs primarily in blood by hydrolysis. Autoinduction is not a feature. As clearance is renal in nature it is directly dependent on creatinine clearance. Consequently, dosage adjustments are necessary for patients with moderate to severe renal impairment. To date, no clinically relevant pharmacokinetic interactions between AEDs and levetiracetam have been identified. Similarly, levetiracetam does not interact with digoxin, warfarin and the low-dose contraceptive pill; however, adverse pharmacodynamic interactions with carbamazepine and topiramate have been demonstrated. Overall, the pharmacokinetic characteristics of levetiracetam are highly favourable and make its clinical use simple and straightforward.
Collapse
Affiliation(s)
- Philip N Patsalos
- Pharmacology and Therapeutics Unit, Department of Clinical and Experimental Epilepsy, Institute of Neurology/The National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
58
|
Cardile V, Pavone A, Gulino R, Renis M, Scifo C, Perciavalle V. Expression of brain-derived neurotrophic factor (BDNF) and inducible nitric oxide synthase (iNOS) in rat astrocyte cultures treated with Levetiracetam. Brain Res 2003; 976:227-33. [PMID: 12763257 DOI: 10.1016/s0006-8993(03)02720-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The aim of the present study was to investigate the effects of Levetiracetam, a new antiepileptic drug, on the synthesis of brain-derived neurotrophic factor (BDNF) and inducible nitric oxide synthase (iNOS) in rat cortical astrocyte cultures. The astrocytes were treated for 48 h with different concentrations of Levetiracetam and the expression of BDNF and iNOS was analyzed by immunostaining and immunoblotting analyses. We observed that Levetiracetam is able to stimulate expression of both BDNF and iNOS in a concentration-dependent manner on rat cortical astrocyte cultures. For the BDNF, this effect appears at very low concentrations (1 and 10 microgram/ml), while expression of iNOS appears only at higher dosages (50 microgram/ml). We conclude that Levetiracetam might exert neuroprotective effects, at least in part, via stimulation of neurotrophic factors, thus reducing the extent of inflammation and neuronal death under pathological conditions such as epilepsy.
Collapse
Affiliation(s)
- Venera Cardile
- Department of Physiological Sciences, University of Catania, V.le Andrea Doria 6, 95125, Catania, Italy
| | | | | | | | | | | |
Collapse
|
59
|
Gorji A, Höhling JM, Madeja M, Straub H, Köhling R, Tuxhorn I, Ebner A, Wolf P, Panneck HW, Behne F, Lahl R, Speckmann EJ. Effect of levetiracetam on epileptiform discharges in human neocortical slices. Epilepsia 2002; 43:1480-7. [PMID: 12460248 DOI: 10.1046/j.1528-1157.2002.23702.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE The anticonvulsant effects of the novel antiepileptic drug (AED) levetiracetam (LEV) were tested in neocortical slice preparations from 23 patients who underwent surgery for the treatment of refractory epilepsy. METHODS Slices were used to evaluate the effects of LEV on two different models of epilepsy: low-Mg2+-induced untriggered and bicuculline-evoked stimulus-triggered epileptiform burst discharges and spontaneously appearing rhythmic sharp waves. RESULTS LEV (0.1-1 mM) did not influence spontaneously appearing rhythmic sharp waves or Mg2+-free aCSF-induced epileptiform field potentials. LEV affected neither the amplitudes or duration nor the repetition rates of burst discharges in these epilepsy models. However, LEV (100-500 microM) significantly suppressed the ictal-like discharges elicited by the gamma-aminobutyric acid subtype A (GABAA)-receptor antagonist bicuculline. A marked reduction of the amplitude and duration of bicuculline-evoked field response in the presence of LEV was observed. CONCLUSIONS The results indicate the potential for LEV to inhibit epileptiform burst discharges in human neocortical tissue, which is consistent with its effects in animal models of epilepsy. These results also support the seizure reduction observed in clinical trials and support that this may, in part, be related to the ability of LEV to inhibit epileptiform discharges.
Collapse
Affiliation(s)
- Ali Gorji
- Institut für Physiologie, Universität Münster, Münster, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Doheny HC, Whittington MA, Jefferys JGR, Patsalos PN. A comparison of the efficacy of carbamazepine and the novel anti-epileptic drug levetiracetam in the tetanus toxin model of focal complex partial epilepsy. Br J Pharmacol 2002; 135:1425-34. [PMID: 11906955 PMCID: PMC1573268 DOI: 10.1038/sj.bjp.0704606] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2001] [Accepted: 01/11/2002] [Indexed: 11/08/2022] Open
Abstract
1. The tetanus toxin seizure model, which is associated with spontaneous and intermittent generalized and non-generalized seizures, is considered to reflect human complex partial epilepsy. The purpose of the present study was to investigate and compare the anticonvulsant effects of carbamazepine with that of levetiracetam, a new anti-epileptic drug in this model. 2. One microl of tetanus toxin solution (containing 12 mLD(50) microl(-1) of tetanus toxin) was placed stereotactically into the rat left hippocampus resulting in generalized and non-generalized seizures. 3. Carbamazepine (4 mg kg(-1) h(-1)) and levetiracetam (8 and 16 mg kg(-1) h(-1)) were administered during a 7 day period via an osmotic minipump which was placed in the peritoneal cavity. Carbamazepine (4 mg kg(-1) h(-1)) exhibited no significant anticonvulsant effect, compared to control, when the entire 7 day study period was evaluated but the reduction in generalized seizures was greater (35.5%) than that for non-generalized seizures (12.6%). However, during the first 2 days of carbamazepine administration a significant reduction in both generalized seizure frequency (90%) and duration (25%) was observed. Non-generalized seizures were unaffected. This time-dependent anticonvulsant effect exactly paralleled the central (CSF) and peripheral (serum) kinetics of carbamazepine in that steady-state concentrations declined over time, with the highest concentrations achieved during the first 2 days. Also there was a significant 27.3% reduction in duration of generalized seizures during the 7 day study period (P=0.0001). 4. Levetiracetam administration (8 and 16 mg kg(-1) h(-1)) was associated with a dose-dependent reduction in the frequency of both generalized (39 v 57%) and non-generalized (36 v 41%) seizures. However, seizure suppression was more substantial for generalized seizures. Also a significant dose-dependent reduction in overall generalized seizure duration was observed. 5. These data provide experimental evidence for the clinical efficacy of levetiracetam for the management of patients with complex partial seizures. Furthermore, levetiracetam probably does not act by preventing ictogenesis per se but acts to reduce seizure severity and seizure generalization.
Collapse
Affiliation(s)
- H C Doheny
- Pharmacology and Therapeutics Unit, Department of Clinical and Experimental Epilepsy, Institute of Neurology, Queen Square, London WC1N 3BG
| | - M A Whittington
- Department of Physiology and Biophysics, Imperial College School of Medicine at St Mary's, London
| | - J G R Jefferys
- Department of Physiology and Biophysics, Imperial College School of Medicine at St Mary's, London
| | - P N Patsalos
- Pharmacology and Therapeutics Unit, Department of Clinical and Experimental Epilepsy, Institute of Neurology, Queen Square, London WC1N 3BG
| |
Collapse
|
61
|
Chollet DF. Determination of antiepileptic drugs in biological material. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 767:191-233. [PMID: 11885851 DOI: 10.1016/s0378-4347(01)00502-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Current analytical methodologies applied to the determination of antiepileptic drugs in biological material are reviewed. The role of chromatographic techniques is emphasized. Special attention is focused on new chemical entities as well as current trends such as high-speed liquid chromatographic techniques, hyphenated techniques and electrochromatography techniques. A review with 542 references.
Collapse
Affiliation(s)
- Daniel F Chollet
- Covance Central Laboratory Services SA, Drug Monitoring Department, Meyrin/Geneva, Switzerland.
| |
Collapse
|
62
|
Welty TE, Gidal BE, Ficker DM, Privitera MD. Levetiracetam: a different approach to the pharmacotherapy of epilepsy. Ann Pharmacother 2002; 36:296-304. [PMID: 11847952 DOI: 10.1345/aph.1a032] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To review the pharmacology, pharmacokinetics, efficacy, and adverse effects of levetiracetam in the treatment of epilepsy. DATA SOURCES A MEDLINE search restricted to English-language publications was conducted (January 1993-October 2000). Unpublished data provided by the manufacturer and information found in proceedings of professional meetings were also included. DATA EXTRACTION/STUDY SELECTION: Information regarding basic pharmacology was collected from studies in animals. Pharmacokinetic data were collected from human trials. Only randomized, placebo-controlled clinical trials were included to describe the efficacy and safety of levetiracetam. DATA SYNTHESIS Levetiracetam is a new antiepileptic drug (AED) that appears to work by a unique mechanism. Animal studies have shown that levetiracetam may prevent epileptogenesis. Levetiracetam is rapidly and completely absorbed, minimally bound to plasma proteins, eliminated through the kidneys, and has a half-life of 6-8 hours. Doses must be adjusted for varying degrees of renal function. In clinical trials, levetiracetam significantly decreased seizure frequency compared with placebo when added to existing AED regimens. One clinical trial indicated that levetiracetam may be effective as monotherapy. Few major adverse effects were reported in the clinical trials; however, several patients reported psychological and psychotic reactions. CONCLUSIONS Levetiracetam is a safe and effective new AED. Its apparent unique mechanism of action makes levetiracetam an important addition to therapy with older medications. Caution should be exercised when administering levetiracetam to individuals who may be prone to psychotic or psychiatric reactions.
Collapse
Affiliation(s)
- Timothy E Welty
- Department of Pharmacy Practice, McWhorter School of Pharmacy, Samford University, 800 Lakeshore Dr., Birmingham, AL 35229-7027, USA.
| | | | | | | |
Collapse
|
63
|
Tong X, Patsalos PN. A microdialysis study of the novel antiepileptic drug levetiracetam: extracellular pharmacokinetics and effect on taurine in rat brain. Br J Pharmacol 2001; 133:867-74. [PMID: 11454660 PMCID: PMC1572849 DOI: 10.1038/sj.bjp.0704141] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2000] [Revised: 04/30/2001] [Accepted: 04/30/2001] [Indexed: 11/08/2022] Open
Abstract
Using a rat model which allows serial blood sampling and concurrent brain microdialysis sampling, we have investigated the temporal kinetic inter-relationship of levetiracetam in serum and brain extracellular fluid (frontal cortex and hippocampus) following systemic administration of levetiracetam, a new antiepileptic drug. Concurrent extracellular amino acid concentrations were also determined. After administration (40 or 80 mg kg(-1)), levetiracetam rapidly appeared in both serum (T(max), 0.4 - 0.7 h) and extracellular fluid (T(max), 2.0 - 2.5 h) and concentrations rose linearly and dose-dependently, suggesting that transport across the blood-brain barrier is rapid and not rate-limiting. The serum free fraction (free/total serum concentration ratio; mean+/-s.e.mean range 0.93 - 1.05) was independent of concentration and confirms that levetiracetam is not bound to blood proteins. The kinetic profiles for the hippocampus and frontal cortex were indistinguishable suggesting that levetiracetam distribution in the brain is not brain region specific. However, t(1/2) values were significantly larger than those for serum (mean range, 3.0 - 3.3 h vs 2.1 - 2.3 h) and concentrations did not attain equilibrium with respect to serum. Levetiracetam (80 mg kg(-1)) was associated with a significant reduction in taurine in the hippocampus and frontal cortex. Other amino acids were unaffected by levetiracetam. Levetiracetam readily and rapidly enters the brain without regional specificity. Its prolonged efflux from and slow equilibration within the brain may explain, in part, its long duration of action. The concurrent changes in taurine may contribute to its mechanism of action.
Collapse
Affiliation(s)
- X Tong
- Pharmacology and Therapeutics Unit, University Department of Clinical Neurology, Institute of Neurology, Queen Square, London
| | - P N Patsalos
- Pharmacology and Therapeutics Unit, University Department of Clinical Neurology, Institute of Neurology, Queen Square, London
| |
Collapse
|
64
|
Isoherranen N, Yagen B, Soback S, Roeder M, Schurig V, Bialer M. Pharmacokinetics of levetiracetam and its enantiomer (R)-alpha-ethyl-2-oxo-pyrrolidine acetamide in dogs. Epilepsia 2001; 42:825-30. [PMID: 11488879 DOI: 10.1046/j.1528-1157.2001.042007825.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE The new antiepileptic drug, levetiracetam (LEV, ucb LO59), is a chiral molecule with one asymmetric carbon atom whose anticonvulsant activity is highly enantioselective. The purpose of this study was to evaluate and compare the pharmacokinetics (PK) of LEV [(S)-alpha-ethyl-2-oxo-pyrrolidine acetamide] and its enantiomer (R)-alpha-ethyl-2-oxo-pyrrolidine acetamide (REV) after i.v. administration to dogs. This is the first time that the pharmacokinetics of both enantiomers has been evaluated. METHODS Optically pure LEV and REV were synthesized, and 20 mg/kg of individual enantiomers was administered intravenously to six dogs. Plasma and urine samples were collected until 24 h, and the concentrations of LEV and REV were determined by an enantioselective assay. The levels of 2-pyrrolidone-N-butyric acid, an acid metabolite of LEV and REV, were determined by high-performance liquid chromatography (HPLC). The data were used for PK analysis of LEV and REV. RESULTS LEV and REV had similar mean +/- SD values for clearance; 1.5 +/- 0.3 ml/min/kg and volume of distribution; 0.5 +/- 0.1 L/kg. The half-life (t1/2) and mean residence time (MRT) of REV (t1/2, 4.3 +/- 0.8 h, and MRT, 6.0 +/- 1.1 h) were, however, significantly longer than those of LEV (t1/2, 3.6 +/- 0.8 h, and MRT, 5.0 +/- 1.2 h). The renal clearance and fraction excreted unchanged for LEV and REV were significantly different. CONCLUSIONS In addition to the enantioselective pharmacodynamics, alpha-ethyl-2-oxo-pyrrolidine acetamide has enantioselective PK. The enantioselectivity was observed in renal clearance. Because REV has more favorable PK in dogs than LEV, the higher antiepileptic potency of LEV is more likely due to intrinsic pharmacodynamic activity rather than to enantioselective PK.
Collapse
Affiliation(s)
- N Isoherranen
- Department of Pharmaceutics and Medicinal Chemistry and Natural Products, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
65
|
Abstract
A brief review of epilepsy as a disease, anti-epileptic drugs (AEDs) and methods of evaluation of AEDs are presented as a background for the assessment of levetiracetam which has been approved by the FDA as add-on therapy for the treatment of partial seizures with or without secondary generalisation in adults. The exact mechanism of action of levetiracetam is not known but its action differs from that of other anti-epileptic drugs. A specific binding site for levetiracetam has been identified and is possibly related to anticonvulsant activity. Levetiracetam offers an effective and broad spectrum treatment of epileptic seizures, partial as well as generalised epilepsy. Levetiracetam has been shown to be effective in genetic and kindled animal models of epilepsy and against chemoconvulsant-induced partial epileptic seizures. Levetiracetam has a near perfect pharmacokinetic profile, with rapid absorption following oral administration, excellent bioavailability, quick attainment of steady-state concentrations, linear kinetics and minimal plasma protein binding. Levetiracetam does not interact with commonly used drugs and other AEDs. In recent Phase III clinical trials, the responder rate was 39.4 - 42.1% on 3000 mg dose, compared with placebo rates of 10.9 - 16.7%. Levetiracetam has a favourable safety profile and the most frequently reported adverse events were somnolence, asthenia and dizziness. Overall, levetiracetam is considered to have several advantages over current AEDs.
Collapse
Affiliation(s)
- K K Jain
- Jain PharmaBiotech, Bläsiring 7, CH-4057 Basel, Switzerland.
| |
Collapse
|
66
|
Walker MC, Tong X, Perry H, Alavijeh MS, Patsalos PN. Comparison of serum, cerebrospinal fluid and brain extracellular fluid pharmacokinetics of lamotrigine. Br J Pharmacol 2000; 130:242-8. [PMID: 10807660 PMCID: PMC1572088 DOI: 10.1038/sj.bjp.0703337] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We investigated the rate of penetration into and the intra-relationship between the serum, cerebrospinal fluid (CSF) and regional brain extracellular fluid (bECF) compartments following systemic administration of lamotrigine in rat. The serum pharmacokinetics were biphasic with an initial distribution phase, (half-life approximately 3 h), and then a prolonged elimination phase of over 30 h. The serum pharmacokinetics were linear over the range 10 - 40 mg kg(-1). Using direct sampling of CSF with concomitant serum sampling, the calculated penetration half-time into CSF was 0.42+/-0.15 h. At equilibrium, the CSF to total serum concentration ratio (0.61+/-0.02) was greater than the free to total serum concentration (0.39+/-0.01). Using in vivo recovery corrected microdialysis sampling in frontal cortex and hippocampus with concomitant serum sampling, the calculated penetration half-time of lamotrigine into bECF, 0.51+/-0.11 h, was similar to that for CSF and was not area or dose dependent. At equilibrium, the bECF to total serum concentration ratio (0.40+/-0.04) was similar to the free to total serum concentration (0.39+/-0.01), and did not differ between hippocampus and frontal cortex. The species specific serum kinetics can explain the prolonged action of lamotrigine in rat seizure models. Lamotrigine has a relatively slow penetration into both CSF and bECF compartments compared with antiepileptic drugs used in acute seizures. Furthermore, the free serum drug concentration is not the sole contributor to the CSF compartment, and the CSF concentration is an overestimate of the bECF concentration of lamotrigine.
Collapse
Affiliation(s)
- M C Walker
- Epilepsy Research Group, Pharmacology and Therapeutics Unit, University Department of Clinical Neurology, Institute of Neurology, Queen Square, London WC1N 3BG.
| | | | | | | | | |
Collapse
|
67
|
Abstract
Levetiracetam is a novel orally active antiepileptic drug with a unique preclinical profile. It has a high therapeutic index and potential antiepileptogenic effects. Results of clinical trials indicate activity in partial-onset and generalized seizures. The pharmacokinetic profile of levetiracetam closely approximates the ideal characteristics expected of an antiepileptic drug, with good bioavailability, rapid achievement of steady-state concentrations, linear and time-invariant kinetics, minimal protein binding, and minimal metabolism. The major metabolic pathway of levetiracetam is not dependent on the hepatic cytochrome P450 system, and levetiracetam does not inhibit or induce hepatic enzymes to produce clinically relevant interactions. Sixty-six percent of an administered levetiracetam dose is eliminated unchanged in urine; 24% is metabolized to an inactive metabolite that is detectable in blood and is also excreted in urine. Total body clearance of levetiracetam is decreased in patients with renal impairment, and doses should be modified according to creatinine clearance values. Levetiracetam is not appreciably protein-bound, nor does it affect the protein binding of other drugs. Thus, because of its minimal protein binding and lack of hepatic metabolism, the risk of drug interactions is very low. Levetiracetam has a wide margin of safety and patient-friendly pharmacokinetics that distinguish it from other currently available antiepileptic drugs. This profile may facilitate the clinical management of patients with epilepsy by providing a safer and less-complicated therapeutic strategy.
Collapse
Affiliation(s)
- P N Patsalos
- Institute of Neurology, Pharmacology and Therapeutics Unit, University Department of Clinical Neurology, London, UK.
| |
Collapse
|
68
|
Nagaki S, Ratnaraj N, Patsalos PN. Blood and cerebrospinal fluid pharmacokinetics of primidone and its primary pharmacologically active metabolites, phenobarbital and phenylethylmalonamide in the rat. Eur J Drug Metab Pharmacokinet 1999; 24:255-64. [PMID: 10716065 DOI: 10.1007/bf03190029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Primidone is a clinically useful antiepileptic drug that is metabolised to two pharmacologically active metabolites phenobarbital and phenylethylmalonamide. As data on the inter-relationship between the systemic and central nervous system pharmacokinetics of primidone and its metabolites are sparse, we have investigated their temporal inter-relationship using a freely behaving rat model which allows repeated sampling of blood (100 microl) and cerebrospinal fluid (CSF; 20 microl). After administration, by intraperitoneal injection (50, 100 or 200 mg/kg), primidone rapidly appeared in both serum (Tmax mean range 1.5-2.5 h) and CSF (Tmax mean range 2.0-3.5 h), suggesting ready penetration of the blood-brain-barrier. This was also the case for phenylethylmalonamide and phenobarbital but peak concentration occurred later. Primidone, phenylethylmalonamide and phenobarbital concentrations rose linearly and dose-dependently in both serum and CSF. The mean free fraction (free/total concentration ratio) for primidone, phenylethylmalonamide and phenobarbital was 0.86, 0.97 and 0.88, respectively, and, as their respective mean CSF/serum ratio values were 0.73, 1.06 and 0.65, it would suggest that equilibration between the blood and CSF compartments is rapid. CSF mean t(1/2) values for primidone, phenylethylmalonamide and phenobarbital were similar to those of sera and essentially paralleled the pattern seen in sera.
Collapse
Affiliation(s)
- S Nagaki
- Pharmacolgy and Therapeutics Unit, University Department of Clinical Neurology, Institute of Neurology, London, UK
| | | | | |
Collapse
|