51
|
El-Maarri O, Walier M, Behne F, van Üüm J, Singer H, Diaz-Lacava A, Nüsgen N, Niemann B, Watzka M, Reinsberg J, van der Ven H, Wienker T, Stoffel-Wagner B, Schwaab R, Oldenburg J. Methylation at global LINE-1 repeats in human blood are affected by gender but not by age or natural hormone cycles. PLoS One 2011; 6:e16252. [PMID: 21311577 PMCID: PMC3023801 DOI: 10.1371/journal.pone.0016252] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 12/19/2010] [Indexed: 01/13/2023] Open
Abstract
Previously, we reported on inter-individual and gender specific variations of LINE-1 methylation in healthy individuals. In this study, we investigated whether this variability could be influenced by age or sex hormones in humans. To this end, we studied LINE-1 methylation in vivo in blood-derived DNA from individuals aged 18 to 64 years and from young healthy females at various hormone levels during the menstrual cycle. Our results show that no significant association with age was observed. However, the previously reported increase of LINE-1 methylation in males was reconfirmed. In females, although no correlation between LINE-1 or Alu methylation and hormone levels was observed, a significant stable individual specific level of methylation was noted. In vitro results largely confirmed these findings, as neither estrogen nor dihydrotestosterone affected LINE-1 or Alu methylation in Hek293T, HUVEC, or MDA-kb2 cell lines. In contrast, a decrease in methylation was observed in estrogen-treated T47-Kbluc cell lines strongly expressing estrogen receptor. The very low expression of estrogen receptor in blood cells could explain the observed insensitivity of methylation at LINE-1 to natural hormonal variations in females. In conclusion, neither natural cycle of hormones nor age has a detectable effect on the LINE-1 methylation in peripheral blood cells, while gender remains an important factor.
Collapse
Affiliation(s)
- Osman El-Maarri
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Wu HC, Delgado-Cruzata L, Flom JD, Kappil M, Ferris JS, Liao Y, Santella RM, Terry MB. Global methylation profiles in DNA from different blood cell types. Epigenetics 2011; 6:76-85. [PMID: 20890131 DOI: 10.4161/epi.6.1.13391] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
DNA methylation measured in white blood cell DNA is increasingly being used as in studies of cancer susceptibility. However, little is known about the correlation between different assays to measure global methylation and whether the source of DNA matters when examining methylation profiles in different blood cell types. Using information from 620 women, 217 and 403 women with DNA available from granulocytes (Gran), and total white blood cells (WBC), respectively, and 48 women with DNA available from four different sources (WBC, Gran, mononuclear (MN), and lymphoblastoid cell lines (LCL)), we compared DNA methylation for three repetitive elements (LINE1, Sat2, Alu) by MethyLight, luminometric methylation assay (LUMA), and [(3)H]-methyl acceptance assay. For four of the five assays, DNA methylation levels measured in Gran were not correlated with methylation in LBC, MN, or WBC; the exception was Sat2. DNA methylation in LCL was correlated with methylation in MN and WBC for the [(3)H]-methyl acceptance, LINE1, and Alu assays. Methylation in MN was correlated with methylation in WBC for the [(3)H]-methyl acceptance and LUMA assays. When we compared the five assays to each other by source of DNA, we observed statistically significant positive correlations ranging from 0.3-0.7 for each cell type with one exception (Sat2 and Alu in MN). Among the 620 women stratified by DNA source, correlations among assays were highest for the three repetitive elements (range 0.39-0.64). Results from the LUMA assay were modestly correlated with LINE1 (0.18-0.20). These results suggest that both assay and source of DNA are critical components in the interpretation of global DNA methylation patterns from WBC.
Collapse
Affiliation(s)
- Hui-Chen Wu
- Department of Epidemiology, Mailman School of Public Health of Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Wu HC, John EM, Ferris JS, Keegan TH, Chung WK, Andrulis I, Delgado-Cruzata L, Kappil M, Gonzalez K, Santella RM, Terry MB. Global DNA methylation levels in girls with and without a family history of breast cancer. Epigenetics 2011; 6:29-33. [PMID: 20930546 DOI: 10.4161/epi.6.1.13393] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lower levels of global DNA methylation in white blood cell (WBC) DNA have been associated with adult cancers. It is unknown whether individuals with a family history of cancer also have lower levels of global DNA methylation early in life. We examined global DNA methylation in WBC (measured in three repetitive elements, LINE1, Sat2 and Alu, by MethyLight and in LINE1 by pyrosequencing) in 51 girls ages 6-17. Compared to girls without a family history of breast cancer, methylation levels were lower for all assays in girls with a family history of breast cancer, and statistically significantly lower for Alu and LINE1 pyrosequencing. After adjusting for age, body mass index (BMI), and Tanner stage, only methylation in Alu was associated with family history of breast cancer. If these findings are replicated in larger studies, they suggest that lower levels of global WBC DNA methylation observed later in life in adults with cancer may also be present early in life in children with a family history of cancer.
Collapse
Affiliation(s)
- Hui-Chen Wu
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Yoshida T, Yamashita S, Takamura-Enya T, Niwa T, Ando T, Enomoto S, Maekita T, Nakazawa K, Tatematsu M, Ichinose M, Ushijima T. Alu and Satα hypomethylation in Helicobacter pylori-infected gastric mucosae. Int J Cancer 2010; 128:33-9. [PMID: 20602342 DOI: 10.1002/ijc.25534] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Global hypomethylation and regional hypermethylation are supposed to be hallmarks of cancer cells. During gastric carcinogenesis, in which Helicobacter pylori infection is causally involved, aberrant hypermethylation is already present in H. pylori-infected gastric mucosae. In contrast, little is known about global hypomethylation, which can be caused by hypomethylation of individual repetitive elements and other sequences. We, therefore, investigated hypomethylation of individual repetitive elements and the global 5-methylcytosine content in four groups of gastric mucosal samples that represented the time course of H. pylori infection and gastric carcinogenesis [gastric mucosae of H. pylori-negative healthy volunteers (G1, n = 34), H. pylori-positive healthy volunteers (G2, n = 42), H. pylori-positive gastric cancer patients (G3, n = 34) and H. pylori-negative gastric cancer patients (G4, n = 20)] and 52 primary gastric cancers. Major variants of Alu, LINE1 and Satα were identified, and their methylation levels were quantified by bisulfite pyrosequencing. Compared with G1, the Alu methylation level was decreased in G2, G3, G4 and cancers (89.2-97.1% of that in G1, p < 0.05). The Satα methylation level was decreased in G2 (91.6%, p < 0.05) and G3 (94.3%, p = 0.08) but not in G4 and cancers. The LINE1 methylation level was decreased only in cancers. The 5-methylcytosine content was at similar levels in G2, G3 and G4 and highly variable in cancers. These results showed that Alu and Satα hypomethylation is induced in gastric mucosae by H. pylori infection during gastric carcinogenesis, possibly in different target cells, and that global hypomethylation is not always present in human gastric cancers.
Collapse
Affiliation(s)
- Takeichi Yoshida
- Carcinogenesis Division, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Zhang L, Zhang M, Yang S, Cao Y, Bingrong Zhang S, Yin L, Tian Y, Ma Y, Zhang A, Okunieff P, Zhang L. A new biodosimetric method: branched DNA-based quantitative detection of B1 DNA in mouse plasma. Br J Radiol 2010; 83:694-701. [PMID: 20675464 DOI: 10.1259/bjr/49886569] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A simple and accurate method for measuring the biological effects of radiation is of increasing importance, especially in mass casualty scenarios. We have therefore developed a new biodosimetric technique targeting circulating B1 DNA in mouse plasma by branched DNA signal amplification for rapid quantification of plasma DNA. This technology targets repetitive elements of the B1 retrotransposon in the mouse genome, followed by signal amplification using Panomics Quantigene 2.0 reagents. Evaluation was conducted concerning precision, accuracy and linearity. Plasma samples were collected from mice 0-24 h after 0-10 Gy total body irradiation (TBI). The average inter- and intra-assay coefficients of variance were 8.7% and 12.3%, respectively. The average recovery rate of spiked DNA into plasma was 89.5%. This assay revealed that when BALB/c and NIH Swiss mice were exposed to 6 Gy TBI, plasma B1 DNA levels increased significantly at 3 h post-TBI, peaked at 9 h and gradually returned toward baseline levels in 24 h. A dose-dependent change in plasma DNA was observed at 9 h post-TBI; the dose-response relation was monotonic, exhibiting linearity for BALB/c mice from 3 to 6 Gy (r = 0.993) and NIH Swiss mice from 3 to 7 Gy (r = 0.98). This branched DNA-based assay is reliable, accurate and sensitive in detecting plasma B1 DNA quantitatively. A radiation dose-correlated increase in plasma B1 DNA was demonstrated in BALB/c and NIH Swiss mice in the dose range from 3 to 6 Gy, suggesting that plasma B1 DNA has potential as a biomarker for radiation biological effect.
Collapse
Affiliation(s)
- L Zhang
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Rangwala SH, Richards EJ. The structure, organization and radiation of Sadhu non-long terminal repeat retroelements in Arabidopsis species. Mob DNA 2010; 1:10. [PMID: 20226007 PMCID: PMC2848041 DOI: 10.1186/1759-8753-1-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 03/01/2010] [Indexed: 11/10/2022] Open
Abstract
Background Sadhu elements are non-autonomous retroposons first recognized in Arabidopsis thaliana. There is a wide degree of divergence among different elements, suggesting that these sequences are ancient in origin. Here we report the results of several lines of investigation into the genomic organization and evolutionary history of this element family. Results We present a classification scheme for Sadhu elements in A. thaliana, describing derivative elements related to the full-length elements we reported previously. We characterized Sadhu5 elements in a set of A. thaliana strains in order to trace the history of radiation in this subfamily. Sequences surrounding the target sites of different Sadhu insertions are consistent with mobilization by LINE retroelements. Finally, we identified Sadhu elements grouping into distinct subfamilies in two related species, Arabidopsis arenosa and Arabidopsis lyrata. Conclusions Our analyses suggest that the Sadhu retroelement family has undergone target primed reverse transcription-driven retrotransposition during the divergence of different A. thaliana strains. In addition, Sadhu elements can be found at moderate copy number in three distinct Arabidopsis species, indicating that the evolutionary history of these sequences can be traced back at least several millions of years.
Collapse
Affiliation(s)
- Sanjida H Rangwala
- Department of Biology, Washington University in St Louis, St Louis, MO, USA.
| | | |
Collapse
|
57
|
de Morgan A, Brodsky L, Ronin Y, Nevo E, Korol A, Kashi Y. Genome-wide analysis of DNA turnover and gene expression in stationary-phase Saccharomyces cerevisiae. MICROBIOLOGY-SGM 2010; 156:1758-1771. [PMID: 20167621 DOI: 10.1099/mic.0.035519-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Exponential-phase yeast cells readily enter stationary phase when transferred to fresh, carbon-deficient medium, and can remain fully viable for up to several months. It is known that stationary-phase prokaryotic cells may still synthesize substantial amounts of DNA. Although the basis of this phenomenon remains unclear, this DNA synthesis may be the result of DNA maintenance and repair, recombination, and stress-induced transposition of mobile elements, which may occur in the absence of DNA replication. To the best of our knowledge, the existence of DNA turnover in stationary-phase unicellular eukaryotes remains largely unstudied. By performing cDNA-spotted (i.e. ORF) microarray analysis of stationary cultures of a haploid Saccharomyces cerevisiae strain, we demonstrated on a genomic scale the localization of a DNA-turnover marker [5-bromo-2'-deoxyuridine (BrdU); an analogue of thymidine], indicative of DNA synthesis in discrete, multiple sites across the genome. Exponential-phase cells on the other hand, exhibited a uniform, total genomic DNA synthesis pattern, possibly the result of DNA replication. Interestingly, BrdU-labelled sites exhibited a significant overlap with highly expressed features. We also found that the distribution among chromosomes of BrdU-labelled and expressed features deviates from random distribution; this was also observed for the overlapping set. Ty1 retrotransposon genes were also found to be labelled with BrdU, evidence for transposition during stationary phase; however, they were not significantly expressed. We discuss the relevance and possible connection of these results to DNA repair, mutation and related phenomena in higher eukaryotes.
Collapse
Affiliation(s)
- A de Morgan
- Institute of Evolution, Department of Evolutionary Biology and Ecology, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - L Brodsky
- Institute of Evolution, Department of Evolutionary Biology and Ecology, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - Y Ronin
- Institute of Evolution, Department of Evolutionary Biology and Ecology, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - E Nevo
- Institute of Evolution, Department of Evolutionary Biology and Ecology, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - A Korol
- Institute of Evolution, Department of Evolutionary Biology and Ecology, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - Y Kashi
- Department of Biotechnology and Food Engineering, Technion, Israel Institute of Technology, Haifa 30200, Israel
| |
Collapse
|
58
|
Guo Y, Levin HL. High-throughput sequencing of retrotransposon integration provides a saturated profile of target activity in Schizosaccharomyces pombe. Genome Res 2009; 20:239-48. [PMID: 20040583 DOI: 10.1101/gr.099648.109] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The biological impact of transposons on the physiology of the host depends greatly on the frequency and position of integration. Previous studies of Tf1, a long terminal repeat retrotransposon in Schizosaccharomyces pombe, showed that integration occurs at the promoters of RNA polymerase II (Pol II) transcribed genes. To determine whether specific promoters are preferred targets of integration, we sequenced large numbers of insertions using high-throughput pyrosequencing. In four independent experiments we identified a total of 73,125 independent integration events. These data provided strong support for the conclusion that Pol II promoters are the targets of Tf1 integration. The size and number of the integration experiments resulted in reproducible measures of integration for each intergenic region and ORF in the S. pombe genome. The reproducibility of the integration activity from experiment to experiment demonstrates that we have saturated the full set of insertion sites that are actively targeted by Tf1. We found Tf1 integration was highly biased in favor of a specific set of Pol II promoters. The overwhelming majority (76%) of the insertions were distributed in intergenic sequences that contained 31% of the promoters of S. pombe. Interestingly, there was no correlation between the amount of integration at these promoters and their level of transcription. Instead, we found Tf1 had a strong preference for promoters that are induced by conditions of stress. This targeting of stress response genes coupled with the ability of Tf1 to regulate the expression of adjacent genes suggests Tf1 may improve the survival of S. pombe when cells are exposed to environmental stress.
Collapse
Affiliation(s)
- Yabin Guo
- Section on Eukaryotic Transposable Elements, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
59
|
van der Vaart M, Semenov DV, Kuligina EV, Richter VA, Pretorius PJ. Characterisation of circulating DNA by parallel tagged sequencing on the 454 platform. Clin Chim Acta 2009; 409:21-7. [DOI: 10.1016/j.cca.2009.08.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 08/04/2009] [Accepted: 08/04/2009] [Indexed: 11/15/2022]
|
60
|
Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet 2009; 10:691-703. [PMID: 19763152 DOI: 10.1038/nrg2640] [Citation(s) in RCA: 1138] [Impact Index Per Article: 75.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Their ability to move within genomes gives transposable elements an intrinsic propensity to affect genome evolution. Non-long terminal repeat (LTR) retrotransposons--including LINE-1, Alu and SVA elements--have proliferated over the past 80 million years of primate evolution and now account for approximately one-third of the human genome. In this Review, we focus on this major class of elements and discuss the many ways that they affect the human genome: from generating insertion mutations and genomic instability to altering gene expression and contributing to genetic innovation. Increasingly detailed analyses of human and other primate genomes are revealing the scale and complexity of the past and current contributions of non-LTR retrotransposons to genomic change in the human lineage.
Collapse
Affiliation(s)
- Richard Cordaux
- CNRS UMR 6556 Ecologie, Evolution, Symbiose, Université de Poitiers, 40 Avenue du Recteur Pineau, Poitiers, France
| | | |
Collapse
|
61
|
Luchetti A. Identification of a short interspersed repeat in theReticulitermes lucifugus(Isoptera Rhinotermitidae) genome. ACTA ACUST UNITED AC 2009; 16:304-7. [PMID: 16147891 DOI: 10.1080/10425170500061467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A SINE element (called Talua) has been isolated from Reticulitermes lucifugus genome, by means of sequence comparison between clones obtained through genomic restriction and aspecific PCR amplification. It posses all the structural features commonly found in short interspersed elements: (i) a RNA polymerase III internal promoter, (ii) flanking short direct repeats and (iii) a poly (A) tail. BLAST search reveals significant homology with other previously described SINEs and tRNAs. The repeats are G+C-rich, but they are located in A+T-rich regions. This biased genomic distribution results from the analysis of adjacent regions. A Talua element was also found in a microsatellite-containing clone from Cryptotermes secundus. The presence of the SINE also in the Kalotermitidae family, suggests the usefulness of Talua as a taxonomic marker at the family level. The importance of this element on termite genome evolution is discussed.
Collapse
Affiliation(s)
- Andrea Luchetti
- Dipartimento di Biologia Evoluzionistica Sperimentale, Via Selmi 3, 40126 Bologna, Italia.
| |
Collapse
|
62
|
Coughlin DJ, Babak T, Nihranz C, Hughes TR, Engelke DR. Prediction and verification of mouse tRNA gene families. RNA Biol 2009; 6:195-202. [PMID: 19246989 DOI: 10.4161/rna.6.2.8050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Transfer RNA (tRNA) gene predictions are complicated by challenges such as structural variation, limited sequence conservation and the presence of highly reiterated short interspersed sequences (SINEs) that originally derived from tRNA genes or tRNA-like transcription units. Annotation of "tRNA genes" in sequenced genomes generally have not been accompanied by experimental verification of the expression status of predicted sequences. RESULTS To address this for mouse tRNA genes, we have employed two programs, tRNAScan-SE and ARAGORN, to predict the tRNA genes in the nuclear genome, resulting in diverse but overlapping predicted gene sets. From these, we removed known SINE repeats and sorted the genes into predicted families and single-copy genes. In particular, four families of intron-containing tRNA genes were predicted for the first time in mouse, with introns in positions and structures similar to the well characterized intron-containing tRNA genes in yeast. We verified the expression of the predicted tRNA genes by microarray analysis. We then confirmed the expression of appropriately sized RNA for the four intron-containing tRNA gene families, as well as the other 30 tRNA gene families creating an index of expression-verified mouse tRNAs. CONCLUSIONS These confirmed tRNA genes represent all anticodons and all known mammalian tRNA structural groups, as well as a variety of predicted "rogue" tRNA genes within families with altered anticodon identities.
Collapse
Affiliation(s)
- Daniel J Coughlin
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
63
|
Liu JJ, Ran XQ, Li S, Feng Y, Wang JF. Polymorphism in the first intron of follicle stimulating hormone beta gene in three Chinese pig breeds and two European pig breeds. Anim Reprod Sci 2009; 111:369-75. [PMID: 18436398 DOI: 10.1016/j.anireprosci.2008.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 11/22/2007] [Accepted: 03/14/2008] [Indexed: 11/18/2022]
|
64
|
Tong C, Guo B, He S. Bead-probe complex capture a couple of SINE and LINE family from genomes of two closely related species of East Asian cyprinid directly using magnetic separation. BMC Genomics 2009; 10:83. [PMID: 19224649 PMCID: PMC2653535 DOI: 10.1186/1471-2164-10-83] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Accepted: 02/19/2009] [Indexed: 11/16/2022] Open
Abstract
Background Short and long interspersed elements (SINEs and LINEs, respectively), two types of retroposons, are active in shaping the architecture of genomes and powerful tools for studies of phylogeny and population biology. Here we developed special protocol to apply biotin-streptavidin bead system into isolation of interspersed repeated sequences rapidly and efficiently, in which SINEs and LINEs were captured directly from digested genomic DNA by hybridization to bead-probe complex in solution instead of traditional strategy including genomic library construction and screening. Results A new couple of SINEs and LINEs that shared an almost identical 3'tail was isolated and characterized in silver carp and bighead carp of two closely related species. These SINEs (34 members), designated HAmo SINE family, were little divergent in sequence and flanked by obvious TSD indicated that HAmo SINE was very young family. The copy numbers of this family was estimated to 2 × 105 and 1.7 × 105 per haploid genome by Real-Time qPCR, respectively. The LINEs, identified as the homologs of LINE2 in other fishes, had a conserved primary sequence and secondary structures of the 3'tail region that was almost identical to that of HAmo SINE. These evidences suggest that HAmo SINEs are active and amplified recently utilizing the enzymatic machinery for retroposition of HAmoL2 through the recognition of higher-order structures of the conserved 42-tail region. We analyzed the possible structures of HAmo SINE that lead to successful amplification in genome and then deduced that HAmo SINE, SmaI SINE and FokI SINE that were similar in sequence each other, were probably generated independently and created by LINE family within the same lineage of a LINE phylogeny in the genomes of different hosts. Conclusion The presented results show the advantage of the novel method for retroposons isolation and a pair of young SINE family and its partner LINE family in two carp fishes, which strengthened the hypotheses containing the slippage model for initiation of reverse transcription, retropositional parasitism of SINEs on LINEs, the formation of the stem loop structure in 3'tail region of some SINEs and LINEs and the mechanism of template switching in generating new SINE family.
Collapse
Affiliation(s)
- Chaobo Tong
- Laboratory of Fish Phylogenetics and Biogeography, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China.
| | | | | |
Collapse
|
65
|
Gogolevsky KP, Vassetzky NS, Kramerov DA. 5S rRNA-derived and tRNA-derived SINEs in fruit bats. Genomics 2009; 93:494-500. [PMID: 19442632 DOI: 10.1016/j.ygeno.2009.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 02/04/2009] [Accepted: 02/04/2009] [Indexed: 11/24/2022]
Abstract
Most short retroposons (SINEs) descend from cellular tRNA of 7SL RNA. Here, four new SINEs were found in megabats (Megachiroptera) but neither in microbats nor in other mammals. Two of them, MEG-RS and MEG-RL, descend from another cellular RNA, 5S rRNA; one (MEG-T2) is a tRNA-derived SINE; and MEG-TR is a hybrid tRNA/5S rRNA SINE. Insertion locus analysis suggests that these SINEs were active in the recent fruit bat evolution. Analysis of MEG-RS and MEG-RL in comparison with other few 5S rRNA-derived SINEs demonstrates that the internal RNA polymerase III promoter is their most invariant region, while the secondary structure is more variable. The mechanisms underlying the modular structure of these and other SINEs as well as their variation are discussed. The scenario of evolution of MEG SINEs is proposed.
Collapse
Affiliation(s)
- Konstantin P Gogolevsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia
| | | | | |
Collapse
|
66
|
Beauregard A, Curcio MJ, Belfort M. The take and give between retrotransposable elements and their hosts. Annu Rev Genet 2009; 42:587-617. [PMID: 18680436 DOI: 10.1146/annurev.genet.42.110807.091549] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Retrotransposons mobilize via RNA intermediates and usually carry with them the agent of their mobility, reverse transcriptase. Retrotransposons are streamlined, and therefore rely on host factors to proliferate. However, retrotransposons are exposed to cellular forces that block their paths. For this review, we have selected for our focus elements from among target-primed (TP) retrotransposons, also called non-LTR retrotransposons, and extrachromosomally-primed (EP) retrotransposons, also called LTR retrotransposons. The TP retrotransposons considered here are group II introns, LINEs and SINEs, whereas the EP elements considered are the Ty and Tf retrotransposons, with a brief comparison to retroviruses. Recurring themes for these elements, in hosts ranging from bacteria to humans, are tie-ins of the retrotransposons to RNA metabolism, DNA replication and repair, and cellular stress. Likewise, there are parallels among host-cell defenses to combat rampant retrotransposon spread. The interactions between the retrotransposon and the host, and their coevolution to balance the tension between retrotransposon proliferation and host survival, form the basis of this review.
Collapse
Affiliation(s)
- Arthur Beauregard
- New York State Department of Health, Center for Medical Sciences, Albany, New York 12208, 12201-2002, USA.
| | | | | |
Collapse
|
67
|
Rebuzzini P, Castiglia R, Nergadze SG, Mitsainas G, Munclinger P, Zuccotti M, Capanna E, Redi CA, Garagna S. Quantitative variation of LINE-1 sequences in five species and three subspecies of the subgenus Mus and in five Robertsonian races of Mus musculus domesticus. Chromosome Res 2009; 17:65-76. [PMID: 19184476 DOI: 10.1007/s10577-008-9004-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/24/2008] [Accepted: 10/24/2008] [Indexed: 10/21/2022]
Abstract
The quantitative variation of a conserved region of the LINE-1 ORF2 sequence was determined in eight species and subspecies of the subgenus Mus (M. m. domesticus, M. m. musculus, M. m. castaneus, M. spicilegus, M. spretus, M. cervicolor, M. cookii, M. caroli) and five Robertsonian races of M. m. domesticus. No differences in LINE-1 ORF2 content were found between all acrocentric or Robertsonian chromosome races, whereas the quantitative variation of the LINE-1 ORF2 sequences detected among the eight taxa partly matches with the clades into which the subgenus is divided. An accumulation of LINE-1 ORF2 elements likely occurred during the evolution of the subgenus. Within the Asiatic clade, M. cervicolor, cookii, and caroli show a low quantity of LINE-1 sequences, also detected within the Palearctic clade in M. m. castaneus and M. spretus, representing perhaps the ancestral condition within the subgenus. On the other hand, M. m. domesticus, M. m. musculus and M. spicilegus showed a high content of LINE-1 ORF2 sequences. Comparison between the chromosomal hybridization pattern of M. m. domesticus, which possesses the highest content, and M. spicilegus did not show any difference in the LINE-1 ORF2 distribution, suggesting that the quantitative variation of this sequence family did not involve chromosome restructuring or a preferential chromosome accumulation, during the evolution of M. m. domesticus.
Collapse
Affiliation(s)
- Paola Rebuzzini
- Dipartimento di Biologia Animale, Università degli Studi di Pavia, Piazza Botta, 9-10, 27100, Pavia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
This chapter defines the agents that provide for the movement of genetic material which fuels the adaptive potential of life on our planet. The chapter has been structured to be broadly comprehensive, arbitrarily categorizing the mobilome into four classes: (1) transposons, (2) plasmids, (3) bacteriophage, and (4) self-splicing molecular parasites.Our increasing understanding of the mobilome is as dynamic as the mobilome itself. With continuing discovery, it is clear that nature has not confined these genomic agents of change to neat categories, but rather the classification categories overlap and intertwine. Massive sequencing efforts and their published analyses are continuing to refine our understanding of the extent of the mobilome. This chapter provides a framework to describe our current understanding of the mobilome and a foundation on which appreciation of its impact on genome evolution can be understood.
Collapse
|
69
|
Kortschak RD, Tsend-Ayush E, Grützner F. Analysis of SINE and LINE repeat content of Y chromosomes in the platypus, Ornithorhynchus anatinus. Reprod Fertil Dev 2009; 21:964-75. [DOI: 10.1071/rd09084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 06/21/2009] [Indexed: 01/11/2023] Open
Abstract
Monotremes feature an extraordinary sex-chromosome system that consists of five X and five Y chromosomes in males. These sex chromosomes share homology with bird sex chromosomes but no homology with the therian X. The genome of a female platypus was recently completed, providing unique insights into sequence and gene content of autosomes and X chromosomes, but no Y-specific sequence has so far been analysed. Here we report the isolation, sequencing and analysis of ~700 kb of sequence of the non-recombining regions of Y2, Y3 and Y5, which revealed differences in base composition and repeat content between autosomes and sex chromosomes, and within the sex chromosomes themselves. This provides the first insights into repeat content of Y chromosomes in platypus, which overall show similar patterns of repeat composition to Y chromosomes in other species. Interestingly, we also observed differences between the various Y chromosomes, and in combination with timing and activity patterns we provide an approach that can be used to examine the evolutionary history of the platypus sex-chromosome chain.
Collapse
|
70
|
Lorenzi H, Thiagarajan M, Haas B, Wortman J, Hall N, Caler E. Genome wide survey, discovery and evolution of repetitive elements in three Entamoeba species. BMC Genomics 2008; 9:595. [PMID: 19077187 PMCID: PMC2657916 DOI: 10.1186/1471-2164-9-595] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 12/10/2008] [Indexed: 11/14/2022] Open
Abstract
Background Identification and mapping of repetitive elements is a key step for accurate gene prediction and overall structural annotation of genomes. During the assembly and annotation of three highly repetitive amoeba genomes, Entamoeba histolytica, Entamoeba dispar, and Entamoeba invadens, we performed comparative sequence analysis to identify and map all class I and class II transposable elements in their sequences. Results Here, we report the identification of two novel Entamoeba-specific repeats: ERE1 and ERE2; ERE1 is spread across the three genomes and associated with different repeats in a species-specific manner, while ERE2 is unique to E. histolytica. We also report the identification of two novel subfamilies of LINE and SINE retrotransposons in E. dispar and provide evidence for how the different LINE and SINE subfamilies evolved in these species. Additionally, we found a putative transposase-coding gene in E. histolytica and E. dispar related to the mariner transposon Hydargos from E. invadens. The distribution of transposable elements in these genomes is markedly skewed with a tendency of forming clusters. More than 70% of the three genomes have a repeat density below their corresponding average value indicating that transposable elements are not evenly distributed. We show that repeats and repeat-clusters are found at syntenic break points between E. histolytica and E. dispar and hence, could work as recombination hot spots promoting genome rearrangements. Conclusion The mapping of all transposable elements found in these parasites shows that repeat coverage is up to three times higher than previously reported. LINE, ERE1 and mariner elements were present in the common ancestor to the three Entamoeba species while ERE2 was likely acquired by E. histolytica after its separation from E. dispar. We demonstrate that E. histolytica and E. dispar share their entire repertoire of LINE and SINE retrotransposons and that Eh_SINE3/Ed_SINE1 originated as a chimeric SINE from Eh/Ed_SINE2 and Eh_SINE1/Ed_SINE3. Our work shows that transposable elements are organized in clusters, frequently found at syntenic break points providing insights into their contribution to chromosome instability and therefore, to genomic variation and speciation in these parasites.
Collapse
Affiliation(s)
- Hernan Lorenzi
- J, Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | | | | | | | |
Collapse
|
71
|
Haeusler RA, Pratt-Hyatt M, Good PD, Gipson TA, Engelke DR. Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes. Genes Dev 2008; 22:2204-14. [PMID: 18708579 DOI: 10.1101/gad.1675908] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The 274 tRNA genes in Saccharomyces cerevisiae are scattered throughout the linear maps of the 16 chromosomes, but the genes are clustered at the nucleolus when compacted in the nucleus. This clustering is dependent on intact nucleolar organization and contributes to tRNA gene-mediated (tgm) silencing of RNA polymerase II transcription near tRNA genes. After examination of the localization mechanism, we find that the chromosome-condensing complex, condensin, is involved in the clustering of tRNA genes. Conditionally defective mutations in all five subunits of condensin, which we confirm is bound to active tRNA genes in the yeast genome, lead to loss of both pol II transcriptional silencing near tRNA genes and nucleolar clustering of the genes. Furthermore, we show that condensin physically associates with a subcomplex of RNA polymerase III transcription factors on the tRNA genes. Clustering of tRNA genes by condensin appears to be a separate mechanism from their nucleolar localization, as microtubule disruption releases tRNA gene clusters from the nucleolus, but does not disperse the clusters. These observations suggest a widespread role for condensin in gene organization and packaging of the interphase yeast nucleus.
Collapse
Affiliation(s)
- Rebecca A Haeusler
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
72
|
Borodulina OR, Kramerov DA. Transcripts synthesized by RNA polymerase III can be polyadenylated in an AAUAAA-dependent manner. RNA (NEW YORK, N.Y.) 2008; 14:1865-1873. [PMID: 18658125 PMCID: PMC2525947 DOI: 10.1261/rna.1006608] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 06/09/2008] [Indexed: 05/26/2023]
Abstract
It is well known that nearly all eukaryotic mRNAs contain a 3' poly(A) tail. A polyadenylation signal (AAUAAA) nearby the 3' end of pre-mRNA is required for poly(A) synthesis. The protein complex involved in the pre-mRNA polyadenylation is coupled with RNA polymerase II during the transcription of a gene. According to the commonly accepted view, only RNAs synthesized by RNA polymerase II can be polyadenylated in an AAUAAA-dependent manner. Here we report the polyadenylation of short interspersed elements (SINEs) B2 and VES transcripts generated by RNA polymerase III. HeLa cells were transfected with SINE constructs with or without polyadenylation signals. The analyses of the SINE transcripts showed that only the RNAs with the AAUAAA-signal contained poly(A) tails. Polyadenylated B2 RNA was found to be much more stable in cells than B2 RNA without a poly(A) tail.
Collapse
Affiliation(s)
- Olga R Borodulina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | | |
Collapse
|
73
|
Berretta J, Pinskaya M, Morillon A. A cryptic unstable transcript mediates transcriptional trans-silencing of the Ty1 retrotransposon in S. cerevisiae. Genes Dev 2008; 22:615-26. [PMID: 18316478 DOI: 10.1101/gad.458008] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cryptic unstable transcripts (CUTs) are synthesized from intra- and intergenic regions in Saccharomyces cerevisiae and are rapidly degraded by RNA surveillance pathways, but their function(s) remain(s) elusive. Here, we show that an antisense TY1 CUT, starting within the Ty1 retrotransposon and encompassing the promoter 5' long terminal repeat (LTR), mediates RNA-dependent gene silencing and represses Ty1 mobility. We show that the Ty1 regulatory RNA is synthesized by RNA polymerase II, polyadenylated, and destabilized by the cytoplasmic 5' RNA degradation pathway. Moreover, the Ty1 regulatory RNA represses Ty1 transcription and transposition in trans by acting on the de novo transcribed TY1 RNA. Consistent with a transcriptional regulation mechanism, we show that RNA polymerase II occupancy is reduced on the Ty1 chromatin upon silencing, although TBP binding remains unchanged. Furthermore, the Ty1 silencing is partially mediated by histone deacetylation and requires Set1-dependent histone methylation, pointing out an analogy with heterochromatin gene silencing. Our results show the first example of an RNA-dependent gene trans-silencing mediated by epigenetic marks in S. cerevisiae.
Collapse
Affiliation(s)
- Julia Berretta
- Centre de Genetique Moleculaire-Centre National de la Recherche Scientifique (CGM-CNRS), 91198 Gif/Yvette, France
| | | | | |
Collapse
|
74
|
Abstract
DNA and amino acid sequences contain information about both the phylogenetic relationships among species and the evolutionary processes that caused the sequences to divergence. Mathematical and statistical methods try to detect this information to determine how and why DNA and protein molecules work the way they do. This chapter describes some of the models of evolution of biological sequences most widely used. It first focuses on single nucleotide/amino acid replacement rate models. Then it discusses the modelling of evolution at gene and protein module levels. The chapter concludes with speculations about the future use of molecular evolution studies using genomic and proteomic data.
Collapse
Affiliation(s)
- Pietro Liò
- Computer Laboratory, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
75
|
|
76
|
Abstract
Transposable elements are often considered parasitic DNA sequences, able to invade the genome of their host thanks to their self-replicating ability. This colonization process has been extensively studied, both theoretically and experimentally, but their long-term coevolution with the genomes is still poorly understood. In this work, we aim to challenge previous population genetics models by considering features of transposable elements as quantitative, rather than discrete, variables. We also describe more realistic transposable element dynamics by accounting for the variability of the insertion effect, from deleterious to adaptive, as well as mutations leading to a loss of transposition activity and to nonautonomous copies. Individual-based simulations of the behavior of a transposable-element family over several thousand generations show different ways in which active or inactive copies can be maintained for a very long time. Results reveal an unexpected impact of genetic drift on the "junk DNA" content of the genome and strongly question the likelihood of the sustainable long-term stable transposition-selection equilibrium on which numerous previous works were based.
Collapse
|
77
|
Gogolevsky KP, Vassetzky NS, Kramerov DA. Bov-B-mobilized SINEs in vertebrate genomes. Gene 2007; 407:75-85. [PMID: 17976929 DOI: 10.1016/j.gene.2007.09.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 09/27/2007] [Accepted: 09/27/2007] [Indexed: 11/26/2022]
Abstract
Two new short retroposon families (SINEs) have been found in the genome of springhare Pedetes capensis (Rodentia). One of them, Ped-1, originated from 5S rRNA, while the other one, Ped-2, originated from tRNA-derived SINE ID. In contrast to most currently active mammalian SINEs mobilized by L1 long retrotransposon (LINE), Ped-1 and Ped-2 are mobilized by Bov-B, a LINE family of the widely distributed RTE clade. The 3' part of these SINEs originates from two sequences in the 5' and 3' regions of Bov-B. Such bipartite structure of the LINE-derived part has been revealed in all Bov-B-mobilized SINEs known to date (AfroSINE, Bov-tA, Mar-1, and Ped-1/2), which distinguishes them from other SINEs with only a 3' LINE-derived part. Structural analysis and the distribution of Bov-B LINEs and partner SINEs supports the horizontal transfer of Bov-B, while the SINEs emerged independently in lineages with this LINE.
Collapse
Affiliation(s)
- Konstantin P Gogolevsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow, Russia
| | | | | |
Collapse
|
78
|
Jiang Y, Sun T, Xiong J, Cao J, Li G, Wang S. Hyperhomocysteinemia-mediated DNA hypomethylation and its potential epigenetic role in rats. Acta Biochim Biophys Sin (Shanghai) 2007; 39:657-67. [PMID: 17805460 DOI: 10.1111/j.1745-7270.2007.00327.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Hyperhomocysteinemia (HHcy), which is an independent risk factor for atherosclerosis, might cause dysregulation of gene expression, but the characteristics and key links involved in its pathogenic mechanisms are still poorly understood. The objective of the present study was to investigate the effect of HHcy on DNA methylation and the underlying mechanism of homocysteine (Hcy)-induced DNA methylation. HHcy was induced in Sprague-Dawley rats after 4 weeks of a low, medium or high methionine diet. The levels of total homocysteine, S-adenosylmethionine (AdoMet) and S-adenosylhomocysteine (AdoHcy) were detected by high-performance liquid chromatography. The expression levels of genes and proteins of S-adenosylhomocysteine hydrolase, DNA methyltransferase and methyl-CpG-binding domain 2 were detected by real-time reverse transcription-polymerase chain reaction and Western blot analysis. A high-throughput quantitative methylation assay using fluorescence-based real-time polymerase chain reaction was employed to determine the levels of DNA methylation. The results indicated that HHcy induced the elevation of AdoHcy concentration, the decline of AdoMet concentration, the ratios of AdoMet/AdoHcy and the RNA and protein expression of S-adenosylhomocysteine hydrolase and methyl-CpG-binding domain 2, as well as an increase of DNA methyltransferase activity. With different methylation-dependent restriction endonucleases, the aberrant demethylation was found to prefer CCGG sequences to CpG islands. Increasing levels of HHcy significantly increased genome hypomethylation in B1 repetitive elements. The impacts of different levels of HHcy showed that the varied detrimental effects of HHcy could be attributed to different concentrations through different mechanisms. In mild and moderate HHcy, the Hcy might primarily influence the epigenetic regulation of gene expression through the interference of transferring methyl-group metabolism. However, at high Hcy concentrations, the impacts might be more injurious through oxidative stress, apoptosis and inflammation.
Collapse
Affiliation(s)
- Yideng Jiang
- Department of Pathophysiology, Ningxia Medical College, Yinchuan 750004, China.
| | | | | | | | | | | |
Collapse
|
79
|
Shedlock AM, Takahashi K, Okada N. SINEs of speciation: tracking lineages with retroposons. Trends Ecol Evol 2007; 19:545-53. [PMID: 16701320 DOI: 10.1016/j.tree.2004.08.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The value of short interspersed elements (SINEs) for diagnosing common ancestry is being expanded to examine the differential sorting of lineages through the course of speciation events. Because most SINEs are neutral markers of identical descent, are not precisely excised from the genome and have a known ancestral condition, they are advantageous for reconciling gene trees and species trees with minimal phylogenetic error. A population perspective on SINE evolution combined with coalescence theory provides a context for investigating the phenomenon of ancestral polymorphism and its role in producing incongruent SINE insertion patterns among multiple loci. Studies of human Alu repeats demonstrate the value of young polymorphic SINEs for assessing human genomic diversity and tracking ancient demographics of human populations, whereas incongruent insertion patterns revealed by older fixed SINE loci, such as those in African cichlid fishes, contain information that might help identify ancient radiations that are otherwise obscured by accumulated mutations in sequence data. Here, we review the utility of retroposons for inferring common ancestry, discuss limits to the method, and clarify confusion by providing examples from the literature that illustrate how discordant multi-locus insertion patterns of retroelements can indicate lineage-sorting events that should not be misinterpreted as phylogenetic noise.
Collapse
Affiliation(s)
- Andrew M Shedlock
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
80
|
Tchurikov NA, Kretova OV. Suffix-specific RNAi leads to silencing of F element in Drosophila melanogaster. PLoS One 2007; 2:e476. [PMID: 17534426 PMCID: PMC1868783 DOI: 10.1371/journal.pone.0000476] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 05/01/2007] [Indexed: 11/24/2022] Open
Abstract
Separate conserved copies of suffix, a short interspersed Drosophila retroelement (SINE), and also divergent copies in the 3′ untranslated regions of the three genes, have already been described. Suffix has also been identified on the 3′ end of the Drosophila non-LTR F element, where it forms the last conserved domain of the reverse transcriptase (RT). In our current study, we show that the separate copies of suffix are far more actively transcribed than their counterparts on the F element. Transcripts from both strands of suffix are present in RNA preparations during all stages of Drosophila development, providing the potential for the formation of double-stranded RNA and the initiation of RNA interference (RNAi). Using in situ RNA hybridization analysis, we have detected the expression of both sense and antisense suffix transcripts in germinal cells. These sense and antisense transcripts are colocalized in the primary spermatocytes and in the cytoplasm of the nurse cells, suggesting that they form double-stranded RNA. We performed further analyses of suffix-specific small RNAs using northern blotting and SI nuclease protection assays. Among the total RNA preparations isolated from embryos, larvae, pupae and flies, suffix-specific small interfering RNAs (siRNAs) were detected only in pupae. In wild type ovaries, both the siRNAs and longer suffix-specific Piwi-interacting RNAs (piRNAs) were observed, whereas in ovaries of the Dicer-2 mutant, only piRNAs were detected. We further found by 3′ RACE that in pupae and ovaries, F element transcripts lacking the suffix sequence are also present. Our data provide direct evidence that suffix-specific RNAi leads to the silencing of the relative LINE (long interspersed element), F element, and suggests that SINE-specific RNA interference could potentially downregulate a set of genes possessing SINE stretches in their 5′ or 3′ non-coding regions. These data also suggest that double stranded RNAs possessing suffix are processed by both RNAi and an additional silencing mechanism.
Collapse
Affiliation(s)
- Nickolai A Tchurikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | | |
Collapse
|
81
|
Elez M, Radman M, Matic I. The frequency and structure of recombinant products is determined by the cellular level of MutL. Proc Natl Acad Sci U S A 2007; 104:8935-40. [PMID: 17502621 PMCID: PMC1885606 DOI: 10.1073/pnas.0610149104] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The presence of repeated DNA sequences is a genomic liability, because interrepeat recombination can result in chromosomal rearrangements. The mismatch repair system prevents recombination between nonidentical repeats, but the mechanism of antirecombination has not been established. Although the MutS protein binds to base pair mismatches in heteroduplex DNA, the role of the MutL protein in preventing recombination is unknown. In a screen designed to identify new cellular functions that suppress deletion formation involving nonidentical DNA repeats, we isolated a mutL mutant having a separation-of-function phenotype. The mutant showed an increased frequency of deletions but not of mutations. The split phenotype is due to a decreased MutL level, indicating that recombination, but not replication editing, is highly sensitive to MutL level. By altering the MutL level, we found that the frequency of deletion-generating recombination is inversely related to the amount of cellular MutL. DNA sequence analysis of the recombined repeats shows that the tolerance of base pair mismatches in heteroduplex DNA is also inversely correlated with MutL level. Unlike recombination, correction of misincorporation errors by mismatch repair is insensitive to fluctuations in MutL level. Overproduction of MutS does not affect either of these phenotypes, suggesting that, unlike MutL, MutS is not limiting for mismatch repair activities. These results indicate that MutL (i) determines effective DNA homology in recombination processes and (ii) fine tunes the process of deletion formation involving repeated, diverged DNA sequences.
Collapse
Affiliation(s)
- Marina Elez
- *Institut National de la Santé et de la Recherche Médicale U571, Faculté de Médicine, Université Paris V, 156 Rue de Vaugirard, 75730 Paris Cedex 15, France; and
| | - Miroslav Radman
- *Institut National de la Santé et de la Recherche Médicale U571, Faculté de Médicine, Université Paris V, 156 Rue de Vaugirard, 75730 Paris Cedex 15, France; and
- Mediterranean Institute for Life Sciences, Mestrovicevo Setaliste bb, 21000 Split, Croatia
| | - Ivan Matic
- *Institut National de la Santé et de la Recherche Médicale U571, Faculté de Médicine, Université Paris V, 156 Rue de Vaugirard, 75730 Paris Cedex 15, France; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
82
|
Heras SR, López MC, Olivares M, Thomas MC. The L1Tc non-LTR retrotransposon of Trypanosoma cruzi contains an internal RNA-pol II-dependent promoter that strongly activates gene transcription and generates unspliced transcripts. Nucleic Acids Res 2007; 35:2199-214. [PMID: 17369274 PMCID: PMC1874656 DOI: 10.1093/nar/gkl1137] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
L1Tc is the best represented autonomous LINE of the Trypanosoma cruzi genome, throughout which several functional copies may exist. In this study, we show that the first 77 bp of L1Tc (Pr77) (also present in the T. cruzi non-autonomous retrotransposon NARTc, in the Trypanosoma brucei RIME/ingi elements, and in the T. cruzi, T. brucei and Leishmania major degenerate L1Tc/ingi-related elements [DIREs]) behave as a promoter element that activates gene transcription. The transcription rate promoted by Pr77 is 10–14-fold higher than that mediated by sequences located upstream from the T. cruzi tandemly repeated genes KMP11 and the GAPDH. The Pr77 promoter-derived mRNAs initiate at nucleotide +1 of L1Tc, are unspliced and translated. L1Tc transcripts show a moderate half life and are RNA pol II dependent. The presence of an internal promoter at the 5′ end of L1Tc favors the production of full-length L1Tc RNAs and reinforces the hypothesis that this mobile element may be naturally autonomous in its transposition.
Collapse
Affiliation(s)
| | - Manuel C. López
- *To whom correspondence should be addressed. +34 958 181 662+34 958 181 632 Correspondence may also be addressed to M. Carmen Thomas. +34 958 181 662+34 958 181
| | | | | |
Collapse
|
83
|
Ramos KS, Partridge CR, Teneng I. Genetic and molecular mechanisms of chemical atherogenesis. Mutat Res 2007; 621:18-30. [PMID: 17433375 DOI: 10.1016/j.mrfmmm.2006.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 12/12/2006] [Accepted: 12/13/2006] [Indexed: 01/19/2023]
Abstract
Injury to the cellular components of the vascular wall and blood by endogenous and exogenous chemicals has been associated with atherosclerosis in humans and experimental systems. The genetic and molecular mechanisms responsible for initiation and promotion of atherosclerotic changes include modulation of extracellular matrix-integrin axis, genes involved in the regulation of growth and differentiation and possibly, genomic stability. This review summarizes seminal studies over the past 20 years that shed light on critical gene-gene and gene-environment interactions mediating the atherogenic response to chemical injury.
Collapse
Affiliation(s)
- Kenneth S Ramos
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40292, United States.
| | | | | |
Collapse
|
84
|
Shedlock AM. Exploring Frontiers in the DNA Landscape: An Introduction to the Symposium “Genome Analysis and the Molecular Systematics of Retroelements”. Syst Biol 2006; 55:871-4. [PMID: 17345669 DOI: 10.1080/10635150601077634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The emerging field of phylogenomics is influencing both the amount and type of characters being brought to bear on long-standing problems in systematic biology. Moreover, the proliferation of sequence information from genome projects in concert with the development of new informatics tools is widening access to comparative data on retroelements to a broad cross section of investigators. Motivated by this, the Society of Systematic Biologists sponsored a symposium entitled "Genome Analysis and the Molecular Systematics of Retroelements," and the resulting papers illustrate this theme of new discoveries and cover three basic areas of research: (i) the taxonomic distribution and phylogenetic structure of families of retroelements; (II) the use of SINE and LINE insertions for phylogenetic inference; and (III) the informatics and classification of repetitive elements. Contributions of each article are briefly discussed in this context and particularly fruitful directions for future research illuminated by results of this symposium are reviewed.
Collapse
Affiliation(s)
- Andrew M Shedlock
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
85
|
Vogel MJ, Guelen L, de Wit E, Hupkes DP, Lodén M, Talhout W, Feenstra M, Abbas B, Classen AK, van Steensel B. Human heterochromatin proteins form large domains containing KRAB-ZNF genes. Genome Res 2006; 16:1493-504. [PMID: 17038565 PMCID: PMC1665633 DOI: 10.1101/gr.5391806] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Heterochromatin is important for gene regulation and chromosome structure, but the genes that are occupied by heterochromatin proteins in the mammalian genome are largely unknown. We have adapted the DamID method to systematically identify target genes of the heterochromatin proteins HP1 and SUV39H1 in human and mouse cells. Unexpectedly, we found that CBX1 (formerly HP1beta) and SUV39H1 bind to genes encoding KRAB domain containing zinc finger (KRAB-ZNF) transcriptional repressors. These genes constitute one of the largest gene families and are organized in clusters in the human genome. Preference of CBX1 for this gene family was observed in both human and mouse cells. High-resolution mapping on human chromosome 19 revealed that CBX1 coats large domains 0.1-4 Mb in size, which coincide with the position of KRAB-ZNF gene clusters. These domains show an intricate CBX1 binding pattern: While CBX1 is globally elevated throughout the domains, it is absent from the promoters and binds more strongly to the 3' ends of KRAB-ZNF genes. KRAB-ZNF domains contain large numbers of LINE elements, which may contribute to CBX1 recruitment. These results uncover a surprising link between heterochromatin and a large family of regulatory genes in mammals. We suggest a role for heterochromatin in the evolution of the KRAB-ZNF gene family.
Collapse
Affiliation(s)
- Maartje J. Vogel
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lars Guelen
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Elzo de Wit
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Daniel Peric Hupkes
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Martin Lodén
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wendy Talhout
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marike Feenstra
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ben Abbas
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anne-Kathrin Classen
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Bas van Steensel
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Corresponding author.E-mail ; fax +31.20.669.1383
| |
Collapse
|
86
|
Le Rouzic A, Dupas S, Capy P. Genome ecosystem and transposable elements species. Gene 2006; 390:214-20. [PMID: 17188821 DOI: 10.1016/j.gene.2006.09.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 09/12/2006] [Accepted: 09/12/2006] [Indexed: 11/17/2022]
Abstract
Transposable elements are known to be "selfish DNA" sequences able to spread and be maintained in all genomes analyzed so far. Their evolution depends on the interaction they have with the other components of the genome, including genes and other transposable elements. These relationships are complex and have often been compared to those of species living and competing in an ecosystem. The aim of this current work is a proposition to fill the conceptual gap existing between genome biology and ecology, assuming that genomic components, such as transposable elements families, can be compared to species interacting in an ecosystem. Using this framework, some of the main models defined in the population genetics of transposable elements can then been reformulated, and some new kinds of realistic relationships, such as symbiosis between different genomic components, can then be modelled and explored.
Collapse
Affiliation(s)
- Arnaud Le Rouzic
- Laboratoire Evolution, Génome et Spéciation, CNRS, Avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | | | | |
Collapse
|
87
|
Le Rouzic A, Capy P. Population genetics models of competition between transposable element subfamilies. Genetics 2006; 174:785-93. [PMID: 16888345 PMCID: PMC1602078 DOI: 10.1534/genetics.105.052241] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 07/24/2006] [Indexed: 11/18/2022] Open
Abstract
Transposable elements are one of the major components of genomes. Some copies are fully efficient; i.e., they are able to produce the proteins needed for their own transposition, and they can move and duplicate into the genome. Other copies are mutated. They may have lost their moving ability, their coding capacity, or both, thus becoming pseudogenes slowly eliminated from the genome through deletions and natural selection. Little is known about the dynamics of such mutant elements, particularly concerning their interactions with autonomous copies. To get a better understanding of the transposable elements' evolution after their initial invasion, we have designed a population genetics model of transposable elements dynamics including mutants or nonfunctional sequences. We have particularly focused on the case where these sequences are nonautonomous elements, known to be able to use the transposition machinery produced by the autonomous ones. The results show that such copies generally prevent the system from achieving a stable transposition-selection equilibrium and that nonautonomous elements can invade the system at the expense of autonomous ones. The resulting dynamics are mainly cyclic, which highlights the similarities existing between genomic selfish DNA sequences and host-parasite systems.
Collapse
|
88
|
Fawcett JA, Kawahara T, Watanabe H, Yasui Y. A SINE family widely distributed in the plant kingdom and its evolutionary history. PLANT MOLECULAR BIOLOGY 2006; 61:505-14. [PMID: 16830182 DOI: 10.1007/s11103-006-0026-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 02/10/2006] [Indexed: 05/02/2023]
Abstract
The distribution and evolution of Au SINE in plants were examined. Au SINE is a short interspersed element first identified in Aegilops umbellulata, a close relative of wheat. The Au SINE was previously found in species such as wheat, maize, tobacco, and tomato, but not in rice. In this study, we first searched public databases, and next examined the presence of Au in a broad range of plant species by PCR using internal primers of Au. Although Au is likely to be absent from many species including rice, it was identified in many Gramineae, Solanaceae, and Fabaceae species, and also in a basal angiosperm species, Asimina triloba. Phylogenetic studies suggest that Au SINE originated before the divergence of monocots and eudicots. Au SINE sequences of Asimina, Triticum, Zea, Nicotiana, Lotus, Medicago, and Glycine were aligned and compared. Although sequences of Au were highly conserved among distantly related species, every Au element in Glycine had a 16 bp deletion and its 3' end differed from sequences of other species. This type of Au could only be found in G. max, and not in other species including other Fabaceae species such as M. truncatula and L. japonicus. This is the first report of a plant SINE family present in multiple lineages, and the evolution of Au SINE in the plant kingdom, especially in Gramineae and Fabaceae is discussed.
Collapse
Affiliation(s)
- Jeffrey A Fawcett
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyoku, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
89
|
Buzdin A, Kovalskaya-Alexandrova E, Gogvadze E, Sverdlov E. GREM, a technique for genome-wide isolation and quantitative analysis of promoter active repeats. Nucleic Acids Res 2006; 34:e67. [PMID: 16698959 PMCID: PMC3303178 DOI: 10.1093/nar/gkl335] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We developed a technique called GREM (Genomic Repeat Expression Monitor) that can be applied to genome-wide isolation and quantitative analysis of any kind of transcriptionally active repetitive elements. Briefly, the technique includes three major stages: (i) generation of a transcriptome wide library of cDNA 5′ terminal fragments, (ii) selective amplification of repeat-flanking genomic loci and (iii) hybridization of the cDNA library (i) to the amplicon (ii) with subsequent selective amplification and cloning of the cDNA-genome hybrids. The sequences obtained serve as ‘tags’ for promoter active repetitive elements. The advantage of GREM is an unambiguous mapping of individual promoter active repeats at a genome-wide level. We applied GREM for genome-wide experimental identification of human-specific endogenous retroviruses and their solitary long terminal repeats (LTRs) acting in vivo as promoters. Importantly, GREM tag frequencies linearly correlated with the corresponding LTR-driven transcript levels found using RT–PCR. The GREM technique enabled us to identify 54 new functional human promoters created by retroviral LTRs.
Collapse
Affiliation(s)
- Anton Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, Moscow 117997, Russia.
| | | | | | | |
Collapse
|
90
|
Geisinger A, Cossio G, Wettstein R. Molecular cloning and analysis of a DNA repetitive element from the mouse genome. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2006; 34:213-220. [PMID: 21638677 DOI: 10.1002/bmb.2006.49403403213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We report the development of a 3-week laboratory activity for an undergraduate molecular biology course. This activity introduces students to the practice of basic molecular techniques such as restriction enzyme digestion, agarose gel electrophoresis, cloning, plasmid DNA purification, Southern blotting, and sequencing. Students learn how to carry out a GenBank™ search as they are encouraged to compile most available information about their cloned sequence. The natural integration of the bench work with the use of the bioinformatics tools is considered a major advantage of this laboratory course.
Collapse
Affiliation(s)
- Adriana Geisinger
- Unidad Asociada Biología Molecular, Facultad de Ciencias, 11600 Montevideo; Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay.
| | | | | |
Collapse
|
91
|
Bejerano G, Lowe CB, Ahituv N, King B, Siepel A, Salama SR, Rubin EM, Kent WJ, Haussler D. A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 2006; 441:87-90. [PMID: 16625209 DOI: 10.1038/nature04696] [Citation(s) in RCA: 369] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2005] [Accepted: 03/02/2006] [Indexed: 01/15/2023]
Abstract
Hundreds of highly conserved distal cis-regulatory elements have been characterized so far in vertebrate genomes. Many thousands more are predicted on the basis of comparative genomics. However, in stark contrast to the genes that they regulate, in invertebrates virtually none of these regions can be traced by using sequence similarity, leaving their evolutionary origins obscure. Here we show that a class of conserved, primarily non-coding regions in tetrapods originated from a previously unknown short interspersed repetitive element (SINE) retroposon family that was active in the Sarcopterygii (lobe-finned fishes and terrestrial vertebrates) in the Silurian period at least 410 million years ago (ref. 4), and seems to be recently active in the 'living fossil' Indonesian coelacanth, Latimeria menadoensis. Using a mouse enhancer assay we show that one copy, 0.5 million bases from the neuro-developmental gene ISL1, is an enhancer that recapitulates multiple aspects of Isl1 expression patterns. Several other copies represent new, possibly regulatory, alternatively spliced exons in the middle of pre-existing Sarcopterygian genes. One of these, a more than 200-base-pair ultraconserved region, 100% identical in mammals, and 80% identical to the coelacanth SINE, contains a 31-amino-acid-residue alternatively spliced exon of the messenger RNA processing gene PCBP2 (ref. 6). These add to a growing list of examples in which relics of transposable elements have acquired a function that serves their host, a process termed 'exaptation', and provide an origin for at least some of the many highly conserved vertebrate-specific genomic sequences.
Collapse
Affiliation(s)
- Gill Bejerano
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Rangwala SH, Elumalai R, Vanier C, Ozkan H, Galbraith DW, Richards EJ. Meiotically stable natural epialleles of Sadhu, a novel Arabidopsis retroposon. PLoS Genet 2006; 2:e36. [PMID: 16552445 PMCID: PMC1401498 DOI: 10.1371/journal.pgen.0020036] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 01/30/2006] [Indexed: 11/30/2022] Open
Abstract
Epigenetic variation is a potential source of genomic and phenotypic variation among different individuals in a population, and among different varieties within a species. We used a two-tiered approach to identify naturally occurring epigenetic alleles in the flowering plant Arabidopsis: a primary screen for transcript level polymorphisms among three strains (Col, Cvi, Ler), followed by a secondary screen for epigenetic alleles. Here, we describe the identification of stable, meiotically transmissible epigenetic alleles that correspond to one member of a previously uncharacterized non-LTR retroposon family, which we have designated Sadhu. The pericentromeric At2g10410 element is highly expressed in strain Col, but silenced in Ler and 18 other strains surveyed. Transcription of this locus is inversely correlated with cytosine methylation and both the expression and DNA methylation states map in a Mendelian manner to stable cis-acting variation. The silent Ler allele can be converted by the epigenetic modifier mutation ddm1 to a meiotically stable expressing allele with an identical primary nucleotide sequence, demonstrating that the variation responsible for transcript level polymorphism among Arabidopsis strains is epigenetic. We extended our characterization of the Sadhu family members and show that different elements are subject to both genetic and epigenetic variation in natural populations. These findings support the view that an important component of natural variation in retroelements is epigenetic.
Collapse
Affiliation(s)
- Sanjida H Rangwala
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Rangasamy Elumalai
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Cheryl Vanier
- Department of Biological Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Hakan Ozkan
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - David W Galbraith
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Eric J Richards
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
93
|
Lucchinetti E, Feng J, Silva RD, Tolstonog GV, Schaub MC, Schumann GG, Zaugg M. Inhibition of LINE-1 expression in the heart decreases ischemic damage by activation of Akt/PKB signaling. Physiol Genomics 2006; 25:314-24. [PMID: 16418318 DOI: 10.1152/physiolgenomics.00251.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microarray analyses indicate that ischemic and pharmacological preconditioning suppress overexpression of the non-long terminal repeat retrotransposon long interspersed nuclear element 1 (LINE-1, L1) after ischemia-reperfusion in the rat heart. We tested whether L1 overexpression is mechanistically involved in postischemic myocardial damage. Isolated, perfused rat hearts were treated with antisense or scrambled oligonucleotides (ODNs) against L1 for 60 min and exposed to 40 min of ischemia followed by 60 min of reperfusion. Functional recovery and infarct size were measured. Effective nuclear uptake was determined by FITC-labeled ODNs, and downregulation of L1 transcription was confirmed by RT-PCR. Immunoblot analysis was used to assess changes in expression levels of the L1-encoded proteins ORF1p and ORF2p. Immunohistochemistry was performed to localize ORF1/2 proteins in cardiac tissue. Effects of ODNs on prosurvival protein kinase B (Akt/PKB) expression and activity were also determined. Antisense ODNs against L1 prevented L1 burst after ischemia-reperfusion. Inhibition of L1 increased Akt/PKBbeta expression, enhanced phosphorylation of PKB at serine 473, and markedly improved postischemic functional recovery and decreased infarct size. Antisense ODN-mediated protection was abolished by LY-294002, confirming the involvement of the Akt/PKB survival pathway. ORF1p and ORF2p were found to be expressed in rat heart. ORF1p showed a predominantly nuclear localization in cardiomyocytes, whereas ORF2p was exclusively present in endothelial cells. ORF1p levels increased in response to ischemia, which was reversed by antisense ODN treatment. No significant changes in ORF2p were noted. Our results demonstrate that L1 suppression favorably affects postischemic outcome in the heart. Modifying transcriptional activity of L1 may represent a novel anti-ischemic therapeutic strategy.
Collapse
Affiliation(s)
- Eliana Lucchinetti
- Cardiovascular Anesthesia Research Laboratory, Institute of Anesthesiology, University Hospital Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
94
|
Gericke GS. Chromosomal fragility, structural rearrangements and mobile element activity may reflect dynamic epigenetic mechanisms of importance in neurobehavioural genetics. Med Hypotheses 2006; 66:276-85. [PMID: 16183210 DOI: 10.1016/j.mehy.2005.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2005] [Revised: 06/22/2005] [Accepted: 06/27/2005] [Indexed: 01/07/2023]
Abstract
Advances in human genome analyses have not yet allowed identification of specific genetic mechanisms underlying the expression of human neurobehavioural disorders. There is an increasing awareness that several genes may contribute to behavioural phenotypes and these genes appear to interact in as yet undetermined ways. It has been suggested that the problem needs elucidation from an epigenetic, gene expression perspective. Cytogenetic instability manifesting as chromosomal fragile sites, translocations, duplications, deletions and inversions, when co-occurring with neurobehavioural disorders, may offer a doorway to the investigation of such chromatin level, regulatory region, epigenetic processes. Due to earlier indications of non-specificity of chromosomal aberrations, poor phenotype:genotype correlations and a shift to analysing candidate coding regions on high resolution map level, the only utility of chromosomal breakpoints came to be seen as harbouring possible candidate genes of interest when segregating together with particular neurobehavioural disorders. More recent findings of the expression of highly specific subsets of fragile sites in association with Tourette and Rett syndromes need to be extended to other neurobehavioural disorders to ascertain whether observed patterns can be considered representative of 'chromatin endophenotypes' correlating with discrete sets of neurobehavioural symptoms. Environmental/epigenetic factors could affect the chromatin characteristics of the genome arising through DNA strand breakage, mobile element activity and retroinsertion, establishing new architectural features of regulatory control networks very rapidly in comparison to coding region evolution rates. Microarray-based techniques for the genome-wide mapping of in vivo protein-DNA interactions offer increasingly comprehensive views of genetic and epigenetic regulatory networks. It may be informative to include functionally significant chromatin structural variation analyses when considering candidate genes for neurobehavioural disorders.
Collapse
Affiliation(s)
- G S Gericke
- Genetics Division, Ampath National Pathology Laboratories, P.O. Box 2040, Brooklyn Square, 0075 Pretoria, Gauteng, South Africa.
| |
Collapse
|
95
|
Weisenberger DJ, Campan M, Long TI, Kim M, Woods C, Fiala E, Ehrlich M, Laird PW. Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res 2005; 33:6823-36. [PMID: 16326863 PMCID: PMC1301596 DOI: 10.1093/nar/gki987] [Citation(s) in RCA: 557] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Repetitive elements represent a large portion of the human genome and contain much of the CpG methylation found in normal human postnatal somatic tissues. Loss of DNA methylation in these sequences might account for most of the global hypomethylation that characterizes a large percentage of human cancers that have been studied. There is widespread interest in correlating the genomic 5-methylcytosine content with clinical outcome, dietary history, lifestyle, etc. However, a high-throughput, accurate and easily accessible technique that can be applied even to paraffin-embedded tissue DNA is not yet available. Here, we report the development of quantitative MethyLight assays to determine the levels of methylated and unmethylated repeats, namely, Alu and LINE-1 sequences and the centromeric satellite alpha (Satalpha) and juxtacentromeric satellite 2 (Sat2) DNA sequences. Methylation levels of Alu, Sat2 and LINE-1 repeats were significantly associated with global DNA methylation, as measured by high performance liquid chromatography, and the combined measurements of Alu and Sat2 methylation were highly correlative with global DNA methylation measurements. These MethyLight assays rely only on real-time PCR and provide surrogate markers for global DNA methylation analysis. We also describe a novel design strategy for the development of methylation-independent MethyLight control reactions based on Alu sequences depleted of CpG dinucleotides by evolutionary deamination on one strand. We show that one such Alu-based reaction provides a greatly improved detection of DNA for normalization in MethyLight applications and is less susceptible to normalization errors caused by cancer-associated aneuploidy and copy number changes.
Collapse
Affiliation(s)
| | | | | | | | - Christian Woods
- Tulane Cancer Center, Human Genetics Program and Department of Biochemistry, Tulane Medical SchoolNew Orleans, LA, USA
| | - Emerich Fiala
- Nelson Institute of Environmental Science, New York University School of MedicineTuxedo, NY, USA
| | - Melanie Ehrlich
- Tulane Cancer Center, Human Genetics Program and Department of Biochemistry, Tulane Medical SchoolNew Orleans, LA, USA
| | - Peter W. Laird
- To whom correspondence should be addressed. Tel: +1 323 865 0650; Fax: +1 323 865 0158;
| |
Collapse
|
96
|
Greenwood AD, Leib-Mösch C, Seifarth W. Abyss1: a novel L2-like non-LTR retroelement of the snakelocks anemone (Anemonia sulcata). Cytogenet Genome Res 2005; 110:553-8. [PMID: 16093708 DOI: 10.1159/000084988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 02/11/2004] [Indexed: 11/19/2022] Open
Abstract
Non-LTR retrotransposons are a diverse and taxonomically widely dispersed group of retroelements that can be divided into at least 14 distinguishable clades. Basal metazoans have not been examined in great detail for their retrotransposon content. In order to screen for the presence of reverse transcriptase (RT) related sequences in Cnidaria and Ctenophora, basal phyla of metazoans, PCR with highly degenerate oligonucleotides was performed and an RT-like sequence was identified from the sea anemone species Anemonia sulcata. Further screening identified a related element in another anemone species Actinia equina. Significant homology to non-LTR retrotransposon RTs was observed, particularly to L2-like elements of fish such as Maui. The sequence was not detected among other cnidarians and we have designated the A. sulcata and A. equina elements Abyss1 and Abyss2 respectively. Phylogenetic analysis of Abyss1 compared with members of 14 known non-LTR retroelement clades suggests that the sequence represents a novel L2 element.
Collapse
Affiliation(s)
- A D Greenwood
- Technical University Munich, Institute of Virology, Munich, Germany.
| | | | | |
Collapse
|
97
|
Lampson BC, Inouye M, Inouye S. Retrons, msDNA, and the bacterial genome. Cytogenet Genome Res 2005; 110:491-9. [PMID: 16093702 DOI: 10.1159/000084982] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Accepted: 10/16/2003] [Indexed: 12/23/2022] Open
Abstract
Retrons are distinct DNA sequences that code for a reverse transcriptase (RT) similar to the RTs produced by retroviruses and other types of retroelements. Retron DNAs are commonly associated with prophage DNA and are found in the genomes of a wide variety of different bacteria. The retron RT is used to synthesize a strange satellite DNA known as msDNA. msDNA is actually a complex of DNA, RNA, and probably protein. It is composed of a small, single-stranded DNA, linked to a small, single-stranded RNA molecule. The 5' end of the DNA molecule is joined to an internal guanosine residue of the RNA molecule by a unique 2'-5' phosphodiester bond. msDNA is produced in many hundreds of copies per cell, but its function remains unknown. Although retrons are absent from the genome of most members of a population of related bacteria, retrons may not be entirely benign DNAs. Evidence is beginning to suggest that retron elements may produce small but potentially significant effects on the host cell. This includes the generation of repeated copies of the msDNA sequence in the genome, and increasing the frequency of spontaneous mutations. Because these events involve the retron RT, this may represent a source of reverse transcription in the bacterial cell. Thus, the process of reverse transcription, a force that has profoundly affected the content and structure of most eukaryotic genomes, may likewise be responsible for changes in some prokaryotic genomes.
Collapse
Affiliation(s)
- B C Lampson
- Department of Health Sciences, East Tennessee State University, Johnson City, TN, USA
| | | | | |
Collapse
|
98
|
Ohshima K, Okada N. SINEs and LINEs: symbionts of eukaryotic genomes with a common tail. Cytogenet Genome Res 2005; 110:475-90. [PMID: 16093701 DOI: 10.1159/000084981] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Accepted: 04/27/2004] [Indexed: 01/26/2023] Open
Abstract
Many SINEs and LINEs have been characterized to date, and examples of the SINE and LINE pair that have the same 3' end sequence have also increased. We report the phylogenetic relationships of nearly all known LINEs from which SINEs are derived, including a new example of a SINE/LINE pair identified in the salmon genome. We also use several biological examples to discuss the impact and significance of SINEs and LINEs in the evolution of vertebrate genomes.
Collapse
Affiliation(s)
- K Ohshima
- School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan.
| | | |
Collapse
|
99
|
Edwards SV, Bryan Jennings W, Shedlock AM. Phylogenetics of modern birds in the era of genomics. Proc Biol Sci 2005; 272:979-92. [PMID: 16024355 PMCID: PMC1599873 DOI: 10.1098/rspb.2004.3035] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the 14 years since the first higher-level bird phylogenies based on DNA sequence data, avian phylogenetics has witnessed the advent and maturation of the genomics era, the completion of the chicken genome and a suite of technologies that promise to add considerably to the agenda of avian phylogenetics. In this review, we summarize current approaches and data characteristics of recent higher-level bird studies and suggest a number of as yet untested molecular and analytical approaches for the unfolding tree of life for birds. A variety of comparative genomics strategies, including adoption of objective quality scores for sequence data, analysis of contiguous DNA sequences provided by large-insert genomic libraries, and the systematic use of retroposon insertions and other rare genomic changes all promise an integrated phylogenetics that is solidly grounded in genome evolution. The avian genome is an excellent testing ground for such approaches because of the more balanced representation of single-copy and repetitive DNA regions than in mammals. Although comparative genomics has a number of obvious uses in avian phylogenetics, its application to large numbers of taxa poses a number of methodological and infrastructural challenges, and can be greatly facilitated by a 'community genomics' approach in which the modest sequencing throughputs of single PI laboratories are pooled to produce larger, complementary datasets. Although the polymerase chain reaction era of avian phylogenetics is far from complete, the comparative genomics era-with its ability to vastly increase the number and type of molecular characters and to provide a genomic context for these characters-will usher in a host of new perspectives and opportunities for integrating genome evolution and avian phylogenetics.
Collapse
Affiliation(s)
- Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
100
|
Le Rouzic A, Capy P. The first steps of transposable elements invasion: parasitic strategy vs. genetic drift. Genetics 2005; 169:1033-43. [PMID: 15731520 PMCID: PMC1449084 DOI: 10.1534/genetics.104.031211] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transposable elements are often considered as selfish DNA sequences able to invade the genome of their host species. Their evolutive dynamics are complex, due to the interaction between their intrinsic amplification capacity, selection at the host level, transposition regulation, and genetic drift. Here, we propose modeling the first steps of TE invasion, i.e., just after a horizontal transfer, when a single copy is present in the genome of one individual. If the element has a constant transposition rate, it will disappear in most cases: the elements with low-transposition rate are frequently lost through genetic drift, while those with high-transposition rate may amplify, leading to the sterility of their host. Elements whose transposition rate is regulated are able to successfully invade the populations, thanks to an initial transposition burst followed by a strong limitation of their activity. Self-regulation or hybrid dysgenesis may thus represent some genome-invasion parasitic strategies.
Collapse
Affiliation(s)
- Arnaud Le Rouzic
- Laboratoire Populations, Génétique, Evolution, 91198 Gif-sur-Yvette Cedex, France
| | | |
Collapse
|