51
|
Churgin MA, Jung SK, Yu CC, Chen X, Raizen DM, Fang-Yen C. Longitudinal imaging of Caenorhabditis elegans in a microfabricated device reveals variation in behavioral decline during aging. eLife 2017; 6. [PMID: 28537553 PMCID: PMC5484621 DOI: 10.7554/elife.26652] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/22/2017] [Indexed: 12/28/2022] Open
Abstract
The roundworm C. elegans is a mainstay of aging research due to its short lifespan and easily manipulable genetics. Current, widely used methods for long-term measurement of C. elegans are limited by low throughput and the difficulty of performing longitudinal monitoring of aging phenotypes. Here we describe the WorMotel, a microfabricated device for long-term cultivation and automated longitudinal imaging of large numbers of C. elegans confined to individual wells. Using the WorMotel, we find that short-lived and long-lived strains exhibit patterns of behavioral decline that do not temporally scale between individuals or populations, but rather resemble the shortest and longest lived individuals in a wild type population. We also find that behavioral trajectories of worms subject to oxidative stress resemble trajectories observed during aging. Our method is a powerful and scalable tool for analysis of C. elegans behavior and aging. DOI:http://dx.doi.org/10.7554/eLife.26652.001 Aging affects almost all living things, yet little is known about the biological changes that occur as we get older. Scientists often study aging in the microscopic roundworm Caenorhabditis elegans because it reproduces quickly and its lifespan is short (about 2–3 weeks on average). To date, investigations have helped to reveal genes that affect overall lifespan. However, it is not known how much these genes also affect the animal’s healthy lifespan or “healthspan”, that is to say, the length of time before advancing age begins to negatively affect health. Until now, studies with worms have often been limited because measuring health and aging required time-consuming and difficult manual experiments. This also meant that worms were studied together as groups, rather than as individuals, providing a simplified picture of what was going on. An automated system in which many single worms can be analyzed and assessed would provide a much more detailed view of the effects of aging on health. Churgin et al. have now developed a device called the WorMotel to allow simultaneous automated examination of 240 worms throughout their entire adult lifespan. The WorMotel is a rectangular slab of clear silicone rubber with small wells in it. A single worm is confined in each well with a source of bacteria for food, and a camera is used to track and monitor each worm’s behavior over time. This device confirmed that worms move more slowly as they get older, which was taken to be a measurement of the worms’ declining health. Worms that lived the longest declined over the first few days and then had a long plateau of very low activity before eventually dying. Short-lived worms became slower and died fairly promptly. Churgin et al. also showed that the worms with mutations that increase lifespan declined in a similar way to the longest-lived normal worms, and that mutants with shorter lifespans declined like the shortest-lived normal worms. Also, normal worms that had been exposed to a chemical called paraquat – which stresses the worm's cells and shortens the worm’s lifespans to a few days – slowed down in a similar manner as aging worms, suggesting that the stress is similar to the aging process. Tools like the WorMotel can improve our understanding of the links between lifespan and healthspan. The tool is designed to be versatile and can be used with standard imaging systems and automated tools, meaning it can be scaled up to deal with tens of thousands of worms at once. Churgin et al. are now using the WorMotel to find other genes that influence healthspan and understand how they contribute to deteriorating health as animals age. Aging affects us all and learning more about healthspan could lead to drugs or interventions to help more people to live healthily for longer. DOI:http://dx.doi.org/10.7554/eLife.26652.002
Collapse
Affiliation(s)
- Matthew A Churgin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, United States
| | - Sang-Kyu Jung
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, United States
| | - Chih-Chieh Yu
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, United States
| | - Xiangmei Chen
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, United States
| | - David M Raizen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Christopher Fang-Yen
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, United States.,Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
52
|
Investigating the specific core genetic-and-epigenetic networks of cellular mechanisms involved in human aging in peripheral blood mononuclear cells. Oncotarget 2017; 7:8556-79. [PMID: 26895224 PMCID: PMC4890987 DOI: 10.18632/oncotarget.7388] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 02/03/2016] [Indexed: 12/26/2022] Open
Abstract
Aging is an inevitable part of life for humans, and slowing down the aging process has become a main focus of human endeavor. Here, we applied a systems biology approach to construct protein-protein interaction networks, gene regulatory networks, and epigenetic networks, i.e. genetic and epigenetic networks (GENs), of elderly individuals and young controls. We then compared these GENs to extract aging mechanisms using microarray data in peripheral blood mononuclear cells, microRNA (miRNA) data, and database mining. The core GENs of elderly individuals and young controls were obtained by applying principal network projection to GENs based on Principal Component Analysis. By comparing the core networks, we identified that to overcome the accumulated mutation of genes in the aging process the transcription factor JUN can be activated by stress signals, including the MAPK signaling, T-cell receptor signaling, and neurotrophin signaling pathways through DNA methylation of BTG3, G0S2, and AP2B1 and the regulations of mir-223 let-7d, and mir-130a. We also address the aging mechanisms in old men and women. Furthermore, we proposed that drugs designed to target these DNA methylated genes or miRNAs may delay aging. A multiple drug combination comprising phenylalanine, cholesterol, and palbociclib was finally designed for delaying the aging process.
Collapse
|
53
|
Ma X, Zhan G, Sleumer MC, Chen S, Liu W, Zhang MQ, Liu X. Analysis of C. elegans muscle transcriptome using trans-splicing-based RNA tagging (SRT). Nucleic Acids Res 2016; 44:e156. [PMID: 27557708 PMCID: PMC5137427 DOI: 10.1093/nar/gkw734] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/03/2016] [Accepted: 08/11/2016] [Indexed: 01/02/2023] Open
Abstract
Current approaches to profiling tissue-specific gene expression in C. elegans require delicate manipulation and are difficult under certain conditions, e.g. from dauer or aging worms. We have developed an easy and robust method for tissue-specific RNA-seq by taking advantage of the endogenous trans-splicing process. In this method, transgenic worms are generated in which a spliced leader (SL) RNA gene is fused with a sequence tag and driven by a tissue-specific promoter. Only in the tissue of interest, the tagged SL RNA gene is transcribed and then trans-spliced onto mRNAs. The tag allows enrichment and sequencing of mRNAs from that tissue only. As a proof of principle, we profiled the muscle transcriptome, which showed high coverage and efficient enrichment of muscle specific genes, with low background noise. To demonstrate the robustness of our method, we profiled muscle gene expression in dauer larvae and aging worms, revealing gene expression changes consistent with the physiology of these stages. The resulting muscle transcriptome also revealed 461 novel RNA transcripts, likely muscle-expressed long non-coding RNAs. In summary, the splicing-based RNA tagging (SRT) method provides a convenient and robust tool to profile trans-spliced genes and identify novel transcripts in a tissue-specific manner, with a low false positive rate.
Collapse
Affiliation(s)
- Xiaopeng Ma
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,PTN (Peking University-Tsinghua University-National Institute of Biological Sciences) Joint Graduate Program, Beijing 100084, China
| | - Ge Zhan
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Monica C Sleumer
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Siyu Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weihong Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Michael Q Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Departmental of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, TX 75080, USA.,Division of Bioinformatics, TNLIST, School of Information Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
54
|
Yashin AI, Arbeev KG, Wu D, Arbeeva L, Kulminski A, Kulminskaya I, Akushevich I, Ukraintseva SV. How Genes Modulate Patterns of Aging-Related Changes on the Way to 100: Biodemographic Models and Methods in Genetic Analyses of Longitudinal Data. NORTH AMERICAN ACTUARIAL JOURNAL : NAAJ 2016; 20:201-232. [PMID: 27773987 PMCID: PMC5070546 DOI: 10.1080/10920277.2016.1178588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND OBJECTIVE To clarify mechanisms of genetic regulation of human aging and longevity traits, a number of genome-wide association studies (GWAS) of these traits have been performed. However, the results of these analyses did not meet expectations of the researchers. Most detected genetic associations have not reached a genome-wide level of statistical significance, and suffered from the lack of replication in the studies of independent populations. The reasons for slow progress in this research area include low efficiency of statistical methods used in data analyses, genetic heterogeneity of aging and longevity related traits, possibility of pleiotropic (e.g., age dependent) effects of genetic variants on such traits, underestimation of the effects of (i) mortality selection in genetically heterogeneous cohorts, (ii) external factors and differences in genetic backgrounds of individuals in the populations under study, the weakness of conceptual biological framework that does not fully account for above mentioned factors. One more limitation of conducted studies is that they did not fully realize the potential of longitudinal data that allow for evaluating how genetic influences on life span are mediated by physiological variables and other biomarkers during the life course. The objective of this paper is to address these issues. DATA AND METHODS We performed GWAS of human life span using different subsets of data from the original Framingham Heart Study cohort corresponding to different quality control (QC) procedures and used one subset of selected genetic variants for further analyses. We used simulation study to show that approach to combining data improves the quality of GWAS. We used FHS longitudinal data to compare average age trajectories of physiological variables in carriers and non-carriers of selected genetic variants. We used stochastic process model of human mortality and aging to investigate genetic influence on hidden biomarkers of aging and on dynamic interaction between aging and longevity. We investigated properties of genes related to selected variants and their roles in signaling and metabolic pathways. RESULTS We showed that the use of different QC procedures results in different sets of genetic variants associated with life span. We selected 24 genetic variants negatively associated with life span. We showed that the joint analyses of genetic data at the time of bio-specimen collection and follow up data substantially improved significance of associations of selected 24 SNPs with life span. We also showed that aging related changes in physiological variables and in hidden biomarkers of aging differ for the groups of carriers and non-carriers of selected variants. CONCLUSIONS . The results of these analyses demonstrated benefits of using biodemographic models and methods in genetic association studies of these traits. Our findings showed that the absence of a large number of genetic variants with deleterious effects may make substantial contribution to exceptional longevity. These effects are dynamically mediated by a number of physiological variables and hidden biomarkers of aging. The results of these research demonstrated benefits of using integrative statistical models of mortality risks in genetic studies of human aging and longevity.
Collapse
Affiliation(s)
- Anatoliy I. Yashin
- Professor, Center for Population Health and Aging, Duke University, 2024 W. Main Street, Room A102E, Durham, NC 27705, USA. Tel.: (+1) 919-668-2713; Fax: (+1) 919-684-3861
| | - Konstantin G. Arbeev
- Sr. Research Scientist, Center for Population Health and Aging, Duke University, 2024 W. Main Street, Room A102F, Durham, NC 27705, USA. Tel.: (+1) 919-668-2707; Fax: (+1) 919-684-3861
| | - Deqing Wu
- Sr. Research Scientist, Center for Population Health and Aging, Duke University, 2024 W. Main Street, Room A104, Durham, NC 27705, USA. Tel.: (+1) 919-684-6126; Fax: (+1) 919-684-3861
| | - Liubov Arbeeva
- Statistician, Center for Population Health and Aging, Duke University, 2024 W. Main Street, Room A102G, Durham, NC 27705, USA. Tel.: (+1) 919-613-0715; Fax: (+1) 919-684-3861
| | - Alexander Kulminski
- Sr. Research Scientist, Center for Population Health and Aging, Duke University, 2024 W. Main Street, Room A106, Durham, NC 27705, USA. Tel.: (+1) 919-684-4962; Fax: (+1) 919-684-3861
| | - Irina Kulminskaya
- Research Scientist, Center for Population Health and Aging, Duke University, 2024 W. Main Street, Room A102D, Durham, NC 27705, USA. Tel.: (+1) 919-681-8232; Fax: (+1) 919-684-3861
| | - Igor Akushevich
- Sr. Research Scientist, Center for Population Health and Aging, Duke University, 2024 W. Main Street, Room A107, Durham, NC 27705, USA. Tel.: (+1) 919-668-2715; Fax: (+1) 919-684-3861
| | - Svetlana V. Ukraintseva
- Sr. Research Scientist, Center for Population Health and Aging, Duke University, 2024 W. Main Street, Room A105, Durham, NC 27705, USA. Tel.: (+1) 919-668-2712; Fax: (+1) 919-684-3861
| |
Collapse
|
55
|
Yu CW, How CM, Liao VHC. Arsenite exposure accelerates aging process regulated by the transcription factor DAF-16/FOXO in Caenorhabditis elegans. CHEMOSPHERE 2016; 150:632-638. [PMID: 26796881 DOI: 10.1016/j.chemosphere.2016.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/01/2016] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
Arsenic is a known human carcinogen and high levels of arsenic contamination in food, soils, water, and air are of toxicology concerns. Nowadays, arsenic is still a contaminant of emerging interest, yet the effects of arsenic on aging process have received little attention. In this study, we investigated the effects and the underlying mechanisms of chronic arsenite exposure on the aging process in Caenorhabditis elegans. The results showed that prolonged arsenite exposure caused significantly decreased lifespan compared to non-exposed ones. In addition, arsenite exposure (100 μM) caused significant changes of age-dependent biomarkers, including a decrease of defecation frequency, accumulations of intestinal lipofuscin and lipid peroxidation in an age-dependent manner in C. elegans. Further evidence revealed that intracellular reactive oxygen species (ROS) level was significantly increased in an age-dependent manner upon 100 μM arsenite exposure. Moreover, the mRNA levels of transcriptional makers of aging (hsp-16.1, hsp-16.49, and hsp-70) were increased in aged worms under arsenite exposure (100 μM). Finally, we showed that daf-16 mutant worms were more sensitive to arsenite exposure (100 μM) on lifespan and failed to induce the expression of its target gene sod-3 in aged daf-16 mutant under arsenite exposure (100 μM). Our study demonstrated that chronic arsenite exposure resulted in accelerated aging process in C. elegans. The overproduction of intracellular ROS and the transcription factor DAF-16/FOXO play roles in mediating the accelerated aging process by arsenite exposure in C. elegans. This study implicates a potential ecotoxicological and health risk of arsenic in the environment.
Collapse
Affiliation(s)
- Chan-Wei Yu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1 Roosevelt Road, Sec. 4, Taipei 106, Taiwan
| | - Chun Ming How
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1 Roosevelt Road, Sec. 4, Taipei 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1 Roosevelt Road, Sec. 4, Taipei 106, Taiwan.
| |
Collapse
|
56
|
Mann FG, Van Nostrand EL, Friedland AE, Liu X, Kim SK. Deactivation of the GATA Transcription Factor ELT-2 Is a Major Driver of Normal Aging in C. elegans. PLoS Genet 2016; 12:e1005956. [PMID: 27070429 PMCID: PMC4829211 DOI: 10.1371/journal.pgen.1005956] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 03/04/2016] [Indexed: 02/07/2023] Open
Abstract
To understand the molecular processes underlying aging, we screened modENCODE ChIP-seq data to identify transcription factors that bind to age-regulated genes in C. elegans. The most significant hit was the GATA transcription factor encoded by elt-2, which is responsible for inducing expression of intestinal genes during embryogenesis. Expression of ELT-2 decreases during aging, beginning in middle age. We identified genes regulated by ELT-2 in the intestine during embryogenesis, and then showed that these developmental genes markedly decrease in expression as worms grow old. Overexpression of elt-2 extends lifespan and slows the rate of gene expression changes that occur during normal aging. Thus, our results identify the developmental regulator ELT-2 as a major driver of normal aging in C. elegans.
Collapse
Affiliation(s)
- Frederick G. Mann
- Departments of Genetics and Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
| | - Eric L. Van Nostrand
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Ari E. Friedland
- Editas Medicine, Cambridge, Massachusetts, United States of America
| | - Xiao Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Stuart K. Kim
- Departments of Genetics and Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
| |
Collapse
|
57
|
Lancaster LT, Dudaniec RY, Chauhan P, Wellenreuther M, Svensson EI, Hansson B. Gene expression under thermal stress varies across a geographical range expansion front. Mol Ecol 2016; 25:1141-56. [DOI: 10.1111/mec.13548] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/22/2015] [Accepted: 01/19/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Lesley T. Lancaster
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen UK
| | - Rachael Y. Dudaniec
- Department of Biological Sciences; Macquarie University; Sydney NSW Australia
| | | | - Maren Wellenreuther
- Department of Biology; Lund University; Lund Sweden
- Institute of Plant and Food Research; Auckland New Zealand
| | | | | |
Collapse
|
58
|
Morsci NS, Hall DH, Driscoll M, Sheng ZH. Age-Related Phasic Patterns of Mitochondrial Maintenance in Adult Caenorhabditis elegans Neurons. J Neurosci 2016; 36:1373-85. [PMID: 26818523 PMCID: PMC4728731 DOI: 10.1523/jneurosci.2799-15.2016] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/11/2015] [Accepted: 12/18/2015] [Indexed: 12/22/2022] Open
Abstract
Aging is associated with cognitive decline and increasing risk of neurodegeneration. Perturbation of mitochondrial function, dynamics, and trafficking are implicated in the pathogenesis of several age-associated neurodegenerative diseases. Despite this fundamental importance, the critical understanding of how organismal aging affects lifetime neuronal mitochondrial maintenance remains unknown, particularly in a physiologically relevant context. To address this issue, we performed a comprehensive in vivo analysis of age-associated changes in mitochondrial morphology, density, trafficking, and stress resistance in individual Caenorhabditis elegans neurons throughout adult life. Adult neurons display three distinct stages of increase, maintenance, and decrease in mitochondrial size and density during adulthood. Mitochondrial trafficking in the distal neuronal processes declines progressively with age starting from early adulthood. In contrast, long-lived daf-2 mutants exhibit delayed age-associated changes in mitochondrial morphology, constant mitochondrial density, and maintained trafficking rates during adulthood. Reduced mitochondrial load at late adulthood correlates with decreased mitochondrial resistance to oxidative stress. Revealing aging-associated changes in neuronal mitochondria in vivo is an essential precedent that will allow future elucidation of the mechanistic causes of mitochondrial aging. Thus, our study establishes the critical foundation for the future analysis of cellular pathways and genetic and pharmacological factors regulating mitochondrial maintenance in aging- and disease-relevant conditions. SIGNIFICANCE STATEMENT Using Caenorhabditis elegans as a model, we address long-standing questions: How does aging affect neuronal mitochondrial morphology, density, trafficking, and oxidative stress resistance? Are these age-related changes amenable to genetic manipulations that slow down the aging process? Our study illustrates that mitochondrial trafficking declines progressively from the first day of adulthood, whereas mitochondrial size, density, and resistance to oxidative stress undergo three distinct stages: increase in early adulthood, maintenance at high levels during mid-adulthood, and decline during late adulthood. Thus, our study characterizes mitochondrial aging profile at the level of a single neuron in its native environment and establishes the critical foundation for the future genetic and pharmacological dissection of factors that influence long-term mitochondrial maintenance in neurons.
Collapse
Affiliation(s)
- Natalia S Morsci
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - David H Hall
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, and
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08855
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892,
| |
Collapse
|
59
|
Zimmerman SM, Hinkson IV, Elias JE, Kim SK. Reproductive Aging Drives Protein Accumulation in the Uterus and Limits Lifespan in C. elegans. PLoS Genet 2015; 11:e1005725. [PMID: 26656270 PMCID: PMC4676719 DOI: 10.1371/journal.pgen.1005725] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 11/13/2015] [Indexed: 11/26/2022] Open
Abstract
Aging in Caenorhabditis elegans is characterized by widespread physiological and molecular changes, but the mechanisms that determine the rate at which these changes occur are not well understood. In this study, we identify a novel link between reproductive aging and somatic aging in C. elegans. By measuring global age-related changes in the proteome, we identify a previously uncharacterized group of secreted proteins in the adult uterus that dramatically increase in abundance with age. This accumulation is blunted in animals with an extended reproductive period and accelerated in sterile animals lacking a germline. Uterine proteins are not removed in old post-reproductive animals or in young vulvaless worms, indicating that egg-laying is necessary for their rapid removal in wild-type young animals. Together, these results suggest that age-induced infertility contributes to extracellular protein accumulation in the uterus with age. Finally, we show that knocking down multiple age-increased proteins simultaneously extends lifespan. These results provide a mechanistic example of how the cessation of reproduction contributes to detrimental changes in the soma, and demonstrate how the timing of reproductive decline can influence the rate of aging. To understand the process of aging at the molecular level in C. elegans, we measured changes in protein abundance with age, determined whether these age-related protein changes lead to dysfunction in old animals, and have elucidated one of the upstream pathways responsible for these aging changes. We found that egg-laying in young worms permits removal of a novel class of proteins present in the uterus. When the reproductive period ends, the removal of uterine proteins stops, causing them to accumulate to toxic levels. This shows that the timing of reproductive decline influences the rate of somatic aging. The concept that the reproductive period has a direct role in specifying the rate of aging of the soma likely applies to other species as well.
Collapse
Affiliation(s)
- Stephanie M. Zimmerman
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Izumi V. Hinkson
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, United States of America
| | - Joshua E. Elias
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, United States of America
| | - Stuart K. Kim
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
60
|
Yashin AI, Arbeev KG, Arbeeva LS, Wu D, Akushevich I, Kovtun M, Yashkin A, Kulminski A, Culminskaya I, Stallard E, Li M, Ukraintseva SV. How the effects of aging and stresses of life are integrated in mortality rates: insights for genetic studies of human health and longevity. Biogerontology 2015; 17:89-107. [PMID: 26280653 DOI: 10.1007/s10522-015-9594-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/25/2015] [Indexed: 12/21/2022]
Abstract
Increasing proportions of elderly individuals in developed countries combined with substantial increases in related medical expenditures make the improvement of the health of the elderly a high priority today. If the process of aging by individuals is a major cause of age related health declines then postponing aging could be an efficient strategy for improving the health of the elderly. Implementing this strategy requires a better understanding of genetic and non-genetic connections among aging, health, and longevity. We review progress and problems in research areas whose development may contribute to analyses of such connections. These include genetic studies of human aging and longevity, the heterogeneity of populations with respect to their susceptibility to disease and death, forces that shape age patterns of human mortality, secular trends in mortality decline, and integrative mortality modeling using longitudinal data. The dynamic involvement of genetic factors in (i) morbidity/mortality risks, (ii) responses to stresses of life, (iii) multi-morbidities of many elderly individuals, (iv) trade-offs for diseases, (v) genetic heterogeneity, and (vi) other relevant aging-related health declines, underscores the need for a comprehensive, integrated approach to analyze the genetic connections for all of the above aspects of aging-related changes. The dynamic relationships among aging, health, and longevity traits would be better understood if one linked several research fields within one conceptual framework that allowed for efficient analyses of available longitudinal data using the wealth of available knowledge about aging, health, and longevity already accumulated in the research field.
Collapse
Affiliation(s)
- Anatoliy I Yashin
- The Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA. .,The Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, 2024 W. Main Street, Room A102E, Durham, NC, 27705, USA.
| | - Konstantin G Arbeev
- The Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Liubov S Arbeeva
- The Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Deqing Wu
- The Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Igor Akushevich
- The Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Mikhail Kovtun
- The Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Arseniy Yashkin
- The Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Alexander Kulminski
- The Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Irina Culminskaya
- The Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Eric Stallard
- The Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Miaozhu Li
- The Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Svetlana V Ukraintseva
- The Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA.,The Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, 2024 W. Main Street, Room A105, Durham, NC, 27705, USA
| |
Collapse
|
61
|
Gorrepati L, Krause MW, Chen W, Brodigan TM, Correa-Mendez M, Eisenmann DM. Identification of Wnt Pathway Target Genes Regulating the Division and Differentiation of Larval Seam Cells and Vulval Precursor Cells in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2015; 5:1551-66. [PMID: 26048561 PMCID: PMC4528312 DOI: 10.1534/g3.115.017715] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/18/2015] [Indexed: 12/29/2022]
Abstract
The evolutionarily conserved Wnt/β-catenin signaling pathway plays a fundamental role during metazoan development, regulating numerous processes including cell fate specification, cell migration, and stem cell renewal. Wnt ligand binding leads to stabilization of the transcriptional effector β-catenin and upregulation of target gene expression to mediate a cellular response. During larval development of the nematode Caenorhabditis elegans, Wnt/β-catenin pathways act in fate specification of two hypodermal cell types, the ventral vulval precursor cells (VPCs) and the lateral seam cells. Because little is known about targets of the Wnt signaling pathways acting during larval VPC and seam cell differentiation, we sought to identify genes regulated by Wnt signaling in these two hypodermal cell types. We conditionally activated Wnt signaling in larval animals and performed cell type-specific "mRNA tagging" to enrich for VPC and seam cell-specific mRNAs, and then used microarray analysis to examine gene expression compared to control animals. Two hundred thirty-nine genes activated in response to Wnt signaling were identified, and we characterized 50 genes further. The majority of these genes are expressed in seam and/or vulval lineages during normal development, and reduction of function for nine genes caused defects in the proper division, fate specification, fate execution, or differentiation of seam cells and vulval cells. Therefore, the combination of these techniques was successful at identifying potential cell type-specific Wnt pathway target genes from a small number of cells and at increasing our knowledge of the specification and behavior of these C. elegans larval hypodermal cells.
Collapse
Affiliation(s)
- Lakshmi Gorrepati
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | | | - Weiping Chen
- Intramural Research Program, NIDDK, Bethesda, Maryland 20814
| | | | - Margarita Correa-Mendez
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - David M Eisenmann
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| |
Collapse
|
62
|
Somatic expression of unc-54 and vha-6 mRNAs declines but not pan-neuronal rgef-1 and unc-119 expression in aging Caenorhabditis elegans. Sci Rep 2015; 5:10692. [PMID: 26031360 PMCID: PMC4649908 DOI: 10.1038/srep10692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 04/22/2015] [Indexed: 12/13/2022] Open
Abstract
Aging is a highly controlled biological process characterized by a progressive deterioration of various cellular activities. One of several hallmarks of aging describes a link to transcriptional alteration, suggesting that it may impact the steady-state mRNA levels. We analyzed the mRNA steady-state levels of polyCAG-encoding transgenes and endogenous genes under the control of well-characterized promoters for intestinal (vha-6), muscular (unc-54, unc-15) and pan-neuronal (rgef-1, unc-119) expression in the nematode Caenorhabditis elegans. We find that there is not a uniform change in transcriptional profile in aging, but rather a tissue-specific difference in the mRNA levels of these genes. While levels of mRNA in the intestine (vha-6) and muscular (unc-54, unc-15) cells decline with age, pan-neuronal tissue shows more stable mRNA expression (rgef-1, unc-119) which even slightly increases with the age of the animals. Our data on the variations in the mRNA abundance from exemplary cases of endogenous and transgenic gene expression contribute to the emerging evidence for tissue-specific variations in the aging process.
Collapse
|
63
|
Stegehake D, Kurosinski MA, Schürmann S, Daniel J, Lüersen K, Liebau E. Polyamine-independent Expression of Caenorhabditis elegans Antizyme. J Biol Chem 2015; 290:18090-18101. [PMID: 26032421 DOI: 10.1074/jbc.m115.644385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Indexed: 11/06/2022] Open
Abstract
Degradation of ornithine decarboxylase, the rate-limiting enzyme of polyamine biosynthesis, is promoted by the protein antizyme. Expression of antizyme is positively regulated by rising polyamine concentrations that induce a +1 translational frameshift required for production of the full-length protein. Antizyme itself is negatively regulated by the antizyme inhibitor. In our study, the regulation of Caenorhabditis elegans antizyme was investigated, and the antizyme inhibitor was identified. By applying a novel GFP-based method to monitor antizyme frameshifting in vivo, we show that the induction of translational frameshifting also occurs under stressful conditions. Interestingly, during starvation, the initiation of frameshifting was independent of polyamine concentrations. Because frameshifting was also prevalent in a polyamine auxotroph double mutant, a polyamine-independent regulation of antizyme frameshifting is suggested. Polyamine-independent induction of antizyme expression was found to be negatively regulated by the peptide transporter PEPT-1, as well as the target of rapamycin, but not by the daf-2 insulin signaling pathway. Stress-dependent expression of C. elegans antizyme occurred morely slowly than expression in response to increased polyamine levels, pointing to a more general reaction to unfavorable conditions and a diversion away from proliferation and reproduction toward conservation of energy. Interestingly, antizyme expression was found to drastically increase in aging individuals in a postreproductive manner. Although knockdown of antizyme did not affect the lifespan of C. elegans, knockdown of the antizyme inhibitor led to a significant reduction in lifespan. This is most likely caused by an increase in antizyme-mediated degradation of ornithine decarboxylase-1 and a resulting reduction in cellular polyamine levels.
Collapse
Affiliation(s)
- Dirk Stegehake
- Department of Molecular Physiology, Institute for Animal Physiology, University of Muenster, 48143 Muenster, Germany
| | - Marc-André Kurosinski
- Department of Molecular Physiology, Institute for Animal Physiology, University of Muenster, 48143 Muenster, Germany
| | - Sabine Schürmann
- Department of Molecular Physiology, Institute for Animal Physiology, University of Muenster, 48143 Muenster, Germany
| | - Jens Daniel
- Department of Molecular Physiology, Institute for Animal Physiology, University of Muenster, 48143 Muenster, Germany
| | - Kai Lüersen
- Department of Molecular Physiology, Institute for Animal Physiology, University of Muenster, 48143 Muenster, Germany
| | - Eva Liebau
- Department of Molecular Physiology, Institute for Animal Physiology, University of Muenster, 48143 Muenster, Germany.
| |
Collapse
|
64
|
He K, Zhou T, Shao J, Ren X, Zhao Z, Liu D. Dynamic regulation of genetic pathways and targets during aging in Caenorhabditis elegans. Aging (Albany NY) 2015; 6:215-30. [PMID: 24739375 PMCID: PMC4012938 DOI: 10.18632/aging.100648] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Numerous genetic targets and some individual pathways associated with aging have been identified using the worm model. However, less is known about the genetic mechanisms of aging in genome wide, particularly at the level of multiple pathways as well as the regulatory networks during aging. Here, we employed the gene expression datasets of three time points during aging in Caenorhabditis elegans (C. elegans) and performed the approach of gene set enrichment analysis (GSEA) on each dataset between adjacent stages. As a result, multiple genetic pathways and targets were identified as significantly down- or up-regulated. Among them, 5 truly aging-dependent signaling pathways including MAPK signaling pathway, mTOR signaling pathway, Wnt signaling pathway, TGF-beta signaling pathway and ErbB signaling pathway as well as 12 significantly associated genes were identified with dynamic expression pattern during aging. On the other hand, the continued declines in the regulation of several metabolic pathways have been demonstrated to display age-related changes. Furthermore, the reconstructed regulatory networks based on three of aging related Chromatin immunoprecipitation experiments followed by sequencing (ChIP–seq) datasets and the expression matrices of 154 involved genes in above signaling pathways provide new insights into aging at the multiple pathways level. The combination of multiple genetic pathways and targets needs to be taken into consideration in future studies of aging, in which the dynamic regulation would be uncovered.
Collapse
Affiliation(s)
- Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei City, Anhui, P. R. China, 230601
| | | | | | | | | | | |
Collapse
|
65
|
Lixie E, Edgeworth J, Shamir L. Comprehensive Analysis of Large Sets of Age-Related Physiological Indicators Reveals Rapid Aging around the Age of 55 Years. Gerontology 2015; 61:526-33. [PMID: 25968613 DOI: 10.1159/000381584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/11/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND While many studies show a correlation between chronological age and physiological indicators, the nature of this correlation is not fully understood. OBJECTIVE To perform a comprehensive analysis of the correlation between chronological age and age-related physiological indicators. METHOD Physiological aging scores were deduced using principal component analysis from a large dataset of 1,227 variables measured in a cohort of 4,796 human subjects, and the correlation between the physiological aging scores and chronological age was assessed. RESULTS Physiological age does not progress linearly or exponentially with chronological age: a more rapid physiological change is observed around the age of 55 years, followed by a mild decline until around the age of 70 years. CONCLUSION These findings provide evidence that the progression of physiological age is not linear with that of chronological age, and that periods of mild change in physiological age are separated by periods of more rapid aging.
Collapse
Affiliation(s)
- Erin Lixie
- Lawrence Technological University, Southfield, Mich., USA
| | | | | |
Collapse
|
66
|
Sturm Á, Ivics Z, Vellai T. The mechanism of ageing: primary role of transposable elements in genome disintegration. Cell Mol Life Sci 2015; 72:1839-47. [PMID: 25837999 PMCID: PMC11113528 DOI: 10.1007/s00018-015-1896-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 03/16/2015] [Accepted: 03/25/2015] [Indexed: 01/11/2023]
Abstract
Understanding the molecular basis of ageing remains a fundamental problem in biology. In multicellular organisms, while the soma undergoes a progressive deterioration over the lifespan, the germ line is essentially immortal as it interconnects the subsequent generations. Genomic instability in somatic cells increases with age, and accumulating evidence indicates that the disintegration of somatic genomes is accompanied by the mobilisation of transposable elements (TEs) that, when mobilised, can be mutagenic by disrupting coding or regulatory sequences. In contrast, TEs are effectively silenced in the germ line by the Piwi-piRNA system. Here, we propose that TE repression transmits the persistent proliferation capacity and the non-ageing phenotype (e.g., preservation of genomic integrity) of the germ line. The Piwi-piRNA pathway also operates in tumorous cells and in somatic cells of certain organisms, including hydras, which likewise exhibit immortality. However, in somatic cells lacking the Piwi-piRNA pathway, gradual chromatin decondensation increasingly allows the mobilisation of TEs as the organism ages. This can explain why the mortality rate rises exponentially throughout the adult life in most animal species, including humans.
Collapse
Affiliation(s)
- Ádám Sturm
- Department of Genetics, Eötvös Loránd University, Pázmány Péter stny. 1/C, Budapest, Hungary
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, 63225 Langen, Germany
| | - Tibor Vellai
- Department of Genetics, Eötvös Loránd University, Pázmány Péter stny. 1/C, Budapest, Hungary
| |
Collapse
|
67
|
Vukoti K, Yu X, Sheng Q, Saha S, Feng Z, Hsu AL, Miyagi M. Monitoring newly synthesized proteins over the adult life span of Caenorhabditis elegans. J Proteome Res 2015; 14:1483-94. [PMID: 25686393 DOI: 10.1021/acs.jproteome.5b00021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Little is known regarding how the synthesis and degradation of individual proteins change during the life of an organism. Such knowledge is vital to understanding the aging process. To fill this knowledge gap, we monitored newly synthesized proteins on a proteome scale in Caenorhabditis elegans over time during adulthood using a stable-isotope labeling by amino acids in cell culture (SILAC)-based label-chase approach. For most proteins, the rate of appearance of newly synthesized protein was high during the first 5 days of adulthood, slowed down between the fifth and the 11th days, and then increased again after the 11th day. However, the magnitude of appearance rate differed significantly from protein to protein. For example, the appearance of newly synthesized protein was fast for proteins involved in embryonic development, transcription regulation, and lipid binding/transport, with >70% of these proteins newly synthesized by day 5 of adulthood, whereas it was slow for proteins involved in cellular assembly and motility, such as actin and myosin, with <70% of these proteins newly synthesized even on day 16. The late-life increase of newly synthesized protein was especially high for ribosomal proteins and ATP synthases. We also investigated the effect of RNAi-mediated knockdown of the rpl-9 (ribosomal protein), atp-3 (ATP synthase), and ril-1 (RNAi-induced longevity-1) genes and found that inhibiting the expression of atp-3 and ril-1 beginning in late adulthood is still effective to extend the life span of C. elegans.
Collapse
Affiliation(s)
- Krishna Vukoti
- Center for Proteomics and Bioinformatics, ‡Department of Pharmacology, and §Department of Ophthalmology and Visual Sciences, Case Western Reserve University , Cleveland, Ohio, United States
| | | | | | | | | | | | | |
Collapse
|
68
|
Arbeev KG, Akushevich I, Kulminski AM, Ukraintseva SV, Yashin AI. Biodemographic Analyses of Longitudinal Data on Aging, Health, and Longevity: Recent Advances and Future Perspectives. ADVANCES IN GERIATRICS 2015; 2014:957073. [PMID: 25590047 PMCID: PMC4290867 DOI: 10.1155/2014/957073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Biodemography became one of the most innovative and fastest growing areas in demography. This progress is fueled by the growing variability and amount of relevant data available for analyses as well as by methodological developments allowing for addressing new research questions using new approaches that can better utilize the potential of these data. In this review paper, we summarize recent methodological advances in biodemography and their diverse practical applications. Three major topics are covered: (1) computational approaches to reconstruction of age patterns of incidence of geriatric diseases and other characteristics such as recovery rates at the population level using Medicare claims data; (2) methodological advances in genetic and genomic biodemography and applications to research on genetic determinants of longevity and health; and (3) biodemographic models for joint analyses of time-to-event data and longitudinal measurements of biomarkers collected in longitudinal studies on aging. We discuss how such data and methodology can be used in a comprehensive prediction model for joint analyses of incomplete datasets that take into account the wide spectrum of factors affecting health and mortality transitions including genetic factors and hidden mechanisms of aging-related changes in physiological variables in their dynamic connection with health and survival.
Collapse
Affiliation(s)
- Konstantin G Arbeev
- Center for Population Health and Aging, Duke University, Erwin Mill Building, 2024 W. Main Street, P.O. Box 90420, Durham, NC 27705, USA
| | - Igor Akushevich
- Center for Population Health and Aging, Duke University, Erwin Mill Building, 2024 W. Main Street, P.O. Box 90420, Durham, NC 27705, USA
| | - Alexander M Kulminski
- Center for Population Health and Aging, Duke University, Erwin Mill Building, 2024 W. Main Street, P.O. Box 90420, Durham, NC 27705, USA
| | - Svetlana V Ukraintseva
- Center for Population Health and Aging, Duke University, Erwin Mill Building, 2024 W. Main Street, P.O. Box 90420, Durham, NC 27705, USA
| | - Anatoliy I Yashin
- Center for Population Health and Aging, Duke University, Erwin Mill Building, 2024 W. Main Street, P.O. Box 90420, Durham, NC 27705, USA
| |
Collapse
|
69
|
Smith-Vikos T, de Lencastre A, Inukai S, Shlomchik M, Holtrup B, Slack FJ. MicroRNAs mediate dietary-restriction-induced longevity through PHA-4/FOXA and SKN-1/Nrf transcription factors. Curr Biol 2014; 24:2238-46. [PMID: 25242029 DOI: 10.1016/j.cub.2014.08.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 06/30/2014] [Accepted: 08/07/2014] [Indexed: 01/23/2023]
Abstract
BACKGROUND Dietary restriction (DR) has been shown to prolong longevity across diverse taxa, yet the mechanistic relationship between DR and longevity remains unclear. MicroRNAs (miRNAs) control aging-related functions such as metabolism and lifespan through regulation of genes in insulin signaling, mitochondrial respiration, and protein homeostasis. RESULTS We have conducted a network analysis of aging-associated miRNAs connected to transcription factors PHA-4/FOXA and SKN-1/Nrf, which are both necessary for DR-induced lifespan extension in Caenorhabditis elegans. Our network analysis has revealed extensive regulatory interactions between PHA-4, SKN-1, and miRNAs and points to two aging-associated miRNAs, miR-71 and miR-228, as key nodes of this network. We show that miR-71 and miR-228 are critical for the response to DR in C. elegans. DR induces the expression of miR-71 and miR-228, and the regulation of these miRNAs depends on PHA-4 and SKN-1. In turn, we show that PHA-4 and SKN-1 are negatively regulated by miR-228, whereas miR-71 represses PHA-4. CONCLUSIONS Based on our findings, we have discovered new links in an important pathway connecting DR to aging. By interacting with PHA-4 and SKN-1, miRNAs transduce the effect of dietary-restriction-mediated lifespan extension in C. elegans. Given the conservation of miRNAs, PHA-4, and SKN-1 across phylogeny, these interactions are likely to be conserved in more-complex species.
Collapse
Affiliation(s)
- Thalyana Smith-Vikos
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520, USA
| | - Alexandre de Lencastre
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520, USA
| | - Sachi Inukai
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520, USA
| | - Mariel Shlomchik
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520, USA
| | - Brandon Holtrup
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520, USA
| | - Frank J Slack
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520, USA.
| |
Collapse
|
70
|
Manière X, Krisko A, Pellay FX, Di Meglio JM, Hersen P, Matic I. High transcript levels of heat-shock genes are associated with shorter lifespan of Caenorhabditis elegans. Exp Gerontol 2014; 60:12-7. [PMID: 25218444 DOI: 10.1016/j.exger.2014.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/04/2014] [Accepted: 09/09/2014] [Indexed: 10/24/2022]
Abstract
Individual lifespans of isogenic organisms, such as Caenorhabditis elegans nematodes, fruit flies, and mice, vary greatly even under identical environmental conditions. To study the molecular mechanisms responsible for such variability, we used an assay based on the measurement of post-reproductive nematode movements stimulated by a moderate electric field. This assay allows for the separation of individual nematodes based on their speed. We show that this phenotype could be used as a biomarker for aging because it is a better predictor of lifespan than chronological age. Fast nematodes have longer lifespans, fewer protein carbonyls, higher heat-shock resistance, and higher transcript levels of the daf-16 and hsf-1 genes, which code for the stress response transcription factors, than slow nematodes. High transcript levels of the genes coding for heat-shock proteins observed in slow nematodes correlate with lower heat-shock resistance, more protein carbonyls, and shorter lifespan. Taken together, our data suggests that shorter lifespan results from early-life damage accumulation that causes subsequent faster age-related deterioration.
Collapse
Affiliation(s)
- X Manière
- Inserm Unit 1001, Université Paris-Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, 75014 Paris, France
| | - A Krisko
- Inserm Unit 1001, Université Paris-Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, 75014 Paris, France; Mediterranean Institute for Life Sciences (MedILS), 21000 Split, Croatia
| | - F X Pellay
- Inserm Unit 1001, Université Paris-Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, 75014 Paris, France; NAOS group/Jean-Noël Thorel, 13855 Aix-en-Provence, France
| | - J-M Di Meglio
- Laboratoire Matière et Systèmes Complexes, UMR7057, CNRS & Université Paris Diderot, 75013 Paris, France
| | - P Hersen
- Laboratoire Matière et Systèmes Complexes, UMR7057, CNRS & Université Paris Diderot, 75013 Paris, France; MechanoBiology Institute, National University of Singapore, Singapore
| | - I Matic
- Inserm Unit 1001, Université Paris-Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, 75014 Paris, France.
| |
Collapse
|
71
|
Brunet A, Berger SL. Epigenetics of aging and aging-related disease. J Gerontol A Biol Sci Med Sci 2014; 69 Suppl 1:S17-20. [PMID: 24833581 DOI: 10.1093/gerona/glu042] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Aging is associated with a wide range of human disorders, including cancer, diabetes, cardiovascular, and neurodegenerative diseases. Long thought to be an inexorable road toward decline and diseases, aging is in fact remarkably plastic. Such plasticity could be harnessed to approach age-related diseases from a novel perspective. Although many studies have focused on the genes that impact aging, the nongenetic regulation of aging is gaining increasing attention. Specifically, aging is associated with profound epigenetic changes, resulting in alterations of gene expression and disturbances in broad genome architecture and the epigenomic landscape. The potential reversibility of these epigenetic changes that occur as a hallmark of aging offers exciting opportunities to alter the trajectory of age-related diseases. This short review highlights key epigenetic players in the regulation of aging, as well as both future goals and challenges to the utilization of epigenetic strategies to delay and reverse the main diseases of aging.
Collapse
Affiliation(s)
- Anne Brunet
- Department of Genetics, Stanford University, California. Glenn Laboratories for the Biology of Aging, Stanford, California.
| | - Shelley L Berger
- Department of Cell and Developmental Biology and Penn Epigenetics Program, University of Pennsylvania Perelman School of Medicine, Philadelphia
| |
Collapse
|
72
|
Steegenga WT, Boekschoten MV, Lute C, Hooiveld GJ, de Groot PJ, Morris TJ, Teschendorff AE, Butcher LM, Beck S, Müller M. Genome-wide age-related changes in DNA methylation and gene expression in human PBMCs. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9648. [PMID: 24789080 PMCID: PMC4082572 DOI: 10.1007/s11357-014-9648-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 03/18/2014] [Indexed: 05/13/2023]
Abstract
Aging is a progressive process that results in the accumulation of intra- and extracellular alterations that in turn contribute to a reduction in health. Age-related changes in DNA methylation have been reported before and may be responsible for aging-induced changes in gene expression, although a causal relationship has yet to be shown. Using genome-wide assays, we analyzed age-induced changes in DNA methylation and their effect on gene expression with and without transient induction with the synthetic transcription modulating agent WY14,643. To demonstrate feasibility of the approach, we isolated peripheral blood mononucleated cells (PBMCs) from five young and five old healthy male volunteers and cultured them with or without WY14,643. Infinium 450K BeadChip and Affymetrix Human Gene 1.1 ST expression array analysis revealed significant differential methylation of at least 5 % (ΔYO > 5 %) at 10,625 CpG sites between young and old subjects, but only a subset of the associated genes were also differentially expressed. Age-related differential methylation of previously reported epigenetic biomarkers of aging including ELOVL2, FHL2, PENK, and KLF14 was confirmed in our study, but these genes did not display an age-related change in gene expression in PBMCs. Bioinformatic analysis revealed that differentially methylated genes that lack an age-related expression change predominantly represent genes involved in carcinogenesis and developmental processes, and expression of most of these genes were silenced in PBMCs. No changes in DNA methylation were found in genes displaying transiently induced changes in gene expression. In conclusion, aging-induced differential methylation often targets developmental genes and occurs mostly without change in gene expression.
Collapse
Affiliation(s)
- Wilma T Steegenga
- Division of Human Nutrition, Wageningen University, Bomenweg 2, Wageningen, 6703 HD, The Netherlands,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Caenorhabditis elegans as model system in pharmacology and toxicology: effects of flavonoids on redox-sensitive signalling pathways and ageing. ScientificWorldJournal 2014; 2014:920398. [PMID: 24895670 PMCID: PMC4032668 DOI: 10.1155/2014/920398] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 10/30/2013] [Indexed: 01/15/2023] Open
Abstract
Flavonoids are secondary plant compounds that mediate diverse biological activities, for example, by scavenging free radicals and modulating intracellular signalling pathways. It has been shown in various studies that distinct flavonoid compounds enhance stress resistance and even prolong the life span of organisms. In the last years the model organism C. elegans has gained increasing importance in pharmacological and toxicological sciences due to the availability of various genetically modified nematode strains, the simplicity of modulating genes by RNAi, and the relatively short life span. Several studies have been performed demonstrating that secondary plant compounds influence ageing, stress resistance, and distinct signalling pathways in the nematode. Here we present an overview of the modulating effects of different flavonoids on oxidative stress, redox-sensitive signalling pathways, and life span in C. elegans introducing the usability of this model system for pharmacological and toxicological research.
Collapse
|
74
|
Keith SA, Amrit FRG, Ratnappan R, Ghazi A. The C. elegans healthspan and stress-resistance assay toolkit. Methods 2014; 68:476-86. [PMID: 24727065 DOI: 10.1016/j.ymeth.2014.04.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 12/22/2022] Open
Abstract
A wealth of knowledge on the genetic mechanisms that govern aging has emerged from the study of mutants that exhibit enhanced longevity and exceptional resilience to adverse environmental conditions. In these studies, lifespan has been an excellent proxy for establishing the rate of aging, but it is not always correlated with qualitative measures of healthy aging or 'healthspan'. Although the attributes of healthspan have been challenging to define, they share some universal features that are increasingly being incorporated into aging studies. Here we describe methods used to determine Caenorhabditis elegans healthspan. These include assessments of tissue integrity and functionality and resistance to a variety of biotic and abiotic stressors. We have chosen to include simple, rapid assays in this collection that can be easily undertaken in any C. elegans laboratory, and can be relied on to provide a preliminary but thorough insight into the healthspan of a population.
Collapse
Affiliation(s)
- Scott Alexander Keith
- Department of Pediatrics, University of Pittsburgh School of Medicine, 7129 Rangos Research Centre, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, United States
| | - Francis Raj Gandhi Amrit
- Department of Pediatrics, University of Pittsburgh School of Medicine, 7129 Rangos Research Centre, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, United States
| | - Ramesh Ratnappan
- Department of Pediatrics, University of Pittsburgh School of Medicine, 7129 Rangos Research Centre, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, United States
| | - Arjumand Ghazi
- Department of Pediatrics, University of Pittsburgh School of Medicine, 7129 Rangos Research Centre, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, United States.
| |
Collapse
|
75
|
Endoplasmic Reticulum Dysfunction in Alzheimer’s Disease. Mol Neurobiol 2014; 51:383-95. [DOI: 10.1007/s12035-014-8695-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/24/2014] [Indexed: 12/12/2022]
|
76
|
Zimmerman SM, Kim SK. The GATA transcription factor/MTA-1 homolog egr-1 promotes longevity and stress resistance in Caenorhabditis elegans. Aging Cell 2014; 13:329-39. [PMID: 24304470 PMCID: PMC4331783 DOI: 10.1111/acel.12179] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2013] [Indexed: 11/27/2022] Open
Abstract
Aging is associated with a large number of both phenotypic and molecular changes, but for most of these, it is not known whether these changes are detrimental, neutral, or protective. We have identified a conserved Caenorhabditis elegans GATA transcription factor/MTA-1 homolog egr-1 (lin-40) that extends lifespan and promotes resistance to heat and UV stress when overexpressed. Expression of egr-1 increases with age, suggesting that it may promote survival during normal aging. This increase in expression is dependent on the presence of the germline, raising the possibility that egr-1 expression is regulated by signals from the germline. In addition, loss of egr-1 suppresses the long lifespan of insulin receptor daf-2 mutants. The DAF-16 FOXO transcription factor is required for the increased stress resistance of egr-1 overexpression mutants, and egr-1 is necessary for the proper regulation of sod-3 (a reporter for DAF-16 activity). These results indicate that egr-1 acts within the insulin signaling pathway. egr-1 can also activate the expression of its paralog egl-27, another factor known to extend lifespan and increase stress resistance, suggesting that the two genes act in a common program to promote survival. These results identify egr-1 as part of a longevity-promoting circuit that changes with age in a manner that is beneficial for the lifespan of the organism.
Collapse
Affiliation(s)
| | - Stuart K. Kim
- Department of Genetics Stanford University Medical Center Stanford CA 94305USA
- Department of Developmental Biology Stanford University Medical Center Stanford CA 94305USA
| |
Collapse
|
77
|
Labbadia J, Morimoto RI. Proteostasis and longevity: when does aging really begin? F1000PRIME REPORTS 2014; 6:7. [PMID: 24592319 PMCID: PMC3914504 DOI: 10.12703/p6-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aging is a complex process regulated by multiple cellular pathways, including the proteostasis network. The proteostasis network consists of molecular chaperones, stress-response transcription factors, and protein degradation machines that sense and respond to proteotoxic stress and protein misfolding to ensure cell viability. A loss of proteostasis is associated with aging and age-related disorders in diverse model systems, moreover, genetic or pharmacological enhancement of the proteostasis network has been shown to extend lifespan and suppress age-related disease. However, our understanding of the relationship between aging, proteostasis, and the proteostasis network remains unclear. Here, we propose, from studies in Caenorhabditis elegans, that proteostasis collapse is not gradual but rather a sudden and early life event that triggers proteome mismanagement, thereby affecting a multitude of downstream processes. Furthermore, we propose that this phenomenon is not stochastic but is instead a programmed re-modeling of the proteostasis network that may be conserved in other species. As such, we postulate that changes in the proteostasis network may be one of the earliest events dictating healthy aging in metazoans.
Collapse
|
78
|
Abstract
Retrotransposons are transposable elements that duplicate themselves by converting their transcribed RNA genome into cDNA, which is then integrated back into the genome. Retrotransposons can be divided into two major classes based on their mechanism of transposition and the presence or absence of long terminal repeats (LTRs). In contrast to mammalian genomes, in which non-LTR retrotransposons have proliferated, plant genomes show evolutionary evidence of an explosion in LTR retrotransposon copy number. These retrotransposons can comprise a large fraction of the genome (75 % in maize). Although often viewed as molecular parasites, retrotransposons have been shown to influence neighboring gene expression and play a structural and potential regulatory role in the centromere. To prevent retrotransposon activity, eukaryotic cells have evolved overlapping mechanisms to repress transposition. Plants are an excellent system for studying the mechanisms of LTR retrotransposon inhibition such as DNA methylation and small RNA-mediated degradation of retrotransposon transcripts. However, analysis of these multi-copy, mobile elements is considerably more difficult than analysis of single-copy genes located in stable regions of the genome. In this chapter we outline methods for analyzing the progress of LTR retrotransposons through their replication cycle in plants. We describe a mixture of traditional molecular biology experiments, such as Southern, Northern, and Western blotting, in addition to nontraditional techniques designed to take advantage of the specific mechanism of LTR retrotransposition.
Collapse
|
79
|
Scharf A, Piechulek A, von Mikecz A. Effect of nanoparticles on the biochemical and behavioral aging phenotype of the nematode Caenorhabditis elegans. ACS NANO 2013; 7:10695-703. [PMID: 24256469 DOI: 10.1021/nn403443r] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Invertebrate animal models such as the nematode Caenorhabditis elegans (C. elegans) are increasingly used in nanotechnological applications. Research in this area covers a wide range from remote control of worm behavior by nanoparticles (NPs) to evaluation of organismal nanomaterial safety. Despite of the broad spectrum of investigated NP-bio interactions, little is known about the role of nanomaterials with respect to aging processes in C. elegans. We trace NPs in single cells of adult C. elegans and correlate particle distribution with the worm's metabolism and organ function. By confocal microscopy analysis of fluorescently labeled NPs in living worms, we identify two entry portals for the uptake of nanomaterials via the pharynx to the intestinal system and via the vulva to the reproductive system. NPs are localized throughout the cytoplasm and the cell nucleus in single intestinal, and vulval B and D cells. Silica NPs induce an untimely accumulation of insoluble ubiquitinated proteins, nuclear amyloid and reduction of pharyngeal pumping that taken together constitute a premature aging phenotype of C. elegans on the molecular and behavioral level, respectively. Screening of different nanomaterials for their effects on protein solubility shows that polystyrene or silver NPs do not induce accumulation of ubiquitinated proteins suggesting that alteration of protein homeostasis is a unique property of silica NPs. The nematode C. elegans represents an excellent model to investigate the effect of different types of nanomaterials on aging at the molecule, cell, and whole organism level.
Collapse
Affiliation(s)
- Andrea Scharf
- IUF-Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University Duesseldorf , Auf'm Hennekamp 50, 40225 Düsseldorf, Germany
| | | | | |
Collapse
|
80
|
Kadakkuzha BM, Akhmedov K, Capo TR, Carvalloza AC, Fallahi M, Puthanveettil SV. Age-associated bidirectional modulation of gene expression in single identified R15 neuron of Aplysia. BMC Genomics 2013; 14:880. [PMID: 24330282 PMCID: PMC3909179 DOI: 10.1186/1471-2164-14-880] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 12/05/2013] [Indexed: 01/06/2023] Open
Abstract
Background Despite the advances in our understanding of aging-associated behavioral decline, relatively little is known about how aging affects neural circuits that regulate specific behaviors, particularly the expression of genes in specific neural circuits during aging. We have addressed this by exploring a peptidergic neuron R15, an identified neuron of the marine snail Aplysia californica. R15 is implicated in reproduction and osmoregulation and responds to neurotransmitters such as acetylcholine, serotonin and glutamate and is characterized by its action potential bursts. Results We examined changes in gene expression in R15 neurons during aging by microarray analyses of RNAs from two different age groups, mature and old animals. Specifically we find that 1083 ESTs are differentially regulated in mature and old R15 neurons. Bioinformatics analyses of these genes have identified specific biological pathways that are up or downregulated in mature and old neurons. Comparison with human signaling networks using pathway analyses have identified three major networks [(1) cell signaling, cell morphology, and skeletal muscular system development (2) cell death and survival, cellular function maintenance and embryonic development and (3) neurological diseases, developmental and hereditary disorders] altered in old R15 neurons. Furthermore, qPCR analysis of single R15 neurons to quantify expression levels of candidate regulators involved in transcription (CREB1) and translation (S6K) showed that aging is associated with a decrease in expression of these regulators, and similar analysis in three other neurons (L7, L11 and R2) showed that gene expression change during aging could be bidirectional. Conclusions We find that aging is associated with bidirectional changes in gene expression. Detailed bioinformatics analyses and human homolog searches have identified specific biological processes and human-relevant signaling pathways in R15 that are affected during aging. Evaluation of gene expression changes in different neurons suggests specific transcriptomic signature of single neurons during aging.
Collapse
|
81
|
Abstract
Studies in mammals have demonstrated that hyperglycemia and hyperinsulinemia are important factors in aging and cancer. Inactivation of insulin/insulin-like signaling increases lifespan in nematodes, fruit flies, and mice. Life-prolonging effects of caloric restriction are in part due to reduction in IGF-1, insulin, and glucose levels. Antidiabetic biguanides such as metformin, which reduce hyperglycemia and hyperinsulinemia by decreasing insulin resistance, extend lifespan, and inhibit carcinogenesis in rodents. Will antidiabetic biguanides increase lifespan in humans?
Collapse
Affiliation(s)
- Vladimir N Anisimov
- Department of Carcinogenesis and Oncogerontology; N.N. Petrov Research Institute of Oncology; St.Petersburg, Russia
| |
Collapse
|
82
|
Developmental drift as a mechanism for aging: lessons from nematodes. Biogerontology 2013; 14:693-701. [DOI: 10.1007/s10522-013-9462-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/30/2013] [Indexed: 01/16/2023]
|
83
|
Shamir L. Quantitative measurement of human ageing using computer-aided radiographic texture analysis. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION 2013. [DOI: 10.1080/21681163.2013.780352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
84
|
Anisimov VN, Bartke A. The key role of growth hormone-insulin-IGF-1 signaling in aging and cancer. Crit Rev Oncol Hematol 2013; 87:201-23. [PMID: 23434537 PMCID: PMC4095988 DOI: 10.1016/j.critrevonc.2013.01.005] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/22/2012] [Accepted: 01/18/2013] [Indexed: 12/14/2022] Open
Abstract
Studies in mammals have led to the suggestion that hyperglycemia and hyperinsulinemia are important factors in aging. GH/Insulin/insulin-like growth factor-1 (IGF-1) signaling molecules that have been linked to longevity include daf-2 and InR and their homologues in mammals, and inactivation of the corresponding genes increases lifespan in nematodes, fruit flies and mice. The life-prolonging effects of caloric restriction are likely related to decreasing IGF-1 levels. Evidence has emerged that antidiabetic drugs are promising candidates for both lifespan extension and prevention of cancer. Thus, antidiabetic drugs postpone spontaneous carcinogenesis in mice and rats, as well as chemical and radiation carcinogenesis in mice, rats and hamsters. Furthermore, metformin seems to decrease the risk for cancer in diabetic patients.
Collapse
Affiliation(s)
- Vladimir N Anisimov
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov Research Institute of Oncology, St. Petersburg, Russia.
| | | |
Collapse
|
85
|
Bektas A, Zhang Y, Wood WH, Becker KG, Madara K, Ferrucci L, Sen R. Age-associated alterations in inducible gene transcription in human CD4+ T lymphocytes. Aging (Albany NY) 2013; 5:18-36. [PMID: 23385138 PMCID: PMC3616229 DOI: 10.18632/aging.100522] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Age associated immune dysregulation results in a pro-inflammatory state and increased susceptibility to infections and autoimmune diseases. Studies show that signaling initiated at the T cell antigen receptor (TCR) is impaired in CD4+ T cells from old compared to young mice. Here we examined TCR-inducible gene expression changes in CD4+ T cells during human aging. We reveal a dichotomy in gene expression mediated by the inducible transcription factor NF-κB. Most NF-κB target genes are not induced in a sustained manner in cells derived from older compared to younger individuals. However, a subset of NF-κB target genes including genes associated with chronic pro-inflammatory state in the elderly, such as interleukin 1 and 6, continue to be up-regulated even in the absence of NF-κB induction. In addition, we identify other widespread changes in gene expression between cells derived from older and younger individuals. Surprisingly, many of the most noteworthy age-associated changes in human CD4+ T cells differ from those seen in murine models. Our studies provide the first view of age-associated alteration of TCR-inducible gene expression in human CD4+ T cells.
Collapse
Affiliation(s)
- Arsun Bektas
- Laboratory of Molecular Biology and Immunology, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
86
|
Gems D, de la Guardia Y. Alternative Perspectives on Aging in Caenorhabditis elegans: Reactive Oxygen Species or Hyperfunction? Antioxid Redox Signal 2013; 19:321-9. [PMID: 22870907 PMCID: PMC5395017 DOI: 10.1089/ars.2012.4840] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 08/07/2012] [Indexed: 12/30/2022]
Abstract
SIGNIFICANCE The biological mechanisms at the heart of the aging process are a long-standing mystery. An influential theory has it that aging is the result of an accumulation of molecular damage, caused in particular by reactive oxygen species produced by mitochondria. This theory also predicts that processes that protect against oxidative damage (involving detoxification, repair, and turnover) protect against aging and increase lifespan. RECENT ADVANCES However, recent tests of the oxidative damage theory, many using the short-lived nematode worm Caenorhabditis elegans, have often failed to support the theory. This motivates consideration of alternative models. One new theory, conceived by M.V. Blagosklonny, proposes that aging is caused by hyperfunction, that is, overactivity during adulthood of processes (particularly biosynthetic) that contribute to development and reproduction. Such hyperfunction can lead to hypertrophy-associated pathologies, which cause the age increase in death. CRITICAL ISSUES Here we assess whether the hyperfunction theory is at all consistent with what is known about C. elegans aging, and conclude that it is. In particular, during adulthood, C. elegans shows a number of changes that may reflect pathology and/or hyperfunction. Such changes seem to contribute to death, at least in some cases (e.g., yolk accumulation). FUTURE DIRECTIONS Our assessment suggests that the hyperfunction theory is a plausible alternative to the molecular damage theory to explain aging in C. elegans.
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom.
| | | |
Collapse
|
87
|
Eckley DM, Rahimi S, Mantilla S, Orlov NV, Coletta CE, Wilson MA, Iser WB, Delaney JD, Zhang Y, Wood W, Becker KG, Wolkow CA, Goldberg IG. Molecular characterization of the transition to mid-life in Caenorhabditis elegans. AGE (DORDRECHT, NETHERLANDS) 2013; 35:689-703. [PMID: 22610697 PMCID: PMC3636400 DOI: 10.1007/s11357-012-9401-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 03/09/2012] [Indexed: 06/01/2023]
Abstract
We present an initial molecular characterization of a morphological transition between two early aging states. In previous work, an age score reflecting physiological age was developed using a machine classifier trained on images of worm populations at fixed chronological ages throughout their lifespan. The distribution of age scores identified three stable post-developmental states and transitions. The first transition occurs at day 5 post-hatching, where a significant percentage of the population exists in both state I and state II. The temperature dependence of the timing of this transition (Q 10 ~ 1.17) is too low to be explained by a stepwise process with an enzymatic or chemical rate-limiting step, potentially implicating a more complex mechanism. Individual animals at day 5 were sorted into state I and state II groups using the machine classifier and analyzed by microarray expression profiling. Despite being isogenic, grown for the same amount of time, and indistinguishable by eye, these two morphological states were confirmed to be molecularly distinct by hierarchical clustering and principal component analysis of the microarray results. These molecular differences suggest that pharynx morphology reflects the aging state of the whole organism. Our expression profiling yielded a gene set that showed significant overlap with those from three previous age-related studies and identified several genes not previously implicated in aging. A highly represented group of genes unique to this study is involved in targeted ubiquitin-mediated proteolysis, including Skp1-related (SKR), F-box-containing, and BTB motif adaptors.
Collapse
Affiliation(s)
- D. Mark Eckley
- />Image Informatics and Computational Biology Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| | - Salim Rahimi
- />Image Informatics and Computational Biology Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| | - Sandra Mantilla
- />Image Informatics and Computational Biology Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| | - Nikita V. Orlov
- />Image Informatics and Computational Biology Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| | - Christopher E. Coletta
- />Image Informatics and Computational Biology Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| | - Mark A. Wilson
- />Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| | - Wendy B. Iser
- />Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| | - John D. Delaney
- />Image Informatics and Computational Biology Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| | - Yongqing Zhang
- />Gene Expression and Genomics Unit, Central Laboratory Service Section, National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| | - William Wood
- />Gene Expression and Genomics Unit, Central Laboratory Service Section, National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| | - Kevin G. Becker
- />Gene Expression and Genomics Unit, Central Laboratory Service Section, National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| | - Catherine A. Wolkow
- />Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| | - Ilya G. Goldberg
- />Image Informatics and Computational Biology Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| |
Collapse
|
88
|
Hou L, Huang J, Green CD, Boyd-Kirkup J, Zhang W, Yu X, Gong W, Zhou B, Han JDJ. Systems biology in aging: linking the old and the young. Curr Genomics 2013; 13:558-65. [PMID: 23633915 PMCID: PMC3468888 DOI: 10.2174/138920212803251418] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 06/11/2012] [Accepted: 07/25/2012] [Indexed: 12/05/2022] Open
Abstract
Aging can be defined as a process of progressive decline in the physiological capacity of an organism, manifested by accumulated alteration and destabilization at the whole system level. Systems biology approaches offer a promising new perspective to examine the old problem of aging. We begin this review by introducing the concepts of systems biology, and then illustrate the application of systems biology approaches to aging research, from gene expression profiling to network analysis. We then introduce the network that can be constructed using known lifespan and aging regulators, and conclude with a look forward to the future of systems biology in aging research. In summary, systems biology is not only a young field that may help us understand aging at a higher level, but also an important platform that can link different levels of knowledge on aging, moving us closer to a more comprehensive control of systematic decline during aging.
Collapse
Affiliation(s)
- Lei Hou
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China ; Center of Molecular Systems Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
McCormick MA, Kennedy BK. Genome-scale studies of aging: challenges and opportunities. Curr Genomics 2013; 13:500-7. [PMID: 23633910 PMCID: PMC3468883 DOI: 10.2174/138920212803251454] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 06/08/2012] [Accepted: 07/25/2012] [Indexed: 12/21/2022] Open
Abstract
Whole-genome studies involving a phenotype of interest are increasingly prevalent, in part due to a dramatic increase in speed at which many high throughput technologies can be performed coupled to simultaneous decreases in cost. This type of genome-scale methodology has been applied to the phenotype of lifespan, as well as to whole-transcriptome changes during the aging process or in mutants affecting aging. The value of high throughput discovery-based science in this field is clearly evident, but will it yield a true systems-level understanding of the aging process? Here we review some of this work to date, focusing on recent findings and the unanswered puzzles to which they point. In this context, we also discuss recent technological advances and some of the likely future directions that they portend.
Collapse
|
90
|
Johnson TE. 25 years after age-1: genes, interventions and the revolution in aging research. Exp Gerontol 2013; 48:640-3. [PMID: 23466302 DOI: 10.1016/j.exger.2013.02.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 02/15/2013] [Indexed: 11/27/2022]
Abstract
This communication will briefly review more than 30 years of research on aging using the nematode Caenorhabditis elegans ("The Worm") as carried out in the labs of Tom Johnson. We will highlight research directions initiated in the 1980's, which were exciting for those of us trying to turn over a new leaf in aging research. In this narrative, I will discuss primarily the science that I and my lab have been involved with for the last 30 years. This area has been fascinating to those studying the sociology of science as modern aging research has moved to replace the simplistic, poorly controlled and outright fictitious approaches seen in much of the previous aging research.
Collapse
Affiliation(s)
- Thomas E Johnson
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
91
|
Van Nostrand EL, Sánchez-Blanco A, Wu B, Nguyen A, Kim SK. Roles of the developmental regulator unc-62/Homothorax in limiting longevity in Caenorhabditis elegans. PLoS Genet 2013; 9:e1003325. [PMID: 23468654 PMCID: PMC3585033 DOI: 10.1371/journal.pgen.1003325] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 01/03/2013] [Indexed: 12/24/2022] Open
Abstract
The normal aging process is associated with stereotyped changes in gene expression, but the regulators responsible for these age-dependent changes are poorly understood. Using a novel genomics approach, we identified HOX co-factor unc-62 (Homothorax) as a developmental regulator that binds proximal to age-regulated genes and modulates lifespan. Although unc-62 is expressed in diverse tissues, its functions in the intestine play a particularly important role in modulating lifespan, as intestine-specific knockdown of unc-62 by RNAi increases lifespan. An alternatively-spliced, tissue-specific isoform of unc-62 is expressed exclusively in the intestine and declines with age. Through analysis of the downstream consequences of unc-62 knockdown, we identify multiple effects linked to aging. First, unc-62 RNAi decreases the expression of yolk proteins (vitellogenins) that aggregate in the body cavity in old age. Second, unc-62 RNAi results in a broad increase in expression of intestinal genes that typically decrease expression with age, suggesting that unc-62 activity balances intestinal resource allocation between yolk protein expression and fertility on the one hand and somatic functions on the other. Finally, in old age, the intestine shows increased expression of several aberrant genes; these UNC-62 targets are expressed predominantly in neuronal cells in developing animals, but surprisingly show increased expression in the intestine of old animals. Intestinal expression of some of these genes during aging is detrimental for longevity; notably, increased expression of insulin ins-7 limits lifespan by repressing activity of insulin pathway response factor DAF-16/FOXO in aged animals. These results illustrate how unc-62 regulation of intestinal gene expression is responsible for limiting lifespan during the normal aging process.
Collapse
Affiliation(s)
- Eric L. Van Nostrand
- Department of Genetics, Stanford University Medical Center, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
| | - Adolfo Sánchez-Blanco
- Department of Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
| | - Beijing Wu
- Department of Genetics, Stanford University Medical Center, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
| | - Andy Nguyen
- Department of Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
| | - Stuart K. Kim
- Department of Genetics, Stanford University Medical Center, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
| |
Collapse
|
92
|
Inukai S, Slack F. MicroRNAs and the genetic network in aging. J Mol Biol 2013; 425:3601-8. [PMID: 23353823 DOI: 10.1016/j.jmb.2013.01.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 01/21/2023]
Abstract
MicroRNAs (miRNAs) comprise a class of small RNAs important for the posttranscriptional regulation of numerous biological processes. Their combinatorial mode of function, in which an individual miRNA can target many genes and multiple miRNAs share targets, makes them especially suited for regulating processes and pathways at the "network" level. In particular, miRNAs have recently been implicated in aging, which is a complex process known to involve multiple pathways. Findings from genome-wide miRNA expression profiling studies highlight three themes in miRNA function during aging: many miRNAs are differentially expressed, many such miRNAs target known aging-associated pathways, and there are global trends in miRNA expression change over time. In addition, several miRNAs have emerged as potentially coordinating multiple pathways during aging. Elucidating the underlying network structure of genes and miRNAs involved in aging processes promises to advance our understanding of not only aging and associated pathogenesis but also how miRNAs can connect disparate pathways.
Collapse
Affiliation(s)
- Sachi Inukai
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | | |
Collapse
|
93
|
Geier FM, Fuchs S, Valbuena G, Leroi AM, Bundy JG. Profiling the metabolic signature of senescence. Methods Mol Biol 2013; 965:355-371. [PMID: 23296671 DOI: 10.1007/978-1-62703-239-1_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Aging is a complex process, which involves changes in different cellular functions that all can be integrated on the metabolite level. This means that different gene regulation pathways that affect aging might lead to similar changes in metabolism and result in a metabolic signature of senescence. In this chapter, we describe how to establish a metabolic signature of senescence by analyzing the metabolome of various longevity mutants of the model organism Caenorhabditis elegans using gas chromatography-mass spectrometry (GC-MS). Since longevity-associated genes exist for other model organisms and humans, this analysis could be universally applied to body fluids or whole tissue samples for studing the relationship between senescence and metabolism.
Collapse
Affiliation(s)
- Florian M Geier
- Biomolecular Medicine, Department of Surgery and Cancer, Imperial College, London, UK
| | | | | | | | | |
Collapse
|
94
|
Wilson RH, Lai CQ, Lyman RF, Mackay TFC. Genomic response to selection for postponed senescence in Drosophila. Mech Ageing Dev 2012; 134:79-88. [PMID: 23262286 DOI: 10.1016/j.mad.2012.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/01/2012] [Accepted: 11/16/2012] [Indexed: 01/25/2023]
Abstract
Limited lifespan and senescence are quantitative traits, controlled by many interacting genes with individually small and environmentally plastic effects, complicating genetic analysis. We performed genome wide analysis of gene expression for two Drosophila melanogaster lines selected for postponed senescence and one control, unselected line to identify candidate genes affecting lifespan as well as variation in lifespan. We obtained gene expression profiles for young flies of all lines, all lines at the time only 10% of the control lines survived, and the time at which 10% of the selected lines survived. Transcriptional responses to aging involved 19% of the genome. The transcriptional signature of aging involved the down-regulation of genes affecting proteolysis, metabolism, oxidative phosphorylation, and mitochrondrial function; and the up-regulation of genes affecting protein synthesis, immunity, defense responses, and the detoxification of xenobiotic substances. The transcriptional signature of postponed senescence involved the up-regulation of proteases and phosphatases and genes affecting detoxification of xenobiotics; and the down-regulation of genes affecting immunity, defense responses, metabolism and muscle function. Functional tests of 17 mutations confirmed 12 novel genes affecting Drosophila lifespan. Identification of genes affecting longevity by analysis of gene expression changes in lines selected for postponed senescence thus complements alternative genetic approaches.
Collapse
Affiliation(s)
- Rhonda H Wilson
- Department of Genetics and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695-7614, United States
| | | | | | | |
Collapse
|
95
|
Xu X, Kim SK. The GATA transcription factor egl-27 delays aging by promoting stress resistance in Caenorhabditis elegans. PLoS Genet 2012; 8:e1003108. [PMID: 23271974 PMCID: PMC3521710 DOI: 10.1371/journal.pgen.1003108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/05/2012] [Indexed: 11/18/2022] Open
Abstract
Stress is a fundamental aspect of aging, as accumulated damage from a lifetime of stress can limit lifespan and protective responses to stress can extend lifespan. In this study, we identify a conserved Caenorhabditis elegans GATA transcription factor, egl-27, that is involved in several stress responses and aging. We found that overexpression of egl-27 extends the lifespan of wild-type animals. Furthermore, egl-27 is required for the pro-longevity effects from impaired insulin/IGF-1 like signaling (IIS), as reduced egl-27 activity fully suppresses the longevity of worms that are mutant for the IIS receptor, daf-2. egl-27 expression is inhibited by daf-2 and activated by pro-longevity factors daf-16/FOXO and elt-3/GATA, suggesting that egl-27 acts at the intersection of IIS and GATA pathways to extend lifespan. Consistent with its role in IIS signaling, we found that egl-27 is involved in stress response pathways. egl-27 expression is induced in the presence of multiple stresses, its targets are significantly enriched for many types of stress genes, and altering levels of egl-27 itself affects survival to heat and oxidative stress. Finally, we found that egl-27 expression increases between young and old animals, suggesting that increased levels of egl-27 in aged animals may act to promote stress resistance. These results identify egl-27 as a novel factor that links stress and aging pathways.
Collapse
Affiliation(s)
- Xiao Xu
- Cancer Biology Program and Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Stuart K. Kim
- Cancer Biology Program and Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
96
|
Tacutu R, Shore DE, Budovsky A, de Magalhães JP, Ruvkun G, Fraifeld VE, Curran SP. Prediction of C. elegans longevity genes by human and worm longevity networks. PLoS One 2012; 7:e48282. [PMID: 23144747 PMCID: PMC3483217 DOI: 10.1371/journal.pone.0048282] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/21/2012] [Indexed: 11/18/2022] Open
Abstract
Intricate and interconnected pathways modulate longevity, but screens to identify the components of these pathways have not been saturating. Because biological processes are often executed by protein complexes and fine-tuned by regulatory factors, the first-order protein-protein interactors of known longevity genes are likely to participate in the regulation of longevity. Data-rich maps of protein interactions have been established for many cardinal organisms such as yeast, worms, and humans. We propose that these interaction maps could be mined for the identification of new putative regulators of longevity. For this purpose, we have constructed longevity networks in both humans and worms. We reasoned that the essential first-order interactors of known longevity-associated genes in these networks are more likely to have longevity phenotypes than randomly chosen genes. We have used C. elegans to determine whether post-developmental inactivation of these essential genes modulates lifespan. Our results suggest that the worm and human longevity networks are functionally relevant and possess a high predictive power for identifying new longevity regulators.
Collapse
Affiliation(s)
- Robi Tacutu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - David E. Shore
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Arie Budovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vadim E. Fraifeld
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail: (VEF); (SPC)
| | - Sean P. Curran
- Division of Biogerontology, Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
- Department of Molecular and Computational Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail: (VEF); (SPC)
| |
Collapse
|
97
|
Cañuelo A, Gilbert-López B, Pacheco-Liñán P, Martínez-Lara E, Siles E, Miranda-Vizuete A. Tyrosol, a main phenol present in extra virgin olive oil, increases lifespan and stress resistance in Caenorhabditis elegans. Mech Ageing Dev 2012; 133:563-74. [PMID: 22824366 DOI: 10.1016/j.mad.2012.07.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 05/20/2012] [Accepted: 07/13/2012] [Indexed: 01/13/2023]
Abstract
Extra virgin olive oil (EVOO) consumption has been traditionally related to a higher longevity in the human population. EVOO effects on health are often attributed to its unique mixture of phenolic compounds with tyrosol and hydroxityrosol being the most biologically active. Although these compounds have been extensively studied in terms of their antioxidant potential and its role in different pathologies, their actual connection with longevity remains unexplored. This study utilized the nematode Caenorhabditis elegans to investigate the possible effects of tyrosol in metazoan longevity. Significant lifespan extension was observed at one specific tyrosol concentration, which also induced a higher resistance to thermal and oxidative stress and delayed the appearance of a biomarker of ageing. We also report that, although tyrosol was efficiently taken up by these nematodes, it did not induce changes in development, body length or reproduction. In addition, lifespan experiments with several mutant strains revealed that components of the heat shock response (HSF-1) and the insulin pathway (DAF-2 and DAF-16) might be implicated in mediating tyrosol effects in lifespan, while caloric restriction and sirtuins do not seem to mediate its effects. Together, our results point to hormesis as a possible mechanism to explain the effects of tyrosol on longevity in C. elegans.
Collapse
Affiliation(s)
- Ana Cañuelo
- Departamento de Biología Experimental, Universidad de Jaén, Edif. B-3, 23071 Jaén, Spain.
| | | | | | | | | | | |
Collapse
|
98
|
Affiliation(s)
- Sanjay Kalra
- Department of Endocrinology, Bharti Hospital and BRIDE, Karnal, India
| | | | - Rakesh Sahay
- Department of Endocrinology, Osmania Medical College, Hyderabad, India
| |
Collapse
|
99
|
Yashin AI, Arbeev KG, Akushevich I, Kulminski A, Ukraintseva SV, Stallard E, Land KC. The quadratic hazard model for analyzing longitudinal data on aging, health, and the life span. Phys Life Rev 2012; 9:177-88; discussion 195-7. [PMID: 22633776 PMCID: PMC3392540 DOI: 10.1016/j.plrev.2012.05.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 05/15/2012] [Indexed: 01/10/2023]
Abstract
A better understanding of processes and mechanisms linking human aging with changes in health status and survival requires methods capable of analyzing new data that take into account knowledge about these processes accumulated in the field. In this paper, we describe an approach to analyses of longitudinal data based on the use of stochastic process models of human aging, health, and longevity which allows for incorporating state of the art advances in aging research into the model structure. In particular, the model incorporates the notions of resistance to stresses, adaptive capacity, and "optimal" (normal) physiological states. To capture the effects of exposure to persistent external disturbances, the notions of allostatic adaptation and allostatic load are introduced. These notions facilitate the description and explanation of deviations of individuals' physiological indices from their normal states, which increase the chances of disease development and death. The model provides a convenient conceptual framework for comprehensive systemic analyses of aging-related changes in humans using longitudinal data and linking these changes with genotyping profiles, morbidity, and mortality risks. The model is used for developing new statistical methods for analyzing longitudinal data on aging, health, and longevity.
Collapse
Affiliation(s)
- A I Yashin
- Center for Population Health and Aging, Duke University, Durham, NC 27708, United States.
| | | | | | | | | | | | | |
Collapse
|
100
|
Doroszuk A, Jonker MJ, Pul N, Breit TM, Zwaan BJ. Transcriptome analysis of a long-lived natural Drosophila variant: a prominent role of stress- and reproduction-genes in lifespan extension. BMC Genomics 2012; 13:167. [PMID: 22559237 PMCID: PMC3427046 DOI: 10.1186/1471-2164-13-167] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 05/04/2012] [Indexed: 01/15/2023] Open
Abstract
Background While studying long-lived mutants has advanced our understanding of the processes involved in ageing, the mechanisms underlying natural variation in lifespan and ageing rate remain largely unknown. Here, we characterise genome-wide expression patterns of a long-lived, natural variant of Drosophila melanogaster resulting from selection for starvation resistance (SR) and compare it with normal-lived control flies (C). We do this at two time points representing middle age (90% survival) and old age (10% survival) respectively, in three adult diets (malnutrition, optimal food, and overfeeding). Results We found profound differences between Drosophila lines in their age-related expression. Most of the age-associated changes in normal-lived flies were abrogated in long-lived Drosophila. The stress-related genes, including those involved in proteolysis and cytochrome P450, were generally higher expressed in SR flies and showed a smaller increase in expression with age compared to C flies. The genes involved in reproduction showed a lower expression in middle-aged SR than in C flies and, unlike C flies, a lack of their downregulation with age. Further, we found that malnutrition strongly affected age-associated transcript patterns overriding the differences between the lines. However, under less stressful dietary conditions, line and diet affected age-dependent expression similarly. Finally, we present lists of candidate markers of ageing and lifespan extension. Conclusions Our study unveils transcriptional changes associated with lifespan extension in SR Drosophila. The results suggest that natural genetic variation for SR and lifespan can operate through similar transcriptional mechanisms as those of dietary restriction and life-extending mutations.
Collapse
Affiliation(s)
- Agnieszka Doroszuk
- Evolutionary Biology, Institute of Biology, Leiden University, The Netherlands.
| | | | | | | | | |
Collapse
|