51
|
Abstract
In eukaryotes, copying the genetic information from a DNA template into RNA is not sufficient itself to confer functional competence to the DNA-encoded message. mRNAs have to be processed by enzymes and packaged with proteins within nuclei to generate mRNP (messenger ribonucleoprotein) particles, before these can be exported to the cytoplasm. Processing and packaging factors are believed to interact with the nascent mRNA co-transcriptionally, which protects the highly reactive RNA molecule from a presumably aggressive nuclear environment while providing early commitment to its functional fate. In this review, we will describe the factors that are believed to provide the appropriate 'dress code' to the mRNA and the mechanisms underlying the proofreading events that guarantee its quality, focusing on yeast as a model system.
Collapse
|
52
|
de Almeida SF, Carmo-Fonseca M. The CTD role in cotranscriptional RNA processing and surveillance. FEBS Lett 2008; 582:1971-6. [PMID: 18435923 DOI: 10.1016/j.febslet.2008.04.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 04/13/2008] [Accepted: 04/14/2008] [Indexed: 11/24/2022]
Abstract
In higher eukaryotes, the production of mature messenger RNA that exits the nucleus to be translated into protein requires precise and extensive processing of the nascent transcript. The processing steps include 5'-end capping, splicing, and 3'-end formation. Pre-mRNA processing is coupled to transcription by mechanisms that are not well understood but involve the carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II. This review focuses on recent findings that provide novel insight into the role of the CTD in promoting RNA processing and surveillance.
Collapse
Affiliation(s)
- Sérgio F de Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | | |
Collapse
|
53
|
Kota KP, Wagner SR, Huerta E, Underwood JM, Nickerson JA. Binding of ATP to UAP56 is necessary for mRNA export. J Cell Sci 2008; 121:1526-37. [PMID: 18411249 DOI: 10.1242/jcs.021055] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The major-histocompatibility-complex protein UAP56 (BAT1) is a DEAD-box helicase that is deposited on mRNA during splicing. UAP56 is retained on spliced mRNA in an exon junction complex (EJC) or, alternatively, with the TREX complex at the 5' end, where it might facilitate the export of the spliced mRNA to the cytoplasm. Using confocal microscopy, UAP56 was found to be concentrated in RNA-splicing speckled domains of nuclei but was also enriched in adjacent nuclear regions, sites at which most mRNA transcription and splicing occur. At speckled domains, UAP56 was in complexes with the RNA-splicing and -export protein SRm160, and, as measured by FRAP, was in a dynamic binding equilibrium. The application of an in vitro FRAP assay, in which fluorescent nuclear proteins are photobleached in digitonin-extracted cells, revealed that the equilibrium binding of UAP56 in complexes at speckled domains was directly regulated by ATP binding. This was confirmed using a point mutant of UAP56 that did not bind ATP. Point mutation of UAP56 to eliminate ATP binding did not affect RNA splicing, but strongly inhibited the export of mRNA to the cytoplasm.
Collapse
Affiliation(s)
- Krishna P Kota
- Department of Cell Biology S7-214, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | |
Collapse
|
54
|
Thomsen R, Saguez C, Nasser T, Jensen TH. General, rapid, and transcription-dependent fragmentation of nucleolar antigens in S. cerevisiae mRNA export mutants. RNA (NEW YORK, N.Y.) 2008; 14:706-16. [PMID: 18258809 PMCID: PMC2271370 DOI: 10.1261/rna.718708] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In the yeast Saccharomyces cerevisiae, mutation of some effectors of mRNA nuclear export leads to the rapid accumulation of HSP104 RNA in transcription site-associated foci. We have screened the S. cerevisiae complement of viable gene deletion mutants for their inability to export HSP104 RNA. The 15 strains identified comprise deletions of components of the THO, Thp1p/Sac3p, and nuclear pore complexes. In all three mutant classes, retained RNA overlaps the HSP104 transcription site. Thus, an early block to HSP104 RNA export is general. Incubation of the identified deletion strains, as well as seven additional mutants, under conditions where mRNA export is blocked results in rapid dissipation of nucleolar protein and RNA constituents. Time course experiments show that dissipation of nucleolar antigens succeeds mRNA retention and is reversed when the load of nuclear mRNA ceases. Consistent with a causal role of excess nuclear mRNA, nucleolar morphology in an mRNA export mutant environment remains intact when transcription by RNA polymerase II is inhibited.
Collapse
Affiliation(s)
- Rune Thomsen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
55
|
Houseley J, Tollervey D. The nuclear RNA surveillance machinery: The link between ncRNAs and genome structure in budding yeast? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:239-46. [DOI: 10.1016/j.bbagrm.2007.12.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 12/18/2007] [Accepted: 12/20/2007] [Indexed: 11/26/2022]
|
56
|
Meignin C, Davis I. UAP56 RNA helicase is required for axis specification and cytoplasmic mRNA localization in Drosophila. Dev Biol 2008; 315:89-98. [PMID: 18237727 DOI: 10.1016/j.ydbio.2007.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 11/30/2007] [Accepted: 12/05/2007] [Indexed: 10/22/2022]
Abstract
mRNA export from the nucleus requires the RNA helicase UAP56 and involves remodeling of ribonucleo-protein complexes in the nucleus. Here, we show that UAP56 is required for bulk mRNA export from the nurse cell nuclei that supply most of the material to the growing Drosophila oocyte and for the organization of chromatin in the oocyte nucleus. Loss of UAP56 function leads to patterning defects that identify uap56 as a spindle-class gene similar to the RNA helicase Vasa. UAP56 is required for the localization of gurken, bicoid and oskar mRNA as well as post-translational modification of Osk protein. By injecting grk RNA into the oocyte cytoplasm, we show that UAP56 plays a role in cytoplasmic mRNA localization. We propose that UAP56 has two independent functions in the remodeling of ribonucleo-protein complexes. The first is in the nucleus for mRNA export of most transcripts from the nucleus. The second is in the cytoplasm for remodeling the transacting factors that decorate mRNA and dictate its cytoplasmic destination.
Collapse
Affiliation(s)
- Carine Meignin
- Department of Biochemistry, The University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | |
Collapse
|
57
|
Chekanova JA, Abruzzi KC, Rosbash M, Belostotsky DA. Sus1, Sac3, and Thp1 mediate post-transcriptional tethering of active genes to the nuclear rim as well as to non-nascent mRNP. RNA (NEW YORK, N.Y.) 2008; 14:66-77. [PMID: 18003937 PMCID: PMC2151039 DOI: 10.1261/rna.764108] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 09/21/2007] [Indexed: 05/20/2023]
Abstract
Errors in the mRNP biogenesis pathway can lead to retention of mRNA in discrete, transcription-site-proximal foci. This RNA remains tethered adjacent to the transcription site long after transcriptional shutoff. Here we identify Sus1, Thp1, and Sac3 as factors required for the persistent tethering of such foci (dots) to their cognate genes. We also show that the prolonged association of previously activated GAL genes with the nuclear periphery after transcriptional shutoff is similarly dependent on the Sac3-Thp1-Sus1-Cdc31 complex. We suggest that the complex associates with nuclear mRNP and that mRNP properties influence the association of dot-confined mRNA with its gene of origin as well as the post-transcriptional retention of the cognate gene at the nuclear periphery. These findings indicate a coupling between the mRNA-to-gene and gene-to-nuclear periphery tethering. Taken together with other recent findings, these observations also highlight the importance of nuclear mRNP to the mobilization of active genes to the nuclear rim.
Collapse
Affiliation(s)
- Julia A Chekanova
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | | | | | | |
Collapse
|
58
|
Shen J, Zhang L, Zhao R. Biochemical characterization of the ATPase and helicase activity of UAP56, an essential pre-mRNA splicing and mRNA export factor. J Biol Chem 2007; 282:22544-50. [PMID: 17562711 DOI: 10.1074/jbc.m702304200] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DEXD/H-box protein UAP56 is an essential pre-mRNA splicing factor required for the first ATP-dependent spliceosome assembly step. UAP56 is also essential for the export of the majority of mRNAs from the nucleus to the cytoplasm. We performed biochemical characterization of UAP56's ATPase and helicase activity, which is important for further understanding the role of these activities in UAP56's function. We showed that UAP56 is an RNA-stimulated ATPase that can only hydrolyze ATP. We demonstrated that UAP56 is an ATP-dependent RNA helicase that can unwind substrates with 5' or 3' overhangs or blunt ends in vitro. We showed that U2AF(65) and Aly, two proteins known to interact with UAP56, do not influence UAP56's ATPase or helicase activity. We also demonstrated that several mutants in the conserved helicase motifs I, II, and III abolish UAP56's ATPase and/or helicase activity, providing tools for future investigation of the role of UAP56's ATPase and helicase activity in spliceosome assembly and mRNA export.
Collapse
Affiliation(s)
- Jingping Shen
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
59
|
Gaillard H, Wellinger RE, Aguilera A. A new connection of mRNP biogenesis and export with transcription-coupled repair. Nucleic Acids Res 2007; 35:3893-906. [PMID: 17537816 PMCID: PMC1919492 DOI: 10.1093/nar/gkm373] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although DNA repair is faster in the transcribed strand of active genes, little is known about the possible contribution of mRNP biogenesis and export in transcription-coupled repair (TCR). Interestingly, mutants of THO, a transcription complex involved in maintenance of genome integrity, mRNP biogenesis and export, were recently found to be deficient in nucleotide excision repair. In this study we show by molecular DNA repair analysis, that Sub2-Yra1 and Thp1-Sac3, two main mRNA export complexes, are required for efficient TCR in yeast. Careful analysis revealed that THO mutants are also specifically affected in TCR. Ribozyme-mediated mRNA self-cleavage between two hot spots for UV damage showed that efficient TCR does not depend on the nascent mRNA, neither in wild-type nor in mutant cells. Along with severe UV damage-dependent loss in processivity, RNAPII was found binding to chromatin upon UV irradiation in THO mutants, suggesting that RNAPII remains stalled at DNA lesions. Furthermore, Def1, a factor responsible for the degradation of stalled RNAPII, appears essential for the viability of THO mutants subjected to DNA damage. Our results indicate that RNAPII is not proficient for TCR in mRNP biogenesis and export mutants, opening new perspectives on our knowledge of TCR in eukaryotic cells.
Collapse
Affiliation(s)
| | | | - Andrés Aguilera
- *To whom correspondence should be addressed. +34-954-468-372+34-954-461-664
| |
Collapse
|
60
|
Rougemaille M, Gudipati RK, Olesen JR, Thomsen R, Seraphin B, Libri D, Jensen TH. Dissecting mechanisms of nuclear mRNA surveillance in THO/sub2 complex mutants. EMBO J 2007; 26:2317-26. [PMID: 17410208 PMCID: PMC1864968 DOI: 10.1038/sj.emboj.7601669] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 03/07/2007] [Indexed: 11/09/2022] Open
Abstract
The nuclear exosome is involved in numerous RNA metabolic processes. Exosome degradation of rRNA, snoRNA, snRNA and tRNA in Saccharomyces cerevisiae is activated by TRAMP complexes, containing either the Trf4p or Trf5p poly(A) polymerase. These enzymes are presumed to facilitate exosome access by appending oligo(A)-tails onto structured substrates. Another role of the nuclear exosome is that of mRNA surveillance. In strains harboring a mutated THO/Sub2p system, involved in messenger ribonucleoprotein particle biogenesis and nuclear export, the exosome-associated 3' --> 5' exonuclease Rrp6p is required for both retention and degradation of nuclear restricted mRNAs. We show here that Trf4p, in the context of TRAMP, is an mRNA surveillance factor. However, unlike Rrp6p, Trf4p only partakes in RNA degradation and not in transcript retention. Surprisingly, a polyadenylation-defective Trf4p protein is fully active, suggesting polyadenylation-independent mRNA degradation. Transcription pulse-chase experiments show that HSP104 molecules undergoing quality control in THO/sub2 mutant strains fall into two distinct populations: One that is quickly degraded after transcription induction and another that escapes rapid decay and accumulates in foci associated with the HSP104 transcription site.
Collapse
Affiliation(s)
- Mathieu Rougemaille
- Centre National de la Recherche Scientifique, Centre de Genetique Moleculaire, Gif sur Yvette, France
| | - Rajani Kanth Gudipati
- Centre National de la Recherche Scientifique, Centre de Genetique Moleculaire, Gif sur Yvette, France
- Department of Molecular Biology, Centre for mRNP Biogenesis and Metabolism, Aarhus University, Arhus C, Denmark
| | - Jens Raabjerg Olesen
- Department of Molecular Biology, Centre for mRNP Biogenesis and Metabolism, Aarhus University, Arhus C, Denmark
| | - Rune Thomsen
- Department of Molecular Biology, Centre for mRNP Biogenesis and Metabolism, Aarhus University, Arhus C, Denmark
| | - Bertrand Seraphin
- Centre National de la Recherche Scientifique, Centre de Genetique Moleculaire, Gif sur Yvette, France
| | - Domenico Libri
- Centre National de la Recherche Scientifique, Centre de Genetique Moleculaire, Gif sur Yvette, France
- Department of Molecular Biology, Centre for mRNP Biogenesis and Metabolism, Aarhus University, Arhus C, Denmark
- Centre National de la Recherche Scientifique, Centre de Genetique Moleculaire, Gif sur Yvette, France. Tel.: +33 1 698 23809; Fax: +33 1 698 23877; E-mail:
| | - Torben Heick Jensen
- Department of Molecular Biology, Centre for mRNP Biogenesis and Metabolism, Aarhus University, Arhus C, Denmark
- Department of Molecular Biology, Centre for mRNP Biogenesis and Metabolism, University of Aarhus, CF Møllers Alle, Bldg 130, Aarhus, Aarhus C 8000, Denmark. Tel.: +45 8942 2609; Fax: +45 8619 6500; E-mail:
| |
Collapse
|
61
|
Abruzzi K, Denome S, Olsen JR, Assenholt J, Haaning LL, Jensen TH, Rosbash M. A novel plasmid-based microarray screen identifies suppressors of rrp6Delta in Saccharomyces cerevisiae. Mol Cell Biol 2007; 27:1044-55. [PMID: 17101774 PMCID: PMC1800678 DOI: 10.1128/mcb.01299-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2006] [Revised: 08/07/2006] [Accepted: 10/30/2006] [Indexed: 11/20/2022] Open
Abstract
Genetic screens in Saccharomyces cerevisiae provide novel information about interacting genes and pathways. We screened for high-copy-number suppressors of a strain with the gene encoding the nuclear exosome component Rrp6p deleted, with either a traditional plate screen for suppressors of rrp6Delta temperature sensitivity or a novel microarray enhancer/suppressor screening (MES) strategy. MES combines DNA microarray technology with high-copy-number plasmid expression in liquid media. The plate screen and MES identified overlapping, but also different, suppressor genes. Only MES identified the novel mRNP protein Nab6p and the tRNA transporter Los1p, which could not have been identified in a traditional plate screen; both genes are toxic when overexpressed in rrp6Delta strains at 37 degrees C. Nab6p binds poly(A)+ RNA, and the functions of Nab6p and Los1p suggest that mRNA metabolism and/or protein synthesis are growth rate limiting in rrp6Delta strains. Microarray analyses of gene expression in rrp6Delta strains and a number of suppressor strains support this hypothesis.
Collapse
MESH Headings
- Down-Regulation
- Exoribonucleases/genetics
- Exoribonucleases/metabolism
- Exosome Multienzyme Ribonuclease Complex
- Gene Deletion
- Gene Expression Regulation, Fungal/genetics
- Genes, Fungal/genetics
- Genes, Suppressor
- Oligonucleotide Array Sequence Analysis/methods
- Plasmids/genetics
- Polyadenylation
- Protein Binding
- RNA Stability
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA-Binding Proteins/metabolism
- Saccharomyces cerevisiae/cytology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/growth & development
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Suppression, Genetic
- Temperature
Collapse
Affiliation(s)
- Katharine Abruzzi
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | | | | | |
Collapse
|
62
|
Moore MJ, Schwartzfarb EM, Silver PA, Yu MC. Differential Recruitment of the Splicing Machinery during Transcription Predicts Genome-Wide Patterns of mRNA Splicing. Mol Cell 2006; 24:903-15. [PMID: 17189192 DOI: 10.1016/j.molcel.2006.12.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 11/30/2006] [Accepted: 12/11/2006] [Indexed: 11/23/2022]
Abstract
The splicing machinery associates with genes to facilitate efficient cotranscriptional mRNA processing. We have mapped these associations by genome localization analysis to ascertain how splicing is achieved and regulated on a system-wide scale. Our data show that factors important for intron recognition sample nascent mRNAs and are retained specifically at intron-containing genes via RNA-dependent interactions. Spliceosome assembly proceeds cotranscriptionally but completes posttranscriptionally in most cases. Some intron-containing genes were not bound by the spliceosome, including several developmentally regulated genes. On this basis, we predicted and verified regulated splicing and observed a role for nuclear mRNA surveillance in monitoring those events. Finally, we present evidence that cotranscriptional processing events determine the recruitment of specific mRNA export factors. Broadly, our results provide mechanistic insights into the coordinated regulation of transcription, mRNA processing, and nuclear export in executing complex gene expression programs.
Collapse
Affiliation(s)
- Michael J Moore
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
63
|
Lindtner S, Zolotukhin AS, Uranishi H, Bear J, Kulkarni V, Smulevitch S, Samiotaki M, Panayotou G, Felber BK, Pavlakis GN. RNA-binding Motif Protein 15 Binds to the RNA Transport Element RTE and Provides a Direct Link to the NXF1 Export Pathway. J Biol Chem 2006; 281:36915-28. [PMID: 17001072 DOI: 10.1074/jbc.m608745200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retroviruses/retroelements provide tools enabling the identification and dissection of basic steps for post-transcriptional regulation of cellular mRNAs. The RNA transport element (RTE) identified in mouse retrotransposons is functionally equivalent to constitutive transport element of Type D retroviruses, yet does not bind directly to the mRNA export receptor NXF1. Here, we report that the RNA-binding motif protein 15 (RBM15) recognizes RTE directly and specifically in vitro and stimulates export and expression of RTE-containing reporter mRNAs in vivo. Tethering of RBM15 to a reporter mRNA showed that RBM15 acts by promoting mRNA export from the nucleus. We also found that RBM15 binds to NXF1 and the two proteins cooperate in stimulating RTE-mediated mRNA export and expression. Thus, RBM15 is a novel mRNA export factor and is part of the NXF1 pathway. We propose that RTE evolved as a high affinity RBM15 ligand to provide a splicing-independent link to NXF1, thereby ensuring efficient nuclear export and expression of retrotransposon transcripts.
Collapse
|
64
|
Röther S, Clausing E, Kieser A, Strässer K. Swt1, a novel yeast protein, functions in transcription. J Biol Chem 2006; 281:36518-25. [PMID: 17030511 DOI: 10.1074/jbc.m607510200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The conserved TREX complex couples transcription to nuclear mRNA export. Here, we report that the uncharacterized open reading frame YOR166c genetically interacts with TREX complex components and encodes a novel protein named Swt1 for "synthetically lethal with TREX." Co-immunoprecipitation experiments show that Swt1 also interacts with the TREX complex biochemically. Consistent with a potential role in transcription as suggested by its interaction with TREX, Swt1 localizes mainly to the nucleus. Importantly, deletion of Swt1 leads to decreased transcription. Taken together, these data suggest that Swt1 functions in gene expression in conjunction with the TREX complex.
Collapse
Affiliation(s)
- Susanne Röther
- Gene Center, Ludwig-Maximilians-University of Munich,Department of Chemistry and Biochemistry, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | |
Collapse
|
65
|
Linder P. Dead-box proteins: a family affair--active and passive players in RNP-remodeling. Nucleic Acids Res 2006; 34:4168-80. [PMID: 16936318 PMCID: PMC1616962 DOI: 10.1093/nar/gkl468] [Citation(s) in RCA: 347] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 06/19/2006] [Accepted: 06/20/2006] [Indexed: 11/23/2022] Open
Abstract
DEAD-box proteins are characterized by nine conserved motifs. According to these criteria, several hundreds of these proteins can be identified in databases. Many different DEAD-box proteins can be found in eukaryotes, whereas prokaryotes have small numbers of different DEAD-box proteins. DEAD-box proteins play important roles in RNA metabolism, and they are very specific and cannot mutually be replaced. In vitro, many DEAD-box proteins have been shown to have RNA-dependent ATPase and ATP-dependent RNA helicase activities. From the genetic and biochemical data obtained mainly in yeast, it has become clear that these proteins play important roles in remodeling RNP complexes in a temporally controlled fashion. Here, I shall give a general overview of the DEAD-box protein family.
Collapse
Affiliation(s)
- Patrick Linder
- Department of Microbiology and Molecular Medicine, CMU 1, rue Michel Servet, CH-1211 Genève 4, Switzerland.
| |
Collapse
|
66
|
Kisseleva-Romanova E, Lopreiato R, Baudin-Baillieu A, Rousselle JC, Ilan L, Hofmann K, Namane A, Mann C, Libri D. Yeast homolog of a cancer-testis antigen defines a new transcription complex. EMBO J 2006; 25:3576-85. [PMID: 16874308 PMCID: PMC1538566 DOI: 10.1038/sj.emboj.7601235] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 06/20/2006] [Indexed: 01/13/2023] Open
Abstract
We have isolated a new yeast gene (PCC1) that codes for a factor homologous to human cancer-testis antigens. We provide evidence that Pcc1p is a new transcription factor and that its mutation affects expression of several genes, some of which are involved in cell cycle progression and polarized growth. Mutation of Pcc1p also affects the expression of GAL genes by impairing the recruitment of the SAGA and Mediator co-activators. We characterize a new complex that contains Pcc1p, a kinase, Bud32p, a putative endopeptidase, Kae1p and two additional proteins encoded by ORFs YJL184w and YMLO36w. Genetic and physical interactions among these proteins strongly suggest that this complex is a functional unit. Chromatin immunoprecipitation experiments and multiple genetic interactions of pcc1 mutants with mutants of the transcription apparatus and chromatin modifying enzymes underscore the direct role of the complex in transcription. Functional complementation experiments indicate that the transcriptional function of this set of genes is conserved throughout evolution.
Collapse
Affiliation(s)
- Elena Kisseleva-Romanova
- Centre National de la Recherche Scientifique, Centre de Genetique Moleculaire, Gif sur Yvette, Paris, France
| | - Raffaele Lopreiato
- Centre National de la Recherche Scientifique, Centre de Genetique Moleculaire, Gif sur Yvette, Paris, France
| | - Agnès Baudin-Baillieu
- Centre National de la Recherche Scientifique, Centre de Genetique Moleculaire, Gif sur Yvette, Paris, France
| | | | - Laila Ilan
- Centre National de la Recherche Scientifique, Centre de Genetique Moleculaire, Gif sur Yvette, Paris, France
| | | | - Abdelkader Namane
- Institut Pasteur, Génopole, Plate-Forme de Protéomique, Paris Cedex, France
| | - Carl Mann
- Biochemistry Department, F Edward Hébert School of Medicine, USUHS, Bethesda, MD, USA
| | - Domenico Libri
- Centre National de la Recherche Scientifique, Centre de Genetique Moleculaire, Gif sur Yvette, Paris, France
- Centre National de la Recherche Scientifique, Centre de Genetique Moleculaire, 91190 Gif sur Yvette, Paris, France. Tel.: +33 1 69823809; Fax: +33 1 69823877; E-mail:
| |
Collapse
|
67
|
Kapadia F, Pryor A, Chang TH, Johnson LF. Nuclear localization of poly(A)+ mRNA following siRNA reduction of expression of the mammalian RNA helicases UAP56 and URH49. Gene 2006; 384:37-44. [PMID: 16949217 DOI: 10.1016/j.gene.2006.07.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 06/10/2006] [Accepted: 07/03/2006] [Indexed: 11/20/2022]
Abstract
UAP56 is a eukaryotic RNA helicase that is important for mRNA splicing and nuclear export. Although most eukaryotes have a single protein corresponding to UAP56, we have shown previously that in human and mouse cells there is a second protein, URH49, which is 90% identical to UAP56. Both proteins interact with the mRNA export factor Aly and both are able to rescue the loss of Sub2p (the yeast homolog of UAP56), suggesting that both proteins have similar functions. However, the two helicases have different expression profiles in different tissues and in growth-stimulated cells, which raises the possibility that they might be involved in the splicing and export of non-identical populations of mRNA. In the present study, we have used RNA interference to further explore the functions of these two helicases. Reducing the expression of either URH49 or UAP56 in HeLa cells had little effect on cell proliferation or expression of a co-transfected gene. However, analysis of poly(A)+ RNA localization by fluorescent in situ hybridization revealed a speckled pattern of RNA accumulation throughout the nucleus. Reducing the expression of both helicases resulted in a major reduction in reporter gene expression as well as cell death within 72 h. We also observed a more prominent speckled pattern of nuclear poly(A)+ RNA accumulation as well as reduced accumulation in the cytoplasmic compartment. These observations suggest that both helicases have essential but largely overlapping functions in the processing and export of mammalian mRNAs.
Collapse
Affiliation(s)
- Fehmida Kapadia
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
68
|
Jimeno S, Luna R, García-Rubio M, Aguilera A. Tho1, a novel hnRNP, and Sub2 provide alternative pathways for mRNP biogenesis in yeast THO mutants. Mol Cell Biol 2006; 26:4387-98. [PMID: 16738307 PMCID: PMC1489133 DOI: 10.1128/mcb.00234-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
THO is a protein complex that functions in cotranscriptional mRNP formation. Yeast THO1 and SUB2 (Saccharomyces cerevisiae) were identified as multicopy suppressors of the expression defects of the hpr1Delta mutant of THO. Here we show that multicopy THO1 suppresses the mRNA accumulation and export defects and the hyperrecombination phenotype of THO mutants but not those of sub2Delta, thp1Delta, or spt4Delta. Similarly, Sub2 overexpression suppresses the RNA export defect of hpr1Delta. Tho1 is a conserved RNA binding nuclear protein that specifically binds to transcribed chromatin in a THO- and RNA-dependent manner and genetically interacts with the shuttling hnRNP Nab2. The ability of Tho1 to suppress hpr1Delta resides in its C-terminal half, which contains the RNA binding activity and is located after a SAP/SAF (scaffold-associated protein/scaffold-associated factor) domain. Altogether, these results suggest that Tho1 is an hnRNP that, similarly to Sub2, assembles onto the nascent mRNA during transcription and participates in mRNP biogenesis and export. Overexpression of Tho1 or Sub2 may provide alternative ways for mRNP formation and export in the absence of a functional THO complex.
Collapse
Affiliation(s)
- Sonia Jimeno
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes 6, 41012 Sevilla, Spain
| | | | | | | |
Collapse
|
69
|
Preker PJ, Guthrie C. Autoregulation of the mRNA export factor Yra1p requires inefficient splicing of its pre-mRNA. RNA (NEW YORK, N.Y.) 2006; 12:994-1006. [PMID: 16618971 PMCID: PMC1464842 DOI: 10.1261/rna.6706] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Yra1p is an essential RNA-binding protein that couples transcription to export. The YRA1 gene is one of only approximately 5% of genes that undergo splicing in budding yeast, and its intron is unusual in several respects, including its large size and anomalous branchpoint sequence. We showed previously that the intron is required for autogenous regulation of Yra1p levels, which cause a dominant negative growth phenotype when elevated. The mechanism of this regulation, however, remains unknown. Here we demonstrate that growth is inversely correlated with splicing efficiency. Substitution of a canonical branchpoint moderately improves splicing but compromises autoregulation. Shortening the intron from 766 to approximately 350 nt significantly improves splicing but abolishes autoregulation. Notably, proper regulation can be restored by insertion of unrelated sequences into the shortened intron. In that the current paradigm for regulated splicing involves the binding of protein factors to specific elements in the pre-mRNA, the regulation of YRA1 expression appears to occur by a novel mechanism. We propose that appropriate levels of Yra1p are maintained by inefficient cotranscriptional splicing.
Collapse
Affiliation(s)
- Pascal J Preker
- Department of Biochemistry and Biophysics, University of California, San Francisco, 94143, USA
| | | |
Collapse
|
70
|
Slamovits CH, Keeling PJ. A high density of ancient spliceosomal introns in oxymonad excavates. BMC Evol Biol 2006; 6:34. [PMID: 16638131 PMCID: PMC1501061 DOI: 10.1186/1471-2148-6-34] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 04/25/2006] [Indexed: 11/28/2022] Open
Abstract
Background Certain eukaryotic genomes, such as those of the amitochondriate parasites Giardia and Trichomonas, have very low intron densities, so low that canonical spliceosomal introns have only recently been discovered through genome sequencing. These organisms were formerly thought to be ancient eukaryotes that diverged before introns originated, or at least became common. Now however, they are thought to be members of a supergroup known as excavates, whose members generally appear to have low densities of canonical introns. Here we have used environmental expressed sequence tag (EST) sequencing to identify 17 genes from the uncultivable oxymonad Streblomastix strix, to survey intron densities in this most poorly studied excavate group. Results We find that Streblomastix genes contain an unexpectedly high intron density of about 1.1 introns per gene. Moreover, over 50% of these are at positions shared between a broad spectrum of eukaryotes, suggesting theyare very ancient introns, potentially present in the last common ancestor of eukaryotes. Conclusion The Streblomastix data show that the genome of the ancestor of excavates likely contained many introns and the subsequent evolution of introns has proceeded very differently in different excavate lineages: in Streblomastix there has been much stasis while in Trichomonas and Giardia most introns have been lost.
Collapse
Affiliation(s)
- Claudio H Slamovits
- Canadian Institute for Advanced Research, Botany Department, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Patrick J Keeling
- Canadian Institute for Advanced Research, Botany Department, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
71
|
Graham AC, Kiss DL, Andrulis ED. Differential distribution of exosome subunits at the nuclear lamina and in cytoplasmic foci. Mol Biol Cell 2006; 17:1399-409. [PMID: 16407406 PMCID: PMC1382327 DOI: 10.1091/mbc.e05-08-0805] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The exosome complex plays important roles in RNA processing and turnover. Despite significant mechanistic insight into exosome function, we still lack a basic understanding of the subcellular locales where exosome complex biogenesis and function occurs. Here, we employ a panel of Drosophila S2 stable cell lines expressing epitope-tagged exosome subunits to examine the subcellular distribution of exosome complex components. We show that tagged Drosophila exosome subunits incorporate into complexes that recover endogenous nuclear and cytoplasmic exosome subunits. Immunolocalization analyses demonstrate that subsets of both epitope-tagged and endogenous exosome subunits are enriched in discrete subcellular compartments. In particular, dRrp4, dRrp42, dRrp46, and dCsl4 are enriched in cytoplasmic foci. Although dRrp4 and dRrp42 sometimes colocalize with dCsl4, these subunits are predominantly found in distinct cytoplasmic compartments. Strikingly, dRrp44/dDis3 and dRrp41/dSki6 colocalize with the nuclear lamina and often exhibit a restricted and asymmetric distribution at the nuclear periphery. Taken together, these observations indicate that individual exosome subunits have distinct localizations in vivo. These different distribution patterns presumably reflect distinct exosome subunit subcomplexes with correspondingly specialized functions.
Collapse
Affiliation(s)
- Amy C Graham
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4960, USA
| | | | | |
Collapse
|
72
|
Combs DJ, Nagel RJ, Ares M, Stevens SW. Prp43p is a DEAH-box spliceosome disassembly factor essential for ribosome biogenesis. Mol Cell Biol 2006; 26:523-34. [PMID: 16382144 PMCID: PMC1346896 DOI: 10.1128/mcb.26.2.523-534.2006] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 07/13/2005] [Accepted: 10/17/2005] [Indexed: 11/20/2022] Open
Abstract
The known function of the DEXH/D-box protein Prp43p is the removal of the U2, U5, and U6 snRNPs from the postsplicing lariat-intron ribonucleoprotein complex. We demonstrate that affinity-purified Prp43p-associated material includes the expected spliceosomal components; however, we also identify several preribosomal complexes that are specifically purified with Prp43p. Conditional prp43 mutant alleles confer a 35S pre-rRNA processing defect, with subsequent depletion of 27S and 20S precursors. Upon a shift to a nonpermissive temperature, both large and small-ribosomal-subunit proteins accumulate in the nucleolus of prp43 mutants. Pulse-chase analysis demonstrates delayed kinetics of 35S, 27S, and 20S pre-rRNA processing with turnover of these intermediates. Microarray analysis of pre-mRNA splicing defects in prp43 mutants shows a very mild effect, similar to that of nonessential pre-mRNA splicing factors. Prp43p is the first DEXH/D-box protein shown to function in both RNA polymerase I and polymerase II transcript metabolism. Its essential function is in its newly characterized role in ribosome biogenesis of both ribosomal subunits, positioning Prp43p to regulate both pre-mRNA splicing and ribosome biogenesis.
Collapse
Affiliation(s)
- D Joshua Combs
- Program in Cellular and Molecular Biology, University of Texas at Austin, 1 University Station #A4800, 2500 Speedway 2.448, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
73
|
Lebaron S, Froment C, Fromont-Racine M, Rain JC, Monsarrat B, Caizergues-Ferrer M, Henry Y. The splicing ATPase prp43p is a component of multiple preribosomal particles. Mol Cell Biol 2005; 25:9269-82. [PMID: 16227579 PMCID: PMC1265834 DOI: 10.1128/mcb.25.21.9269-9282.2005] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prp43p is a putative helicase of the DEAH family which is required for the release of the lariat intron from the spliceosome. Prp43p could also play a role in ribosome synthesis, since it accumulates in the nucleolus. Consistent with this hypothesis, we find that depletion of Prp43p leads to accumulation of 35S pre-rRNA and strongly reduces levels of all downstream pre-rRNA processing intermediates. As a result, the steady-state levels of mature rRNAs are greatly diminished following Prp43p depletion. We present data arguing that such effects are unlikely to be solely due to splicing defects. Moreover, we demonstrate by a combination of a comprehensive two-hybrid screen, tandem-affinity purification followed by mass spectrometry, and Northern analyses that Prp43p is associated with 90S, pre-60S, and pre-40S ribosomal particles. Prp43p seems preferentially associated with Pfa1p, a novel specific component of pre-40S ribosomal particles. In addition, Prp43p interacts with components of the RNA polymerase I (Pol I) transcription machinery and with mature 18S and 25S rRNAs. Hence, Prp43p might be delivered to nascent 90S ribosomal particles during pre-rRNA transcription and remain associated with preribosomal particles until their final maturation steps in the cytoplasm. Our data also suggest that the ATPase activity of Prp43p is required for early steps of pre-rRNA processing and normal accumulation of mature rRNAs.
Collapse
Affiliation(s)
- Simon Lebaron
- Laboratoire de Biologie Moléculaire Eucaryote, UMR5099 CNRS-Université Paul Sabatier, IFR109, 118 route de Narbonne, 31062 Toulouse cedex 09, France
| | | | | | | | | | | | | |
Collapse
|
74
|
Thakurta AG, Gopal G, Yoon JH, Kozak L, Dhar R. Homolog of BRCA2-interacting Dss1p and Uap56p link Mlo3p and Rae1p for mRNA export in fission yeast. EMBO J 2005; 24:2512-23. [PMID: 15990877 PMCID: PMC1176449 DOI: 10.1038/sj.emboj.7600713] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 05/19/2005] [Indexed: 11/09/2022] Open
Abstract
The breast cancer tumor suppressor BRCA2-interacting protein, DSS1, and its homologs are critical for DNA recombination in eukaryotic cells. We found that Dss1p, along with Mlo3p and Uap56p, Schizosaccharomyces pombe homologs of two messenger RNA (mRNA) export factors of the NXF-NXT pathway, is required for mRNA export in S. pombe. Previously, we showed that the nuclear pore-associated Rae1p is an essential mRNA export factor in S. pombe. Here, we show that Dss1p and Uap56p function by linking mRNA adapter Mlo3p to Rae1p for targeting mRNA-protein complex (mRNP) to the proteins of the nuclear pore complex (NPC). Dss1p preferentially recruits to genes in vivo and interacts with -FG (phenylalanine glycine) nucleoporins in vivo and in vitro. Thus, Dss1p may function at multiple steps of mRNA export, from mRNP biogenesis to their targeting and translocation through the NPC.
Collapse
Affiliation(s)
- Anjan G Thakurta
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ganesh Gopal
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jin Ho Yoon
- Department of Biology, College of Natural Sciences, Sungshin Women's University, South Korea
| | - Libor Kozak
- Center of Molecular Biology and Gene Therapy, University Hospital Brno, Czech Republic
| | - Ravi Dhar
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. Tel.: +1 301 496 0990; Fax: +1 301 480 5088; E-mail:
| |
Collapse
|
75
|
Blanchette M, Labourier E, Green RE, Brenner SE, Rio DC. Genome-wide analysis reveals an unexpected function for the Drosophila splicing factor U2AF50 in the nuclear export of intronless mRNAs. Mol Cell 2005; 14:775-86. [PMID: 15200955 DOI: 10.1016/j.molcel.2004.06.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Revised: 04/27/2004] [Accepted: 04/27/2004] [Indexed: 11/28/2022]
Abstract
The protein factor U2AF is an essential component required for pre-mRNA splicing. Mutations identified in the S. pombe large U2AF subunit were used to engineer transgenic Drosophila carrying temperature-sensitive U2AF large subunit alleles. Mutant recombinant U2AF heterodimers showed reduced polypyrimidine tract RNA binding at elevated temperatures. Genome-wide RNA profiling comparing wild-type and mutant strains identified more than 400 genes differentially expressed in the dU2AF50 mutant flies grown at the restrictive temperature. Surprisingly, almost 40% of the downregulated genes lack introns. Microarray analyses revealed that nuclear export of a large number of intronless mRNAs is impaired in Drosophila-cultured cells RNAi knocked down for dU2AF50. Immunopurification of nuclear RNP complexes showed that dU2AF50 associates with intronless mRNAs. These results reveal an unexpected role for the splicing factor dU2AF50 in the nuclear export of intronless mRNAs.
Collapse
Affiliation(s)
- Marco Blanchette
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
76
|
Kashyap AK, Schieltz D, Yates J, Kellogg DR. Biochemical and genetic characterization of Yra1p in budding yeast. Yeast 2005; 22:43-56. [PMID: 15584090 DOI: 10.1002/yea.1185] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Yra1p and its vertebrate homologues bind to the mRNA export factor Mex67p/TAP and are thought to play a role in mRNA export in vivo. To further characterize Yra1p, we used immunoaffinity chromatography to purify endogenous Yra1p complexes. These experiments demonstrated that two importin beta homologues (Kap123p and Pse1p) and the poly A tail-binding proteins Pab1p and Nab2p associate with Yra1p. The other major proteins that associate with Yra1p include proteins involved in mRNA and rRNA processing and the Yra1p-related protein Yra2p. Additional biochemical and genetic experiments suggest a close functional relationship between Yra1p and Yra2p. We generated a temperature-sensitive allele of YRA1 and used it to demonstrate that cells which lack the function of both Yra1p and Yra2p are able to exit a G0 arrest and go through several rounds of cell division before arresting. We also identified high-copy suppressors of the yra1-2 temperature-sensitive growth defect. These include SUB2, a splicing factor important in mRNA export, ULP1, a nuclear cysteine protease localized to the nuclear pore and involved in Smt3p/SUMO processing, and YRA2. Taken together, these results suggest that Yra1p has roles in diverse RNA processing events in addition to a role in mRNA export.
Collapse
Affiliation(s)
- Arun K Kashyap
- Sinsheimer Labs, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|
77
|
Gwizdek C, Hobeika M, Kus B, Ossareh-Nazari B, Dargemont C, Rodriguez MS. The mRNA nuclear export factor Hpr1 is regulated by Rsp5-mediated ubiquitylation. J Biol Chem 2005; 280:13401-5. [PMID: 15713680 DOI: 10.1074/jbc.c500040200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin conjugation and in particular two distinct HECT ubiquitin ligases, Rsp5p and Tom1p, have been shown to participate in the regulation of mRNA export in Saccharomyces cerevisiae. The identification of the ubiquitin ligase substrates represents a major challenge in understanding how this modification may modulate mRNA export. Here, we identified Hpr1p, a member of the THO/TREX (transcription/export) complex that couples mRNA transcription to nuclear export as a target of the ubiquitin-proteasome pathway. Hpr1p degradation is enhanced at high temperature and appears linked to on-going RNA-polymeraseII-mediated transcription. Interestingly, the stability of the other THO complex components is not affected under these conditions indicating that Hpr1p turnover could control the formation of the THO/TREX complex and consequently mRNA export. Using in vivo and in vitro approaches we demonstrate that Rsp5p is responsible for the ubiquitylation of Hpr1p that also involves the ubiquitin-conjugating enzyme Ubc4p. Thus, Hpr1p represents the first nuclear export factor regulated by ubiquitylation, strongly suggesting that this post-translational modification participates in the coordination of transcription and mRNA export processes.
Collapse
Affiliation(s)
- Carole Gwizdek
- Institut Jacques Monod, Unité Mixte de Recherche 7592, CNRS, Universités Paris VI and VII, 75251 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
78
|
Vinciguerra P, Iglesias N, Camblong J, Zenklusen D, Stutz F. Perinuclear Mlp proteins downregulate gene expression in response to a defect in mRNA export. EMBO J 2005; 24:813-23. [PMID: 15692572 PMCID: PMC549612 DOI: 10.1038/sj.emboj.7600527] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 11/26/2004] [Indexed: 11/09/2022] Open
Abstract
The mRNA export adaptor Yra1p/REF contributes to nascent mRNP assembly and recruitment of the export receptor Mex67p. yra1 mutants exhibit mRNA export defects and a decrease in LacZ reporter and certain endogenous transcripts. The loss of Mlp1p/Mlp2p, two TPR-like proteins attached to nuclear pores, rescues LacZ mRNA levels and increases their appearance in the cytoplasm, without restoring bulk poly(A)+ RNA export. Chromatin immunoprecipitation, FISH and pulse-chase experiments indicate that Mlps downregulate LacZ mRNA synthesis in a yra1 mutant strain. Microarray analyses reveal that Mlp2p also reduces a subset of cellular transcripts in the yra1 mutant. Finally, we show that Yra1p genetically interacts with the shuttling mRNA-binding protein Nab2p and that loss of Mlps rescues the growth defect of yra1 and nab2 but not other mRNA export mutants. We propose that Nab2p and Yra1p are required for proper mRNP docking to the Mlp platform. Defects in Yra1p prevent mRNPs from crossing the Mlp gate and this block negatively feeds back on the transcription of a subset of genes, suggesting that Mlps link mRNA transcription and export.
Collapse
Affiliation(s)
- Patrizia Vinciguerra
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Nahid Iglesias
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Jurgi Camblong
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Daniel Zenklusen
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Françoise Stutz
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
- Department of Cell Biology, Sciences III, University of Geneva, 30 Quai E Ansermet, 1211 Geneva 4, Switzerland. Tel.: +41 22 379 67 29; Fax: +41 22 379 64 42; E-mail:
| |
Collapse
|
79
|
Burckin T, Nagel R, Mandel-Gutfreund Y, Shiue L, Clark TA, Chong JL, Chang TH, Squazzo S, Hartzog G, Ares M. Exploring functional relationships between components of the gene expression machinery. Nat Struct Mol Biol 2005; 12:175-82. [PMID: 15702072 DOI: 10.1038/nsmb891] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 12/06/2004] [Indexed: 11/09/2022]
Abstract
Eukaryotic gene expression requires the coordinated activity of many macromolecular machines including transcription factors and RNA polymerase, the spliceosome, mRNA export factors, the nuclear pore, the ribosome and decay machineries. Yeast carrying mutations in genes encoding components of these machineries were examined using microarrays to measure changes in both pre-mRNA and mRNA levels. We used these measurements as a quantitative phenotype to ask how steps in the gene expression pathway are functionally connected. A multiclass support vector machine was trained to recognize the gene expression phenotypes caused by these mutations. In several cases, unexpected phenotype assignments by the computer revealed functional roles for specific factors at multiple steps in the gene expression pathway. The ability to resolve gene expression pathway phenotypes provides insight into how the major machineries of gene expression communicate with each other.
Collapse
Affiliation(s)
- Todd Burckin
- Department of Molecular, Cell & Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Zhao R, Shen J, Green MR, MacMorris M, Blumenthal T. Crystal structure of UAP56, a DExD/H-box protein involved in pre-mRNA splicing and mRNA export. Structure 2005; 12:1373-81. [PMID: 15296731 DOI: 10.1016/j.str.2004.06.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2004] [Revised: 06/08/2004] [Accepted: 06/08/2004] [Indexed: 11/18/2022]
Abstract
UAP56 is an essential eukaryotic pre-mRNA splicing factor and mRNA export factor. The mechanisms of its functions are not well understood. We determined the crystal structures of the N- and C-terminal domains of human UAP56 (comprising 90% of the full-length UAP56) at 1.9 A resolution. The two domains each have a RecA-like fold and are connected by a flexible linker. The overall fold of each domain is highly similar to the corresponding domains of eIF4A (a prototypic DExD/H-box protein), with differences at the loops and termini. This structural similarity suggests that UAP56 is likely to possess ATPase and helicase activity similar to eIF4A. The NTP binding pocket of UAP56 is occupied by a citrate ion, mimicking the phosphates of NTP and retaining the P loop in an open conformation. The crystal structure of the N-terminal domain of UAP56 also reveals a dimer interface that is potentially important for UAP56's function.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora, Colorado 80045, USA.
| | | | | | | | | |
Collapse
|
81
|
Lahue E, Heckathorn J, Meyer Z, Smith J, Wolfe C. TheSaccharomyces cerevisiae Sub2 protein suppresses heterochromatic silencing at telomeres and subtelomeric genes. Yeast 2005; 22:537-51. [PMID: 15942929 DOI: 10.1002/yea.1231] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We show that overexpression of Sub2p, a multifunctional Saccharomyces cerevisiae helicase family member that is involved in mRNA elongation and transport, also suppresses heterochromatic silencing at telomeres. Genetic assays show cells that overexpress SUB2 from a high copy plasmid exhibit increased survival rates when selecting for a telomere-silenced URA3 reporter. Two temperature-sensitive sub2 mutations that affect different helicase domains were also examined at the permissive temperature; these mutants also overcome silencing of the URA3 reporter. The degree to which silencing is suppressed correlates with SUB2 RNA and protein levels. Additionally, we find that Sub2p localizes to the telomeres, as determined by chromatin immunoprecipitation assays, suggesting that Sub2p has a direct effect at telomeres. Genome-wide analysis of transcripts was used to assess whether Sub2p overproduction affects only the silenced URA3 reporter gene, or whether other subtelomeric genes are also affected. Of the 70 RNA transcripts elevated in the Sub2p overexpressing cells, 28% are encoded by subtelomeric genes that are located within 5 Kbp of a core X or Y' repeat. The remainder of the transcripts clustered into several functional groups, including the iron homeostasis pathway, purine nucleotide metabolism, and miscellaneous transport genes, among others. These results suggest a targeted effect of Sub2p on transcription. Our results also confirm that Sub2p affects heterochromatic gene expression, similar to that observed with the Drosophila Hel25E homologue. The above observations imply that Sub2p affects chromatin structure in addition to, or in parallel with, its functions in transcription elongation, splicing and mRNA transport.
Collapse
Affiliation(s)
- Elaine Lahue
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, USA.
| | | | | | | | | |
Collapse
|
82
|
Dunn EF, Hammell CM, Hodge CA, Cole CN. Yeast poly(A)-binding protein, Pab1, and PAN, a poly(A) nuclease complex recruited by Pab1, connect mRNA biogenesis to export. Genes Dev 2005; 19:90-103. [PMID: 15630021 PMCID: PMC540228 DOI: 10.1101/gad.1267005] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Accepted: 11/02/2004] [Indexed: 11/25/2022]
Abstract
In eukaryotic cells, pre-mRNAs undergo extensive processing in the nucleus prior to export. Processing is subject to a quality-control mechanism that retains improperly processed transcripts at or near sites of transcription. A poly(A) tail added by the normal 3'-processing machinery is necessary but not sufficient for export. Retention depends on the exosome. In this study, we identify the poly(A)-binding protein, Pab1, and the poly(A) nuclease, PAN, as important factors that couple 3' processing to export. Pab1 contains a nonessential leucine-rich nuclear export signal and shuttles between the nucleus and the cytoplasm. It can exit the nucleus either as cargo of exportin 1 or bound to mRNA. Pab1 is essential but several bypass suppressors have been identified. Deletion of PAB1 from these bypass suppressor strains results in exosome-dependent retention at sites of transcription. Retention is also seen in cells lacking PAN, which Pab1 is thought to recruit and which may be responsible for the final step of mRNA biogenesis, trimming of the poly(A) tail to the length found on newly exported mRNAs. The studies presented here suggest that proper loading of Pab1 onto mRNAs and final trimming of the tail allows release from transcription sites and couples pre-mRNA processing to export.
Collapse
Affiliation(s)
- Ewan F Dunn
- Department of Biochemistry, the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | |
Collapse
|
83
|
Jensen TH, Boulay J, Olesen JR, Colin J, Weyler M, Libri D. Modulation of transcription affects mRNP quality. Mol Cell 2004; 16:235-44. [PMID: 15494310 DOI: 10.1016/j.molcel.2004.09.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2004] [Revised: 07/26/2004] [Accepted: 08/10/2004] [Indexed: 11/30/2022]
Abstract
Cotranscriptional loading of proteins onto nascent transcripts contributes to the formation of messenger ribonucleoprotein particles (mRNPs) competent for nuclear export. The transcription machinery is believed to play a pivotal role in mRNP assembly, which is at least partially linked to the function of the THO/TREX complex and the mRNA termination/polyadenylation apparatus. Here we demonstrate a prominent role for the rate of transcription in the production of export-competent mRNPs. We show that a transcription-defective allele of the Rad3p helicase, a component of the TFIIH transcription initiation factor, suppresses several phenotypes associated with defective mRNA processing and export. Strikingly, the effects of compromised Rad3p activity can be phenocopied by a transcription elongation drug as well as by other mutations affecting transcription. Our results suggest that efficient mRNP assembly is under a kinetic control that is influenced by the rate of transcription.
Collapse
Affiliation(s)
- Torben Heick Jensen
- Department of Molecular Biology, Aarhus University, C.F. Møllers Alle, Building 130, 8000 Aarhus C, Denmark.
| | | | | | | | | | | |
Collapse
|
84
|
Shi H, Cordin O, Minder CM, Linder P, Xu RM. Crystal structure of the human ATP-dependent splicing and export factor UAP56. Proc Natl Acad Sci U S A 2004; 101:17628-33. [PMID: 15585580 PMCID: PMC539749 DOI: 10.1073/pnas.0408172101] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pre-mRNA splicing requires the function of a number of RNA-dependent ATPases/helicases, yet no three-dimensional structure of any spliceosomal ATPases/helicases is known. The highly conserved DECD-box protein UAP56/Sub2 is an essential splicing factor that is also important for mRNA export. The expected ATPase/helicase activity appears to be essential for the UAP56/Sub2 functions. Here, we show that purified human UAP56 is an active RNA-dependent ATPase, and we also report the crystal structures of UAP56 alone and in complex with ADP, as well as a DECD to DEAD mutant. The structures reveal a unique spatial arrangement of the two conserved helicase domains, and ADP-binding induces significant conformational changes of key residues in the ATP-binding pocket. Our structural analyses suggest a specific protein-RNA displacement model of UAP56/Sub2. The detailed structural information provides important mechanistic insights into the splicing function of UAP56/Sub2. The structures also will be useful for the analysis of other spliceosomal DExD-box ATPases/helicases.
Collapse
Affiliation(s)
- Hang Shi
- W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | |
Collapse
|
85
|
Mingam A, Toffano-Nioche C, Brunaud V, Boudet N, Kreis M, Lecharny A. DEAD-box RNA helicases in Arabidopsis thaliana: establishing a link between quantitative expression, gene structure and evolution of a family of genes. PLANT BIOTECHNOLOGY JOURNAL 2004; 2:401-15. [PMID: 17168887 DOI: 10.1111/j.1467-7652.2004.00084.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The model genome of Arabidopsis thaliana contains a DEAD-box RNA helicase family (RH) of 58 members, i.e. almost twice as many as in the animal or yeast genomes. Transcript profiling using real-time quantitative polymerase chain reaction (PCR) has been obtained for 20 AtRHs from nine different organs. Two AtRHs exhibited plant-specific profiles associated with photosynthetic and sink organs. The other 18 AtRHs had the same transcript profile, and the levels of transcription of these 'housekeeping'AtRHs were under strict quantitative control over a large range of values. Transcript levels may be very different between the most recently duplicated genes. The master regulatory element in the definition of the transcript level is the simultaneous presence of a TATA-box and an intron in the 5' untranslated region (UTR). There is a positive and highly significant correlation between the size of the 5' UTR intron and the transcription level, as long as a characteristic TATA-box is present. Our work on the housekeeping AtRHs suggests a scenario for the evolution of duplicated genes, leading to both highly and poorly transcribed genes in the same terminal branch of the phylogenetic tree. The general evolutionary drive of the AtRH family, after duplication of a highly transcribed ancestral AtRH, was towards an alteration of the transcriptional activity of the divergent duplicates through successive events of suppression of the TATA-box and/or the 5' UTR intron.
Collapse
Affiliation(s)
- Annaïck Mingam
- Institut de Biotechnologie des Plantes, UMR CNRS 8618, Université de Paris-Sud, Bâtiment 630, F-91405 Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
86
|
Mueller CL, Porter SE, Hoffman MG, Jaehning JA. The Paf1 complex has functions independent of actively transcribing RNA polymerase II. Mol Cell 2004; 14:447-56. [PMID: 15149594 DOI: 10.1016/s1097-2765(04)00257-6] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 04/06/2004] [Accepted: 04/13/2004] [Indexed: 10/26/2022]
Abstract
The yeast Paf1 complex, minimally composed of Paf1, Ctr9, Cdc73, Rtf1, and Leo1, was originally isolated in association with RNA polymerase II (Pol II). Paf1 complex components are abundant and colocalize with Pol II on chromatin at promoters and in the coding regions of actively transcribed genes. Loss of Paf1 results in severe phenotypes and reduced amounts of other Paf1 factors, with little effect on abundance or chromatin distribution of Pol II, proteins important for transcriptional elongation (Spt5, Spt16), or RNA processing (Sub2). Loss of Paf1 factors causes a reduction of Pol II Ser2 phosphorylation and shortened poly(A) tails, suggesting that the complex facilitates linkage of transcriptional and posttranscriptional events. Surprisingly, loss of Rtf1 or Cdc73, with little phenotypic consequence, results in loss of Paf1 factors from chromatin and a significant reduction in Paf1/Pol II association. Therefore, the major functions of Paf1 can be independent of actively transcribing Pol II.
Collapse
Affiliation(s)
- Cherie L Mueller
- Department of Biochemistry and Molecular Genetics, Molecular Biology Program, University of Colorado Health Science Center, B121, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | | | | | |
Collapse
|
87
|
Abstract
Over the past decade many studies have revealed a complex web of interconnections between the numerous steps required for eukaryotic gene expression. One set of interconnections link nuclear pre-mRNA splicing and the subsequent metabolism of the spliced mRNAs. It is now apparent that the means of connection is a set of proteins, collectively called the exon junction complex, which are deposited as a consequence of splicing upstream of mRNA exon-exon junctions.
Collapse
Affiliation(s)
- Thomas Ø Tange
- Howard Hughes Medical Institute, Department of Biochemistry, MS009, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA
| | | | | |
Collapse
|
88
|
Dimaano C, Ullman KS. Nucleocytoplasmic transport: integrating mRNA production and turnover with export through the nuclear pore. Mol Cell Biol 2004; 24:3069-76. [PMID: 15060131 PMCID: PMC381686 DOI: 10.1128/mcb.24.8.3069-3076.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Christian Dimaano
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
89
|
Rocak S, Linder P. DEAD-box proteins: the driving forces behind RNA metabolism. Nat Rev Mol Cell Biol 2004; 5:232-41. [PMID: 14991003 DOI: 10.1038/nrm1335] [Citation(s) in RCA: 583] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sanda Rocak
- Departement de Biochimie Médicale, Centre Médical Universitaire, 1 rue Michel Servet, CH-1211 Geneva 4, Switzerland
| | | |
Collapse
|
90
|
Hurt E, Luo MJ, Röther S, Reed R, Strässer K. Cotranscriptional recruitment of the serine-arginine-rich (SR)-like proteins Gbp2 and Hrb1 to nascent mRNA via the TREX complex. Proc Natl Acad Sci U S A 2004; 101:1858-62. [PMID: 14769921 PMCID: PMC357017 DOI: 10.1073/pnas.0308663100] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The TREX (transcription/export) complex couples transcription elongation to the nuclear export of mRNAs. In this article, we show that the poly(A)(+) RNA-binding proteins Gbp2 and Hrb1, which resemble the serine-arginine-rich (SR) family of splicing factors found in higher eukaryotes, are specifically associated with the yeast TREX complex. We also show that Gbp2 and Hrb1 interact with Ctk1, a kinase that phosphorylates the C-terminal domain of RNA polymerase II during transcription elongation. Consistent with these findings, Gbp2 and Hrb1 associate with actively transcribed genes throughout their entire lengths. By using an RNA immunoprecipitation assay, we show that Gbp2 and Hrb1 also are bound to transcripts that are derived from these genes. We conclude that recruitment of the SR-like proteins Gbp2 and Hrb1 to mRNA occurs cotranscriptionally by means of association with the TREX complex and/or Ctk1.
Collapse
Affiliation(s)
- Ed Hurt
- Biochemie-Zentrum Heidelberg (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
91
|
Kataoka N, Dreyfuss G. A Simple Whole Cell Lysate System for in Vitro Splicing Reveals a Stepwise Assembly of the Exon-Exon Junction Complex. J Biol Chem 2004; 279:7009-13. [PMID: 14625303 DOI: 10.1074/jbc.m307692200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pre-mRNA splicing removes introns and leaves in its wake a multiprotein complex near the exon-exon junctions of mRNAs. This complex, termed the exon-exon junction complex (EJC), contains at least seven proteins and provides a link between pre-mRNA splicing and downstream events, including transport, localization, and nonsense-mediated mRNA decay. Using a simple whole cell lysate system we developed for in vitro splicing, we prepared lysates from cells transfected with tagged EJC proteins and studied the association of these proteins with pre-mRNA, splicing intermediates, and mRNA, as well as formation of the EJC during splicing. Three of the EJC components, Aly/REF, RNPS1, and SRm160, are found on pre-mRNA by the time the spliceosome is formed, whereas Upf3b associates with splicing intermediates during or immediately after the first catalytic step of the splicing reaction (cleavage of exon 1 and intron-lariat formation). In contrast, Y14 and magoh, which remain stably associated with mRNA after export to the cytoplasm, join the EJC during or after completion of exon-exon ligation. These findings indicate that EJC formation is an ordered pathway that involves stepwise association of components and is coupled to specific intermediates of the splicing reaction.
Collapse
Affiliation(s)
- Naoyuki Kataoka
- Institute for Virus Research, Kyoto University, Kyoto 606, Japan
| | | |
Collapse
|
92
|
Kiesler E, Visa N. Intranuclear pre-mRNA trafficking in an insect model system. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2004; 35:99-118. [PMID: 15113081 DOI: 10.1007/978-3-540-74266-1_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Eva Kiesler
- Department of Molecular Biology and Functional Genomics, Stockholm University, 10961 Stockholm, Sweden
| | | |
Collapse
|
93
|
Chekanova JA, Belostotsky DA. Evidence that poly(A) binding protein has an evolutionarily conserved function in facilitating mRNA biogenesis and export. RNA (NEW YORK, N.Y.) 2003; 9:1476-90. [PMID: 14624004 PMCID: PMC1370502 DOI: 10.1261/rna.5128903] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Accepted: 08/20/2003] [Indexed: 05/18/2023]
Abstract
Eukaryotic poly(A) binding protein (PABP) is a ubiquitous, essential cellular factor with well-characterized roles in translational initiation and mRNA turnover. In addition, there exists genetic and biochemical evidence that PABP has an important nuclear function. Expression of PABP from Arabidopsis thaliana, PAB3, rescues an otherwise lethal phenotype of the yeast pab1Delta mutant, but it neither restores the poly(A) dependent stimulation of translation, nor protects the mRNA 5' cap from premature removal. In contrast, the plant PABP partially corrects the temporal lag that occurs prior to the entry of mRNA into the decay pathway in the yeast strains lacking Pab1p. Here, we examine the nature of this lag-correction function. We show that PABP (both PAB3 and the endogenous yeast Pab1p) act on the target mRNA via physically binding to it, to effect the lag correction. Furthermore, substituting PAB3 for the yeast Pab1p caused synthetic lethality with rna15-2 and gle2-1, alleles of the genes that encode a component of the nuclear pre-mRNA cleavage factor I, and a factor associated with the nuclear pore complex, respectively. PAB3 was present physically in the nucleus in the complemented yeast strain and was able to partially restore the poly(A) tail length control during polyadenylation in vitro, in a poly(A) nuclease (PAN)-dependent manner. Importantly, PAB3 in yeast also promoted the rate of entry of mRNA into the translated pool, rescued the conditional lethality, and alleviated the mRNA export defect of the nab2-1 mutant when overexpressed. We propose that eukaryotic PABPs have an evolutionarily conserved function in facilitating mRNA biogenesis and export.
Collapse
Affiliation(s)
- Julia A Chekanova
- Department of Biological Sciences, State University of New York at Albany, Albany, New York 12222, USA.
| | | |
Collapse
|
94
|
McCracken S, Longman D, Johnstone IL, Cáceres JF, Blencowe BJ. An evolutionarily conserved role for SRm160 in 3'-end processing that functions independently of exon junction complex formation. J Biol Chem 2003; 278:44153-60. [PMID: 12944400 DOI: 10.1074/jbc.m306856200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SRm160 (the SR-related nuclear matrix protein of 160 kDa) functions as a splicing coactivator and 3'-end cleavage-stimulatory factor. It is also a component of the splicing-dependent exon-junction complex (EJC), which has been implicated in coupling of pre-mRNA splicing with mRNA turnover and mRNA export. We have investigated whether the association of SRm160 with the EJC is important for efficient 3'-end cleavage. The EJC components RNPS1, REF, UAP56, and Y14 interact with SRm160. However, when these factors were tethered to transcripts, only SRm160 and RNPS1 stimulated 3'-end cleavage. Whereas SRm160 stimulated cleavage to a similar extent in the presence or absence of an active intron, stimulation of 3'-end cleavage by tethered RNPS1 is dependent on an active intron. Assembly of an EJC adjacent to the cleavage and polyadenylation signal in vitro did not significantly affect cleavage efficiency. These results suggest that SRm160 stimulates cleavage independently of its association with EJC components and that the cleavage-stimulatory activity of RNPS1 may be an indirect consequence of its ability to stimulate splicing. Using RNA interference (RNAi) in Caenorhabditis elegans, we determined whether interactions between SRm160 and the cleavage machinery are important in a whole organism context. Simultaneous RNAi of SRm160 and the cleavage factor CstF-50 (Cleavage stimulation factor 50-kDa subunit) resulted in late embryonic developmental arrest. In contrast, RNAi of CstF-50 in combination with RNPS1 or REFs did not result in an apparent phenotype. Our combined results provide evidence for an evolutionarily conserved interaction between SRm160 and the 3'-end cleavage machinery that functions independently of EJC formation.
Collapse
Affiliation(s)
- Susan McCracken
- Banting and Best Department of Medical Research, C. H. Best Institute, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | |
Collapse
|
95
|
Rondón AG, Jimeno S, García-Rubio M, Aguilera A. Molecular evidence that the eukaryotic THO/TREX complex is required for efficient transcription elongation. J Biol Chem 2003; 278:39037-43. [PMID: 12871933 DOI: 10.1074/jbc.m305718200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
THO/TREX is a conserved eukaryotic complex formed by the core THO complex plus proteins involved in mRNA metabolism and export such as Sub2 and Yra1. Mutations in any of the THO/TREX structural genes cause pleiotropic phenotypes such as transcription impairment, increased transcription-associated recombination, and mRNA export defects. To assay the relevance of THO/TREX complex in transcription, we performed in vitro transcription elongation assays in mutant cell extracts using supercoiled DNA templates containing two G-less cassettes. With these assays, we demonstrate that hpr1delta, tho2delta, and mft1delta mutants of the THO complex and sub2 mutants show significant reductions in the efficiency of transcription elongation. The mRNA expression defect of hpr1delta mutants was not due to an increase in mRNA decay, as determined by mRNA half-life measurements and mRNA time course accumulation experiments in the absence of Rrp6p exoribonuclease. This work demonstrates that THO and Sub2 are required for efficient transcription elongation, providing further evidence for the coupling between transcription and mRNA metabolism and export.
Collapse
Affiliation(s)
- Ana G Rondón
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Sevilla, Spain
| | | | | | | |
Collapse
|
96
|
Thomsen R, Libri D, Boulay J, Rosbash M, Jensen TH. Localization of nuclear retained mRNAs in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2003; 9:1049-57. [PMID: 12923254 PMCID: PMC1370470 DOI: 10.1261/rna.5170303] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2003] [Accepted: 05/21/2003] [Indexed: 05/19/2023]
Abstract
In the yeast Saccharomyces cerevisiae, a common conditional phenotype associated with deletion or mutation of genes encoding mRNA export factors is the rapid accumulation of mRNAs in intranuclear foci, suggested to be near transcription sites. The nuclear RNA exosome has been implicated in retaining RNAs in these foci; on deletion of the exosome component Rrp6p, the RNA is released. To determine the exact nuclear location of retained as well as released mRNAs, we have used mRNA export mutant strains to analyze the spatial relationship between newly synthesized heat shock mRNA, the chromosomal site of transcription, and known S. cerevisiae nuclear structures such as the nucleolus and the nucleolar body. Our results show that retained SSA4 RNA localizes to an area in close proximity to the SSA4 locus. On deletion of Rrp6p and release from the genomic locus, heat shock mRNAs produced in the rat7-1 strain colocalize predominantly with nucleolar antigens. Bulk poly(A)(+) RNA, on the other hand, is localized primarily to the nuclear rim. Interestingly, the RNA binding nucleocytoplasmic shuttle protein Npl3p shows strong colocalization with bulk poly(A)(+) RNA, regardless of its nuclear location. Taken together, our data show that retention occurs close to the gene and indicate distinct nuclear fates of different mRNAs.
Collapse
Affiliation(s)
- Rune Thomsen
- Department of Molecular Biology, Aarhus University, 8000 Aarhus C., Denmark
| | | | | | | | | |
Collapse
|
97
|
MacMorris M, Brocker C, Blumenthal T. UAP56 levels affect viability and mRNA export in Caenorhabditis elegans. RNA (NEW YORK, N.Y.) 2003; 9:847-57. [PMID: 12810918 PMCID: PMC1370451 DOI: 10.1261/rna.5480803] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2003] [Accepted: 04/14/2003] [Indexed: 05/20/2023]
Abstract
Expression of a gfp transgene in the intestines of living Caenorhabditis elegans has been measured following depletion by RNAi of a variety of known splicing factors and mRNA export proteins. Reduction of most splicing factors showed only a small effect on expression of the transgene in the animal injected with dsRNA, although most of these RNAi's resulted in embryonic lethality in their offspring. In contrast, RNAi of nxf-1, the worm homolog of mammalian NXF1/TAP, a key component of the mRNA export machinery, resulted in dramatic suppression of GFP expression in the injected animals. When we tested other proteins previously reported to be involved in marking mRNAs for export, we obtained widely divergent results. Whereas RNAi of the worm REF/Aly homologs had no obvious effect, either in the injected animals or their offspring, RNAi of UAP56, reported to be the partner of REF/Aly, resulted in strong suppression of GFP expression due to nuclear retention of its mRNA. Overexpression of UAP56 also resulted in rapid loss of GFP expression and lethality at all stages of development. We conclude that UAP56 plays a key role in mRNA export in C. elegans, but that REF/Aly may not. It also appears that some RNA processing factors are required for viability (e.g., U2AF, PUF60, SRp54, SAP49, PRP8, U1-70K), whereas others are not (e.g., U2A', CstF50).
Collapse
Affiliation(s)
- Margaret MacMorris
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Denver, Colorado 80262, USA
| | | | | |
Collapse
|
98
|
Longman D, Johnstone IL, Cáceres JF. The Ref/Aly proteins are dispensable for mRNA export and development in Caenorhabditis elegans. RNA (NEW YORK, N.Y.) 2003; 9:881-891. [PMID: 12810921 PMCID: PMC1370454 DOI: 10.1261/rna.5420503] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2003] [Accepted: 04/14/2003] [Indexed: 05/24/2023]
Abstract
The mRNA export pathway is highly conserved throughout evolution. We have used RNA interference (RNAi) to functionally characterize bona fide RNA export factors and components of the exon-exon junction complex (EJC) in Caenorhabditis elegans. RNAi of CeNXT1/p15, the binding partner of CeNXF1/TAP, caused early embryonic lethality, demonstrating an essential function of this gene during C. elegans development. Moreover, depletion of this protein resulted in nuclear accumulation of poly(A)(+) RNAs, supporting a direct role of NXT1/p15 in mRNA export in C. elegans. Previously, we have shown that RNAi of CeSRm160, a protein of the EJC complex, resulted in wild-type phenotype; in the present study, we demonstrate that RNAi of CeY14, another component of this complex, results in embryonic lethality. In contrast, depletion of the EJC component CeRNPS1 results in no discernible phenotype. Proteins of the REF/Aly family act as adaptor proteins mediating the recruitment of the mRNA export factor, NXF1/TAP, to mRNAs. The C. elegans genome encodes three members of the REF/Aly family. RNAi of individual Ref genes, or codepletion of two Ref genes in different combinations, resulted in wild-type phenotype. Simultaneous suppression of all three Ref genes did not compromise viability or progression through developmental stages in the affected progeny, and only caused a minor defect in larval mobility. Furthermore, no defects in mRNA export were observed upon simultaneous depletion of all three REF proteins. These results suggest the existence of multiple adaptor proteins that mediate mRNA export in C. elegans.
Collapse
Affiliation(s)
- Dasa Longman
- MRC Human Genetics Unit, Edinburgh EH4 2XU, Scotland, UK
| | | | | |
Collapse
|
99
|
Herold A, Teixeira L, Izaurralde E. Genome-wide analysis of nuclear mRNA export pathways in Drosophila. EMBO J 2003; 22:2472-83. [PMID: 12743041 PMCID: PMC155991 DOI: 10.1093/emboj/cdg233] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2003] [Revised: 03/14/2003] [Accepted: 03/18/2003] [Indexed: 11/13/2022] Open
Abstract
NXF1, p15 and UAP56 are essential nuclear mRNA export factors. The fraction of mRNAs exported by these proteins or via alternative pathways is unknown. We have analyzed the relative abundance of nearly half of the Drosophila transcriptome in the cytoplasm of cells treated with the CRM1 inhibitor leptomycin-B (LMB) or depleted of export factors by RNA interference. While the vast majority of mRNAs were unaffected by LMB, the levels of most mRNAs were significantly reduced in cells depleted of NXF1, p15 or UAP56. The striking similarities of the mRNA expression profiles in NXF1, p15 and UAP56 knockdowns show that these proteins act in the same pathway. The broad effect on mRNA levels observed in these cells indicates that the functioning of this pathway is required for export of most mRNAs. Nonetheless, a set of mRNAs whose export was unaffected by the depletions and some requiring NXF1:p15 but not UAP56 were identified. In addition, our analysis revealed a feedback loop by which a block to mRNA export triggers the upregulation of genes involved in this process.
Collapse
Affiliation(s)
- Andrea Herold
- EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | |
Collapse
|
100
|
Abstract
Eukaryotic mRNA is processed by enzymes and packaged with proteins within nuclei to generate functional messenger ribonucleoprotein (mRNP) particles. Processing and packaging factors can interact with mRNA cotranscriptionally to form an early mRNP. Erroneous mRNP formation leads to nuclear retention and degradation of the mRNA. It therefore appears that one function of cotranscriptional mRNP assembly is to discard aberrant mRNPs early in their biogenesis. Cotranscriptional mRNP assembly may also enable the transcription machinery to respond to improper mRNP formation.
Collapse
Affiliation(s)
- Torben Heick Jensen
- Department of Molecular Biology, Aarhus University, C.F. Møllers Alle, Building 130, 8000 Aarhus C., Denmark.
| | | | | | | |
Collapse
|