51
|
Rath E, Haller D. PKR-signaling in DSS-induced colitis: detrime-N-tal or prote-C-tive? Inflamm Bowel Dis 2013; 19:E48-9. [PMID: 22508681 DOI: 10.1002/ibd.22975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
52
|
Bartlett NW, Slater L, Glanville N, Haas JJ, Caramori G, Casolari P, Clarke DL, Message SD, Aniscenko J, Kebadze T, Zhu J, Mallia P, Mizgerd JP, Belvisi M, Papi A, Kotenko SV, Johnston SL, Edwards MR. Defining critical roles for NF-κB p65 and type I interferon in innate immunity to rhinovirus. EMBO Mol Med 2012; 4:1244-60. [PMID: 23165884 PMCID: PMC3531601 DOI: 10.1002/emmm.201201650] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/19/2012] [Accepted: 09/20/2012] [Indexed: 12/24/2022] Open
Abstract
The importance of NF-κB activation and deficient anti-viral interferon induction in the pathogenesis of rhinovirus-induced asthma exacerbations is poorly understood. We provide the first in vivo evidence in man and mouse that rhinovirus infection enhanced bronchial epithelial cell NF-κB p65 nuclear expression, NF-κB p65 DNA binding in lung tissue and NF-κB-regulated airway inflammation. In vitro inhibition of NF-κB reduced rhinovirus-induced pro-inflammatory cytokines but did not affect type I/III interferon induction. Rhinovirus-infected p65-deficient mice exhibited reduced neutrophilic inflammation, yet interferon induction, antiviral responses and virus loads were unaffected, indicating that NF-κB p65 is required for pro-inflammatory responses, but redundant in interferon induction by rhinoviruses in vivo. Conversely, IFNAR1−/− mice exhibited enhanced neutrophilic inflammation with impaired antiviral immunity and increased rhinovirus replication, demonstrating that interferon signalling was critical to antiviral immunity. We thus provide new mechanistic insights into rhinovirus infection and demonstrate the therapeutic potential of targeting NF-κB p65 (to suppress inflammation but preserve anti-viral immunity) and type I IFN signalling (to enhance deficient anti-viral immunity) to treat rhinovirus-induced exacerbations of airway diseases.
Collapse
Affiliation(s)
- Nathan W Bartlett
- Department of Respiratory Medicine, National Heart Lung Institute, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Abstract
The double-stranded RNA-dependent protein kinase PKR plays multiple roles in cells, in response to different stress situations. As a member of the interferon (IFN)‑Stimulated Genes, PKR was initially recognized as an actor in the antiviral action of IFN, due to its ability to control translation, through phosphorylation, of the alpha subunit of eukaryotic initiation factor 2 (eIF2α). As such, PKR participates in the generation of stress granules, or autophagy and a number of viruses have designed strategies to inhibit its action. However, PKR deficient mice resist most viral infections, indicating that PKR may play other roles in the cell other than just acting as an antiviral agent. Indeed, PKR regulates several signaling pathways, either as an adapter protein and/or using its kinase activity. Here we review the role of PKR as an eIF2α kinase, its participation in the regulation of the NF-κB, p38MAPK and insulin pathways, and we focus on its role during infection with the hepatitis C virus (HCV). PKR binds the HCV IRES RNA, cooperates with some functions of the HCV core protein and may represent a target for NS5A or E2. Novel data points out for a role of PKR as a pro-HCV agent, both as an adapter protein and as an eIF2α-kinase, and in cooperation with the di-ubiquitin-like protein ISG15. Developing pharmaceutical inhibitors of PKR may help in resolving some viral infections as well as stress-related damages.
Collapse
Affiliation(s)
- Stéphanie Dabo
- Unit Hepacivirus and Innate Immunity, Department Virology, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
54
|
Amplification of JNK signaling is necessary to complete the murine gammaherpesvirus 68 lytic replication cycle. J Virol 2012; 86:13253-62. [PMID: 23015701 DOI: 10.1128/jvi.01432-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Several studies have previously defined host-derived signaling events capable of driving lytic gammaherpesvirus replication or enhancing immediate-early viral gene expression. Yet signaling pathways that regulate later stages of the productive gammaherpesvirus replication cycle are still poorly defined. In this study, we utilized a mass spectrometric approach to identify c-Jun as an abundant cellular phosphoprotein present in late stages of lytic murine gammaherpesvirus 68 (MHV68) infection. Kinetically, c-Jun phosphorylation was enhanced as infection progressed, and this correlated with enhanced phosphorylation of the c-Jun amino-terminal kinases JNK1 and JNK2 and activation of AP-1 transcription. These events were dependent on progression beyond viral immediate-early gene expression, but not dependent on viral DNA replication. Both pharmacologic and dominant-negative blockade of JNK1/2 activity inhibited viral replication, and this correlated with inhibition of viral DNA synthesis and reduced viral gene expression. These data suggest a model in which MHV68 by necessity amplifies and usurps JNK/c-Jun signaling as infection progresses in order to facilitate late stages of the MHV68 lytic infection cycle.
Collapse
|
55
|
Günel A. Modelling the interactions between TLR4 and IFNβ pathways. J Theor Biol 2012; 307:137-48. [PMID: 22575970 DOI: 10.1016/j.jtbi.2012.04.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 02/06/2023]
Abstract
Bacterial lipopolysaccharide (LPS) association with their connate receptor TLR4 triggers Type I interferon signaling cascade through its MyD88 independent downstream. Compared to plethora of reported empirical data on both TLR4 and Type I interferon pathways, there is no known model to decipher crosstalk mechanisms between these two crucial innate immune pathogen activated pathways regulating vital transcriptional factors such as nuclear factor-κB (NFκB), IFNβ, the interferon-stimulated gene factor-3 (ISGF3) and an important cancer drug target protein kinase-R (PKR). Innate immune system is based on a sensitive balance of intricate interactions. In elucidating these interactions, in silico integration of pathways has great potential. Attempts confined to single pathway may not be effective in truly addressing source of real systems behavior. This is the first report combining toll-like receptor-4 (TLR4) and interferon beta (IFNβ) pathways in a single in silico model, analyzing their interactions, pinpointing the source of delay in PKR late phase activity and limiting the transcription of IFN and PKR by using a method including an statistical physics technique in reaction equations. The model quite successfully recapitulates published interferon regulatory factor-3 (IRF3) and IFNβ data from mouse macrophages and PKR data from mouse embryonic fibroblast cell lines. The simulations end up with an estimate of IRF3, IFNβ, ISGF3 dose dependent profiles mimicking nonlinear dose response characteristic of the system. Involvement of concomitant PKR downstream can unravel elusive mechanisms in specific profiles like NFκB regulation.
Collapse
Affiliation(s)
- Aylin Günel
- Istanbul Technical University Informatics Institute, Maslak, 34469, Istanbul, Turkiye.
| |
Collapse
|
56
|
Yoshida K, Okamura H, Hoshino Y, Shono M, Yoshioka M, Hinode D, Yoshida H. Interaction between PKR and PACT mediated by LPS-inducible NF-κB in human gingival cells. J Cell Biochem 2012; 113:165-73. [PMID: 21882225 DOI: 10.1002/jcb.23340] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The double-stranded RNA-dependent protein kinase (PKR) is a serine/threonine kinase expressed constitutively in mammalian cells. PKR is activated upon virus infection by double-stranded RNA (dsRNA), and plays a critical role in host antiviral defense mechanisms. PKR is also known to regulate various biological responses, including cell differentiation and apoptosis. However, whether PKR is involved in the progress of periodontitis is not clear. The present study explained the phosphorylation of PKR by LPS in the human gingival cell line, Sa3. Expression of genes encoding LPS receptors was detected in Sa3 cells and treatment of cells with 1 µg/mL LPS for 6 h caused PKR phosphorylation. LPS elevated the expression of the protein activator of PKR (PACT) mRNA and protein, followed by the enhanced association between PACT and PKR within 3 h. In addition, LPS treatment induced the translocation of NF-κB to the nucleus after 30 min, and inhibition of NF-κB decreased the PACT-PKR interaction induced by LPS. The level of pro-inflammatory cytokine mRNA, including interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFα), appeared within 45 min and reached at the maximal levels by 90 min after the addition of LPS. This induction of pro-inflammatory cytokines was not affected by RNAi-mediated silencing of PKR and a pharmacological inhibitor of PKR, whereas the inhibition of NF-κB decreased it. These results indicated that LPS induces PKR phosphorylation and the PACT-PKR association in Sa3 cells. Our results also suggest that NF-κB is involved in the PACT-PKR interaction and the production of pro-inflammatory cytokines in periodontitis.
Collapse
Affiliation(s)
- Kaya Yoshida
- Departments of Fundamental Oral Health Science, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan.
| | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
Interferon cytokine family members shape the immune response to protect the host from both pathologic infections and tumorigenesis. To mediate their physiologic function, interferons evoke a robust and complex signal transduction pathway that leads to the induction of interferon-stimulated genes with both proinflammatory and antiviral functions. Numerous mechanisms exist to tightly regulate the extent and duration of these cellular responses. Among such mechanisms, the post-translational conjugation of ubiquitin polypeptides to protein mediators of interferon signaling has emerged as a crucially important mode of control. In this mini-review, we highlight recent advances in our understanding of these ubiquitin-mediated mechanisms, their exploitation by invading viruses, and their possible utilization for medical intervention.
Collapse
Affiliation(s)
- Serge Y Fuchs
- Department of Animal Biology and Mari Lowe Comparative Oncology Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-4539, USA.
| |
Collapse
|
58
|
Herdy B, Jaramillo M, Svitkin YV, Rosenfeld AB, Kobayashi M, Walsh D, Alain T, Sean P, Robichaud N, Topisirovic I, Furic L, Dowling RJO, Sylvestre A, Rong L, Colina R, Costa-Mattioli M, Fritz JH, Olivier M, Brown E, Mohr I, Sonenberg N. Translational control of the activation of transcription factor NF-κB and production of type I interferon by phosphorylation of the translation factor eIF4E. Nat Immunol 2012; 13:543-550. [PMID: 22544393 DOI: 10.1038/ni.2291] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 03/19/2012] [Indexed: 12/17/2022]
Abstract
Type I interferon is an integral component of the antiviral response, and its production is tightly controlled at the levels of transcription and translation. The eukaryotic translation-initiation factor eIF4E is a rate-limiting factor whose activity is regulated by phosphorylation of Ser209. Here we found that mice and fibroblasts in which eIF4E cannot be phosphorylated were less susceptible to virus infection. More production of type I interferon, resulting from less translation of Nfkbia mRNA (which encodes the inhibitor IκBα), largely explained this phenotype. The lower abundance of IκBα resulted in enhanced activity of the transcription factor NF-κB, which promoted the production of interferon-β (IFN-β). Thus, regulated phosphorylation of eIF4E has a key role in antiviral host defense by selectively controlling the translation of an mRNA that encodes a critical suppressor of the innate antiviral response.
Collapse
Affiliation(s)
- Barbara Herdy
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Maritza Jaramillo
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Yuri V Svitkin
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Amy B Rosenfeld
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Mariko Kobayashi
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, New York, USA
| | - Derek Walsh
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Tommy Alain
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Polen Sean
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Nathaniel Robichaud
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Ivan Topisirovic
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Luc Furic
- Monash University, Clayton, Australia
| | - Ryan J O Dowling
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Annie Sylvestre
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Liwei Rong
- McGill AIDS Center, Lady Davis Institute of the Jewish General Hospital, Montreal, Canada
| | - Rodney Colina
- Laboratorio de Virologia Molecular, Regional Norte-Salto, Universidad de la República, Salto, Uruguay
| | | | - Jörg H Fritz
- Complex Traits Group and Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Martin Olivier
- The Research Institute of the McGill University Health Centre, Centre for the Study of Host Resistance, Departments of Medicine, Microbiology and Immunology, McGill University, Montreal, Canada
| | - Earl Brown
- Department of Biochemistry, Microbiology and Immunology, and Emerging Pathogens Research Centre, University of Ottawa, Ottawa, Canada
| | - Ian Mohr
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, New York, USA
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
59
|
Chevrier N, Mertins P, Artyomov MN, Shalek AK, Iannacone M, Ciaccio MF, Gat-Viks I, Tonti E, DeGrace MM, Clauser KR, Garber M, Eisenhaure TM, Yosef N, Robinson J, Sutton A, Andersen MS, Root DE, von Andrian U, Jones RB, Park H, Carr SA, Regev A, Amit I, Hacohen N. Systematic discovery of TLR signaling components delineates viral-sensing circuits. Cell 2012; 147:853-67. [PMID: 22078882 DOI: 10.1016/j.cell.2011.10.022] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/27/2011] [Accepted: 10/17/2011] [Indexed: 12/30/2022]
Abstract
Deciphering the signaling networks that underlie normal and disease processes remains a major challenge. Here, we report the discovery of signaling components involved in the Toll-like receptor (TLR) response of immune dendritic cells (DCs), including a previously unkown pathway shared across mammalian antiviral responses. By combining transcriptional profiling, genetic and small-molecule perturbations, and phosphoproteomics, we uncover 35 signaling regulators, including 16 known regulators, involved in TLR signaling. In particular, we find that Polo-like kinases (Plk) 2 and 4 are essential components of antiviral pathways in vitro and in vivo and activate a signaling branch involving a dozen proteins, among which is Tnfaip2, a gene associated with autoimmune diseases but whose role was unknown. Our study illustrates the power of combining systematic measurements and perturbations to elucidate complex signaling circuits and discover potential therapeutic targets.
Collapse
Affiliation(s)
- Nicolas Chevrier
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Meliopoulos VA, Andersen LE, Birrer KF, Simpson KJ, Lowenthal JW, Bean AGD, Stambas J, Stewart CR, Tompkins SM, van Beusechem VW, Fraser I, Mhlanga M, Barichievy S, Smith Q, Leake D, Karpilow J, Buck A, Jona G, Tripp RA. Host gene targets for novel influenza therapies elucidated by high-throughput RNA interference screens. FASEB J 2012; 26:1372-86. [PMID: 22247330 PMCID: PMC3316894 DOI: 10.1096/fj.11-193466] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Influenza virus encodes only 11 viral proteins but replicates in a broad range of avian and mammalian species by exploiting host cell functions. Genome-wide RNA interference (RNAi) has proven to be a powerful tool for identifying the host molecules that participate in each step of virus replication. Meta-analysis of findings from genome-wide RNAi screens has shown influenza virus to be dependent on functional nodes in host cell pathways, requiring a wide variety of molecules and cellular proteins for replication. Because rapid evolution of the influenza A viruses persistently complicates the effectiveness of vaccines and therapeutics, a further understanding of the complex host cell pathways coopted by influenza virus for replication may provide new targets and strategies for antiviral therapy. RNAi genome screening technologies together with bioinformatics can provide the ability to rapidly identify specific host factors involved in resistance and susceptibility to influenza virus, allowing for novel disease intervention strategies.
Collapse
Affiliation(s)
- Victoria A Meliopoulos
- Department of Infectious Diseases, University of Georgia, 111 Carlton St., Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Vitiello M, Galdiero M, Finamore E, Galdiero S, Galdiero M. NF-κB as a potential therapeutic target in microbial diseases. MOLECULAR BIOSYSTEMS 2012; 8:1108-20. [DOI: 10.1039/c2mb05335g] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
62
|
Ludwig S. Disruption of virus-host cell interactions and cell signaling pathways as an anti-viral approach against influenza virus infections. Biol Chem 2011; 392:837-47. [PMID: 21823902 DOI: 10.1515/bc.2011.121] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Influenza is still one of the major plagues worldwide with the threatening potential to cause pandemics. In recent years, increasing levels of resistance to the four FDA approved anti-influenza virus drugs have been described. This situation underlines the urgent need for novel anti-virals in preparation for future influenza epidemics or pandemics. Although the anti-virals currently in use target viral factors such as the neuraminidase or the M2 ion channel, there is an increase in pre-clinical approaches that focus on cellular factors or pathways that directly or indirectly interact with virus replication. This does not only include inhibitors of virus-supportive signaling cascades but also interaction blockers of viral proteins with host cell proteins. This review aims to highlight some of these novel approaches that represent a paradigm change in anti-viral strategies against the influenza virus. Although most of these approaches are still in an early phase of preclinical development they might be very promising particularly with respect to the prevention of viral resistance to potential drugs.
Collapse
Affiliation(s)
- Stephan Ludwig
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany.
| |
Collapse
|
63
|
Zhang Z, Kim T, Bao M, Facchinetti V, Jung SY, Ghaffari AA, Qin J, Cheng G, Liu YJ. DDX1, DDX21, and DHX36 helicases form a complex with the adaptor molecule TRIF to sense dsRNA in dendritic cells. Immunity 2011; 34:866-78. [PMID: 21703541 DOI: 10.1016/j.immuni.2011.03.027] [Citation(s) in RCA: 279] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 01/24/2011] [Accepted: 03/15/2011] [Indexed: 01/14/2023]
Abstract
The innate immune system detects viral infection predominantly by sensing viral nucleic acids. We report the identification of a viral sensor, consisting of RNA helicases DDX1, DDX21, and DHX36, and the adaptor molecule TRIF, by isolation and sequencing of poly I:C-binding proteins in myeloid dendritic cells (mDCs). Knockdown of each helicase or TRIF by shRNA blocked the ability of mDCs to mount type I interferon (IFN) and cytokine responses to poly I:C, influenza A virus, and reovirus. Although DDX1 bound poly I:C via its Helicase A domain, DHX36 and DDX21 bound the TIR domain of TRIF via their HA2-DUF and PRK domains, respectively. This sensor was localized within the cytosol, independent of the endosomes. Thus, the DDX1-DDX21-DHX36 complex represents a dsRNA sensor that uses the TRIF pathway to activate type I IFN responses in the cytosol of mDCs.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Department of Immunology, Center for Cancer Immunology Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Kalia M, Kukol A. Structure and dynamics of the kinase IKK-β--A key regulator of the NF-kappa B transcription factor. J Struct Biol 2011; 176:133-42. [PMID: 21820058 DOI: 10.1016/j.jsb.2011.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 12/29/2022]
Abstract
The inhibitor κB kinase-β (IKK-β) phosphorylates the NF-κB inhibitor protein IκB leading to the translocation of the transcription factor NF-κB to the nucleus. The transcription factor NF-κB and consequently IKK-β are central to signal transduction pathways of mammalian cells. The purpose of this research was to develop a 3D structural model of the IKK-β kinase domain with its ATP cofactor and investigate its dynamics and ligand binding potential. Through a combination of comparative modelling and simulated heating/annealing molecular dynamics (SAMD) simulation in explicit water the model accuracy could be substantially improved compared to comparative modelling on its own as shown by model validation measures. The structure revealed the details of ATP/Mg(2+) binding indicating hydrophobic interactions with the adenine base and a significant contribution of Mg(2+) as a bridge between ATP phosphate groups and negatively charged side chains. The molecular dynamics trajectories of the ATP-bound and free enzyme showed two conformations in each case, which contributed to the majority of the trajectory. The ATP-free enzyme revealed a novel binding site distant from the ATP binding site that was not encountered in the ATP bound enzyme. Based on the overall structural flexibility, it is suggested that a truncated version of the kinase domain from Ala14 to Leu265 should be subjected to crystallisation trials. The 3D structure of this enzyme will enable rational design of new ligands and analysis of protein-protein interactions. Furthermore, our results may provide a new impetus for wet-lab based structural investigation focussing on a truncated kinase domain.
Collapse
Affiliation(s)
- Munishikha Kalia
- School of Life Sciences, University of Hertfordshire, Hatfield AL10 9AB, United Kingdom
| | | |
Collapse
|
65
|
Tong L, Heim RA, Wu S. Nitric oxide: a regulator of eukaryotic initiation factor 2 kinases. Free Radic Biol Med 2011; 50:1717-25. [PMID: 21463677 PMCID: PMC3096732 DOI: 10.1016/j.freeradbiomed.2011.03.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 03/24/2011] [Accepted: 03/26/2011] [Indexed: 12/18/2022]
Abstract
Generation of nitric oxide (NO(•)) can upstream induce and downstream mediate the kinases that phosphorylate the α subunit of eukaryotic initiation factor 2 (eIF2α), which plays a critical role in regulating gene expression. There are four known eIF2α kinases (EIF2AKs), and NO(•) affects each one uniquely. Whereas NO(•) directly activates EIF2AK1 (HRI), it indirectly activates EIF2AK3 (PERK). EIF2AK4 (GCN2) is activated by depletion of l-arginine, which is used by nitric oxide synthase (NOS) during the production of NO(•). Finally EIF2AK2 (PKR), which can mediate inducible NOS expression and therefore NO(•) production, can also be activated by NO(•). The production of NO(•) and activation of EIF2AKs coordinately regulate physiological and pathological events such as innate immune response and cell apoptosis.
Collapse
Affiliation(s)
| | | | - Shiyong Wu
- Address correspondence to: Dr. Shiyong Wu, Edison Biotechnology Institute, 101 Konneker Laboratories, The Ridges, Building 25, Athens, OH 45701, Tel. (740) 597-1318, Fax (740) 593-4795;
| |
Collapse
|
66
|
Abbasi M, Lavasanifar A, Uludaˇ H. Recent attempts at RNAi-mediated P-glycoprotein downregulation for reversal of multidrug resistance in cancer. Med Res Rev 2011; 33:33-53. [DOI: 10.1002/med.20244] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Meysam Abbasi
- Department of Biomedical Engineering, Faculty of Medicine; University of Alberta; Edmonton Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences; University of Alberta; Edmonton Canada
- Department of Chemical and Materials Engineering, Faculty of Engineering; University of Alberta; Edmonton Canada
| | - Hasan Uludaˇ
- Department of Biomedical Engineering, Faculty of Medicine; University of Alberta; Edmonton Canada
- Faculty of Pharmacy and Pharmaceutical Sciences; University of Alberta; Edmonton Canada
- Department of Chemical and Materials Engineering, Faculty of Engineering; University of Alberta; Edmonton Canada
| |
Collapse
|
67
|
Yu HR, Huang HC, Kuo HC, Sheen JM, Ou CY, Hsu TY, Yang KD. IFN-α production by human mononuclear cells infected with varicella-zoster virus through TLR9-dependent and -independent pathways. Cell Mol Immunol 2011; 8:181-8. [PMID: 21317915 DOI: 10.1038/cmi.2010.84] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Understanding the defense mechanisms of the host of an organism is important for infection control. In previous studies, we demonstrated that interferon-α (IFN-α), but not IL-12, was produced by human peripheral blood mononuclear cells infected with varicella-zoster virus (VZV). Here, we investigated what kind of cell(s) and which signal molecule(s) are involved in IFN-α production. Using cell isolation and ELISA, we found that plasmacytoid dendritic cells (pDCs) were responsible for IFN-α production during VZV infection. We also found that Toll-like receptor 9 (TLR9) was involved in VZV-induced IFN-α production because inhibitory CpG oligodeoxynucleotide inhibited IFN-α production. UV-inactivated VZV-induced IFN-α production was lower than that of active VZV, indicating another TLR9-independent pathway. Further studies demonstrated that double-stranded RNA-dependent protein kinase, but not DNA-dependent protein kinase was involved in VZV-induced IFN-α production. Together, these results suggest that pDCs play an important role in IFN-α production during VZV infection through TLR9-dependent and -independent pathways.
Collapse
Affiliation(s)
- Hong-Ren Yu
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Taiwan
| | | | | | | | | | | | | |
Collapse
|
68
|
Boonyaratanakornkit J, Bartlett E, Schomacker H, Surman S, Akira S, Bae YS, Collins P, Murphy B, Schmidt A. The C proteins of human parainfluenza virus type 1 limit double-stranded RNA accumulation that would otherwise trigger activation of MDA5 and protein kinase R. J Virol 2011; 85:1495-506. [PMID: 21123378 PMCID: PMC3028907 DOI: 10.1128/jvi.01297-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 11/23/2010] [Indexed: 12/25/2022] Open
Abstract
Human parainfluenza virus type 1 (HPIV1) is an important respiratory pathogen in young children, the immunocompromised, and the elderly. We found that infection with wild-type (WT) HPIV1 suppressed the innate immune response in human airway epithelial cells by preventing not only phosphorylation of interferon regulatory factor 3 (IRF3) but also degradation of IκBβ, thereby inhibiting IRF3 and NF-κB activation, respectively. Both of these effects were ablated by a F170S substitution in the HPIV1 C proteins (F170S) or by silencing the C open reading frame [P(C-)], resulting in a potent beta interferon (IFN-β) response. Using murine knockout cells, we found that IFN-β induction following infection with either mutant relied mainly on melanoma-associated differentiation gene 5 (MDA5) rather than retinoic acid-inducible gene I (RIG-I). Infection with either mutant, but not WT HPIV1, induced a significant accumulation of intracellular double-stranded RNA (dsRNA). These mutant viruses directed a marked increase in the accumulation of viral genome, antigenome, and mRNA that was coincident with the accumulation of dsRNA. In addition, the amount of viral proteins was reduced compared to that of WT HPIV1. Thus, the accumulation of dsRNA might be a result of an imbalance in the N protein/genomic RNA ratio leading to incomplete encapsidation. Protein kinase R (PKR) activation and IFN-β induction followed the kinetics of dsRNA accumulation. Interestingly, the C proteins did not appear to directly inhibit intracellular signaling involved in IFN-β induction; instead, their role in preventing IFN-β induction appeared to be in suppressing the formation of dsRNA. PKR activation contributed to IFN-β induction and also was associated with the reduction in the amount of viral proteins. Thus, the HPIV1 C proteins normally limit the accumulation of dsRNA and thereby limit activation of IRF3, NF-κB, and PKR. If C protein function is compromised, as in the case of F170S HPIV1, the resulting PKR activation and reduction in viral protein levels enable the host to further reduce C protein levels and to mount a potent antiviral type I IFN response.
Collapse
Affiliation(s)
- Jim Boonyaratanakornkit
- Laboratory of Infectious Diseases, RNA Viruses Section, NIAID, NIH, Bethesda, Maryland 20892, Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan, Department of Biological Sciences, Sungkyunkwan University, Choenchoen-Dong, Jangan-Gu, Suwon, Gyeonggi-Do 440-746, South Korea
| | - Emmalene Bartlett
- Laboratory of Infectious Diseases, RNA Viruses Section, NIAID, NIH, Bethesda, Maryland 20892, Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan, Department of Biological Sciences, Sungkyunkwan University, Choenchoen-Dong, Jangan-Gu, Suwon, Gyeonggi-Do 440-746, South Korea
| | - Henrick Schomacker
- Laboratory of Infectious Diseases, RNA Viruses Section, NIAID, NIH, Bethesda, Maryland 20892, Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan, Department of Biological Sciences, Sungkyunkwan University, Choenchoen-Dong, Jangan-Gu, Suwon, Gyeonggi-Do 440-746, South Korea
| | - Sonja Surman
- Laboratory of Infectious Diseases, RNA Viruses Section, NIAID, NIH, Bethesda, Maryland 20892, Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan, Department of Biological Sciences, Sungkyunkwan University, Choenchoen-Dong, Jangan-Gu, Suwon, Gyeonggi-Do 440-746, South Korea
| | - Shizuo Akira
- Laboratory of Infectious Diseases, RNA Viruses Section, NIAID, NIH, Bethesda, Maryland 20892, Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan, Department of Biological Sciences, Sungkyunkwan University, Choenchoen-Dong, Jangan-Gu, Suwon, Gyeonggi-Do 440-746, South Korea
| | - Yong-Soo Bae
- Laboratory of Infectious Diseases, RNA Viruses Section, NIAID, NIH, Bethesda, Maryland 20892, Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan, Department of Biological Sciences, Sungkyunkwan University, Choenchoen-Dong, Jangan-Gu, Suwon, Gyeonggi-Do 440-746, South Korea
| | - Peter Collins
- Laboratory of Infectious Diseases, RNA Viruses Section, NIAID, NIH, Bethesda, Maryland 20892, Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan, Department of Biological Sciences, Sungkyunkwan University, Choenchoen-Dong, Jangan-Gu, Suwon, Gyeonggi-Do 440-746, South Korea
| | - Brian Murphy
- Laboratory of Infectious Diseases, RNA Viruses Section, NIAID, NIH, Bethesda, Maryland 20892, Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan, Department of Biological Sciences, Sungkyunkwan University, Choenchoen-Dong, Jangan-Gu, Suwon, Gyeonggi-Do 440-746, South Korea
| | - Alexander Schmidt
- Laboratory of Infectious Diseases, RNA Viruses Section, NIAID, NIH, Bethesda, Maryland 20892, Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan, Department of Biological Sciences, Sungkyunkwan University, Choenchoen-Dong, Jangan-Gu, Suwon, Gyeonggi-Do 440-746, South Korea
| |
Collapse
|
69
|
Folly BB, Weffort-Santos AM, Fathman CG, Soares LRB. Dengue-2 structural proteins associate with human proteins to produce a coagulation and innate immune response biased interactome. BMC Infect Dis 2011; 11:34. [PMID: 21281507 PMCID: PMC3037883 DOI: 10.1186/1471-2334-11-34] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 01/31/2011] [Indexed: 11/17/2022] Open
Abstract
Background Dengue virus infection is a public health threat to hundreds of millions of individuals in the tropical regions of the globe. Although Dengue infection usually manifests itself in its mildest, though often debilitating clinical form, dengue fever, life-threatening complications commonly arise in the form of hemorrhagic shock and encephalitis. The etiological basis for the virus-induced pathology in general, and the different clinical manifestations in particular, are not well understood. We reasoned that a detailed knowledge of the global biological processes affected by virus entry into a cell might help shed new light on this long-standing problem. Methods A bacterial two-hybrid screen using DENV2 structural proteins as bait was performed, and the results were used to feed a manually curated, global dengue-human protein interaction network. Gene ontology and pathway enrichment, along with network topology and microarray meta-analysis, were used to generate hypothesis regarding dengue disease biology. Results Combining bioinformatic tools with two-hybrid technology, we screened human cDNA libraries to catalogue proteins physically interacting with the DENV2 virus structural proteins, Env, cap and PrM. We identified 31 interacting human proteins representing distinct biological processes that are closely related to the major clinical diagnostic feature of dengue infection: haemostatic imbalance. In addition, we found dengue-binding human proteins involved with additional key aspects, previously described as fundamental for virus entry into cells and the innate immune response to infection. Construction of a DENV2-human global protein interaction network revealed interesting biological properties suggested by simple network topology analysis. Conclusions Our experimental strategy revealed that dengue structural proteins interact with human protein targets involved in the maintenance of blood coagulation and innate anti-viral response processes, and predicts that the interaction of dengue proteins with a proposed human protein interaction network produces a modified biological outcome that may be behind the hallmark pathologies of dengue infection.
Collapse
Affiliation(s)
- Brenda B Folly
- Federal University of Paraná, Pharmaceutical Sciences Post-graduation Program, Av. Pref. Lothário Meissner 632, CEP 80210-170, Curitiba-PR, Brazil
| | | | | | | |
Collapse
|
70
|
Kolniak TA, Sullivan JM. Rapid, cell-based toxicity screen of potentially therapeutic post-transcriptional gene silencing agents. Exp Eye Res 2011; 92:328-37. [PMID: 21256844 DOI: 10.1016/j.exer.2011.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 12/16/2010] [Accepted: 01/12/2011] [Indexed: 11/15/2022]
Abstract
Post-transcriptional gene silencing (PTGS) agents such as antisense, ribozymes and RNA interference (RNAi) have great potential as therapeutics for a variety of eye diseases including retinal and macular degenerations, glaucoma, corneal degenerations, inflammatory and viral conditions. Despite their great potential and over thirty years of academic and corporate research only a single PTGS agent is currently approved for human therapy for a single disease. Substantial challenges exist to achieving both efficacious and safe PTGS agents. Efficacy, as measured in specific target mRNA and protein knockdown, depends upon a number of complex factors including the identification of rare regions of target mRNA accessibility, cellular co-localization of the PTGS agent in sufficient concentration with the target mRNA, and stability of the PTGS agent in the target cells in which it is delivered or expressed. Safety is commonly measured by lack of cytotoxicity or other deleterious cellular responses in cells in which the PTGS agent is delivered or expressed. To relieve major bottlenecks in RNA drug discovery novel, efficient, inexpensive, and rapid tools are needed to facilitate lead identification of the most efficacious PTGS agent, rational optimization of efficacy of the lead agent, and lead agent safety determinations. We have developed a technological platform using cell culture expression systems that permits lead identification and efficacy optimization of PTGS agents against arbitrary disease target mRNAs under relatively high throughput conditions. Here, we extend the technology platform to include PTGS safety determinations in cultured human cells that are expected to represent the common cellular housekeeping microenvironment. We developed a high throughput screening (HTS) cytotoxicity assay in 96-well plate format based around the SYTOX Green dye which is excluded from healthy viable cells and becomes substantially fluorescent only after entering cells and binding to nuclear DNA. In this format we can test a number of PTGS agents for cellular toxicity relative to control elements. We also developed an HTS 96-well plate assay that allows us to assess the impact of any given PTGS agent on stimulating a variety of common cellular stress signaling pathways (e.g. CRE, SRE, AP-1, NFκB, Myc, and NFAT) that could indicate possible deleterious effects of PTGS agents either dependent or independent of base pairing complementarity with target mRNAs. To this end we exploited the secreted alkaline phosphatase (SEAP) Pathway Profiling System where the expression of the secreted reporter protein is coupled to transcriptional activation of a variety of promoter elements involved in common cell signaling pathways. We found that a variety of lead hammerhead ribozyme (hhRz) and short hairpin (shRNA) expression constructs did not exert cytotoxicity in human cells when driven by highly active RNA Pol-III promoters. We also found that most of the cell signaling pathways tested (CRE, SRE, Myc, and NFAT) did not significantly couple through upregulation to expression of the set of PTGS agents tested. AP-1 and NFκB upregulation both appear to couple to the expression of some PTGS agents which likely reflect the known properties of these pathways to be stimulated by abundant small structured RNAs.
Collapse
Affiliation(s)
- Tiffany A Kolniak
- Department of Ophthalmology (Ross Eye Institute), University at Buffalo-SUNY, Buffalo, NY 14209, United States
| | | |
Collapse
|
71
|
Pindel A, Sadler A. The Role of Protein Kinase R in the Interferon Response. J Interferon Cytokine Res 2011; 31:59-70. [DOI: 10.1089/jir.2010.0099] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Agnieszka Pindel
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Melbourne, Australia
| | - Anthony Sadler
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Melbourne, Australia
| |
Collapse
|
72
|
Harashima A, Guettouche T, Barber GN. Phosphorylation of the NFAR proteins by the dsRNA-dependent protein kinase PKR constitutes a novel mechanism of translational regulation and cellular defense. Genes Dev 2010; 24:2640-53. [PMID: 21123651 DOI: 10.1101/gad.1965010] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Here, we describe a new mechanism of host defense that involves the nuclear factors associated with dsRNA (NFAR1 [90 kDa] and NFAR2 [110 kDa]), which constitute part of the shuttling ribonuclear protein (RNP) complex. Activation of the dsRNA-activated protein kinase PKR by viral RNA enabled phosphorylation of NFAR1 and NFAR2 on Thr 188 and Thr 315, an event found to be evolutionarily conserved in Xenopus. Phosphorylated NFAR1 and NFAR2 became dissociated from nuclear factor 45 (NF45), which was requisite for NFAR reshuttling, causing the NFARs to be retained on ribosomes, associate with viral transcripts, and impede viral replication. Cre-loxP animals with depletion of the NFARs in the thymus were exquisitely sensitive to the cytoplasmic replicating virus VSV (vesicular stomatitis virus). Thus, the NFARs constitute a novel, conserved mechanism of host defense used by the cell to detect and impede aberrant translation events.
Collapse
Affiliation(s)
- Ai Harashima
- Department of Medicine, University of Miami School of Medicine, Florida 33136, USA
| | | | | |
Collapse
|
73
|
Xiang Z, Dong C, Qi L, Chen W, Huang L, Li Z, Xia Q, Liu D, Huang M, Weng S, He J. Characteristics of the interferon regulatory factor pairs zfIRF5/7 and their stimulation expression by ISKNV Infection in zebrafish (Danio rerio). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:1263-1273. [PMID: 20637800 DOI: 10.1016/j.dci.2010.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 07/07/2010] [Accepted: 07/08/2010] [Indexed: 05/29/2023]
Abstract
The interferon regulatory factor (IRF) family plays critical roles in a host's virus infection responses. In this study, two IRF family members, zfIRF5 and zfIRF7, are identified in zebrafish. The zfIRF5 protein encodes 297 amino acids without the carboxyl IRF3 domain. We suggest that zfIRF5 is a new kind of splicing variant, following the nine other kinds of IRF5 splicing variants found in mammals. The zfIRF7 protein is identified as a member of the IRF7 family, compared to the human IRF7 protein, the amino acid sequence of zfIRF7 only with 29% identity and devoid a virus activated domain (VAD). There zfIRF5/7 proteins are expressed in all 11 selective zebrafish tissues within 6-120h of embryonic development. Laser confocal microscopy shows that the full length the proteins are separately located in the cytoplasm. Mutation experiments show that the nuclear localization signals (NLS) of zfIRF7 and zfIRF-5 are at the N-terminal and C-terminals, respectively. In the assays, zfIRF7 expression increases during infectious spleen and kidney necrosis virus (ISKNV) infection and by poly(I:C) and LPS injections, both of which activate the transcriptional activity of L8G5-luc plasmids. The over-expression of zfIRF5/7 activates the interferon-stimulated response elements (ISRE) signal pathway. In addition, zfIRF7 can activate IFN-β, zfIRF5/7. Co-immunoprecipitation assays and laser co-confocal microscopy show that the two proteins could interact, and zfIRF7 may stimulate zfIRF5 to move into the nucleus. The co-expression of zfIRF5/IRF7 suppresses the transcriptional activities of IFN-β in HEK293T cells.
Collapse
Affiliation(s)
- Zhiming Xiang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Mounir Z, Koromilas AE. Uncovering the PKR pathway's potential for treatment of tumors. Future Oncol 2010; 6:643-5. [PMID: 20465378 DOI: 10.2217/fon.10.45] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
75
|
Abstract
Protein degradation is the cell's mechanism of eliminating misfolded or unwanted proteins. The pathway by which proteins are degraded occurs through the ubiquitin-proteasome system. Ubiquitin is a small 9-kD (kDa) protein that is attached to proteins. A minimum of four ubiquitins are required for proteins to be recognized by the degradation machinery, known as the 26S proteasome. Defects in ubiquitination have been identified in a number of diseases, including cancer, neurodegenerative diseases, and metabolic disorders. We sought to exploit the delicate balance between protein synthesis and degradation to treat cancer by designing a chimeric molecule, known as Protac (Proteolysis Targeting Chimeric molecule). Protacs are heterobifunctional nanomolecules that are approximately 10 nm in size and can recruit proteins that cause cancer to the ubiquitin-proteasome machinery for degradation. In this review, we discuss the development of this novel technology for the treatment of cancer.
Collapse
Affiliation(s)
- Kathleen M Sakamoto
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
| |
Collapse
|
76
|
Weng KF, Chen LL, Huang PN, Shih SR. Neural pathogenesis of enterovirus 71 infection. Microbes Infect 2010; 12:505-10. [PMID: 20348010 DOI: 10.1016/j.micinf.2010.03.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 03/17/2010] [Indexed: 01/20/2023]
Abstract
Enterovirus 71 (EV71) is a neurotropic pathogen that can cause severe neural diseases and complications on infected patients. Clinical observations showed that EV71-induced immune responses may be associated with virus induced neurogenic pulmonary edema. Here reviewed studies that discovered several host molecules as potential factors for EV71 virulence.
Collapse
Affiliation(s)
- Kuo-Feng Weng
- Research Center for Emerging Viral Infections, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan Tao-Yuan, Taiwan 333, ROC
| | | | | | | |
Collapse
|
77
|
De Nardo D, De Nardo CM, Nguyen T, Hamilton JA, Scholz GM. Signaling crosstalk during sequential TLR4 and TLR9 activation amplifies the inflammatory response of mouse macrophages. THE JOURNAL OF IMMUNOLOGY 2010; 183:8110-8. [PMID: 19923461 DOI: 10.4049/jimmunol.0901031] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The TLR family of pattern recognition receptors is largely responsible for meditating the activation of macrophages by pathogens. Because macrophages may encounter multiple TLR ligands during an infection, signaling crosstalk between TLR pathways is likely to be important for the tailoring of inflammatory reactions to pathogens. Here, we show that rather than inducing tolerance, LPS pretreatment primed the inflammatory response (e.g., TNF production) of mouse bone marrow-derived macrophages (BMM) to the TLR9 ligand, CpG DNA. The priming effects of LPS, which correlated with enhanced Erk1/2, JNK, and p38 MAPK activation, appeared to be mediated via both c-Fms-dependent and -independent mechanisms. LPS pretreatment and inhibition of the M-CSF receptor, c-Fms, with GW2580 had comparable effects on CpG DNA-induced Erk1/2 and p38 MAPK activation. However, c-Fms inhibition did not enhance CpG DNA-induced JNK activation; also, the levels of TNF produced were significantly lower than those from LPS-primed BMM. Thus, the priming effects of LPS on TLR9 responses appear to be largely mediated via the c-Fms-independent potentiation of JNK activity. Indeed, inhibition of JNK abrogated the enhanced production of TNF by LPS-pretreated BMM. The c-Fms-dependent priming effects of LPS are unlikely to be a consequence of the inhibitory constraints of M-CSF signaling on TLR9 expression being relieved by LPS; instead, LPS may exert its priming effects via signaling molecules downstream of TLR9. In summary, our findings highlight the importance of signaling crosstalk between TLRs, as well as between TLRs and c-Fms, in regulating the inflammatory reaction to pathogens.
Collapse
Affiliation(s)
- Dominic De Nardo
- Arthritis and Inflammation Research Centre and Cooperative Research Centre for Chronic Inflammatory Diseases, Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
78
|
The IKK Kinases: Operators of Antiviral Signaling. Viruses 2010; 2:55-72. [PMID: 21994600 PMCID: PMC3185564 DOI: 10.3390/v2010055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 12/30/2009] [Accepted: 01/06/2010] [Indexed: 12/24/2022] Open
Abstract
The ability of a cell to combat an intracellular pathogen requires a mechanism to recognize the threat and elicit a transcriptional response against it. In the context of virus infection, the cell must take measures to inhibit viral replication, meanwhile, convey warning signals to neighboring cells of the imminent threat. This immune response is predominantly mediated by the production of cytokines, notably, interferon beta (IFNβ). IFNβ signaling results in the transcriptional induction of over one hundred antiviral gene products whose timely expression renders infected cells more capable of inhibiting virus replication, while providing the uninfected cells with the reinforcements to generate a less permissive cellular environment. Induction of IFNβ and many aspects of the antiviral response pivot on the function of the IKK and IKK-related kinases. Despite sharing high levels of homology and some degree of functional redundancy, the classic IKK kinases: IKKα and IKKβ, and the IKK-related kinases: TBK1 and IKKɛ, perform distinct roles in regulating the host antiviral defense. These kinases serve as molecular operators in their cooperative ability to integrate incoming cellular cues and act on a range of essential antiviral transcription factors to reshape the cellular transcriptome during infection.
Collapse
|
79
|
Tas SW, Vervoordeldonk MJBM, Tak PP. Gene therapy targeting nuclear factor-kappaB: towards clinical application in inflammatory diseases and cancer. Curr Gene Ther 2009; 9:160-70. [PMID: 19519361 PMCID: PMC2864453 DOI: 10.2174/156652309788488569] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nuclear factor (NF)-κB is regarded as one of the most important transcription factors and plays an essential role in the transcriptional activation of pro-inflammatory cytokines, cell proliferation and survival. NF-κB can be activated via two distinct NF-κB signal transduction pathways, the so-called canonical and non-canonical pathways, and has been demonstrated to play a key role in a wide range of inflammatory diseases and various types of cancer. Much effort has been put in strategies to inhibit NF-κB activation, for example by the development of pharmacological compounds that selectively inhibit NF-κB activity and therefore would be beneficial for immunotherapy of transplantation, autoimmune and allergic diseases, as well as an adjuvant approach in patients treated with chemotherapy for cancer. Gene therapy targeting NF-κB is a promising new strategy with the potential of long-term effects and has been explored in a wide variety of diseases, ranging from cancer to transplantation medicine and autoimmune diseases. In this review we discuss recent progress made in the development of NF-κB targeted gene therapy and the evolution towards clinical application.
Collapse
Affiliation(s)
- Sander W Tas
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
80
|
Enterovirus 71 induces COX-2 expression via MAPKs, NF-kappaB, and AP-1 in SK-N-SH cells: Role of PGE(2) in viral replication. Cell Signal 2009; 22:234-46. [PMID: 19800403 DOI: 10.1016/j.cellsig.2009.09.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 09/10/2009] [Accepted: 09/14/2009] [Indexed: 12/21/2022]
Abstract
The enterovirus 71 (EV71) causes severe neurological diseases that were mediated through cyclooxygenase-2 (COX-2) expression in brain. However, the mechanisms underlying EV71-initiated intracellular signaling pathways leading to COX-2 expression remain unknown in neurons. Here we report that exposure of SK-N-SH cells to EV71 increased COX-2 expression and PGE(2) generation in a time- and virus titer-dependent manner, revealed by Western blot, real-time PCR, and PGE(2) analyses. These EV71-induced responses were mediated through activation of p42/p44 MAPK, p38 MAPK, JNK, NF-kappaB, and AP-1, revealed by using selective pharmacological inhibitors or transfection with respective siRNAs. Consistently, EV71-stimulated translocation of NF-kappaB into the nucleus and degradation of IkappaBalpha in the cytosol was blocked by pretreatment with the selective inhibitors of MEK1/2 (U0126) and NF-kappaB (Bay11-7085), respectively, suggesting that MEK1/2-p42/p44 MAPK cascade linking to NF-kappaB was involved in COX-2 expression. In addition, EV71-induced AP-1 subunits (c-jun and c-fos mRNA) expression was also attenuated by pretreatment with a selective JNK inhibitor SP600125, suggesting that JNK cascade linking to AP-1 was involved in COX-2 expression induced by EV71. These findings suggested that up-regulation of COX-2 associated with the release of PGE(2) from EV71-infected SK-N-SH cells which was mediated through activation of p38 MAPK, JNK, p42/p44 MAPK, NF-kappaB, and AP-1 pathways.
Collapse
|
81
|
Role of HERV-W syncytin-1 in placentation and maintenance of human pregnancy. Appl Immunohistochem Mol Morphol 2009; 17:319-28. [PMID: 19407656 DOI: 10.1097/pai.0b013e31819640f9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Over half of human genome contains retroelements, including retrotransposons, retroviruses, and other elements. Human endogenous retroviruses (HERVs) comprise about 8% of human genome. The products of 2 of 16 identified genes of HERV-W seem to play a pivotal role in the placentation. These 2 genes are HERV-W env glycoprotein (syncytin-1) and HERV-FRD env glycoprotein (syncytin-2). It has been shown previously that syncytin-1 mediates cell-cell fusions of cytotrophoblasts into syncytiotrophoblasts. In addition, HERV-W env contains an immunosuppressive region that may prevent rejection of a semiallogenic fetus from the mother's immune system. We analyzed 40 full-term placental tissues to localize the expression of syncytin-1-ISR by immunohistochemical staining and by reverse trancscriptase (RT) in situ polymerase chain reaction (PCR). Both the immunostaining and in situ RT-PCR showed strong expression of syncytin-1 in the syncytiotrophoblast layer from the full-term placental tissues. To further analyze the mechanism of early embryo HERV-W env activation, we utilized a HTR-8/SVneo cell line developed from first trimester human trophoblasts and subjected them to various physiologic concentrations of maternal hormones. Quantitative RT-PCR analyses demonstrated that exposure to progesterone significantly upregulated the HERV-W env expression, whereas several other hormones apparently played lesser roles. In conclusion, our findings suggest that expression of syncytin-1 (HERV-W env) in utero is expressed exclusively in the syncytiotrophoblast layer and is upregulated by progesterone.
Collapse
|
82
|
Abstract
Type I Interferons (IFN) induce the expression of IFN-stimulated genes (ISG). The products of some of these genes have direct antiviral effects, others are involved in immunoregulation or modulate signaling pathways and gene expression, and others yet are mediators of cell growth and death. Their role in autoimmune diseases has been found to be both beneficial and detrimental.
Collapse
Affiliation(s)
- Myriam S Kunzi
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
83
|
Sasaki N, Ogasawara M, Sekiguchi T, Kusumoto S, Satake H. Toll-like receptors of the ascidian Ciona intestinalis: prototypes with hybrid functionalities of vertebrate Toll-like receptors. J Biol Chem 2009; 284:27336-43. [PMID: 19651780 DOI: 10.1074/jbc.m109.032433] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Key transmembrane proteins in the innate immune system, Toll-like receptors (TLRs), have been suggested to occur in the genome of non-mammalian organisms including invertebrates. However, authentic invertebrate TLRs have been neither structurally nor functionally investigated. In this paper, we originally present the structures, localization, ligand recognition, activities, and inflammatory cytokine production of all TLRs of the ascidian Ciona intestinalis, designated as Ci-TLR1 and Ci-TLR2. The amino acid sequence of Ci-TLR1 and Ci-TLR2 were found to possess unique structural organization with moderate sequence similarity to functionally characterized vertebrate TLRs. ci-tlr1 and ci-tlr2 genes were expressed predominantly in the stomach and intestine as well as in hemocytes. Ci-TLR1 and Ci-TLR2 expressed in HEK293 cells, unlike vertebrate TLRs, were localized to both the plasma membrane and endosomes. Intriguingly, both Ci-TLR1 and Ci-TLR2 stimulate NF-kappaB induction in response to multiple pathogenic ligands such as double-stranded RNA, and bacterial cell wall components that are differentially recognized by respective vertebrate TLRs, revealing that Ci-TLRs recognize broader pathogen-associated molecular patterns than vertebrate TLRs. The Ci-TLR-stimulating pathogenic ligands also induced the expression of Ci-TNFalpha in the intestine and stomach where Ci-TLRs are expressed. These results provide evidence that the TLR-triggered innate immune systems are essentially conserved in ascidians, and that Ci-TLRs possess "hybrid" biological and immunological functions, compared with vertebrate TLRs. Moreover, it is presumed that chordate TLR ancestors also acquired the Ci-TLR-like multiple cellular localization and pathogen-associated molecular pattern recognition.
Collapse
Affiliation(s)
- Naoko Sasaki
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | | | | | | | | |
Collapse
|
84
|
Activation of NF-kB pathway by virus infection requires Rb expression. PLoS One 2009; 4:e6422. [PMID: 19649275 PMCID: PMC2713421 DOI: 10.1371/journal.pone.0006422] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 06/08/2009] [Indexed: 12/02/2022] Open
Abstract
The retinoblastoma protein Rb is a tumor suppressor involved in cell cycle control, differentiation, and inhibition of oncogenic transformation. Besides these roles, additional functions in the control of immune response have been suggested. In the present study we investigated the consequences of loss of Rb in viral infection. Here we show that virus replication is increased by the absence of Rb, and that Rb is required for the activation of the NF-kB pathway in response to virus infection. These results reveal a novel role for tumor suppressor Rb in viral infection surveillance and further extend the concept of a link between tumor suppressors and antiviral activity.
Collapse
|
85
|
Wang C, Chen T, Zhang J, Yang M, Li N, Xu X, Cao X. The E3 ubiquitin ligase Nrdp1 'preferentially' promotes TLR-mediated production of type I interferon. Nat Immunol 2009; 10:744-52. [DOI: 10.1038/ni.1742] [Citation(s) in RCA: 242] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 04/20/2009] [Indexed: 11/09/2022]
|
86
|
Vaccinia virus E3 suppresses expression of diverse cytokines through inhibition of the PKR, NF-kappaB, and IRF3 pathways. J Virol 2009; 83:6757-68. [PMID: 19369349 DOI: 10.1128/jvi.02570-08] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The vaccinia virus double-stranded RNA binding protein E3 has been demonstrated to inhibit the expression of cytokines, including beta interferon (IFN-beta) and tumor necrosis factor alpha (TNF-alpha). However, few details regarding the molecular mechanisms of this inhibition have been described. Using real-time PCR arrays, we found that E3 suppressed the induction of a diverse array of cytokines representing members of the IFN, interleukin (IL), TNF, and transforming growth factor cytokine families. We discovered that the factor(s) responsible for the induction of IL-6, TNF-alpha, and inhibin beta A (INHBA) was associated with the early and late phases of virus infection. In contrast, the factor(s) which regulates IFN-beta induction was associated with the late phase of replication. We have found that expression of these cytokines can be induced by transfection of cells with RNA isolated from vaccinia virus-infected cells. Moreover, we provide evidence that E3 antagonizes both PKR-dependent and PKR-independent pathways to regulate cytokine expression. PKR-dependent activation of p38 and NF-kappaB was required for vaccinia virus-induced INHBA expression, whereas induction of TNF-alpha required only PKR-dependent NF-kappaB activation. In contrast, induction of IL-6 and IFN-beta was largely PKR independent. IL-6 induction is regulated by NF-kappaB, while IFN-beta induction is mediated by IFN-beta promoter stimulator 1 and IFN regulatory factor 3/NF-kappaB. Collectively, these results indicate that E3 suppresses distinct but interlinked host signaling pathways to inhibit the expression of a diverse array of cytokines.
Collapse
|
87
|
Khaitov MR, Laza-Stanca V, Edwards MR, Walton RP, Rohde G, Contoli M, Papi A, Stanciu LA, Kotenko SV, Johnston SL. Respiratory virus induction of alpha-, beta- and lambda-interferons in bronchial epithelial cells and peripheral blood mononuclear cells. Allergy 2009; 64:375-86. [PMID: 19175599 DOI: 10.1111/j.1398-9995.2008.01826.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Respiratory viruses, predominantly rhinoviruses are the major cause of asthma exacerbations. Impaired production of interferon-beta in rhinovirus infected bronchial epithelial cells (BECs) and of the newly discovered interferon-lambdas in both BECs and bronchoalveolar lavage cells, is implicated in asthma exacerbation pathogenesis. Thus replacement of deficient interferon is a candidate new therapy for asthma exacerbations. Rhinoviruses and other respiratory viruses infect both BECs and macrophages, but their relative capacities for alpha-, beta- and lambda-interferon production are unknown. METHODS To provide guidance regarding which interferon type is the best candidate for development for treatment/prevention of asthma exacerbations we investigated respiratory virus induction of alpha-, beta- and lambda-interferons in BECs and peripheral blood mononuclear cells (PBMCs) by reverse transferase-polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS Rhinovirus infection of BEAS-2B BECs induced interferon-alpha mRNA expression transiently at 8 h and interferon-beta later at 24 h while induction of interferon-lambda was strongly induced at both time points. At 24 h, interferon-alpha protein was not detected, interferon-beta was weakly induced while interferon-lambda was strongly induced. Similar patterns of mRNA induction were observed in primary BECs, in response to both rhinovirus and influenza A virus infection, though protein levels were below assay detection limits. In PBMCs interferon-alpha, interferon-beta and interferon-lambda mRNAs were all strongly induced by rhinovirus at both 8 and 24 h and proteins were induced: interferon-alpha>-beta>-lambda. Thus respiratory viruses induced expression of alpha-, beta- and lambda-interferons in BECs and PBMCs. In PBMCs interferon-alpha>-beta>-lambda while in BECs, interferon-lambda>-beta>-alpha. CONCLUSIONS We conclude that interferon-lambdas are likely the principal interferons produced during innate responses to respiratory viruses in BECs and interferon-alphas in PBMCs, while interferon-beta is produced by both cell types.
Collapse
Affiliation(s)
- M R Khaitov
- Department of Respiratory Medicine, National Heart and Lung Institute, Wright Fleming Institute of Infection and Immunity and MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, Norfolk Place, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Scaldaferri F, Sans M, Vetrano S, Correale C, Arena V, Pagano N, Rando G, Romeo F, Potenza AE, Repici A, Malesci A, Danese S. The role of MAPK in governing lymphocyte adhesion to and migration across the microvasculature in inflammatory bowel disease. Eur J Immunol 2009; 39:290-300. [DOI: 10.1002/eji.200838316] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
89
|
Weber F, Mirazimi A. Interferon and cytokine responses to Crimean Congo hemorrhagic fever virus; an emerging and neglected viral zonoosis. Cytokine Growth Factor Rev 2008; 19:395-404. [PMID: 19027345 PMCID: PMC7153731 DOI: 10.1016/j.cytogfr.2008.11.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Crimean Congo hemorrhagic fever virus (CCHFV) causes an acute disease with the potential of a fatal outcome. The virus is prevalent in about 30 countries. Clinical symptoms of infection commonly include fever, myalgia, and hemorrhages. Levels of liver enzymes are raised, and bleeding markers are often increased. A role of inflammatory cytokines in the pathogenesis has been suggested, and CCHFV employs a range of passive and active mechanisms to avoid induction of the antiviral type I interferons. Here, we review the most recent findings on the molecular pathogenesis and the interaction of CCHFV with the type I interferon and cytokine responses and discuss implications for pathogenesis.
Collapse
|
90
|
Toll-like receptor ligands synergize through distinct dendritic cell pathways to induce T cell responses: implications for vaccines. Proc Natl Acad Sci U S A 2008; 105:16260-5. [PMID: 18845682 DOI: 10.1073/pnas.0805325105] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Toll-like receptors (TLRs) may need to cooperate with each other to be effective in detecting imminent infection and trigger immune responses. Understanding is still limited about the intracellular mechanism of this cooperation. We found that when certain TLRs are involved, dendritic cells (DCs) establish unidirectional intracellular cross-talk, in which the MyD88-independent TRIF-dependent pathway amplifies the MyD88-dependent DC function through a JNK-dependent mechanism. The amplified MyD88-dependent DC function determines the induction of the T cell response to a given vaccine in vivo. Therefore, our study revealed an underlying TLR mechanism governing the functional, nonrandom interplay among TLRs for recognition of combinatorial ligands that may be dangerous to the host, providing important guidance for design of novel synergistic molecular vaccine adjuvants.
Collapse
|
91
|
Kalali BN, Köllisch G, Mages J, Müller T, Bauer S, Wagner H, Ring J, Lang R, Mempel M, Ollert M. Double-stranded RNA induces an antiviral defense status in epidermal keratinocytes through TLR3-, PKR-, and MDA5/RIG-I-mediated differential signaling. THE JOURNAL OF IMMUNOLOGY 2008; 181:2694-704. [PMID: 18684960 DOI: 10.4049/jimmunol.181.4.2694] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Emerging evidence suggests an important role for human epidermal keratinocytes in innate immune mechanisms against bacterial and viral skin infections. The proinflammatory effect of viral infections can be mimicked by double-stranded RNA (dsRNA). Herein, we demonstrate that keratinocytes express all known dsRNA sensing receptors at a constitutive and inducible level, and that they use several downstream signaling pathways leading to a broad pattern of gene expression, not only proinflammatory and immune response genes under the control of NF-kappaB, but also genes under transcriptional control of IRF3. As a consequence, dsRNA, a stimulus for TLR3, protein kinase R (PKR), and the RNA helicases retinoic acid-inducible gene I (RIG-I) and MDA5, induces a status of antiviral defense in keratinocytes. Using inhibitors for the various dsRNA signaling pathways and specific small interfering RNA for TLR3, RIG-I, and MDA5, we demonstrated that in human keratinocytes, TLR3 seems to be necessary for NF-kappaB but not for IRF3 activation, whereas RIG-I and MDA5 are crucial for IRF3 activation. PKR is essential for the dsRNA response in both signaling pathways and thus represents the central antiviral receptor for dsRNA stimulation. Moreover, human keratinocytes up-regulate TLR7, the receptor for single-stranded RNA, in response to stimulation with dsRNA, which renders keratinocytes functionally responsive to the TLR7 agonist gardiquimod, a member of the imidazoquinoline antiviral immune response modifier family. Thus, in addition to building a physical barrier against infectious pathogens, keratinocytes are specially equipped with a full antiviral defense program that enables them to efficiently target viral infections of the skin.
Collapse
Affiliation(s)
- Behnam Naderi Kalali
- Department of Dermatology and Allergy Biederstein, Technische Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Targeting the NF-kappaB pathway in asthma and chronic obstructive pulmonary disease. Pharmacol Ther 2008; 121:1-13. [PMID: 18950657 PMCID: PMC7172981 DOI: 10.1016/j.pharmthera.2008.09.003] [Citation(s) in RCA: 300] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 09/09/2008] [Indexed: 11/23/2022]
Abstract
Asthma and chronic obstructive pulmonary disease are inflammatory lung disorders responsible for significant morbidity and mortality worldwide. While the importance of allergic responses in asthma is well known, respiratory viral and bacterial infections and pollutants especially cigarette smoke are important factors in the pathogenesis of both diseases. Corticosteroid treatment remains the first preference of treatment in either disease, however these therapies are not always completely effective, and are associated with side effects and steroid resistance. Due to such limitations, development of new treatments represents a major goal for both the pharmaceutical industry and academic researchers. There are now excellent reasons to promote NF-kappaB signalling intermediates and Rel family proteins as potential therapeutic targets for both asthma and chronic obstructive pulmonary disease. This notion is supported by the fact that much of the underlying inflammation of both diseases independent of stimuli, is mediated at least in part, by NF-kappaB mediated signalling events in several cell types. Also, a range of inhibitors of NF-kappaB signalling intermediates are now available, including DNA oligonucleotides and DNA-peptide molecules that act as NF-kappaB decoy sequences, small molecule inhibitors such as IKK-beta inhibitors, and proteasome inhibitors affecting NF-kappaB signalling, that have either shown promise in animal models or have begun clinical trials in other disorders. This review will focus on the role of NF-kappaB in both diseases, will discuss its suitability as a target, and will highlight recent key studies that support the potential of NF-kappaB as a therapeutic target in these two important inflammatory lung diseases.
Collapse
|
93
|
Ludwig S, Planz O. Influenza viruses and the NF-κB signaling pathway – towards a novel concept of antiviral therapy. Biol Chem 2008; 389:1307-12. [DOI: 10.1515/bc.2008.148] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AbstractInfluenza A virus remains a major public health concern, both in its annual toll in death and debilitation and its potential to cause devastating pandemics. Like any other virus, influenza A viruses are strongly dependent on cellular factors for replication. One of the hallmark signaling factors activated by viral pathogens is the transcription factor NF-κB. Activation of NF-κB leads to the up-regulation of a variety of antiviral genes. Thus, the factor is commonly regarded as a major regulator of the innate immune defense to infection. However, several recent studies indicate that influenza viruses have acquired the capability to reprogram this antiviral activity and to exploit the factor for efficient replication. These data provide novel insights into the pathophysiological function of NF-κB in the special environment of a virus-infected cell. Furthermore, the unexpected viral dependency on a cellular signaling factor may pave the path for novel antiviral approaches targeting essential cellular components rather than viral factors.
Collapse
|
94
|
JNK-deficiency enhanced oncolytic vaccinia virus replication and blocked activation of double-stranded RNA-dependent protein kinase. Cancer Gene Ther 2008; 15:616-24. [PMID: 18535619 DOI: 10.1038/cgt.2008.32] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Vaccinia virus has recently been used as an expression vector for gene delivery and an oncolytic agent for cancer therapy. Although it has been established that interferon-induced double-stranded RNA (dsRNA)-activated protein kinase (PKR) and RNase L interfere with viral replication, little else is known about the other host factors that might affect viral replication and virus-mediated host cell killing. In this study, we evaluated the roles of c-Jun NH2-terminal kinase (JNK) in oncolytic vaccinia virus replication and vaccinia virus-mediated host cell killing. We found that JNK knockout mouse embryonic fibroblasts (MEFs) were more susceptible to oncolytic vaccinia virus infection than wild-type MEFs. Moreover, viral replication and the production of infectious viral progeny were up to 100-fold greater in JNK-deficient MEFs than in wild-type MEFs. A similar result was observed for wild-type vaccinia virus. The increased killing of infected cells and the production of viral progeny was also observed in wild-type MEFs that had been treated with JNK inhibitors and in human colon cancer cells that had been transfected with dominant-negative JNK constructs. Moreover, testing on several human lung cancer cell lines and HeLa cells showed an inverse correlation between levels of JNK expression and susceptibility to oncolytic vaccinia virus. Our study also revealed that oncolytic virus infection-mediated PKR activation was blocked or diminished in JNK-deficient MEFs. The adenovirus-mediated ectopic expression of human PKR in JNK-deficient MEFs reduced vaccinia virus replication to the levels observed in wild-type MEFs, indicating that JNK is required for vaccinia virus to efficiently activate PKR. Our results demonstrated that the cellular status of JNK function can dramatically affect oncolytic vaccinia virus replication and vaccinia virus-mediated host cell killing. This finding may enable further improvements in oncolytic virotherapy using vaccinia virus.
Collapse
|
95
|
Thiel V, Weber F. Interferon and cytokine responses to SARS-coronavirus infection. Cytokine Growth Factor Rev 2008; 19:121-32. [PMID: 18321765 PMCID: PMC7108449 DOI: 10.1016/j.cytogfr.2008.01.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The sudden emergence of severe acute respiratory syndrome (SARS) has boosted research on innate immune responses to coronaviruses. It is now well established that the causative agent, a newly identified coronavirus termed SARS-CoV, employs multiple passive and active mechanisms to avoid induction of the antiviral type I interferons in tissue cells. By contrast, chemokines such as IP-10 or IL-8 are strongly upregulated. The imbalance in the IFN response is thought to contribute to the establishment of viremia early in infection, whereas the production of chemokines by infected organs may be responsible for (i) massive immune cell infiltrations found in the lungs of SARS victims, and (ii) the dysregulation of adaptive immunity. Here, we will review the most recent findings on the interaction of SARS-CoV and related Coronaviridae members with the type I interferon and cytokine responses and discuss implications for pathogenesis and therapy.
Collapse
Affiliation(s)
- Volker Thiel
- Research Department, Kantonal Hospital St. Gallen, Switzerland
| | | |
Collapse
|
96
|
Tafalla C, Sanchez E, Lorenzen N, DeWitte-Orr SJ, Bols NC. Effects of viral hemorrhagic septicemia virus (VHSV) on the rainbow trout (Oncorhynchus mykiss) monocyte cell line RTS-11. Mol Immunol 2007; 45:1439-48. [PMID: 17928055 DOI: 10.1016/j.molimm.2007.08.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/27/2007] [Accepted: 08/29/2007] [Indexed: 10/22/2022]
Abstract
The effect of viral hemorrhagic septicemia virus (VHSV) was studied on the established rainbow trout (Oncorhynchus mykiss) monocyte/macrophage-like cell line RTS11. The virus was not able to complete its replication cycle as infectious viral particles were not released from the cells. However, in RTS11, the virus was capable of producing mRNA from at least its N and G genes. At the protein level, only N protein was detected 2 days post-infection, whereas a faint band corresponding to the G protein was also observed after 5 days post-infection. These results suggest an interruption of viral protein translation at some point. The expression of N mRNA was significantly inhibited in cells pre-treated with Poly I:C, but not affected by 2-aminopurine (2-AP), an inhibitor of the dsRNA-dependent protein kinase (PKR), thus indicating that PKR has no effect on mRNA expression directly. However, when cells were preincubated with Poly I:C in the presence of 2-AP, the levels of N mRNA were restored suggesting that Poly I:C can limit viral transcription through an antiviral mechanism dependent of PKR. The effect of VHSV on the expression of transcripts for different immune genes was determined, but significant induction was found only for genes related to the type I interferon (IFN) response, such as IFN-1 and -2 and the three Mx isoforms. Heat-inactivated virus failed to induce IFN-1 and -2, suggesting that early events in the VHSV life cycle were necessary for the type I IFN response. Poly I:C alone also induced transcripts for the antiviral Mx proteins. Prior exposure of RTS11 to VHSV did not prevent Poly I:C from inducing transcripts for Mx1, Mx2 and Mx3. Perhaps the failure of VHSV to disable antiviral mechanisms in RTS11 accounts for the aborted infections.
Collapse
Affiliation(s)
- Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Carretera de Algete a El Casar km. 8.1, Valdeolmos, 28130 Madrid, Spain.
| | | | | | | | | |
Collapse
|
97
|
Tung WH, Sun CC, Hsieh HL, Wang SW, Horng JT, Yang CM. EV71 induces VCAM-1 expression via PDGF receptor, PI3-K/Akt, p38 MAPK, JNK and NF-κB in vascular smooth muscle cells. Cell Signal 2007; 19:2127-37. [PMID: 17669626 DOI: 10.1016/j.cellsig.2007.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 06/15/2007] [Indexed: 01/23/2023]
Abstract
Enterovirus 71 (EV71) is a widespread virus that causes severe and fatal diseases in patients, including circulation failure. The mechanisms underlying EV71-initiated intracellular signaling pathways to influence host cell functions remain unknown. In this study, we identified a requirement for PDGFR, PI3-K/Akt, p38 MAPK, JNK, and NF-kappaB in the regulation of VCAM-1 expression by rat vascular smooth muscle cells (VSMCs) in response to viral infection. EV71 induced VCAM-1 expression in a time- and viral concentration-dependent manner. Infection of VSMCs with EV71 stimulated VCAM-1 expression and phosphorylation of PDGFR, Akt, and p38 MAPK which were attenuated by AG1296, wortmannin, and SB202190, respectively. The phosphorylation of JNK stimulated by EV71 was not detected under present conditions. In contrast, JNK inhibitor SP600125 inhibited EV71-induced VCAM-1 expression. Furthermore, VCAM-1 expression induced by EV71 was significantly attenuated by a selective NF-kappaB inhibitor (helenalin). Consistently, EV71-stimulated translocation of NF-kappaB into the nucleus and degradation of IkappaB-alpha as well as VCAM-1 mRNA expression was blocked by helenalin, AG1296, SB202190, SP600125, wortmannin, and LY294002. Moreover, the involvement of p38 MAPK, PI3-K/Akt, and NF-kappaB in EV71-induced VCAM-1 expression was reveled by that transfection with dominant negative plasmids of p38 MAPK, p85, Akt, NIK, IKK-alpha, and IKK-beta attenuated these responses. These findings suggest that in VSMCs, EV71-induced VCAM-1 expression was mediated through activation of PDGFR, PI3-K/Akt, p38 MAPK, JNK, and NF-kappaB pathways.
Collapse
Affiliation(s)
- Wei-Hsuan Tung
- Department of Physiology and Pharmacology, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-San, Tao-Yuan, Taiwan
| | | | | | | | | | | |
Collapse
|
98
|
Abstract
Hepatitis C virus (HCV) needs to tightly manipulate host defences in order to establish infection. The innate immune response slows down viral replication by activating cytokines such as the type I interferons (IFN-α/β), which trigger the synthesis of antiviral proteins and modulate the adaptive immune system. HCV has therefore developed a number of countermeasures to stay ahead of the IFN system. Here, I will attempt to summarize the current state of research regarding IFN responses against HCV and the viral escape strategies. Particular emphasis will be put on the newly discovered mechanisms HCV employs to avoid the induction of IFN in infected cells.
Collapse
Affiliation(s)
- Friedemann Weber
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universitat Freiburg, Freiburg D-79008, Germany.
| |
Collapse
|
99
|
Lundberg AM, Drexler SK, Monaco C, Williams LM, Sacre SM, Feldmann M, Foxwell BM. Key differences in TLR3/poly I:C signaling and cytokine induction by human primary cells: a phenomenon absent from murine cell systems. Blood 2007; 110:3245-52. [PMID: 17660379 DOI: 10.1182/blood-2007-02-072934] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
TLR3 recognizes double-stranded RNA, a product associated with viral infections. Many details of TLR3-induced mechanisms have emerged from gene-targeted mice or inhibition studies in transformed cell lines. However, the pathways activated in human immune cells or cells from disease tissue are less well understood. We have investigated TLR3-induced mechanisms of human primary cells of the innate immune system, including dendritic cells (DCs), macrophages (MØs), endothelial cells (ECs), and synovial fibroblasts isolated from rheumatoid arthritis joint tissue (RA-SFs). Here, we report that while these cells all express TLR3, they differ substantially in their response to TLR3 stimulation. The key antiviral response chemokine IP-10 was produced by all cell types, while DCs and MØs failed to produce the proinflammatory cytokines TNFalpha and IL-6. Unexpectedly, TNFalpha was found secreted by TLR3-stimulated RA-SF. Furthermore, TLR3 stimulation did not activate NFkappaB, MAPKs, or IRF-3 in DCs and MØs, but was able to do so in ECs and RA-SF. These findings were specific for human cells, thereby revealing a complexity not previously expected. This is the first report of such cell type- and species-specific response for any TLR stimulation and helps to explain important difficulties in correlating murine models of inflammatory diseases and human inflammation.
Collapse
Affiliation(s)
- Anna M Lundberg
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science, Technology, and Medicine, 1 Aspenlea Road, Hammersmith, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
100
|
Wang X, Hussain S, Wang EJ, Wang X, Li MO, García-Sastre A, Beg AA. Lack of essential role of NF-kappa B p50, RelA, and cRel subunits in virus-induced type 1 IFN expression. THE JOURNAL OF IMMUNOLOGY 2007; 178:6770-6. [PMID: 17513724 DOI: 10.4049/jimmunol.178.11.6770] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type 1 IFNs (IFN-alphabeta) play pivotal roles in the host antiviral response and in TLR-induced signaling. IFN regulatory factor (IRF) and NF-kappaB transcription factors are thought to be crucial for virus-induced mRNA expression of IFN-beta. Although recent studies have demonstrated essential roles for IRF3 and IRF7, the definitive role of NF-kappaB factors in IFN-beta (or IFN-alpha) expression remains unknown. Using mice deficient in distinct members of the NF-kappaB family, we investigated NF-kappaB function in regulating type 1 IFN expression in response to Sendai virus and Newcastle disease virus infection. Surprisingly, IFN-beta and IFN-alpha expression was strongly induced following virus infection of mouse embryonic fibroblasts (MEFs) from p50(-/-), RelA/p65(-/-), cRel(-/-), p50(-/-)cRel(-/-), and p50(-/-)RelA(-/-) mice. Compared with wild-type MEFs, only RelA(-/-) and p50(-/-)RelA(-/-) MEFs showed a modest reduction in IFN-beta expression. To overcome functional redundancy between different NF-kappaB subunits, we expressed a dominant-negative IkappaBalpha protein in p50(-/-)RelA(-/-) MEFs to inhibit activation of remaining NF-kappaB subunits. Although viral infection of these cells failed to induce detectable NF-kappaB activity, both Sendai virus and Newcastle disease virus infection led to robust IFN-beta expression. Virus infection of dendritic cells or TLR9-ligand CpG-D19 treatment of plasmacytoid dendritic cells from RelA(-/-) or p50(-/-)cRel(-/-) mice also induced robust type 1 IFN expression. Our findings therefore indicate that NF-kappaB subunits p50, RelA, and cRel play a relatively minor role in virus-induced type 1 IFN expression.
Collapse
Affiliation(s)
- Xingyu Wang
- Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, University of South Florida, Tampa, FL 33612, USA
| | | | | | | | | | | | | |
Collapse
|