51
|
Manger M, Scheck M, Prinz H, von Kries JP, Langer T, Saxena K, Schwalbe H, Fürstner A, Rademann J, Waldmann H. Discovery of Mycobacterium Tuberculosis Protein Tyrosine Phosphatase A (MptpA) Inhibitors Based on Natural Products and a Fragment-Based Approach. Chembiochem 2005; 6:1749-53. [PMID: 16196020 DOI: 10.1002/cbic.200500171] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Michael Manger
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Lei J, Zhang H, Wu C, Wang X, Yang Y, Zhang X, Huang Y, Wang H. The Influence of Mycobacterium tuberculosis sigma factors on the promotion efficiency of ptpAt promoter in Mycobacterium smegmatis. Curr Microbiol 2005; 51:141-7. [PMID: 16091848 DOI: 10.1007/s00284-005-7444-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Accepted: 03/23/2005] [Indexed: 11/26/2022]
Abstract
It was found in a previous study that Mycobacterium tuberculosis protein tyrosine phosphatase ptpAt promoter is a highly active promoter in slow-growing species of mycobacteria, such as M. tuberculosis and M. bovis BCG, but inert in fast-growing mycobacterial species, such as M. smegmatis. This difference is presumed to be due to the differences between sigma factors systems of slow-growing pathogenic mycobacteria and the fast-growing saprophyte M. smegmatis. Therefore, we constructed a series of plasmids, named pOLYG-13x, which can express various M. tuberculosis sigma factors and also contain a P(ptpAt)-gfp reporter gene construct. By inducing different sigma factor genes of M. tuberculosis in M. smegmatis, we were able to explore the influences of various sigma factors on the expression efficiency of the ptpAt promoter. The result show that of the 10 sigma factors evaluated, only sigF and sigL were able to weakly drive the ptpAt promoter in M. smegmatis and other sigma factors were unable to drive the promoter.
Collapse
Affiliation(s)
- Jianqiang Lei
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science Fudan University, Shanghai, 200433, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Castandet J, Prost JF, Peyron P, Astarie-Dequeker C, Anes E, Cozzone AJ, Griffiths G, Maridonneau-Parini I. Tyrosine phosphatase MptpA of Mycobacterium tuberculosis inhibits phagocytosis and increases actin polymerization in macrophages. Res Microbiol 2005; 156:1005-13. [PMID: 16085396 DOI: 10.1016/j.resmic.2005.05.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 05/12/2005] [Accepted: 05/18/2005] [Indexed: 11/23/2022]
Abstract
Protein tyrosine phosphatases from several microorganisms have been shown to play a role as virulence factors by modifying the phosphorylation/dephosphorylation equilibrium in cells of their host. Two tyrosine phosphatases, MptpA and MptpB, secreted by Mycobacterium tuberculosis, have been identified. Expression of MptpA is upregulated upon infection of monocytes, but its role in host cells has not been elucidated. A eukaryotic expression vector containing the mptpA cDNA has been transfected into macrophages. We report that MptpA reduced phagocytosis of mycobacteria, opsonized zymosan or zymosan, but had no effect on phagocytosis of IgG-coated particles. We also noted that the presence of F-actin at the surface of phagosomes containing opsonized zymosan was significantly increased in cells expressing MptpA. In the presence of recombinant MptpA, the process of actin polymerization at the surface of isolated phagosomes was increased; this was not the case in the presence of the phosphatase-dead mutant MptpA(C11S). MptpA had no effect when IgG-coated particles were present inside isolated phagosomes. These results indicate that, like other tyrosine phosphatases of pathogens, MptpA plays a role in phagocytosis and actin polymerization. However, MptpA had no effect on IgG particles, suggesting that its putative substrate(s) is not linked to the signaling pathways of Fcgamma receptors.
Collapse
Affiliation(s)
- Jérôme Castandet
- Institut de Pharmacologie et de Biologie Structurale, UMR CNRS 5089, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Madhurantakam C, Rajakumara E, Mazumdar PA, Saha B, Mitra D, Wiker HG, Sankaranarayanan R, Das AK. Crystal structure of low-molecular-weight protein tyrosine phosphatase from Mycobacterium tuberculosis at 1.9-A resolution. J Bacteriol 2005; 187:2175-81. [PMID: 15743966 PMCID: PMC1064030 DOI: 10.1128/jb.187.6.2175-2181.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The low-molecular-weight protein tyrosine phosphatase (LMWPTPase) belongs to a distinctive class of phosphotyrosine phosphatases widely distributed among prokaryotes and eukaryotes. We report here the crystal structure of LMWPTPase of microbial origin, the first of its kind from Mycobacterium tuberculosis. The structure was determined to be two crystal forms at 1.9- and 2.5-A resolutions. These structural forms are compared with those of the LMWPTPases of eukaryotes. Though the overall structure resembles that of the eukaryotic LMWPTPases, there are significant changes around the active site and the protein tyrosine phosphatase (PTP) loop. The variable loop forming the wall of the crevice leading to the active site is conformationally unchanged from that of mammalian LMWPTPase; however, differences are observed in the residues involved, suggesting that they have a role in influencing different substrate specificities. The single amino acid substitution (Leu12Thr [underlined below]) in the consensus sequence of the PTP loop, CTGNICRS, has a major role in the stabilization of the PTP loop, unlike what occurs in mammalian LMWPTPases. A chloride ion and a glycerol molecule were modeled in the active site where the chloride ion interacts in a manner similar to that of phosphate with the main chain nitrogens of the PTP loop. This structural study, in addition to identifying specific mycobacterial features, may also form the basis for exploring the mechanism of the substrate specificities of bacterial LMWPTPases.
Collapse
|
55
|
Sharma K, Chopra P, Singh Y. Recent advances towards identification of new drug targets for Mycobacterium tuberculosis. Expert Opin Ther Targets 2005; 8:79-93. [PMID: 15102551 DOI: 10.1517/14728222.8.2.79] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mycobacterium tuberculosis is a very successful pathogen that remains a leading infectious killer worldwide. The global situation has become precarious due to various factors such as the variable efficacy of the Bacille Calmette-Guerin (BCG) vaccine, drug resistance, delay in diagnosis, association with HIV, and other factors, creating a long-lasting reservoir of impending disease and infection. Surprisingly, no new drugs have been developed in the past 30 years. The release of the complete genome sequence of M. tuberculosis and the availability of advanced genetic tools have provided the powerful repertoire of potential drug targets that are now in hand and can be explored in a more rational and directional manner. In this review, the authors highlight some possible therapeutic targets in M. tuberculosis. The gene products involved in various processes, such as mycobacterial cell wall synthesis, ability to acquire or obtain essential nutrients, persistence, transcription regulation, energy metabolism and others, such as the PE-PGRS family and culture filtrate proteins, would be potential targets for the development of new drugs. Apart from these categories, the importance of signal transduction events in the virulence of mycobacteria is discussed in relation to their potential as therapeutic targets. The potential of all of these therapeutic targets should be investigated together with the potential of being able to synthesise future chemotherapeutic agents.
Collapse
Affiliation(s)
- Kirti Sharma
- Institute of Genomics and Integrative Biology, Delhi, India
| | | | | |
Collapse
|
56
|
Prabhakar S, Qiao Y, Canova A, Tse DB, Pine R. IFN-αβ Secreted during Infection Is Necessary but Not Sufficient for Negative Feedback Regulation of IFN-αβ Signaling byMycobacterium tuberculosis. THE JOURNAL OF IMMUNOLOGY 2005; 174:1003-12. [PMID: 15634924 DOI: 10.4049/jimmunol.174.2.1003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
IFN-alphabeta functions in the transition from innate to adaptive immunity and may impinge on the interaction of Mycobacterium tuberculosis with its host. Infection by M. tuberculosis causes IFN-alphabeta secretion and down-regulation of IFN-alphabeta signaling in human APC and the human monocytic cell line THP-1, which provides a model for these studies. Neutralization of secreted IFN-alphabeta prevents inhibition of IFN-alpha signaling during infection, but several lines of evidence distinguish inhibition due to infection from a negative feedback response to only IFN-alphabeta. First, greater inhibition of IFN-alpha-stimulated STAT-1 tyrosine phosphorylation occurs 3 days postinfection than 1 or 3 days after IFN-alphabeta pretreatment. Second, LPS also induces IFN-alphabeta secretion and causes IFN-alphabeta-dependent down-regulation of IFN-alpha signaling, yet the inhibition differs from that caused by infection. Third, IFN-alpha signaling is inhibited when cells are grown in conditioned medium collected from infected cells 1 day postinfection, but not if it is collected 3 days postinfection. Because IFN-alphabeta is stable, the results with conditioned medium suggest the involvement of an additional, labile substance during infection. Further characterizing signaling for effects of infection, we found that cell surface IFN-alphabeta receptor is not reduced by infection, but that infection increases association of protein tyrosine phosphatase 1c with the receptor and with tyrosine kinase 2. Concomitantly, IFN-alpha stimulation of tyrosine kinase 2 tyrosine phosphorylation and kinase activity decreases in infected cells. Moreover, infection reduces the abundance of JAK-1 and tyrosine-phosphorylated JAK-1. Thus, the distinctive down-regulation of IFN-alpha signaling by M. tuberculosis occurs together with a previously undescribed combination of inhibitory intracellular events.
Collapse
|
57
|
Cowley S, Ko M, Pick N, Chow R, Downing KJ, Gordhan BG, Betts JC, Mizrahi V, Smith DA, Stokes RW, Av-Gay Y. The Mycobacterium tuberculosis protein serine/threonine kinase PknG is linked to cellular glutamate/glutamine levels and is important for growth in vivo. Mol Microbiol 2004; 52:1691-702. [PMID: 15186418 DOI: 10.1111/j.1365-2958.2004.04085.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The function of the Mycobacterium tuberculosis eukaryotic-like protein serine/threonine kinase PknG was investigated by gene knock-out and by expression and biochemical analysis. The pknG gene (Rv0410c), when cloned and expressed in Escherichia coli, encodes a functional kinase. An in vitro kinase assay of the recombinant protein demonstrated that PknG can autophosphorylate its kinase domain as well as its 30 kDa C-terminal portion, which contains a tetratricopeptide (TPR) structural signalling motif. Western analysis revealed that PknG is located in the cytosol as well as in mycobacterial membrane. The pknG gene was inactivated by allelic exchange in M. tuberculosis. The resulting mutant strain causes delayed mortality in SCID mice and displays decreased viability both in vitro and upon infection of BALB/c mice. The reduced growth of the mutant was more pronounced in the stationary phase of the mycobacterial growth cycle and when grown in nutrient-depleted media. The PknG-deficient mutant accumulates glutamate and glutamine. The cellular levels of these two amino acids reached approximately threefold of their parental strain levels. Higher cellular levels of the amine sugar-containing molecules, GlcN-Ins and mycothiol, which are derived from glutamate, were detected in the DeltapknG mutant. De novo glutamine synthesis was shown to be reduced by 50%. This is consistent with current knowledge suggesting that glutamine synthesis is regulated by glutamate and glutamine levels. These data support our hypothesis that PknG mediates the transfer of signals sensing nutritional stress in M. tuberculosis and translates them into metabolic adaptation.
Collapse
Affiliation(s)
- Siobhan Cowley
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, 2733 Heather St., Vancouver, British Columbia, Canada V5Z 3J5
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Hestvik ALK, Hmama Z, Av-Gay Y. Kinome analysis of host response to mycobacterial infection: a novel technique in proteomics. Infect Immun 2003; 71:5514-22. [PMID: 14500469 PMCID: PMC201077 DOI: 10.1128/iai.71.10.5514-5522.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An array of mammalian phospho-specific antibodies was used to screen for a host response upon mycobacterial infection, reflected as changes in host protein phosphorylation. Changes in the phosphorylation state of 31 known signaling molecules were tracked after infection with live or heat killed Mycobacterium bovis BCG or after incubation with the mycobacterial cell wall component lipoarabinomannan (LAM). Mycobacterial infection triggers a signaling cascade leading to activation of stress-activated protein kinase and its subsequent downstream target, c-Jun. Mycobacteria were also shown to inhibit the activation of protein kinase C epsilon and to induce phosphorylation of proteins not yet known to be involved in mycobacterial infection, such as the cytoskeletal protein alpha-adducin, glycogen synthase kinase 3beta, and a receptor subunit involved in regulation of intracellular Ca(2+) levels. The mycobacterial cell wall component LAM has been identified as a trigger for some of these modulation events.
Collapse
Affiliation(s)
- Anne Lise K Hestvik
- Department of Medicine, Division of Infectious Diseases, University of British Columbia. Vancouver, BC V5Z 3J5, Canada
| | | | | |
Collapse
|
59
|
Sinha I, Boon C, Dick T. Apparent growth phase-dependent phosphorylation of malonyl coenzyme A:acyl carrier protein transacylase (MCAT), a major fatty acid synthase II component inMycobacterium bovisBCG. FEMS Microbiol Lett 2003; 227:141-7. [PMID: 14568160 DOI: 10.1016/s0378-1097(03)00664-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Probing protein extracts from exponentially growing and stationary phase cultures of Mycobacterium bovis BCG with anti-phospho amino acid antibodies revealed a 31-kDa anti-phospho threonine antibody-reactive protein specific to growing culture. The corresponding protein was purified via two-dimensional gel electrophoresis and identified via mass spectrometry to be malonyl coenzyme A:acyl carrier protein transacylase (MCAT), a component of the fatty acid biosynthetic pathway. MCAT tagged with histidine reacted with anti-phospho threonine antibody and was positive in an in-gel chemical assay for phospho proteins. Analysis of the growth phase dependence of MCAT-His phosphorylation and protein levels showed that phosphorylated MCAT-His can be detected only in growing culture. In contrast, MCAT-His protein level was growth phase-independent. These results suggest that MCAT may be a substrate of a protein kinase and phosphatase, and that aspects of fatty acid synthesis in tubercle bacilli are regulated by protein phosphorylation.
Collapse
Affiliation(s)
- Indrajit Sinha
- Mycobacterium Biology Laboratory, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609.
| | | | | |
Collapse
|
60
|
Boitel B, Ortiz-Lombardía M, Durán R, Pompeo F, Cole ST, Cerveñansky C, Alzari PM. PknB kinase activity is regulated by phosphorylation in two Thr residues and dephosphorylation by PstP, the cognate phospho-Ser/Thr phosphatase, in Mycobacterium tuberculosis. Mol Microbiol 2003; 49:1493-508. [PMID: 12950916 DOI: 10.1046/j.1365-2958.2003.03657.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacterial genomics revealed the widespread presence of eukaryotic-like protein kinases and phosphatases in prokaryotes, but little is known on their biochemical properties, regulation mechanisms and physiological roles. Here we focus on the catalytic domains of two trans-membrane enzymes, the Ser/Thr protein kinase PknB and the protein phosphatase PstP from Mycobacterium tuberculosis. PstP was found to specifically dephosphorylate model phospho-Ser/Thr substrates in a Mn2+-dependent manner. Autophosphorylated PknB was shown to be a substrate for Pstp and its kinase activity was affected by PstP-mediated dephosphorylation. Two threonine residues in the PknB activation loop, found to be mostly disordered in the crystal structure of this kinase, namely Thr171 and Thr173, were identified as the target for PknB autophosphorylation and PstP dephosphorylation. Replacement of these threonine residues by alanine significantly decreased the kinase activity, confirming their direct regulatory role. These results indicate that, as for eukaryotic homologues, phosphorylation of the activation loop provides a regulation mechanism of mycobacterial kinases and strongly suggest that PknB and PstP could work as a functional pair in vivo to control mycobacterial cell growth.
Collapse
Affiliation(s)
- Brigitte Boitel
- Unité de Biochimie Structurale, URA 2185 CNRS, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, cedex 15, France
| | | | | | | | | | | | | |
Collapse
|