51
|
Ziemka-Nalecz M, Jaworska J, Sypecka J, Zalewska T. OGD induced modification of FAK- and PYK2-coupled pathways in organotypic hippocampal slice cultures. Brain Res 2015; 1606:21-33. [PMID: 25708150 DOI: 10.1016/j.brainres.2015.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 01/21/2015] [Accepted: 02/12/2015] [Indexed: 11/26/2022]
Abstract
Focal adhesion kinase (FAK) and proline-rich tyrosine kinase (PYK2) are two related non-receptor tyrosine kinases which are thought to play a role in transducing extracellular matrix (ECM)-derived survival signals into cells. The functions of FAK and PYK2 are linked to autophosphorylation of their specific tyrosine residues, Tyr-397 in FAK and Tyr-402 in PYK2, and then association with different signalling proteins which mediate activation of downstream targets such as ERK and JNK mitogen-activated kinase cascades. Thus, modulation of FAK as well as PYK2 autophosphorylation may affect several intracellular pathways and may participate in a variety of pathological settings. The present study provides a systematic investigation of the influence of experimental ischemia, induced by oxygen-glucose-deprivation, on the FAK- and PYK2-mediated signalling in organotypic hippocampal slice cultures. OGD induced primary down-regulation of FAK and PYK2 autophosphorylation (at Tyr 397 and Tyr 402, respectively) at 24-48 h of reoxygenation was accompanied by the diminution of phosphorylation/activation of Src and JNK. In contrast, the activity of Akt and ERK1/2 remained on the control level. It indicates that Akt kinase as well as ERK1/2 does not interfere with OGD-induced neuronal damage. The inhibition of the early step of FAK and PYK2 activation demonstrated by the decrease of tyrosine autophosphorylation may comprise an important portion of the response expressed by modulation of some coupled signal transduction pathways.
Collapse
Affiliation(s)
- Malgorzata Ziemka-Nalecz
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Jaworska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Teresa Zalewska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
52
|
Puig-Oliveras A, Ballester M, Corominas J, Revilla M, Estellé J, Fernández AI, Ramayo-Caldas Y, Folch JM. A co-association network analysis of the genetic determination of pig conformation, growth and fatness. PLoS One 2014; 9:e114862. [PMID: 25503799 PMCID: PMC4263716 DOI: 10.1371/journal.pone.0114862] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/14/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Several QTLs have been identified for major economically relevant traits in livestock, such as growth and meat quality, revealing the complex genetic architecture of these traits. The use of network approaches considering the interactions of multiple molecules and traits provides useful insights into the molecular underpinnings of complex traits. Here, a network based methodology, named Association Weight Matrix, was applied to study gene interactions and pathways affecting pig conformation, growth and fatness traits. RESULTS The co-association network analysis underpinned three transcription factors, PPARγ, ELF1, and PRDM16 involved in mesoderm tissue differentiation. Fifty-four genes in the network belonged to growth-related ontologies and 46 of them were common with a similar study for growth in cattle supporting our results. The functional analysis uncovered the lipid metabolism and the corticotrophin and gonadotrophin release hormone pathways among the most important pathways influencing these traits. Our results suggest that the genes and pathways here identified are important determining either the total body weight of the animal and the fat content. For instance, a switch in the mesoderm tissue differentiation may determinate the age-related preferred pathways being in the puberty stage those related with the miogenic and osteogenic lineages; on the contrary, in the maturity stage cells may be more prone to the adipocyte fate. Hence, our results demonstrate that an integrative genomic co-association analysis is a powerful approach for identifying new connections and interactions among genes. CONCLUSIONS This work provides insights about pathways and key regulators which may be important determining the animal growth, conformation and body proportions and fatness traits. Molecular information concerning genes and pathways here described may be crucial for the improvement of genetic breeding programs applied to pork meat production.
Collapse
Affiliation(s)
- Anna Puig-Oliveras
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), 08193, Bellaterra, Spain
| | - Maria Ballester
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), 08193, Bellaterra, Spain
| | - Jordi Corominas
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), 08193, Bellaterra, Spain
| | - Manuel Revilla
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), 08193, Bellaterra, Spain
| | - Jordi Estellé
- Génétique Animale et Biologie Intégrative UMR1313 (GABI), Institut National de la Recherche Agronomique (INRA), 78350, Jouy-en-Josas, France
- Génétique Animale et Biologie Intégrative UMR1313 (GABI), AgroParisTech, 78350, Jouy-en-Josas, France
- Laboratoire de Radiobiologie et Etude du Génome (LREG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), 78350, Jouy-en-Josas, France
| | - Ana I. Fernández
- Departamento de Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040, Madrid, Spain
| | - Yuliaxis Ramayo-Caldas
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), 08193, Bellaterra, Spain
- Génétique Animale et Biologie Intégrative UMR1313 (GABI), Institut National de la Recherche Agronomique (INRA), 78350, Jouy-en-Josas, France
- Génétique Animale et Biologie Intégrative UMR1313 (GABI), AgroParisTech, 78350, Jouy-en-Josas, France
- Laboratoire de Radiobiologie et Etude du Génome (LREG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), 78350, Jouy-en-Josas, France
| | - Josep M. Folch
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), 08193, Bellaterra, Spain
| |
Collapse
|
53
|
Balanis N, Carlin CR. Mutual cross-talk between fibronectin integrins and the EGF receptor: Molecular basis and biological significance. CELLULAR LOGISTICS 2014; 2:46-51. [PMID: 22645710 PMCID: PMC3355975 DOI: 10.4161/cl.20112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Extension of the plasma membrane is one of the first steps in cell migration. Understanding how cells “choose” between various types of membrane protrusion enhances our knowledge of both normal and cancer cell physiology. The EGF receptor is a paradigm for understanding how transmembrane receptor tyrosine kinases regulate intracellular signaling following ligand stimulation. Evidence from the past decade indicates that EGF receptors also form macromolecular complexes with integrin receptors leading to EGF receptor transactivation during cell adhesion. However, relatively little is known about how these complexes form and impact cell migration. Our recent work characterized a molecular complex between EGF receptor and β3 integrin which recognizes RGD motifs in extracellular matrix proteins. Complex formation requires a dileucine motif (679-LL) in the intracellular juxtamembrane region of the EGF receptor that also controls whether or not the receptor undergoes Src kinase-dependent phosphorylation at Tyr-845. In contrast to wild-type receptors, mutant EGF receptors defective for Tyr-845 phosphorylation form complexes with β1 integrin that also binds RGD motifs. In addition, we have discovered that EGF receptor antagonizes small GTPase RhoA by mediating membrane recruitment of its regulatory GAP p190RhoGAP. In this addendum we discuss a potential new role for Src-dependent EGF receptor transactivation in integrin/EGF receptor complex formation. We also discuss how our study fits with previous observations linking p190RhoGAP to RhoA-dependent cytoskeletal rearrangements involved in cell migration, and provide new data that the EGF receptor is compartmentalized to relatively immature zyxin-poor focal adhesions which are the likely site of p190RhoGAP signaling.
Collapse
|
54
|
Guo Z, Zhao C, Wang Z. Gene expression profiles analysis identifies key genes for acute lung injury in patients with sepsis. Diagn Pathol 2014; 9:176. [PMID: 25257390 PMCID: PMC4403757 DOI: 10.1186/s13000-014-0176-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/23/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND To identify critical genes and biological pathways in acute lung injury (ALI), a comparative analysis of gene expression profiles of patients with ALI + sepsis compared with patients with sepsis alone were performed with bioinformatic tools. METHODS GSE10474 was downloaded from Gene Expression Omnibus, including a collective of 13 whole blood samples with ALI + sepsis and 21 whole blood samples with sepsis alone. After pre-treatment with robust multichip averaging (RMA) method, differential analysis was conducted using simpleaffy package based upon t-test and fold change. Hierarchical clustering was also performed using function hclust from package stats. Beisides, functional enrichment analysis was conducted using iGepros. Moreover, the gene regulatory network was constructed with information from Kyoto Encyclopedia of Genes and Genomes (KEGG) and then visualized by Cytoscape. RESULTS A total of 128 differentially expressed genes (DEGs) were identified, including 47 up- and 81 down-regulated genes. The significantly enriched functions included negative regulation of cell proliferation, regulation of response to stimulus and cellular component morphogenesis. A total of 27 DEGs were significantly enriched in 16 KEGG pathways, such as protein digestion and absorption, fatty acid metabolism, amoebiasis, etc. Furthermore, the regulatory network of these 27 DEGs was constructed, which involved several key genes, including protein tyrosine kinase 2 (PTK2), v-src avian sarcoma (SRC) and Caveolin 2 (CAV2). CONCLUSION PTK2, SRC and CAV2 may be potential markers for diagnosis and treatment of ALI. VIRTUAL SLIDES The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5865162912987143.
Collapse
Affiliation(s)
- Zhiqiang Guo
- Department of Thoracic surgery, Putuo Hospital,Shanghai University of Traditional Chinese Medicine, No. 164 Lan Xi Road, Shanghai, 200062, China.
| | - Chuncheng Zhao
- Department of Thoracic surgery, Putuo Hospital,Shanghai University of Traditional Chinese Medicine, No. 164 Lan Xi Road, Shanghai, 200062, China.
| | - Zheng Wang
- Department of Thoracic surgery, Putuo Hospital,Shanghai University of Traditional Chinese Medicine, No. 164 Lan Xi Road, Shanghai, 200062, China.
| |
Collapse
|
55
|
Shishido S, Bönig H, Kim YM. Role of integrin alpha4 in drug resistance of leukemia. Front Oncol 2014; 4:99. [PMID: 24904821 PMCID: PMC4033044 DOI: 10.3389/fonc.2014.00099] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/22/2014] [Indexed: 11/20/2022] Open
Abstract
Chemotherapeutic drug resistance in acute lymphoblastic leukemia (ALL) is a significant problem, resulting in poor responsiveness to first-line treatment or relapse after transient remission. Classical anti-leukemic drugs are non-specific cell cycle poisons; some more modern drugs target oncogenic pathways in leukemia cells, although in ALL these do not play a very significant role. By contrast, the molecular interactions between microenvironment and leukemia cells are often neglected in the design of novel therapies against drug resistant leukemia. It was shown however, that chemotherapy resistance is promoted in part through cell–cell contact of leukemia cells with bone marrow (BM) stromal cells, also called cell adhesion-mediated drug resistance (CAM-DR). Incomplete response to chemotherapy results in persistence of resistant clones with or without detectable minimal residual disease (MRD). Approaches for how to address CAM-DR and MRD remain elusive. Specifically, studies using anti-functional antibodies and genetic models have identified integrin alpha4 as a critical molecule regulating BM homing and active retention of normal and leukemic cells. Pre-clinical evidence has been provided that interference with alpha4-mediated adhesion of ALL cells can sensitize them to chemotherapy and thus facilitate eradication of ALL cells in an MRD setting. To this end, Andreeff and colleagues recently provided evidence of stroma-induced and alpha4-mediated nuclear factor-κB signaling in leukemia cells, disruption of which depletes leukemia cells of strong survival signals. We here review the available evidence supporting the targeting of alpha4 as a novel strategy for treatment of drug resistant leukemia.
Collapse
Affiliation(s)
- Stephanie Shishido
- Division of Hematology and Oncology, Department of Pediatrics, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine , Los Angeles, CA , USA
| | - Halvard Bönig
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Service Baden-Wuerttemberg-Hessen, Goethe University , Frankfurt , Germany
| | - Yong-Mi Kim
- Division of Hematology and Oncology, Department of Pediatrics, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine , Los Angeles, CA , USA
| |
Collapse
|
56
|
Villegas-Comonfort S, Castillo-Sanchez R, Serna-Marquez N, Cortes-Reynosa P, Salazar EP. Arachidonic acid promotes migration and invasion through a PI3K/Akt-dependent pathway in MDA-MB-231 breast cancer cells. Prostaglandins Leukot Essent Fatty Acids 2014; 90:169-77. [PMID: 24565443 DOI: 10.1016/j.plefa.2014.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/23/2014] [Accepted: 01/31/2014] [Indexed: 01/05/2023]
Abstract
Arachidonic acid (AA) is a common dietary n-6 cis polyunsaturated fatty acid that under physiological conditions is present in an esterified form in cell membrane phospholipids, however it might be present in the extracellular microenvironment. AA and its metabolites mediate FAK activation, adhesion and migration in MDA-MB-231 breast cancer cells. However, it remains to be investigated whether AA promotes invasion and the signal transduction pathways involved in migration and invasion. Here, we demonstrate that AA induces Akt2 activation and invasion in MDA-MB-231 cells. Akt2 activation requires the activity of Src, EGFR, and PIK3, whereas migration and invasion require Akt, PI3K, EGFR and metalloproteinases activity. Moreover, AA also induces NFκB-DNA binding activity through a PI3K and Akt-dependent pathway. Our findings demonstrate, for the first time, that Akt/PI3K and EGFR pathways mediate migration and invasion induced by AA in MDA-MB-231 breast cancer cells.
Collapse
Affiliation(s)
- Socrates Villegas-Comonfort
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, San Pedro Zacatenco, Mexico DF 07360, Mexico
| | - Rocio Castillo-Sanchez
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, San Pedro Zacatenco, Mexico DF 07360, Mexico
| | - Nathalia Serna-Marquez
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, San Pedro Zacatenco, Mexico DF 07360, Mexico
| | - Pedro Cortes-Reynosa
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, San Pedro Zacatenco, Mexico DF 07360, Mexico
| | - Eduardo Perez Salazar
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, San Pedro Zacatenco, Mexico DF 07360, Mexico.
| |
Collapse
|
57
|
Abstract
SIGNIFICANCE Here, we review recent advances with regard to the role of Src kinase in the regulation of cytoskeleton organization, cell adhesion, and motility, focusing on redox circuitries engaging this kinase for anchorage and motility, control of cell survival to anoikis, as well as metabolic deregulation, all features belonging to the new hallmarks of cancer. RECENT ADVANCES Several recent insights have reported that, alongside the well-known phosphorylation/dephosphorylation control, cysteine oxidation is a further mechanism of enzyme activation for both c-Src kinase and its oncogenic counterparts. Indeed, mounting evidence portrays redox regulation of Src kinase as a compulsory outcome in growth factors/cytokines signaling, integrin engagement, motility and invasiveness of tissues, receptor cross-talking at plasmamembrane, as well as during carcinogenesis and progression toward tumor malignancy or fibrotic disease. In addition, the kinase is an upstream regulator of NADPH oxidase-driven oxidants, a critical step for invadopodia formation and metastatic spread. CRITICAL ISSUES Not satisfactorily unraveled yet, the exact role of Src kinase in redox cancer biology needs to be implemented with studies that are aimed at clarifying (i) the exact hierarchy between oxidants sources, Src redox-dependent activation and the regulation of cell motility, and (ii) the actual susceptibility of invading cells to redox-based treatments, owing to the well-recognized ability of cancer cells to find new strategies to adapt to new environments. FUTURE DIRECTIONS Once these critical issues are addressed, redox circuitries involving Src kinase should potentially be used as both biomarkers and targets for personalized therapies in the fight against cancer or fibrotic diseases.
Collapse
Affiliation(s)
- Elisa Giannoni
- 1 Department of Experimental and Clinical Biomedical Sciences, University of Florence , Florence, Italy
| | | |
Collapse
|
58
|
Gu Z, Liu F, Tonkova EA, Lee SY, Tschumperlin DJ, Brenner MB. Soft matrix is a natural stimulator for cellular invasiveness. Mol Biol Cell 2013; 25:457-69. [PMID: 24336521 PMCID: PMC3923638 DOI: 10.1091/mbc.e13-05-0260] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ECM softness (low stiffness comparable to soft tissues) alone is sufficient to prevent cell-to-cell adherens junction formation, up-regulate MMP secretion, promote MMP activity, and induce invadosome-like protrusion formation. Such findings suggest that cell invasion in vivo is a spontaneous cell behavior in response to ECM stiffness. Directional mesenchymal cell invasion in vivo is understood to be a stimulated event and to be regulated by cytokines, chemokines, and types of extracellular matrix (ECM). Instead, by focusing on the cellular response to ECM stiffness, we found that soft ECM (low stiffness) itself is sufficient to prevent stable cell-to-cell adherens junction formation, up-regulate matrix metalloproteinase (MMP) secretion, promote MMP activity, and induce invadosome-like protrusion (ILP) formation. Consistently, similar ILP formation was also detected in a three-dimensional directional invasion assay in soft matrix. Primary human fibroblasts spontaneously form ILPs in a very narrow range of ECM stiffness (0.1–0.4 kPa), and such ILP formation is Src family kinase dependent. In contrast, spontaneous ILP formation in malignant cancer cells and fibrosarcoma cells occurs across a much wider range of ECM stiffness, and these tumor cell ILPs are also more prominent at lower stiffness. These findings suggest that ECM softness is a natural stimulator for cellular invasiveness.
Collapse
Affiliation(s)
- Zhizhan Gu
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054 Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115 Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905
| | | | | | | | | | | |
Collapse
|
59
|
Han S, Meng Y, Tong Q, Li G, Zhang X, Chen Y, Hu S, Zheng L, Tan W, Li H, Chen Y, Zhang G, Li B, Guo Y. The ErbB2-targeting antibody trastuzumab and the small-molecule SRC inhibitor saracatinib synergistically inhibit ErbB2-overexpressing gastric cancer. MAbs 2013; 6:403-8. [PMID: 24492292 DOI: 10.4161/mabs.27443] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The anti-ErbB2 antibody trastuzumab has shown significant clinical benefits in ErbB2-overexpressing breast and gastric cancer, but resistance to the drug is common. Here, we investigated the antitumor activity of the combination of trastuzumab and the SRC inhibitor saracatinib in ErbB2-overexpressing trastuzumab-resistant gastric cancer. The ErbB2-overexpressing human gastric cancer cell line NCI-N87 was treated with trastuzumab to obtain the trastuzumab-resistant cell line NCI-N87R. The NCI-N87R cell line showed a marked increase in SRC activity and ErbB signaling compared with the NCI-N87 cell line. Our data demonstrated that trastuzumab plus saracatinib was much more potent than either agent alone in reducing the phosphorylation of ErbB3 and AKT in both NCI-N87 and NCI-N87R gastric cancer cell lines. Trastuzumab and saracatinib synergistically inhibited the in vitro growth of NCI-N87 and NCI-N87R cell lines. Further data showed that combination therapy of trastuzumab with saracatinib resulted in a significant benefit over either agent alone in both NCI-N87 and NCI-N87R xenograft models, suggesting its potential use for treating ErbB2-overexpressing gastric cancer.
Collapse
Affiliation(s)
- Siqi Han
- PLA General Hospital Cancer Center; PLA Postgraduate School of Medicine; Beijing, People's Republic of China; College of Pharmacy; Liaocheng University; Liaocheng, People's Republic of China
| | - Yanchun Meng
- School of Medicine; Nankai University; Tianjin, People's Republic of China; College of Pharmacy; Liaocheng University; Liaocheng, People's Republic of China
| | - Qing Tong
- International Joint Cancer Institute; Second Military Medical University; Shanghai, People's Republic of China
| | - Guangchao Li
- School of Bioscience and Bioengineering; South China University of Technology; Guangzhou, People's Republic of China
| | - Xunmin Zhang
- International Joint Cancer Institute; Second Military Medical University; Shanghai, People's Republic of China
| | - Yalin Chen
- International Joint Cancer Institute; Second Military Medical University; Shanghai, People's Republic of China
| | - Shi Hu
- International Joint Cancer Institute; Second Military Medical University; Shanghai, People's Republic of China
| | - Lei Zheng
- International Joint Cancer Institute; Second Military Medical University; Shanghai, People's Republic of China
| | - Wenlong Tan
- Shanghai Institute of Immunology; Shanghai Jiao Tong University School of Medicine; Shanghai, People's Republic of China
| | - Hui Li
- PLA General Hospital Cancer Center; PLA Postgraduate School of Medicine; Beijing, People's Republic of China
| | - Yang Chen
- PLA General Hospital Cancer Center; PLA Postgraduate School of Medicine; Beijing, People's Republic of China
| | - Ge Zhang
- International Joint Cancer Institute; Second Military Medical University; Shanghai, People's Republic of China
| | - Bohua Li
- PLA General Hospital Cancer Center; PLA Postgraduate School of Medicine; Beijing, People's Republic of China; International Joint Cancer Institute; Second Military Medical University; Shanghai, People's Republic of China; National Engineering Research Center for Antibody Medicine; Shanghai, People's Republic of China; State Key Laboratory of Antibody Medicine and Targeted Therapy; Shanghai, People's Republic of China; College of Pharmacy; Liaocheng University; Liaocheng, People's Republic of China
| | - Yajun Guo
- PLA General Hospital Cancer Center; PLA Postgraduate School of Medicine; Beijing, People's Republic of China; School of Medicine; Nankai University; Tianjin, People's Republic of China; International Joint Cancer Institute; Second Military Medical University; Shanghai, People's Republic of China; School of Bioscience and Bioengineering; South China University of Technology; Guangzhou, People's Republic of China; Shanghai Institute of Immunology; Shanghai Jiao Tong University School of Medicine; Shanghai, People's Republic of China; National Engineering Research Center for Antibody Medicine; Shanghai, People's Republic of China; State Key Laboratory of Antibody Medicine and Targeted Therapy; Shanghai, People's Republic of China; College of Pharmacy; Liaocheng University; Liaocheng, People's Republic of China
| |
Collapse
|
60
|
Goldmann WH. Vinculin-p130Cas interaction is critical for focal adhesion dynamics and mechano-transduction. Cell Biol Int 2013; 38:283-6. [PMID: 24497348 DOI: 10.1002/cbin.10204] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/01/2013] [Indexed: 11/09/2022]
Abstract
Adherent cells, when mechanically stressed, show a wide range of responses including large-scale changes in their mechanical behaviour and gene expression pattern. This is in part facilitated by activating the focal adhesion (FA) protein p130Cas through force-induced conformational changes that lead to the phosphorylation by src family kinases. Janostiak et al. [Janostiak et al. Cell Mol Life Sci (2013) DOI 10.1007/s00018-013-1450-x] have reported that the phosphorylation site Y12 on the SH3 domain of p130Cas modulates the binding with vinculin, a prominent mechano-coupling protein in FAs. Tension changes in FAs (due to the anchorage of the SH3 domain and C-terminal) bring about an extension of the substrate domain of p130Cas by unmasking the phosphorylation sites. These observations demonstrate that vinculin is an important modulator of the p130Cas-mediated mechano-transduction pathway in cells. The central aim should be now to test that vinculin is critical for p130Cas incorporation into the focal adhesion complex and for transmitting forces to the p130Cas molecule.
Collapse
Affiliation(s)
- Wolfgang H Goldmann
- Center for Medical Physics and Technology, Biophysics Group, Friedrich-Alexander-University of Erlangen-Nuremberg, Henkestrasse 91, 91052, Erlangen, Germany
| |
Collapse
|
61
|
Siu IM, Ruzevick J, Zhao Q, Connis N, Jiao Y, Bettegowda C, Xia X, Burger PC, Hann CL, Gallia GL. Erlotinib inhibits growth of a patient-derived chordoma xenograft. PLoS One 2013; 8:e78895. [PMID: 24260133 PMCID: PMC3829812 DOI: 10.1371/journal.pone.0078895] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 09/17/2013] [Indexed: 11/18/2022] Open
Abstract
Chordomas are rare primary bone tumors that occur along the neuraxis. Primary treatment is surgery, often followed by radiotherapy. Treatment options for patients with recurrence are limited and, notably, there are no FDA approved therapeutic agents. Development of therapeutic options has been limited by the paucity of preclinical model systems. We have established and previously reported the initial characterization of the first patient-derived chordoma xenograft model. In this study, we further characterize this model and demonstrate that it continues to resemble the original patient tumor histologically and immunohistochemically, maintains nuclear expression of brachyury, and is highly concordant with the original patient tumor by whole genome genotyping. Pathway analysis of this xenograft demonstrates activation of epidermal growth factor receptor (EGFR). In vitro studies demonstrate that two small molecule inhibitors of EGFR, erlotinib and gefitinib, inhibit proliferation of the chordoma cell line U-CH 1. We further demonstrate that erlotinib significantly inhibits chordoma growth in vivo. Evaluation of tumors post-treatment reveals that erlotinib reduces phosphorylation of EGFR. This is the first demonstration of antitumor activity in a patient-derived chordoma xenograft model and these findings support further evaluation of EGFR inhibitors in this disease.
Collapse
Affiliation(s)
- I-Mei Siu
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jacob Ruzevick
- Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Qi Zhao
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Ludwig Collaborative Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nick Connis
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yuchen Jiao
- Ludwig Center for Cancer Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Ludwig Center for Cancer Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Xuewei Xia
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurosurgery, Affiliated Hospital of Gulin Medical College, Guilin, China
| | - Peter C. Burger
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Christine L. Hann
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Gary L. Gallia
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
62
|
Abstract
Mechanical ventilation (MV) is, by definition, the application of external forces to the lungs. Depending on their magnitude, these forces can cause a continuum of pathophysiological alterations ranging from the stimulation of inflammation to the disruption of cell-cell contacts and cell membranes. These side effects of MV are particularly relevant for patients with inhomogeneously injured lungs such as in acute lung injury (ALI). These patients require supraphysiological ventilation pressures to guarantee even the most modest gas exchange. In this situation, ventilation causes additional strain by overdistension of the yet non-injured region, and additional stress that forms because of the interdependence between intact and atelectatic areas. Cells are equipped with elaborate mechanotransduction machineries that respond to strain and stress by the activation of inflammation and repair mechanisms. Inflammation is the fundamental response of the host to external assaults, be they of mechanical or of microbial origin and can, if excessive, injure the parenchymal tissue leading to ALI. Here, we will discuss the forces generated by MV and how they may injure the lungs mechanically and through inflammation. We will give an overview of the mechanotransduction and how it leads to inflammation and review studies demonstrating that ventilator-induced lung injury can be prevented by blocking pathways of mechanotransduction or inflammation.
Collapse
Affiliation(s)
- Ulrike Uhlig
- Department of Pharmacology & Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
63
|
Quinazoline-based multi-tyrosine kinase inhibitors: Synthesis, modeling, antitumor and antiangiogenic properties. Eur J Med Chem 2013; 67:373-83. [DOI: 10.1016/j.ejmech.2013.06.057] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/27/2013] [Accepted: 06/29/2013] [Indexed: 12/16/2022]
|
64
|
Benzo-[a]-pyrene induces FAK activation and cell migration in MDA-MB-231 breast cancer cells. Cell Biol Toxicol 2013; 29:303-19. [DOI: 10.1007/s10565-013-9254-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 08/01/2013] [Indexed: 02/06/2023]
|
65
|
O’Reilly LP, Zhang X, Smithgall TE. Individual Src-family tyrosine kinases direct the degradation or protection of the clock protein Timeless via differential ubiquitylation. Cell Signal 2013; 25:860-6. [PMID: 23266470 PMCID: PMC3595377 DOI: 10.1016/j.cellsig.2012.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 12/05/2012] [Accepted: 12/17/2012] [Indexed: 01/10/2023]
Abstract
Timeless was originally identified in Drosophila as an essential component of circadian cycle regulation, where its function is tightly controlled at the protein level by tyrosine phosphorylation and subsequent degradation. In mammals, Timeless has also been implicated in circadian rhythms as well as cell cycle control and embryonic development. Here we report that mammalian Timeless is an SH3 domain-binding protein and substrate for several members of the Src protein-tyrosine kinase family, including Fyn, Hck, c-Src and c-Yes. Co-expression of Tim with Fyn or Hck was followed by ubiquitylation and subsequent degradation in human 293T cells. While c-Src and c-Yes also promoted Tim ubiquitylation, in this case ubiquitylation correlated with Tim protein accumulation rather than degradation. Both c-Src and c-Yes selectively promoted modification of Tim through Lys63-linked polyubiquitin, which may explain the differential effects on Tim protein turnover. These data show distinct and opposing roles for individual Src-family members in the regulation of Tim protein levels, suggesting a unique mechanism for the regulation of Tim function in mammals.
Collapse
Affiliation(s)
- Linda P. O’Reilly
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Xiong Zhang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
66
|
Imatinib and Dasatinib Inhibit Hemangiosarcoma and Implicate PDGFR-β and Src in Tumor Growth. Transl Oncol 2013; 6:158-68. [PMID: 23544168 DOI: 10.1593/tlo.12307] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 01/24/2013] [Accepted: 01/28/2013] [Indexed: 12/15/2022] Open
Abstract
Hemangiosarcoma, a natural model of human angiosarcoma, is an aggressive vascular tumor diagnosed commonly in dogs. The documented expression of several receptor tyrosine kinases (RTKs) by these tumors makes them attractive targets for therapeutic intervention using tyrosine kinase inhibitors (TKIs). However, we possess limited knowledge of the effects of TKIs on hemangiosarcoma as well as other soft tissue sarcomas. We report here on the use of the TKIs imatinib and dasatinib in canine hemangiosarcoma and their effects on platelet-derived growth factor receptor β (PDGFR-β) and Src inhibition. Both TKIs reduced cell viability, but dasatinib was markedly more potent in this regard, mediating cytotoxic effects orders of magnitude greater than imatinib. Dasatinib also inhibited the phosphorylation of the shared PDGFR-β target at a concentration approximately 1000 times less than that needed by imatinib and effectively blocked Src phosphorylation. Both inhibitors augmented the response to doxorubicin, suggesting that clinical responses likely will be improved using both drugs in combination; however, dasatinib was significantly (P < .05) more effective in this context. Despite the higher concentrations needed in cell-based assays, imatinib significantly inhibited tumor growth (P < .05) in a tumor xenograft model, highlighting that disruption of PDGFR-β/PDGF signaling may be important in targeting the angiogenic nature of these tumors. Treatment of a dog with spontaneously occurring hemangiosarcoma established that clinically achievable doses of dasatinib may be realized in dogs and provides a means to investigate the effect of TKIs on soft tissue sarcomas in a large animal model.
Collapse
|
67
|
Leblanc F, Zhang D, Liu X, Loughran TP. Large granular lymphocyte leukemia: from dysregulated pathways to therapeutic targets. Future Oncol 2013; 8:787-801. [PMID: 22830400 DOI: 10.2217/fon.12.75] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Large granular lymphocyte (LGL) leukemia is a clonal lymphoproliferative disorder of cytotoxic lymphocytes characterized by an expansion of CD3(+) cytotoxic T lymphocytes or CD3(-) natural killer cells. Patients present with various cytopenias including neutropenia, anemia and thrombocytopenia. In addition, there is an association of T-cell large granular lymphocytic leukemia with rheumatoid arthritis. It is believed that LGL leukemia begins as an antigen-driven immune response with subsequent constitutive activation of cytotoxic T lymphocytes or natural killer cells through PDGF and IL-15 contributing to their survival. Consequently, this leads to a dysregulation of apoptosis and dysfunction of the activation-induced cell death pathway. Treatment of LGL leukemia is based on a low-dose immunosuppressive regimen using methotrexate or cyclophosphamide. However, no standard of therapy has been established, as large prospective trials have not been conducted. In addition, some patients are refractory to treatment. The lack of a curative therapy for LGL leukemia means that new treatment options are needed. Insight into the various dysregulated signaling pathways in LGL leukemia may provide novel therapeutic treatment modalities.
Collapse
Affiliation(s)
- Francis Leblanc
- Penn State Hershey Cancer Institute, Experimental Therapeutics, Room 4427, 500 University Drive, PO Box 850, Hershey, PA 17033-0850, USA
| | | | | | | |
Collapse
|
68
|
Karoor V, Oka M, Walchak SJ, Hersh LB, Miller YE, Dempsey EC. Neprilysin regulates pulmonary artery smooth muscle cell phenotype through a platelet-derived growth factor receptor-dependent mechanism. Hypertension 2013; 61:921-30. [PMID: 23381789 DOI: 10.1161/hypertensionaha.111.199588] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reduced neprilysin (NEP), a cell surface metallopeptidase, which cleaves and inactivates proinflammatory and vasoactive peptides, predisposes the lung vasculature to exaggerated remodeling in response to hypoxia. We hypothesize that loss of NEP in pulmonary artery smooth muscle cells results in increased migration and proliferation. Pulmonary artery smooth muscle cells isolated from NEP(-/-) mice exhibited enhanced migration and proliferation in response to serum and platelet-derived growth factor, which was attenuated by NEP replacement. Inhibition of NEP by overexpression of a peptidase dead mutant or knockdown by small interfering RNA in NEP(+/+) cells increased migration and proliferation. Loss of NEP led to an increase in Src kinase activity and phosphorylation of PTEN, resulting in activation of the platelet-derived growth factor receptor (PDGFR). Knockdown of Src kinase with small interfering RNA or inhibition with PP2, a src kinase inhibitor, decreased PDGFR(Y751) phosphorylation and attenuated migration and proliferation in NEP(-/-) smooth muscle cells. NEP substrates, endothelin 1 or fibroblast growth factor 2, increased activation of Src and PDGFR in NEP(+/+) cells, which was decreased by an endothelin A receptor antagonist, neutralizing antibody to fibroblast growth factor 2 and Src inhibitor. Similar to the observations in pulmonary artery smooth muscle cells, levels of phosphorylated PDGFR, Src, and PTEN were elevated in NEP(-/-) lungs. Endothelin A receptor antagonist also attenuated the enhanced responses in NEP(-/-) pulmonary artery smooth muscle cells and lungs. Taken together our results suggest a novel mechanism for the regulation of PDGFR signaling by NEP substrates involving Src and PTEN. Strategies that increase lung NEP activity/expression or target key downstream effectors, like Src, PTEN, or PDGFR, may be of therapeutic benefit in pulmonary vascular disease.
Collapse
Affiliation(s)
- Vijaya Karoor
- Cardiovascular Pulmonary Research Laboratory, RC-2 Room 8118, University of Colorado Anschutz Medical Campus, 12700 E 19th Ave, RC-2, Aurora, CO 80045, USA.
| | | | | | | | | | | |
Collapse
|
69
|
Serna-Marquez N, Villegas-Comonfort S, Galindo-Hernandez O, Navarro-Tito N, Millan A, Salazar EP. Role of LOXs and COX-2 on FAK activation and cell migration induced by linoleic acid in MDA-MB-231 breast cancer cells. Cell Oncol (Dordr) 2012. [PMID: 23179791 DOI: 10.1007/s13402-012-0114-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Epidemiological studies and animal models suggest a link between high levels of dietary fat intake and an increased risk of developing breast cancer. Particularly, free fatty acids (FFAs) are involved in several processes, including proliferation, migration and invasion, in breast cancer cells. Linoleic acid (LA) is a dietary n-6 polyunsaturated fatty acid that is known to induce proliferation and invasion in breast cancer cells. So far, however, the contribution of LA to focal adhesion kinase (FAK) activation and cell migration in breast cancer cells has not been studied. RESULTS Here, we show that LA promotes FAK and Src activation, as well as cell migration, in MDA-MB-231 breast cancer cells. FAK activation and cell migration require Src, Gi/Go, COX-2 and LOXs activities, whereas both are independent of Δ6 desaturase activity. In addition, we show that cell migration requires FAK activity, whereas FAK activation requires Src activity, thus suggesting a reciprocal catalytic activation mechanism of FAK and Src. CONCLUSIONS In summary, our findings show that LA induces FAK activation and cell migration in MDA-MB-231 breast cancer cells.
Collapse
|
70
|
Naresh R, Nazeer Y, Palani S. In silico evaluation of modes of action of anticancer compounds on molecular targets for cancer. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0198-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
71
|
Activation of endogenous FAK via expression of its amino terminal domain in Xenopus embryos. PLoS One 2012; 7:e42577. [PMID: 22880041 PMCID: PMC3412797 DOI: 10.1371/journal.pone.0042577] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/09/2012] [Indexed: 11/20/2022] Open
Abstract
Background The Focal Adhesion Kinase is a well studied tyrosine kinase involved in a wide number of cellular processes including cell adhesion and migration. It has also been shown to play important roles during embryonic development and targeted disruption of the FAK gene in mice results in embryonic lethality by day 8.5. Principal Findings Here we examined the pattern of phosphorylation of FAK during Xenopus development and found that FAK is phosphorylated on all major tyrosine residues examined from early blastula stages well before any morphogenetic movements take place. We go on to show that FRNK fails to act as a dominant negative in the context of the early embryo and that the FERM domain has a major role in determining FAK’s localization at the plasma membrane. Finally, we show that autonomous expression of the FERM domain leads to the activation of endogenous FAK in a tyrosine 397 dependent fashion. Conclusions Overall, our data suggest an important role for the FERM domain in the activation of FAK and indicate that integrin signalling plays a limited role in the in vivo activation of FAK at least during the early stages of development.
Collapse
|
72
|
Shodeinde AL, Barton BE. Potential use of STAT3 inhibitors in targeted prostate cancer therapy: future prospects. Onco Targets Ther 2012; 5:119-25. [PMID: 22815644 PMCID: PMC3400487 DOI: 10.2147/ott.s32559] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In 2012, prostate cancer will once again be the second-leading cause of cancer death of American males. Although initially treatable, prostate cancer can recur in a hormone refractory form that is not responsive to current available therapies. The mortality rate associated with hormone refractory prostate cancer is high, and there is an urgent need for new therapeutic agents to treat prostate cancer. A common feature of prostate cancer is the dependence on activated signal transducer and activator of transcription 3 (STAT3), a transcription factor, for survival. More important, inhibition of STAT3 has been shown to induce apoptosis in prostate cancer cells. In recent years, inhibitors of STAT3 have emerged as promising molecular candidates for targeted prostate cancer therapy. The aim of this review is to examine the role of STAT3 in prostate cancer and how inhibitors of STAT3 could advance the quest for treatment of the disease. Janus kinase 2 (JAK2)-targeted therapy appears very promising in the treatment of prostate cancer. It has been shown to decrease symptoms associated with myeloproliferative disorders and increase overall survival of patients compared with the best available therapy. In addition to improved outcome, many JAK2 inhibitors have been found to be tolerable with no adverse impact on quality of life. As such, JAK2 inhibitors may play an important role in the management of patients with prostate cancer. Current studies are evaluating the role of JAK2 inhibitors in solid tumors. Pending clinical trial results will determine the future direction of JAK2 inhibitors in the treatment of patients with prostate cancer.
Collapse
Affiliation(s)
- Adetola L Shodeinde
- Department of Pharmacology and Physiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | | |
Collapse
|
73
|
Siemann DW, Dong M, Pampo C, Shi W. Src-signaling interference impairs the dissemination of blood-borne tumor cells. Cell Tissue Res 2012; 349:541-50. [PMID: 22526632 DOI: 10.1007/s00441-012-1415-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/19/2012] [Indexed: 12/21/2022]
Abstract
Although solid tumors continuously shed cells, only a small fraction of the neoplastic cells that enter the blood stream are capable of establishing metastases. In order to be successful, these cells must attach, extravasate, proliferate and induce angiogenesis. Preclinical studies have shown that small-molecule ATP-competitive Src kinase inhibitors can effectively impair metastasis-associated tumor cell functions in vitro. However, the impact of these agents on the metastatic cascade in vivo is less well understood. In the present studies, we have examined the ability of saracatinib, a dual-specific, orally available inhibitor of Src and Abl protein tyrosine kinases, to interfere with the establishment of lung metastases in mice by tumor cells introduced into the blood stream. The results demonstrate that Src inhibition most effectively interferes with the establishment of secondary tumor deposits when treatments are administered while tumor cells are in the initial phases of dissemination.
Collapse
Affiliation(s)
- Dietmar W Siemann
- Department of Radiation Oncology and Shands Cancer Center, University of Florida, 2000 SW Archer Road, Gainesville, FL 32610, USA.
| | | | | | | |
Collapse
|
74
|
Howe GA, Addison CL. β1 integrin: an emerging player in the modulation of tumorigenesis and response to therapy. Cell Adh Migr 2012; 6:71-7. [PMID: 22568952 DOI: 10.4161/cam.20077] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Historically, a hallmark of tumorigenesis was the ability to grow in an anchorage-independent manner. Hence, tumors were thought to proliferate and survive independently of integrin attachment to the substratum. However, recent data suggest that integrins regulate not only tumor cell proliferation, survival and migration, but may also influence their response to anti-cancer agents. Interestingly, these influences are largely masked by growth of tumor cells in the standard, yet artificial, environment of 2D cell culture, but are readily apparent under 3D in vitro culture conditions and in tumor growth in vivo. We, and others, have recently demonstrated that the β1 integrin subunit controls the growth and invasion of prostate tumor cells in 3D culture conditions. Recently, the importance of integrins has also been demonstrated using tissue specific conditional knockout strategies in transgenic mouse tumor models, where they control primary tumor growth and dictate the site of metastatic spread. Furthermore, integrin-extracellular matrix interactions may modulate the response of tumors to standard chemotherapy agents or radiation. Taken together, these results highlight the important role of integrins in regulating tumor growth and metastasis; however, point out that the evaluation of their contribution to these processes requires appropriate contextual modeling.
Collapse
Affiliation(s)
- Grant A Howe
- Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON Canada
| | | |
Collapse
|
75
|
Target points in trastuzumab resistance. Int J Breast Cancer 2012; 2012:761917. [PMID: 22482061 PMCID: PMC3299266 DOI: 10.1155/2012/761917] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/11/2011] [Indexed: 01/16/2023] Open
Abstract
Epidermal growth factor (EGF) family of receptors is involved in cell growth and differentiation. The human EGF2 (HER2) lacks natural ligands, and correlation between HER2 levels and carcinogenesis makes the receptor an ideal candidate for targeted therapy in breast cancer. Trastuzumab is a humanized antibody applied against HER2-positive breast tumors in clinic. Metastatic tumors respond well to trastuzumab therapy for the first year, but development of antibody resistance helps the tumors to regrow allowing the disease to progress. Trastuzumab resistance is shaped via a range of intracellular signaling pathways that are interconnected and share in key effector molecules. Identification of a common node central to these resistance pathways could provide an ultimate solution for trastuzumab resistance in breast and other cancers.
Collapse
|
76
|
Turnover of focal adhesions and cancer cell migration. Int J Cell Biol 2012; 2012:310616. [PMID: 22319531 PMCID: PMC3272802 DOI: 10.1155/2012/310616] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 10/23/2011] [Indexed: 12/22/2022] Open
Abstract
Cells are usually surrounded by the extracellular matrix (ECM), and adhesion of the cells to the ECM is a key step in their migration through tissues. Integrins are important receptors for the ECM and form structures called focal adhesions (FAs). Formation and disassembly of FAs are regulated dynamically during cell migration. Adhesion to the ECM has been studied mainly using cells cultured on an ECM-coated substratum, where the rate of cell migration is determined by the turnover of FAs. However, the molecular events underlying the disassembly of FAs are less well understood. We have recently identified both a new regulator of this disassembly process and its interaction partners. Here, we summarize our understanding of FA disassembly by focusing on the proteins implicated in this process.
Collapse
|
77
|
Zhou L, Zhang Z, Zheng Y, Zhu Y, Wei Z, Xu H, Tang Q, Kong X, Hu L. SKAP2, a novel target of HSF4b, associates with NCK2/F-actin at membrane ruffles and regulates actin reorganization in lens cell. J Cell Mol Med 2011; 15:783-95. [PMID: 20219016 PMCID: PMC3922667 DOI: 10.1111/j.1582-4934.2010.01048.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In addition to roles in stress response, heat shock factors (HSFs) play crucial roles in differentiation and development. Heat shock transcription factor 4 (HSF4) deficiency leads to defect in lens epithelial cell (LEC) differentiation and cataract formation. However, the mechanism remains obscure. Here, we identified Src kinase-associated phosphoprotein 2 (SKAP2) as a downstream target of HSF4b and it was highly expressed at the anterior tip of lens elongating fibre cells in vivo. The HSF4-deficient lenses showed reduced SKAP2 expression and defects in actin reorganization. The disassembly of stress fibres and formation of cortical actin fibres are critical for the initiation of LEC differentiation. SKAP2 localized at actin-rich ruffles in human LECs (SRA01/04 cells) and knockdown SKAP2 using RNA interference impaired the disassembly of cellular stress fibres in response to fibroblast growth factor (FGF)-b. Overexpression of SKAP2, but not the N-terminal deletion mutant of SKAP2, induced the actin remodelling. We further found that SKAP2 interacted with the SH2 domain of non-catalytic region of tyrosine kinase adaptor protein 2 (NCK2) via its N-terminus. The complex of SKAP2-NCK2-F-actin accumulated at the leading edge of the lamellipodium, where FGF receptors and focal adhesion were also recruited. These results revealed an essential role for HSF4-mediated SKAP2 expression in the regulation of actin reorganization during lens differentiation, likely through a mechanism that SKAP2 anchors the complex of NCK2/focal adhesion to FGF receptors at the lamellipodium in lens epithelial cells.
Collapse
Affiliation(s)
- Li Zhou
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Gold nanoparticles inhibit vascular endothelial growth factor-induced angiogenesis and vascular permeability via Src dependent pathway in retinal endothelial cells. Angiogenesis 2011; 14:29-45. [PMID: 21061058 DOI: 10.1007/s10456-010-9193-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 10/25/2010] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to investigate the effect of gold nanoparticles on the signaling cascade related to angiogenesis and vascular permeability induced by Vascular Endothelial Growth Factor (VEGF) in Bovine retinal endothelial cells (BRECs). The effect of VEGF and gold nanoparticles on cell viability, migration and tubule formation was assessed. PP2 (Src Tyrosine Kinase inhibitor) was used as the positive control and the inhibitor assay was performed to compare the effect of AuNPs on VEGF induced angiogenesis. The transient transfection assay was performed to study the VEGFR2/Src activity during experimental conditions and was confirmed using western blot analysis. Treatment of BRECs with VEGF significantly increased the cell proliferation, migration and tube formation. Furthermore, gold nanoparticles (500 nM) significantly inhibited the proliferation, migration and tube formation, in the presence of VEGF in BRECs. The gold nanoparticles also inhibited VEGF induced Src phosphorylation through which their mode of action in inhibiting angiogenic pathways is revealed. The fate of the gold nanoparticles within the cells is being analyzed using the TEM images obtained. The potential of AuNPs to inhibit the VEGF165-induced VEGFR-2 phosphorylation is also being confirmed through the receptor assay which elucidates one of the possible mechanism by which AuNPs inhibit VEGF induced angiogenesis. These results indicate that gold nanoparticles can block VEGF activation of important signaling pathways, specifically Src in BRECs and hence modulation of these pathways may contribute to gold nanoparticles ability to block VEGF-induced retinal neovascularization.
Collapse
|
79
|
Puls LN, Eadens M, Messersmith W. Current status of SRC inhibitors in solid tumor malignancies. Oncologist 2011; 16:566-78. [PMID: 21521831 PMCID: PMC3228195 DOI: 10.1634/theoncologist.2010-0408] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 03/28/2011] [Indexed: 01/13/2023] Open
Abstract
SUMMARY Src is believed to play an important role in cancer, and several agents targeting Src are in clinical development. DESIGN We reviewed Src structure and function and preclinical data supporting its role in the development of cancer via a PubMed search. We conducted an extensive review of Src inhibitors by searching abstracts from major oncology meeting databases in the last 3 years and by comprehensively reviewing ongoing clinical trials on ClinicalTrials.gov. RESULTS In this manuscript, we briefly review Src structure and function, mechanisms involving Src that lead to the development of cancer, and Src inhibitors and key preclinical data establishing a rationale for clinical application. We then focus on clinical data supporting their use in solid tumor malignancies, a newer arena than their more well-established hematologic applications. Particularly highlighted are clinical trials investigating new biomarkers as well as ongoing studies assessing Src inhibitor activity in biomarker-selected patient populations. We also review newer investigational Src-targeting agents. CONCLUSIONS Src inhibitors have shown little activity in monotherapy trials in unselected solid tumor patient populations. Combination studies and biomarker-driven clinical trials are under way.
Collapse
Affiliation(s)
- Lauren N. Puls
- Division of Medical Oncology, University of Colorado Cancer Center, Aurora, Colorado, USA
| | - Matthew Eadens
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Wells Messersmith
- Division of Medical Oncology, University of Colorado Cancer Center, Aurora, Colorado, USA
| |
Collapse
|
80
|
Castro-Sanchez L, Soto-Guzman A, Guaderrama-Diaz M, Cortes-Reynosa P, Salazar EP. Role of DDR1 in the gelatinases secretion induced by native type IV collagen in MDA-MB-231 breast cancer cells. Clin Exp Metastasis 2011; 28:463-77. [PMID: 21461859 DOI: 10.1007/s10585-011-9385-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 03/21/2011] [Indexed: 12/11/2022]
Abstract
Discoidin domain receptors (DDRs) are receptor tyrosine kinases that get activated by collagens in its native triple-helical form. In mammalian cells, DDR family consists of two members, namely DDR1 and DDR2, which mediates migration and proliferation of several cell types. DDR1 is activated by native type IV collagen and overexpressed in human breast cancer. Type IV collagen is the main component of basement membrane (BM), and the ability to degrade and penetrate BM is related with an increased potential for invasion and metastasis. Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that collectively are capable of degrading all components of the extracellular matrix, including the BM. In breast cancer cells, denatured type IV collagen induces MMP-9 secretion and invasion. However, the role of DDR1 in the regulation of gelatinases (MMP-2 and -9) secretion and invasion in breast cancer cells remains to be studied. We demonstrate here that native type IV collagen induces MMP-2 and -9 secretions and invasion through a DDR1 and Src-dependent pathway, together with an increase of MMP-2 and -9-cell surface levels. MMP-2 and -9 secretions require PKC kinase activity, epidermal growth factor receptor (EGFR) activation, arachidonic acid (AA) production and AA metabolites in MDA-MB-231 breast cancer cells. In summary, our data demonstrate, for the first time, that DDR1 mediates MMP-2 and -9 secretions and invasion induced by native type IV collagen in MDA-MB-231 breast cancer cells.
Collapse
Affiliation(s)
- Luis Castro-Sanchez
- Departamento de Biologia Celular, Cinvestav-IPN, San Pedro Zacatenco, 07360, Mexico, DF, Mexico
| | | | | | | | | |
Collapse
|
81
|
Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance pathways. Nat Med 2011; 17:461-9. [PMID: 21399647 DOI: 10.1038/nm.2309] [Citation(s) in RCA: 416] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 01/21/2011] [Indexed: 12/12/2022]
Abstract
Trastuzumab is a successful rationally designed ERBB2-targeted therapy. However, about half of individuals with ERBB2-overexpressing breast cancer do not respond to trastuzumab-based therapies, owing to various resistance mechanisms. Clinically applicable regimens for overcoming trastuzumab resistance of different mechanisms are not yet available. We show that the nonreceptor tyrosine kinase c-SRC (SRC) is a key modulator of trastuzumab response and a common node downstream of multiple trastuzumab resistance pathways. We find that SRC is activated in both acquired and de novo trastuzumab-resistant cells and uncover a novel mechanism of SRC regulation involving dephosphorylation by PTEN. Increased SRC activation conferred considerable trastuzumab resistance in breast cancer cells and correlated with trastuzumab resistance in patients. Targeting SRC in combination with trastuzumab sensitized multiple lines of trastuzumab-resistant cells to trastuzumab and eliminated trastuzumab-resistant tumors in vivo, suggesting the potential clinical application of this strategy to overcome trastuzumab resistance.
Collapse
|
82
|
Kulkarni AA, Thatcher TH, Olsen KC, Maggirwar SB, Phipps RP, Sime PJ. PPAR-γ ligands repress TGFβ-induced myofibroblast differentiation by targeting the PI3K/Akt pathway: implications for therapy of fibrosis. PLoS One 2011; 6:e15909. [PMID: 21253589 PMCID: PMC3017065 DOI: 10.1371/journal.pone.0015909] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 11/26/2010] [Indexed: 12/18/2022] Open
Abstract
Transforming growth factor beta (TGFβ) induced differentiation of human lung fibroblasts to myofibroblasts is a key event in the pathogenesis of pulmonary fibrosis. Although the typical TGFβ signaling pathway involves the Smad family of transcription factors, we have previously reported that peroxisome proliferator-activated receptor-γ (PPAR-γ) ligands inhibit TGFβ-mediated differentiation of human lung fibroblasts to myofibroblasts via a Smad-independent pathway. TGFβ also activates the phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) pathway leading to phosphorylation of AktS473. Here, we report that PPAR-γ ligands, 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO) and 15-deoxy-(12,14)-15d-prostaglandin J2 (15d-PGJ2), inhibit human myofibroblast differentiation of normal and idiopathic pulmonary fibrotic (IPF) fibroblasts, by blocking Akt phosphorylation at Ser473 by a PPAR-γ-independent mechanism. The PI3K inhibitor LY294002 and a dominant-negative inactive kinase-domain mutant of Akt both inhibited TGFβ-stimulated myofibroblast differentiation, as determined by Western blotting for α-smooth muscle actin and calponin. Prostaglandin A1 (PGA1), a structural analogue of 15d-PGJ2 with an electrophilic center, also reduced TGFβ-driven phosphorylation of Akt, while CAY10410, another analogue that lacks an electrophilic center, did not; implying that the activity of 15d-PGJ2 and CDDO is dependent on their electrophilic properties. PPAR-γ ligands inhibited TGFβ-induced Akt phosphorylation via both post-translational and post-transcriptional mechanisms. This inhibition is independent of MAPK-p38 and PTEN but is dependent on TGFβ-induced phosphorylation of FAK, a kinase that acts upstream of Akt. Thus, PPAR-γ ligands inhibit TGFβ signaling by affecting two pro-survival pathways that culminate in myofibroblast differentiation. Further studies of PPAR-γ ligands and small electrophilic molecules may lead to a new generation of anti-fibrotic therapeutics.
Collapse
Affiliation(s)
- Ajit A. Kulkarni
- The Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Thomas H. Thatcher
- The Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Keith C. Olsen
- The Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Sanjay B. Maggirwar
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Richard P. Phipps
- The Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Patricia J. Sime
- The Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
83
|
Yeo MG, Oh HJ, Cho HS, Chun JS, Marcantonio EE, Song WK. Phosphorylation of Ser 21 in Fyn regulates its kinase activity, focal adhesion targeting, and is required for cell migration. J Cell Physiol 2010; 226:236-47. [PMID: 20658524 DOI: 10.1002/jcp.22335] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The tyrosine kinase Fyn is a member of the Src family kinases which are important in many integrin-mediated cellular processes including cell adhesion and migration. Fyn has multiple phosphorylation sites which can affect its kinase activity. Among these phosphorylation sites, the serine 21 (S21) residue of Fyn is a protein kinase A (PKA) recognition site within an RxxS motif of the amino terminal SH4 domain of Fyn. In addition, S21 is critical for Fyn kinase-linked cellular signaling. Mutation of S21A blocks PKA phosphorylation of Fyn and alters its tyrosine kinase activity. Expression of Fyn S21A in cells lacking Src family kinases (SYF cell) led to decreased tyrosine phosphorylation of focal adhesion kinase resulting in reduced focal adhesion targeting, which slowed lamellipodia dynamics and thus cell migration. These changes in cell motility were reflected by the fact that cells expressing Fyn S21A were severely deficient in their ability to assemble and disassemble focal adhesions. Taken together, our findings indicate that phosphorylation of S21 within the pPKA recognition site (RxxS motif) of Fyn regulates its tyrosine kinase activity and controls focal adhesion targeting, and that this residue of Fyn is critical for transduction of signals arising from cell-extracellular matrix interactions.
Collapse
Affiliation(s)
- Myeong Gu Yeo
- Department of Life Science, Bio Imaging and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | | | | | | | | | | |
Collapse
|
84
|
Taiwan cobra cardiotoxin III inhibits Src kinase leading to apoptosis and cell cycle arrest of oral squamous cell carcinoma Ca9-22 cells. Toxicon 2010; 56:508-20. [DOI: 10.1016/j.toxicon.2010.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 05/05/2010] [Accepted: 05/07/2010] [Indexed: 11/22/2022]
|
85
|
Aleshin A, Finn RS. SRC: a century of science brought to the clinic. Neoplasia 2010; 12:599-607. [PMID: 20689754 PMCID: PMC2915404 DOI: 10.1593/neo.10328] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 04/06/2010] [Accepted: 04/08/2010] [Indexed: 12/14/2022]
Abstract
The SRC family kinases are the largest family of nonreceptor tyrosine kinases and one of the best-studied targets for cancer therapy. SRC, arguably the oldest oncogene, has been implicated in pathways regulating proliferation, angiogenesis, invasion and metastasis, and bone metabolism. More recently, researchers have proposed that the transforming ability of SRC is linked to its ability to activate key signaling molecules in these pathways, rather than through direct activity. It has been hypothesized that blocking SRC activation may inhibit these pathways, resulting in antitumor activity. However, successfully targeting SRC in a clinical setting remains a challenge, and SRC inhibitors have only recently begun to move through clinical development. Preclinical studies have identified specific molecular "subgroups" and histologies that may be more sensitive to SRC inhibition. In addition, other studies have demonstrated synergistic interactions between SRC inhibitors and other targeted therapies and cytotoxics. In this review, we summarize SRC biology and how it has been applied to the clinical development of SRC inhibitors. The status of SRC inhibitors, including dasatinib, saracatinib, and bosutinib, which are in phase 1, 2, and 3 trials, is highlighted.
Collapse
Affiliation(s)
- Alexey Aleshin
- Department of Medicine, Division of Hematology/Oncology, Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|
86
|
Epigallocatechin-3-gallate (EGCG) downregulates gelatinase-B (MMP-9) by involvement of FAK/ERK/NFkappaB and AP-1 in the human breast cancer cell line MDA-MB-231. Anticancer Drugs 2010; 21:632-44. [PMID: 20527725 DOI: 10.1097/cad.0b013e32833a4385] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Epigallocatechin-3-gallate (EGCG) is effective against the initiation, progression, and invasion of carcinogenesis.Matrix-metalloproteinases (MMPs) are a family of endopeptidases that hydrolyze the majority of extracellular proteins. MMP-9 is one of the most important members of the family and we observed the effect of EGCG on MMP-9 in the human breast cancer cell line, MDA-MB-231.The effect of EGCG on MMP-9 was studied by gelatin zymography, western blot, quantitative and semiquantitative real-time RT-PCR, immunoflourescence, cell adhesion assay, enzyme-linked immunosorbent assay,and electrophoretic mobility shift assay. EGCG treatment reduced the activity, protein, and mRNA expression ofMMP-9 and enhanced the expression of the tissue inhibitor of MMP 1 (TIMP-1). EGCG downregulated the activation of focal adhesion kinase (FAK) and extracellular regulated kinase (ERK), reduced the adhesion of MDA-MB-231 cells to fibronectin and vitronectin, and reduced the mRNA expression of the integrin receptors alpha5beta1 and alphavbeta3. The expression of the nuclear factor kappa B (NFjB), and the DNA binding activity of NFjB and activator protein 1 (AP1)to MMP-9 promoter were noticeably reduced on EGCG treatment. Upregulation of TIMP-1 and disruption of the functional status of integrin receptors may indicate decreased MMP-9 activation; inhibition of FAK andERK activation might indicate disruption in the FAK/ERK-induced MMP-9 secretion and induction. Decreased DNA binding activity of NFjB and AP1 to MMP-9 promoter might indicate transcriptional deregulation of MMP-9 gene on EGCG treatment. We propose EGCG as a potential inhibitor of the expression and activity of MMP-9 by a process involving FAK/ERK and transcription factorsin MDA-MB-231.
Collapse
|
87
|
Wang C, Varshney RR, Wang DA. Therapeutic cell delivery and fate control in hydrogels and hydrogel hybrids. Adv Drug Deliv Rev 2010; 62:699-710. [PMID: 20138940 DOI: 10.1016/j.addr.2010.02.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/29/2010] [Accepted: 02/01/2010] [Indexed: 11/18/2022]
Abstract
Hydrogels are synthetic or natural polymer networks that closely mimic native extracellular matrices. As hydrogel-based vehicles are being increasingly employed in therapeutic cell delivery, two inherent traits of most common hydrogels, namely low cell affinity and high cell constraint, have significantly drawn the attention of biomedical community. These two properties lead to the unfavourable settlement of anchorage-dependent cells (ADCs) and unsatisfactory cell delivery or tissue formation in hydrogel matrices. Tissue engineers have correspondingly made many efforts involving chemical modification or physical hybridisation to facilitate ADC settlement and promote tissue formation. On the other hand, these two 'bio-inert' characteristics have particularly favoured oncological cell therapists, who expect to utilize hydrogels to provide sufficiently high confinement of the delivered cells for anti-cancer purposes. In general, control of cell fate and behaviours in these three-dimensional (3D) microenvironments has become the central aim for hydrogel-mediated cell delivery, towards which various models based on hydrogels and their hybrids have emerged. In this paper, we will first review the development of strategies aiming to overcome the aforementioned two 'shortcomings' by (i) establishing ADC survival and (ii) creating space for tissue formation respectively, and then introduce how people take advantage of these 'disadvantages' of hydrogel encapsulation for (iii) an enhanced confinement of cell motion.
Collapse
Affiliation(s)
- Chunming Wang
- Nanyang Technological University, Singapore, Republic of Singapore
| | | | | |
Collapse
|
88
|
Sood AK, Armaiz-Pena GN, Halder J, Nick AM, Stone RL, Hu W, Carroll AR, Spannuth WA, Deavers MT, Allen JK, Han LY, Kamat AA, Shahzad MMK, McIntyre BW, Diaz-Montero CM, Jennings NB, Lin YG, Merritt WM, DeGeest K, Vivas-Mejia PE, Lopez-Berestein G, Schaller MD, Cole SW, Lutgendorf SK. Adrenergic modulation of focal adhesion kinase protects human ovarian cancer cells from anoikis. J Clin Invest 2010; 120:1515-23. [PMID: 20389021 DOI: 10.1172/jci40802] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 02/03/2010] [Indexed: 12/11/2022] Open
Abstract
Chronic stress is associated with hormonal changes that are known to affect multiple systems, including the immune and endocrine systems, but the effects of stress on cancer growth and progression are not fully understood. Here, we demonstrate that human ovarian cancer cells exposed to either norepinephrine or epinephrine exhibit lower levels of anoikis, the process by which cells enter apoptosis when separated from ECM and neighboring cells. In an orthotopic mouse model of human ovarian cancer, restraint stress and the associated increases in norepinephrine and epinephrine protected the tumor cells from anoikis and promoted their growth by activating focal adhesion kinase (FAK). These effects involved phosphorylation of FAKY397, which was itself associated with actin-dependent Src interaction with membrane-associated FAK. Importantly, in human ovarian cancer patients, behavioral states related to greater adrenergic activity were associated with higher levels of pFAKY397, which was in turn linked to substantially accelerated mortality. These data suggest that FAK modulation by stress hormones, especially norepinephrine and epinephrine, can contribute to tumor progression in patients with ovarian cancer and may point to potential new therapeutic targets for cancer management.
Collapse
Affiliation(s)
- Anil K Sood
- Department of Gynecologic Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Arachidonic acid promotes epithelial-to-mesenchymal-like transition in mammary epithelial cells MCF10A. Eur J Cell Biol 2010; 89:476-88. [PMID: 20207443 DOI: 10.1016/j.ejcb.2009.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 12/19/2009] [Accepted: 12/21/2009] [Indexed: 11/22/2022] Open
Abstract
Epidemiological studies and animal models suggest an association between high levels of dietary fat intake and an increased risk of breast cancer. Cancer progression requires the development of metastasis, which is characterized by an increase in cell motility and invasion. Epithelial-to-mesenchymal transition (EMT) is a process, by which epithelial cells are transdifferentiated to a more mesenchymal state. A similar process takes place during tumor progression, when carcinoma cells stably or transiently lose epithelial polarities and acquire a mesenchymal phenotype. Arachidonic acid (AA) is a fatty acid that mediates cellular processes, such as cell survival, angiogenesis, chemotaxis, mitogenesis, migration and apoptosis. However, the role of AA on the EMT process in human mammary epithelial cells remains to be studied. We demonstrate here that AA promotes an increase in vimentin and N-cadherin expression, MMP-9 secretion, a decrease in E-cadherin junctional levels, and the activation of FAK, Src and NF-kappaB in MCF10A cells. Furthermore, AA also promotes cell migration in an Src kinase activity-dependent fashion. In conclusion, our results demonstrate, for the first time, that AA promotes an epithelial-to-mesenchymal-like transition in MCF10A human mammary non-tumorigenic epithelial cells.
Collapse
|
90
|
Entry of Neisseria meningitidis into mammalian cells requires the Src family protein tyrosine kinases. Infect Immun 2010; 78:1905-14. [PMID: 20176789 DOI: 10.1128/iai.01267-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis, the causative agent of meningitis and septicemia, is able to attach to and invade a variety of cell types. In a previous study we showed that entry of N. meningitidis into human brain microvascular endothelial cells (HBMEC) is mediated by fibronectin bound to the outer membrane protein Opc, which forms a molecular bridge to alpha 5 beta 1-integrins. This interaction results in cytoskeletal remodeling and uptake of the bacteria. In this study we identified and characterized the intracellular signals involved in integrin-initiated uptake of N. meningitidis. We determined that the Src protein tyrosine kinases (PTKs) are activated in response to contact with N. meningitidis. Inhibition of Src PTK activity by the general tyrosine kinase inhibitor genistein and the specific Src inhibitor PP2 reduced Opc-mediated invasion of HBMEC and human embryonic kidney (HEK) 293T cells up to 90%. Moreover, overexpression of the cellular Src antagonist C-terminal Src kinase (CSK) also significantly reduced N. meningitidis invasion. Src PTK-deficient fibroblasts were impaired in the ability to internalize N. meningitidis and showed reduced phosphorylation of the cytoskeleton and decreased development of stress fibers. These data indicate that the Src family PTKs, particularly the Src protein, along with other proteins, are important signal proteins that are responsible for the transfer of signals from activated integrins to the cytoskeleton and thus mediate the endocytosis of N. meningitidis into brain endothelial cells.
Collapse
|
91
|
Sasawatari S, Yoshizaki M, Taya C, Tazawa A, Furuyama-Tanaka K, Yonekawa H, Dohi T, Makrigiannis AP, Sasazuki T, Inaba K, Toyama-Sorimachi N. The Ly49Q Receptor Plays a Crucial Role in Neutrophil Polarization and Migration by Regulating Raft Trafficking. Immunity 2010; 32:200-13. [DOI: 10.1016/j.immuni.2010.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Revised: 11/11/2009] [Accepted: 01/22/2010] [Indexed: 01/01/2023]
|
92
|
Abstract
Src family kinases (SFKs) have a critical role in cell adhesion, invasion, proliferation, survival, and angiogenesis during tumor development. SFKs comprise nine family members that share similar structure and function. Overexpression or high activation of SFKs occurs frequently in tumor tissues and they are central mediators in multiple signaling pathways that are important in oncogenesis. SFKs can interact with tyrosine kinase receptors, such as EGFR and the VEGF receptor. SFKs can affect cell proliferation via the Ras/ERK/MAPK pathway and can regulate gene expression via transcription factors such as STAT molecules. SFKs can also affect cell adhesion and migration via interaction with integrins, actins, GTPase-activating proteins, scaffold proteins, such as p130(CAS) and paxillin, and kinases such as focal adhesion kinases. Furthermore, SFKs can regulate angiogenesis via gene expression of angiogenic growth factors, such as fibroblast growth factor, VEGF, and interleukin 8. On the basis of these important findings, small-molecule SFK inhibitors have been developed and are undergoing early phase clinical testing. In preclinical studies these agents can suppress tumor growth and metastases. The agents seem to be safe in humans and could add to the therapeutic arsenal against subsets of cancers.
Collapse
|
93
|
SRC-mediated phosphorylation of dynamin and cortactin regulates the "constitutive" endocytosis of transferrin. Mol Cell Biol 2009; 30:781-92. [PMID: 19995918 DOI: 10.1128/mcb.00330-09] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms by which epithelial cells regulate clathrin-mediated endocytosis (CME) of transferrin are poorly defined and generally viewed as a constitutive process that occurs continuously without regulatory constraints. In this study, we demonstrate for the first time that endocytosis of the transferrin receptor is a regulated process that requires activated Src kinase and, subsequently, phosphorylation of two important components of the endocytic machinery, namely, the large GTPase dynamin 2 (Dyn2) and its associated actin-binding protein, cortactin (Cort). To our knowledge these findings are among the first to implicate an Src-mediated endocytic cascade in what was previously presumed to be a nonregulated internalization process.
Collapse
|
94
|
Navarro-Tito N, Soto-Guzman A, Castro-Sanchez L, Martinez-Orozco R, Salazar EP. Oleic acid promotes migration on MDA-MB-231 breast cancer cells through an arachidonic acid-dependent pathway. Int J Biochem Cell Biol 2009; 42:306-17. [PMID: 19931412 DOI: 10.1016/j.biocel.2009.11.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 10/08/2009] [Accepted: 11/10/2009] [Indexed: 12/29/2022]
Abstract
An association between dietary fatty, obesity and an increased risk of developing breast cancer has been suggested. In breast cancer cells, free fatty acids (FFAs) mediate biological effects including cell proliferation and ERK1/2 activation. However, the contribution of FFAs to tumor progression and metastasis through the regulation of cell migration has not been studied. We demonstrated here that stimulation on MDA-MB-231 breast cancer cells with oleic acid (OA) promotes an increase in focal adhesion kinase (FAK) phosphorylation, as revealed by site-specific antibodies that recognize the phosphorylation state of FAK at tyrosine-397 (Tyr-397), Tyr-577 and in vitro kinase assays. OA also promotes the migration of MDA-MB-231 cells. Treatment with Gi/Go proteins, phospholipase C (PLC), lipoxygenases (LOXs) and Src inhibitor prevents FAK phosphorylation and cell migration. In summary, our findings delineate a new signal transduction pathway, where OA mediates the production of arachidonic acid (AA), and then AA metabolites mediate FAK phosphorylation and cell migration in MDA-MB-231 breast cancer cells.
Collapse
Affiliation(s)
- Napoleon Navarro-Tito
- Departamento de Biologia Celular, Cinvestav-IPN, Av IPN # 2508, San Pedro Zacatenco, Mexico, DF 07360, Mexico
| | | | | | | | | |
Collapse
|
95
|
Dobkin-Bekman M, Naidich M, Rahamim L, Przedecki F, Almog T, Lim S, Melamed P, Liu P, Wohland T, Yao Z, Seger R, Naor Z. A preformed signaling complex mediates GnRH-activated ERK phosphorylation of paxillin and FAK at focal adhesions in L beta T2 gonadotrope cells. Mol Endocrinol 2009; 23:1850-64. [PMID: 19628583 DOI: 10.1210/me.2008-0260] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Most receptor tyrosine kinases and G protein-coupled receptors (GPCRs) operate via a limited number of MAPK cascades but still exert diverse functions, and therefore signal specificity remains an enigma. Also, most GPCR ligands utilize families of receptors for mediation of diverse biological actions; however, the mammalian type I GnRH receptor (GnRHR) seems to be the sole receptor mediating GnRH-induced gonadotropin synthesis and release. Signaling complexes associated with GPCRs may thus provide the means for signal specificity. Here we describe a signaling complex associated with the GnRHR, which is a unique GPCR lacking a C-terminal tail. Unlike other GPCRs, this signaling complex is preformed, and exposure of L beta T2 gonadotropes to GnRH induces its dynamic rearrangement. The signaling complex includes c-Src, protein kinase C delta, -epsilon, and -alpha, Ras, MAPK kinase 1/2, ERK1/2, tubulin, focal adhesion kinase (FAK), paxillin, vinculin, caveolin-1, kinase suppressor of Ras-1, and the GnRHR. Exposure to GnRH (5 min) causes MAPK kinase 1/2, ERK1/2, tubulin, vinculin, and the GnRHR to detach from c-Src, but they reassociate within 30 min. On the other hand, FAK, paxillin, the protein kinase Cs, and caveolin-1 stay bound to c-Src, whereas kinase suppressor of Ras-1 appears in the complex only 30 min after GnRH stimulation. GnRH was found to activate ERK1/2 in the complex in a c-Src-dependent manner, and the activated ERK1/2 subsequently phosphorylates FAK and paxillin. In parallel, caveolin-1, FAK, vinculin, and paxillin are phosphorylated on Tyr residues apparently by GnRH-activated c-Src. Receptor tyrosine kinases and GPCRs translocate ERK1/2 to the nucleus to phosphorylate and activate transcription factors. We therefore propose that the role of the multiprotein signaling complex is to sequester a cytosolic pool of activated ERK1/2 to phosphorylate FAK and paxillin at focal adhesions.
Collapse
Affiliation(s)
- Masha Dobkin-Bekman
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Nicolini A, Carpi A. Immune manipulation of advanced breast cancer: an interpretative model of the relationship between immune system and tumor cell biology. Med Res Rev 2009; 29:436-71. [PMID: 19105214 DOI: 10.1002/med.20143] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review summarizes some recent clinical immunological approaches with cytokines and/or antibodies for therapy of advanced breast cancer. It considers the recent advances in genetics and molecular tumor biology related to impaired immunosurveillance involving cytokines and growth factors to explain clinical results. Evasion of the host immune attack might be induced by the following groups of mechanisms: (a) tumor dependent (genomic instability, HLA class I antigen abnormalities, upregulation of fetal type nonclassical HLA class I molecules, epitope immunodominance, apoptosis inhibition by defective death receptor signaling, apoptosis of activated T cells, tumor cannibalism and constitutive activation of signal transducer, and activator of transcription-3 (Stat 3) and nuclear factor-kappaB (NF-kappaB) signaling); (b) host dependent (CD4+CD25+ regulatory T cells (T reg), CD4+ T cells anergy, Th2 antitumor immunity diversion and myeloid suppressor cells); (c) tumor and host dependent (lack of co-stimulation molecules, immunosuppressive cytokines (vascular endothelial growth factor (VEGF), interleukin (IL)-10, prostaglandin (PG)E2, transforming growth factor (TGF)-beta)). Cytokines and growth factors are involved in virtually all three types of mechanisms. These mechanisms are integrated with the current knowledge of tumor growth and inhibited apoptosis primarily mediated by cytokines and growth factors to propose an interpretation of the relationships among tumor cells, tumor stroma, and tumor-infiltrating lymphocytes. Tumor growth, defective immunorecognition and immunosuppression are the three principal effects considered responsible for immune evasion.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Internal Medicine, University of Pisa, Pisa, Italy.
| | | |
Collapse
|
97
|
Gupta SK, Vlahakis NE. Integrin alpha9beta1 mediates enhanced cell migration through nitric oxide synthase activity regulated by Src tyrosine kinase. J Cell Sci 2009; 122:2043-54. [PMID: 19470583 PMCID: PMC2723157 DOI: 10.1242/jcs.041632] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2009] [Indexed: 12/31/2022] Open
Abstract
Integrins are important mediators of cell adhesion and migration, which in turn are essential for diverse biological functions, including wound healing and cancer metastasis. The integrin alpha9beta1 is expressed on numerous mammalian tissues and can mediate accelerated cell migration. As the molecular signaling mechanisms that transduce this effect are poorly defined, we investigated the pathways by which activated integrin alpha9beta1 signals migration. We found for the first time that specific ligation of integrin alpha9beta1 rapidly activates Src tyrosine kinase, with concomitant tyrosine phosphorylation of p130Cas and activation of Rac-1. Furthermore, activation of integrin alpha9beta1 also enhanced NO production through activation of inducible nitric oxide synthase (iNOS). Inhibition of Src tyrosine kinase or NOS decreased integrin-alpha9beta1-dependent cell migration. Src appeared to function most proximal in the signaling cascade, in a FAK-independent manner to facilitate iNOS activation and NO-dependent cell migration. The cytoplasmic domain of integrin alpha9 was crucial for integrin-alpha9beta1-induced Src activation, subsequent signaling events and cell migration. When taken together, our results describe a novel and unique mechanism of coordinated interactions of the integrin alpha9 cytoplasmic domain, Src tyrosine kinase and iNOS to transduce integrin-alpha9beta1-mediated cell migration.
Collapse
Affiliation(s)
- Shiv K Gupta
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
98
|
Soto-Guzman A, Robledo T, Lopez-Perez M, Salazar EP. Oleic acid induces ERK1/2 activation and AP-1 DNA binding activity through a mechanism involving Src kinase and EGFR transactivation in breast cancer cells. Mol Cell Endocrinol 2008; 294:81-91. [PMID: 18775472 DOI: 10.1016/j.mce.2008.08.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 08/05/2008] [Accepted: 08/07/2008] [Indexed: 12/22/2022]
Abstract
GPR40 and GPR120 are G-protein-coupled receptors that can be activated by medium- and long-chain fatty acids. GPR40 is expressed in several breast cancer cell lines and its stimulation with oleic acid (OA) induces cell proliferation. However, the signal transduction pathways activated by OA have not been studied in detail. Our results demonstrate that both GPR40 and GPR120 are expressed in MCF-7 cells. Stimulation of MCF-7 and MDA-MB-231 cells with OA promoted the phosphorylation of ERK1/2 at Thr-202 and Tyr-204 and the formation of AP-1-DNA complex in a fashion dependent of Src kinase activity and EGFR transactivation. Furthermore, proliferation induced by OA is restricted to breast cancer cells in a fashion dependent of ERK1/2 activation and matrix metalloproteinases. In summary, our data indicate that proliferation induced by OA is restricted to breast cancer cells, and that ERK1/2 activation and AP-1-DNA complex formation are mediated by Src family kinases and transactivation of EGFR.
Collapse
Affiliation(s)
- Adriana Soto-Guzman
- Departamento de Biologia Celular, Cinvestav-IPN, San Pedro Zacatenco, Mexico, DF 07360, Mexico
| | | | | | | |
Collapse
|
99
|
RAGE signaling contributes to neuroinflammation in infantile neuronal ceroid lipofuscinosis. FEBS Lett 2008; 582:3823-31. [PMID: 18948101 DOI: 10.1016/j.febslet.2008.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 10/06/2008] [Accepted: 10/09/2008] [Indexed: 02/04/2023]
Abstract
Palmitoyl-protein thioesterase-1 (PPT1) deficiency causes infantile neuronal ceroid lipofuscinosis (INCL), a devastating childhood neurodegenerative storage disorder. We previously reported that neuronal apoptosis in INCL is mediated by endoplasmic reticulum-stress. ER-stress disrupts Ca(2+)-homeostasis and stimulates the expression of Ca(2+)-binding proteins. We report here that in the PPT1-deficient human and mouse brain the levels of S100B, a Ca(2+)-binding protein, and its receptor, RAGE (receptor for advanced glycation end-products) are elevated. We further demonstrate that activation of RAGE signaling in astroglial cells mediates pro-inflammatory cytokine production, which is inhibited by SiRNA-mediated suppression of RAGE expression. We propose that RAGE signaling contributes to neuroinflammation in INCL.
Collapse
|
100
|
Zarbock A, Abram CL, Hundt M, Altman A, Lowell CA, Ley K. PSGL-1 engagement by E-selectin signals through Src kinase Fgr and ITAM adapters DAP12 and FcR gamma to induce slow leukocyte rolling. ACTA ACUST UNITED AC 2008; 205:2339-47. [PMID: 18794338 PMCID: PMC2556779 DOI: 10.1084/jem.20072660] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
E-selectin binding to P-selectin glycoprotein ligand-1 (PSGL-1) can activate the β2 integrin lymphocyte function-associated antigen-1 by signaling through spleen tyrosine kinase (Syk). This signaling is independent of Gαi-protein–coupled receptors, results in slow rolling, and promotes neutrophil recruitment to sites of inflammation. However, the signaling pathways linking E-selectin engagement of PSGL-1 to Syk activation are unknown. To test the role of Src family kinases and immunoreceptor tyrosine-based activating motif (ITAM)–containing adaptor proteins, we used different gene-deficient mice in flow chamber, intravital microscopy, and peritonitis studies. E-selectin–mediated phosphorylation of Syk and slow rolling was abolished in neutrophils from fgr−/− or hck−/− lyn−/− fgr−/− mice. Neutrophils from Tyrobp−/− Fcrg−/− mice lacking both DAP12 and FcRγ were incapable of sustaining slow neutrophil rolling on E-selectin and intercellular adhesion molecule-1 and were unable to phosphorylate Syk and p38 MAPK. This defect was confirmed in vivo by using mixed chimeric mice. Gαi-independent neutrophil recruitment into the inflamed peritoneal cavity was sharply suppressed in Tyrobp−/− Fcrg−/− mice. Our data demonstrate that an ITAM-dependent pathway involving the Src-family kinase Fgr and the ITAM-containing adaptor proteins DAP12 and FcRγ is involved in the initial signaling events downstream of PSGL-1 that are required to initiate neutrophil slow rolling.
Collapse
Affiliation(s)
- Alexander Zarbock
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|