51
|
Koohestani F, Qiang W, MacNeill AL, Druschitz SA, Serna VA, Adur M, Kurita T, Nowak RA. Halofuginone suppresses growth of human uterine leiomyoma cells in a mouse xenograft model. Hum Reprod 2016; 31:1540-51. [PMID: 27130615 DOI: 10.1093/humrep/dew094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/06/2016] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION Does halofuginone (HF) inhibit the growth of human uterine leiomyoma cells in a mouse xenograft model? SUMMARY ANSWER HF suppresses the growth of human uterine leiomyoma cells in a mouse xenograft model through inhibiting cell proliferation and inducing apoptosis. WHAT IS KNOWN ALREADY Uterine leiomyomas are the most common benign tumors of the female reproductive tract. HF can suppress the growth of human uterine leiomyoma cells in vitro. The mouse xenograft model reflects the characteristics of human leiomyomas. STUDY DESIGN, SIZE, DURATION Primary leiomyoma smooth muscle cells from eight patients were xenografted under the renal capsule of adult, ovariectomized NOD-scid IL2Rγ(null) mice (NSG). Mice were treated with two different doses of HF or vehicle for 4 weeks with six to eight mice per group. PARTICIPANTS/MATERIALS, SETTING, METHODS Mouse body weight measurements and immunohistochemical analysis of body organs were carried out to assess the safety of HF treatment. Xenografted tumors were measured and analyzed for cellular and molecular changes induced by HF. Ovarian steroid hormone receptors were evaluated for possible modulation by HF. MAIN RESULTS AND THE ROLE OF CHANCE Treatment of mice carrying human UL xenografts with HF at 0.25 or 0.50 mg/kg body weight for 4 weeks resulted in a 35-40% (P < 0.05) reduction in tumor volume. The HF-induced volume reduction was accompanied by increased apoptosis and decreased cell proliferation. In contrast, there was no significant change in the collagen content either at the transcript or protein level between UL xenografts in control and HF groups. HF treatment did not change the expression level of ovarian steroid hormone receptors. No adverse pathological effects were observed in other tissues from mice undergoing treatment at these doses. LIMITATIONS, REASONS FOR CAUTION While this study did test the effects of HF on human leiomyoma cells in an in vivo model, HF was administered to mice whose tolerance and metabolism of the drug may differ from that in humans. Also, the longer term effects of HF treatment are yet unclear. WIDER IMPLICATIONS OF THE FINDINGS The results of this study showing the effectiveness of HF in reducing UL tumor growth by interfering with the main cellular processes regulating cell proliferation and apoptosis are in agreement with previous studies on the effects of HF on other fibrotic diseases. HF can be considered as a candidate for reducing the size of leiomyomas, particularly prior to surgery. STUDY FUNDING/COMPETING INTERESTS This project was funded by NIH PO1HD057877 and R01 HD064402. Authors report no competing interests.
Collapse
Affiliation(s)
- Faezeh Koohestani
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA Present address: Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wenan Qiang
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA Department of Pathology, Northwestern University, Chicago, IL 60611, USA Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Amy L MacNeill
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, IL 61801, USA Present address: Department of Microbiology, Immunology and Pathology, Colorado State University, Ft. Collins, CO 80523, USA
| | - Stacy A Druschitz
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA
| | - Vanida A Serna
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA Present address: Department of Molecular & Cellular Biochemistry, The Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Malavika Adur
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Takeshi Kurita
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA Present address: Department of Molecular & Cellular Biochemistry, The Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Romana A Nowak
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
52
|
Halofuginone treatment reduces interleukin-17A and ameliorates features of chronic lung allograft dysfunction in a mouse orthotopic lung transplant model. J Heart Lung Transplant 2016; 35:518-27. [DOI: 10.1016/j.healun.2015.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/17/2015] [Accepted: 12/04/2015] [Indexed: 11/23/2022] Open
|
53
|
Gomes CBF, Treister NS, Miller B, Armand P, Friedland B. Pulp Obliteration in a Patient with Sclerodermatous Chronic Graft-versus-Host Disease. J Endod 2016; 42:678-80. [DOI: 10.1016/j.joen.2016.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 10/22/2022]
|
54
|
Liu J, Xiao HT, Wang HS, Mu HX, Zhao L, Du J, Yang D, Wang D, Bian ZX, Lin SH. Halofuginone reduces the inflammatory responses of DSS-induced colitis through metabolic reprogramming. MOLECULAR BIOSYSTEMS 2016; 12:2296-2303. [DOI: 10.1039/c6mb00154h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Halofuginone inhibits both HIF-1alpha and incomplete FAO to reduce the inflammatory response in DSS-induced colitis.
Collapse
Affiliation(s)
- Jing Liu
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- China
- School of Chinese Medicine
| | - Hai-Tao Xiao
- School of Chinese Medicine
- Hong Kong Baptist University
- China
- School of Pharmacy
- Guizhou Medicial University
| | - Hong-Sheng Wang
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- China
| | - Huai-Xue Mu
- School of Chinese Medicine
- Hong Kong Baptist University
- China
| | - Ling Zhao
- School of Chinese Medicine
- Hong Kong Baptist University
- China
| | - Jun Du
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- China
| | - Depo Yang
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- China
| | - Dongmei Wang
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- China
| | | | - Shu-Hai Lin
- School of Chinese Medicine
- Hong Kong Baptist University
- China
- Department of Biochemistry and Molecular Cell Biology
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation
| |
Collapse
|
55
|
Cui Z, Crane J, Xie H, Jin X, Zhen G, Li C, Xie L, Wang L, Bian Q, Qiu T, Wan M, Xie M, Ding S, Yu B, Cao X. Halofuginone attenuates osteoarthritis by inhibition of TGF-β activity and H-type vessel formation in subchondral bone. Ann Rheum Dis 2015; 75:1714-21. [PMID: 26470720 PMCID: PMC5013081 DOI: 10.1136/annrheumdis-2015-207923] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/20/2015] [Indexed: 12/28/2022]
Abstract
Objectives Examine whether osteoarthritis (OA) progression can be delayed by halofuginone in anterior cruciate ligament transection (ACLT) rodent models. Methods 3-month-old male C57BL/6J (wild type; WT) mice and Lewis rats were randomised to sham-operated, ACLT-operated, treated with vehicle, or ACLT-operated, treated with halofuginone. Articular cartilage degeneration was graded using the Osteoarthritis Research Society International (OARSI)-modified Mankin criteria. Immunostaining, flow cytometry, RT-PCR and western blot analyses were conducted to detect relative protein and RNA expression. Bone micro CT (μCT) and CT-based microangiography were quantitated to detect alterations of microarchitecture and vasculature in tibial subchondral bone. Results Halofuginone attenuated articular cartilage degeneration and subchondral bone deterioration, resulting in substantially lower OARSI scores. Specifically, we found that proteoglycan loss and calcification of articular cartilage were significantly decreased in halofuginone-treated ACLT rodents compared with vehicle-treated ACLT controls. Halofuginone reduced collagen X (Col X), matrix metalloproteinase-13 and A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS 5) and increased lubricin, collagen II and aggrecan. In parallel, halofuginone-attenuated uncoupled subchondral bone remodelling as defined by reduced subchondral bone tissue volume, lower trabecular pattern factor (Tb.pf) and increased thickness of subchondral bone plate compared with vehicle-treated ACLT controls. We found that halofuginone exerted protective effects in part by suppressing Th17-induced osteoclastic bone resorption, inhibiting Smad2/3-dependent TGF-β signalling to restore coupled bone remodelling and attenuating excessive angiogenesis in subchondral bone. Conclusions Halofuginone attenuates OA progression by inhibition of subchondral bone TGF-β activity and aberrant angiogenesis as a potential preventive therapy for OA.
Collapse
Affiliation(s)
- Zhuang Cui
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Janet Crane
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hui Xie
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xin Jin
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gehua Zhen
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Changjun Li
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Liang Xie
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Long Wang
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qin Bian
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Tao Qiu
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mei Wan
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Min Xie
- Department of Pharmaceutical Chemistry, Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California, USA
| | - Sheng Ding
- Department of Pharmaceutical Chemistry, Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California, USA
| | - Bin Yu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xu Cao
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
56
|
Autologous Graft Thickness Affects Scar Contraction and Quality in a Porcine Excisional Wound Model. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2015; 3:e468. [PMID: 26301157 PMCID: PMC4527642 DOI: 10.1097/gox.0000000000000426] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 05/28/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Texture, color, and durability are important characteristics to consider for skin replacement in conspicuous and/or mobile regions of the body such as the face, neck, and hands. Although autograft thickness is a known determinant of skin quality, few studies have correlated the subjective and objective characters of skin graft healing with their associated morphologic and cellular profiles. Defining these relationships may help guide development and evaluation of future skin replacement strategies. METHODS Six-centimeter-diameter full-thickness wounds were created on the back of female Yorkshire pigs and covered by autografts of variable thicknesses. Skin quality was assessed on day 120 using an observer scar assessment score and objective determinations for scar contraction, erythema, pigmentation, and surface irregularities. Histological, histochemical, and immunohistochemical assessments were performed. RESULTS Thick grafts demonstrated lower observer scar assessment score (better quality) and decreased erythema, pigmentation, and surface irregularities. Histologically, thin grafts resulted in scar-like collagen proliferation while thick grafts preserves the dermal architecture. Increased vascularity and prolonged and increased cellular infiltration were observed among thin grafts. In addition, thin grafts contained predominately dense collagen fibers, whereas thick grafts had loosely arranged collagen. α-Smooth muscle actin staining for myofibroblasts was observed earlier and persisted longer among thinner grafts. CONCLUSIONS Graft thickness is an important determinant of skin quality. High-quality skin replacements are associated with preserved collagen architecture, decreased neovascularization, and decreased inflammatory cellular infiltration. This model, using autologous skin as a metric of quality, may give a more informative analysis of emerging skin replacement strategies.
Collapse
|
57
|
Fang P, Han H, Wang J, Chen K, Chen X, Guo M. Structural Basis for Specific Inhibition of tRNA Synthetase by an ATP Competitive Inhibitor. ACTA ACUST UNITED AC 2015; 22:734-44. [PMID: 26074468 DOI: 10.1016/j.chembiol.2015.05.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/03/2015] [Accepted: 05/09/2015] [Indexed: 01/26/2023]
Abstract
Pharmaceutical inhibitors of aminoacyl-tRNA synthetases demand high species and family specificity. The antimalarial ATP-mimetic cladosporin selectively inhibits Plasmodium falciparum LysRS (PfLysRS). How the binding to a universal ATP site achieves the specificity is unknown. Here we report three crystal structures of cladosporin with human LysRS, PfLysRS, and a Pf-like human LysRS mutant. In all three structures, cladosporin occupies the class defining ATP-binding pocket, replacing the adenosine portion of ATP. Three residues holding the methyltetrahydropyran moiety of cladosporin are critical for the specificity of cladosporin against LysRS over other class II tRNA synthetase families. The species-exclusive inhibition of PfLysRS is linked to a structural divergence beyond the active site that mounts a lysine-specific stabilizing response to binding cladosporin. These analyses reveal that inherent divergence of tRNA synthetase structural assembly may allow for highly specific inhibition even through the otherwise universal substrate binding pocket and highlight the potential for structure-driven drug development.
Collapse
Affiliation(s)
- Pengfei Fang
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Hongyan Han
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA; School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Jing Wang
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Kaige Chen
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Xin Chen
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Min Guo
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA; Department of Cell and Molecular Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
58
|
Structural basis for full-spectrum inhibition of translational functions on a tRNA synthetase. Nat Commun 2015; 6:6402. [PMID: 25824639 PMCID: PMC4389257 DOI: 10.1038/ncomms7402] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/26/2015] [Indexed: 11/08/2022] Open
Abstract
The polyketide natural product borrelidin displays antibacterial, antifungal, antimalarial, anticancer, insecticidal and herbicidal activities through the selective inhibition of threonyl-tRNA synthetase (ThrRS). How borrelidin simultaneously attenuates bacterial growth and suppresses a variety of infections in plants and animals is not known. Here we show, using X-ray crystal structures and functional analyses, that a single molecule of borrelidin simultaneously occupies four distinct subsites within the catalytic domain of bacterial and human ThrRSs. These include the three substrate-binding sites for amino acid, ATP and tRNA associated with aminoacylation, and a fourth ‘orthogonal’ subsite created as a consequence of binding. Thus, borrelidin competes with all three aminoacylation substrates, providing a potent and redundant mechanism to inhibit ThrRS during protein synthesis. These results highlight a surprising natural design to achieve the quadrivalent inhibition of translation through a highly conserved family of enzymes. Borrelidin is an antibiotic with antimicrobial, antifungal, antimalarial and immunosuppressive activity that targets threonyl-tRNA synthetase. Here the authors show that borrelidin functions by preventing binding of all three ThrRS substrates and inducing a distinct, non-productive, conformation of the enzyme.
Collapse
|
59
|
Jain V, Yogavel M, Oshima Y, Kikuchi H, Touquet B, Hakimi MA, Sharma A. Structure of Prolyl-tRNA Synthetase-Halofuginone Complex Provides Basis for Development of Drugs against Malaria and Toxoplasmosis. Structure 2015; 23:819-829. [PMID: 25817387 DOI: 10.1016/j.str.2015.02.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/16/2015] [Accepted: 02/22/2015] [Indexed: 11/25/2022]
Abstract
The Chinese herb Dichroa febrifuga has traditionally treated malaria-associated fever. Its active component febrifugine (FF) and derivatives such as halofuginone (HF) are potent anti-malarials. Here, we show that FF-based derivatives arrest parasite growth by direct interaction with and inhibition of the protein translation enzyme prolyl-tRNA synthetase (PRS). Dual administration of inhibitors that target different tRNA synthetases suggests high utility of these drug targets. We reveal the ternary complex structure of PRS-HF and adenosine 5'-(β,γ-imido)triphosphate where the latter facilitates HF integration into the PRS active site. Structural analyses also highlight spaces within the PRS architecture for HF derivatization of its quinazolinone, but not piperidine, moiety. We also show a remarkable ability of HF to kill the related human parasite Toxoplasma gondii, suggesting wider HF efficacy against parasitic PRSs. Hence, our cell-, enzyme-, and structure-based data on FF-based inhibitors strengthen the case for their inclusion in anti-malarial and anti-toxoplasmosis drug development efforts.
Collapse
Affiliation(s)
- Vitul Jain
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Road, New Delhi 110067, India
| | - Manickam Yogavel
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Road, New Delhi 110067, India
| | - Yoshiteru Oshima
- Laboratory of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-yama Aoba-ku, Sendai 980-8578, Japan
| | - Haruhisa Kikuchi
- Laboratory of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-yama Aoba-ku, Sendai 980-8578, Japan
| | - Bastien Touquet
- CNRS, UMR5163, LAPM, 38041 Grenoble, France; Université Joseph Fourier, 38000 Grenoble, France
| | - Mohamed-Ali Hakimi
- CNRS, UMR5163, LAPM, 38041 Grenoble, France; Université Joseph Fourier, 38000 Grenoble, France
| | - Amit Sharma
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Road, New Delhi 110067, India.
| |
Collapse
|
60
|
Yavas C, Calik M, Yavas G, Toy H. The effect of halofuginone on radiation-induced cardiovascular injury. INTERNATIONAL JOURNAL OF CANCER THERAPY AND ONCOLOGY 2015. [DOI: 10.14319/ijcto.0302.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
61
|
Abstract
Halofuginone is an analog of febrifugine-an alkaloid originally isolated from the plant Dichroa febrifuga. During recent years, halofuginone has attracted much attention because of its wide range of beneficial biological activities, which encompass malaria, cancer, and fibrosis-related and autoimmune diseases. At present two modes of halofuginone actions have been described: (1) Inhibition of Smad3 phosphorylation downstream of the TGFβ signaling pathway results in inhibition of fibroblasts-to-myofibroblasts transition and fibrosis. (2) Inhibition of prolyl-tRNA synthetase (ProRS) activity in the blood stage of malaria and inhibition of Th17 cell differentiation thereby inhibiting inflammation and the autoimmune reaction by activation of the amino acid starvation and integrated stress responses. This review deals with the history and origin of this natural product, its synthesis, its known modes of action, and it's various biological activities in pre-clinical animal models and in humans.
Collapse
Affiliation(s)
- Mark Pines
- The Volcani Center, Institute of Animal Science, P.O. Box 6, Bet Dagan 50250, Israel.
| | - Itai Spector
- The Volcani Center, Institute of Animal Science, P.O. Box 6, Bet Dagan 50250, Israel.
| |
Collapse
|
62
|
|
63
|
Mai HDT, Thanh GV, Tran VH, Vu VN, Vu VL, Le CV, Nguyen TL, Phi TD, Truong BN, Chau VM, Pham VC. Synthesis and Biological Evaluation of Febrifugine Analogues. Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400901213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A series of febrifugine analogues were designed and synthesized. Antimalarial activity evaluation of the synthetic compounds indicated that these derivatives had a strong inhibition against both chloroquine-sensitive and -resistant Plasmodium falciparum parasites. Many of them were found to be more active than febrifugine hydrochloride. The tested analogues had also a significant cytotoxicity against four cancer cell lines (KB, MCF7, LU1 and HepG2). Among the synthetic analogues, two compounds 17b and 17h displayed a moderate cytotoxicity while they exhibited a remarkable antimalarial activity.
Collapse
Affiliation(s)
- Huong Doan Thi Mai
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Giang Vo Thanh
- University Paris-Sud, 15 Rue Georges Clemenceau, 91405 Orsay, France
| | - Van Hieu Tran
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Van Nam Vu
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Van Loi Vu
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Cong Vinh Le
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thuy Linh Nguyen
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thi Dao Phi
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Bich Ngan Truong
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Van Minh Chau
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Van Cuong Pham
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
64
|
Park MK, Park JS, Park EM, Lim MA, Kim SM, Lee DG, Baek SY, Yang EJ, Woo JW, Lee J, Kwok SK, Kim HY, Cho ML, Park SH. Halofuginone ameliorates autoimmune arthritis in mice by regulating the balance between Th17 and Treg cells and inhibiting osteoclastogenesis. Arthritis Rheumatol 2014; 66:1195-207. [PMID: 24782183 DOI: 10.1002/art.38313] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 12/05/2013] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The small molecule halofuginone has been shown to inhibit fibrosis, angiogenesis, and tumor progression. This study was undertaken to evaluate the effects of halofuginone in preventing autoimmune arthritis in mice. METHODS The effects of halofuginone on joint diseases were assessed by clinical scoring and histologic analysis. Protein expression levels were confirmed by immunohistochemistry, enzyme-linked immunosorbent assay, flow cytometry, and/or Western blotting. The expression levels of messenger RNA (mRNA) for various molecules were determined by real-time polymerase chain reaction (PCR). Proliferation of osteoclast precursors was assessed by bromodeoxyuridine uptake. Osteoclast differentiation and activity were determined by quantifying tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells and area of resorbed bone. RESULTS Treatment with halofuginone suppressed the development of autoimmune arthritis and reciprocally regulated Th17 cells and FoxP3+ Treg cells. These effects of halofuginone on Th17 differentiation involved increased signaling of ERK and reduction of STAT-3 and NF-ATc1 expression. Furthermore, halofuginone induced the expression of indoleamine 2,3-dioxygenase (IDO) in dendritic cells, leading to reduced production of Th17 cells. In addition, halofuginone prevented the formation and activity of osteoclasts through suppression of transcription factors, such as activator protein 1 and NF-ATc1, and inhibited cell cycle arrest by the committed osteoclast precursors via expression of Ccnd1 encoding cyclin D1. CONCLUSION Taken together, our results suggest that halofuginone is a promising therapeutic agent for the treatment of Th17 cell-mediated inflammatory diseases and bone diseases.
Collapse
|
65
|
Pan B, Zhang Y, Sun Y, Cheng H, Wu Y, Song G, Chen W, Zeng L, Xu K. Deviated balance between Th1 and Th17 cells exacerbates acute graft-versus-host disease in mice. Cytokine 2014; 68:69-75. [DOI: 10.1016/j.cyto.2014.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 03/24/2014] [Accepted: 04/03/2014] [Indexed: 12/23/2022]
|
66
|
Jain V, Kikuchi H, Oshima Y, Sharma A, Yogavel M. Structural and functional analysis of the anti-malarial drug target prolyl-tRNA synthetase. ACTA ACUST UNITED AC 2014; 15:181-90. [PMID: 25047712 DOI: 10.1007/s10969-014-9186-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/04/2014] [Indexed: 12/21/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) drive protein translation in cells and hence these are essential enzymes across life. Inhibition of these enzymes can halt growth of an organism by stalling protein translation. Therefore, small molecule targeting of aaRS active sites is an attractive avenue from the perspective of developing anti-infectives. Febrifugine and its derivatives like halofuginone (HF) are known to inhibit prolyl-tRNA synthetase of malaria parasite Plasmodium falciparum. Here, we present functional and crystallographic data on P. falciparum prolyl-tRNA synthetase (PfPRS). Using immunofluorescence data, we show that PfPRS is exclusively resident in the parasite cytoplasm within asexual blood stage parasites. The inhibitor HF interacts strongly with PfPRS in a non-competitive binding mode in presence or absence of ATP analog. Intriguingly, the two monomers that constitute dimeric PfPRS display significantly different conformations in their active site regions. The structural analyses presented here provide a framework for development of febrifugine derivatives that can seed development of new anti-malarials.
Collapse
Affiliation(s)
- Vitul Jain
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | | | | | | | | |
Collapse
|
67
|
Liu J, Pampillo M, Guo F, Liu S, Cooperman BS, Farrell I, Dahary D, Gan BS, O'Gorman DB, Smilansky Z, Babwah AV, Leask A. Monitoring collagen synthesis in fibroblasts using fluorescently labeled tRNA pairs. J Cell Physiol 2014; 229:1121-9. [PMID: 24676899 DOI: 10.1002/jcp.24630] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 12/13/2022]
Abstract
There is a critical need for techniques that directly monitor protein synthesis within cells isolated from normal and diseased tissue. Fibrotic disease, for which there is no drug treatment, is characterized by the overexpression of collagens. Here, we use a bioinformatics approach to identify a pair of glycine and proline isoacceptor tRNAs as being specific for the decoding of collagen mRNAs, leading to development of a FRET-based approach, dicodon monitoring of protein synthesis (DiCoMPS), that directly monitors the synthesis of collagen. DiCoMPS aimed at detecting collagen synthesis will be helpful in identifying novel anti-fibrotic compounds in cells derived from patients with fibrosis of any etiology, and, suitably adapted, should be widely applicable in monitoring the synthesis of other proteins in cells.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada; Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
Without doubt, animal models have provided significant insights into our understanding of the rheumatological diseases; however, no model has accurately replicated all aspects of any autoimmune disease. Recent years have seen a plethora of knockouts and transgenics that have contributed to our knowledge of the initiating events of systemic sclerosis, an autoimmune disease. In this review, the focus is on models of systemic sclerosis and how they have progressed our understanding of fibrosis and vasculopathy, and whether they are relevant to the pathogenesis of systemic sclerosis.
Collapse
Affiliation(s)
- Carol M Artlett
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
69
|
Liang J, Zhang B, Shen RW, Liu JB, Gao MH, Geng X, Li Y, Li YY, Zhang W. The effect of antifibrotic drug halofugine on Th17 cells in concanavalin A-induced liver fibrosis. Scand J Immunol 2014; 79:163-72. [PMID: 24383550 DOI: 10.1111/sji.12144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/25/2013] [Indexed: 12/14/2022]
Abstract
Anti-inflammation strategy is one of the proposed therapeutic approaches to hepatic fibrosis. T helper (Th) 17 cells, which play a detrimental role in experimental murine models of inflammatory diseases, have been demonstrated to participate in the pathogenesis of liver damage. The inhibitory effect of halofuginone (HF), an active component of extracts derived from the plant alkaloid febrifugine, on collagen synthesis has been shown in animal models of the fibrotic disease. The aim of this study was to clarify the in vivo effect of HF on Th17 cells in concanavalin A-induced fibrosis rats. Haematoxylin-eosin (HE) staining and Masson staining were performed to observe collagen deposition. The presence of INF-gamma, TNF-alpha, IL-6, IL-17, IL-1beta, IL-33 and IL-10 in serum and the presence of ROR-γt, IL-17, TGF-β1 and α-SMA in liver tissue were detected. Flow cytometry was performed to analyse the percentage of Th17 cells. We observed significantly lower levels of INF-gamma, TNF-alpha, IL-6, IL-17, IL-1beta, TGF-β1 and α-SMA in HF-treated group of rats, and the percentage of Th17 cells in splenic lymphocyte was decreased well. Histological examination demonstrated that HF significantly reduced the severity of liver fibrosis in HF-treated rats. We concluded that HF (10 mg/kg) exerts an antifibrotic impact on Th17 cells and its relative cytokines in rats with ConA-induced fibrosis.
Collapse
Affiliation(s)
- J Liang
- Department of Immunology, Medical College of Qingdao University, QingDao, China
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Kikuchi H, Horoiwa S, Kasahara R, Hariguchi N, Matsumoto M, Oshima Y. Synthesis of febrifugine derivatives and development of an effective and safe tetrahydroquinazoline-type antimalarial. Eur J Med Chem 2014; 76:10-9. [DOI: 10.1016/j.ejmech.2014.01.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 01/12/2014] [Accepted: 01/19/2014] [Indexed: 12/31/2022]
|
71
|
McLaughlin NP, Evans P, Pines M. The chemistry and biology of febrifugine and halofuginone. Bioorg Med Chem 2014; 22:1993-2004. [PMID: 24650700 DOI: 10.1016/j.bmc.2014.02.040] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 02/14/2014] [Accepted: 02/18/2014] [Indexed: 12/11/2022]
Abstract
The trans-2,3-disubstituted piperidine, quinazolinone-containing natural product febrifugine (also known as dichroine B) and its synthetic analogue, halofuginone, possess antimalarial activity. More recently studies have also shown that halofuginone acts as an agent capable of reducing fibrosis, an indication with clinical relevance for several disease states. This review summarizes historical isolation studies and the chemistry performed which culminated in the correct structural elucidation of naturally occurring febrifugine and its isomer isofebrifugine. It also includes the range of febrifugine analogues prepared for antimalarial evaluation, including halofuginone. Finally, a section detailing current opinion in the field of halofuginone's human biology is included.
Collapse
Affiliation(s)
- Noel P McLaughlin
- Centre for Synthesis and Chemical Biology, School of Chemistry and Chemical Biology, University College Dublin, Dublin 4, Ireland
| | - Paul Evans
- Centre for Synthesis and Chemical Biology, School of Chemistry and Chemical Biology, University College Dublin, Dublin 4, Ireland.
| | - Mark Pines
- Agricultural Research Organization, The Volcani Center, Institute of Animal Science, P.O. Box 6, Bet Dagan 50250, Israel.
| |
Collapse
|
72
|
Abstract
Fibrosis is defined as increased fibroblast proliferation and deposition of extracellular matrix components with potential clinical ramifications including organ dysfunction and failure. Fibrosis is a characteristic finding of various skin diseases which can have life-threatening consequences. These implications call for research into this topic as only a few treatments targeting fibrosis are available. In this review, we discuss oxidative stress and its role in skin fibrosis. Recent studies have implicated the importance of oxidative stress in a variety of cellular pathways directly and indirectly involved in the pathogenesis of skin fibrosis. The cellular pathways by which oxidative stress affects specific fibrotic skin disorders are also reviewed. Finally, we also describe various therapeutic approaches specifically targeting oxidative stress to prevent skin fibrosis. We believe oxidative stress is a relevant target, and understanding the role of oxidative stress in skin fibrosis will enhance knowledge of fibrotic skin diseases and potentially produce targeted therapeutic options.
Collapse
Affiliation(s)
- Anjali Shroff
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, Clinical Research – Dermatology, 5 East 98th Street- 5th floor, Box 1048, New York, NY USA
| | - Andrew Mamalis
- Department of Dermatology, University of California Davis, Sacramento, CA USA
- Dermatology Service, Sacramento VA Medical Center, Mather, CA USA
| | - Jared Jagdeo
- Department of Dermatology, University of California Davis, Sacramento, CA USA
- Dermatology Service, Sacramento VA Medical Center, Mather, CA USA
- Department of Dermatology, State University of New York Downstate Medical Center, Brooklyn, NY USA
| |
Collapse
|
73
|
Liang J, Zhang B, Shen RW, Liu JB, Gao MH, Li Y, Li YY, Zhang W. Preventive effect of halofuginone on concanavalin A-induced liver fibrosis. PLoS One 2013; 8:e82232. [PMID: 24358159 PMCID: PMC3864948 DOI: 10.1371/journal.pone.0082232] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/22/2013] [Indexed: 02/06/2023] Open
Abstract
Halofuginone (HF) is an active component of extracts derived from the plant alkaloid febrifugine and has shown therapeutic promise in animal models of fibrotic disease. Our main objectives were to clarify the suppressive effect of HF on concanavalin A (ConA)-induced liver fibrosis. ConA injection into the tail vein caused a great increase in the serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, while orally administration of HF significantly decreased the levels of the transaminases. In addition, the levels of hyaluronic acid (HA), procollagen III (PCIII) and TGF-β1 in the serum and collagen I, α-SMA, tissue inhibitors of metalloproteinase 2 (TIMP2) and Smad3 in the liver tissue were significantly lowered with the treatment of HF. Histological examination also demonstrated that HF significantly reduced the severity of liver fibrosis. Since ConA-induced liver fibrosis is caused by the repeated activation of T cells, immunomodulatory substances might be responsible for the suppressive effect of HF. We found that the production of nuclear factor (NF)-kB in the serum was increased in ConA-treated group, while decreased significantly with the treatment of HF. The changes of inflammatory cytokines tumor necrosis factor (TNF-α), IL-6 and IL-1β in the serum followed the same rhythm. All together, our findings indicate that orally administration HF (10ppm) would attenuate the liver fibrosis by suppressing the synthesis of collagen I and inflammation-mediated liver injury.
Collapse
Affiliation(s)
- Jie Liang
- Department of Immunology, Medical College of Qingdao University, Qingdao, China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, China
- * E-mail: (BZ); (RWS)
| | - Ruo-wu Shen
- Department of Anatomy, Medical College of Qingdao University, Qingdao, China
- * E-mail: (BZ); (RWS)
| | - Jia-Bao Liu
- Department of Radiology, Affiliated Hospital of Qingdao University Medical College, Qingdao, China
| | - Mei-hua Gao
- Department of Immunology, Medical College of Qingdao University, Qingdao, China
| | - Ying Li
- Department of Immunology, Medical College of Qingdao University, Qingdao, China
| | - Yuan-Yuan Li
- Department of Immunology, Medical College of Qingdao University, Qingdao, China
| | - Wen Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, China
| |
Collapse
|
74
|
Babalola O, Mamalis A, Lev-Tov H, Jagdeo J. NADPH oxidase enzymes in skin fibrosis: molecular targets and therapeutic agents. Arch Dermatol Res 2013; 306:313-330. [PMID: 24155025 DOI: 10.1007/s00403-013-1416-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 09/11/2013] [Accepted: 09/18/2013] [Indexed: 02/06/2023]
Abstract
Fibrosis is characterized by the excessive deposition of extracellular matrix components eventually resulting in organ dysfunction and failure. In dermatology, fibrosis is the hallmark component of many skin diseases, including systemic sclerosis, graft-versus-host disease, hypertrophic scars, keloids, nephrogenic systemic fibrosis, porphyria cutanea tarda, restrictive dermopathy and other conditions. Fibrotic skin disorders may be debilitating and impair quality of life. There are few FDA-approved anti-fibrotic drugs; thus, research in this area is crucial in addressing this deficiency. Recent investigations elucidating the pathogenesis of skin fibrosis have implicated endogenous reactive oxygen species produced by the multicomponent nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) enzyme complex. In this review, we discuss Nox enzymes and their role in skin fibrosis. An overview of the Nox enzyme family is presented and their role in the pathogenesis of skin fibrosis is discussed. The mechanisms by which Nox enzymes influence specific fibrotic skin disorders are also reviewed. Finally, we describe the therapeutic approaches to ameliorate skin fibrosis by directly targeting Nox enzymes with the use of statins, p47phox subunit modulators, or GKT137831, a competitive inhibitor of Nox enzymes. Nox enzymes can also be targeted indirectly via scavenging ROS with antioxidants. We believe that Nox modulators are worthy of further investigation and have the potential to transform the management of skin fibrosis by dermatologists.
Collapse
Affiliation(s)
- Olubukola Babalola
- Department of Dermatology, University of California at Davis, 3301 C Street, Sacramento, CA 95816, USA.,Dermatology Service, Sacramento VA Medical Center, Mather, CA 95655, USA
| | - Andrew Mamalis
- Department of Dermatology, University of California at Davis, 3301 C Street, Sacramento, CA 95816, USA
| | - Hadar Lev-Tov
- Department of Dermatology, University of California at Davis, 3301 C Street, Sacramento, CA 95816, USA.,Dermatology Service, Sacramento VA Medical Center, Mather, CA 95655, USA
| | - Jared Jagdeo
- Department of Dermatology, University of California at Davis, 3301 C Street, Sacramento, CA 95816, USA.,Dermatology Service, Sacramento VA Medical Center, Mather, CA 95655, USA.,Department of Dermatology, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| |
Collapse
|
75
|
Wu Y, Schomisch SJ, Cipriano C, Chak A, Lash RH, Ponsky JL, Marks JM. Preliminary results of antiscarring therapy in the prevention of postendoscopic esophageal mucosectomy strictures. Surg Endosc 2013; 28:447-55. [PMID: 24100858 DOI: 10.1007/s00464-013-3210-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 08/30/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND Esophageal endoscopic submucosal dissection (ESD) is an effective minimally invasive therapy for early esophageal cancer and high-grade Barrett dysplasia. However, esophageal stricture formation after circumferential or large ESD has limited its wide adoption. Mitomycin C (MMC), halofuginone (Hal), and transforming growth factor β3 (TGF-β3) exhibits antiscarring effects that may prevent post-ESD stricture formation. METHODS Using endoscopic mucosectomy (EEM) technique, an 8- to 10-cm-long circumferential esophageal mucosal segment was excised in a porcine model. The site was either untreated (control, n = 6) or received 40 evenly distributed injections of antiscarring agent immediately and at weeks 1 and 2. High and low doses were used: MMC 5 mg (n = 2), 0.5 mg (n = 2); Hal 5 mg (n = 2), 1.5 mg (n = 2), 0.5 mg (n = 2); TGF-β3 2 μg (n = 2), 0.5 μg (n = 2). The degree of stricture formation was determined by the percentage reduction of the esophageal lumen on weekly fluoroscopic examination. Animals were euthanized when strictures exceeded 80 % or the animals were unable to maintain weight. RESULTS The control group had a luminal diameter reduction of 78.2 ± 10.9 % by 2 weeks and were euthanized by week 3. Compared at 2 weeks, the Hal group showed a decrease in mean stricture formation (68.4 % low dose, 57.7 % high dose), while both TGF-β3 dosage groups showed no significant change (65.3 % low dose, 76.2 % high dose). MMC was most effective in stricture prevention (53.6 % low dose, 35 % high dose). Of concern, the esophageal wall treated with high-dose MMC appeared to be necrotic and eventually led to perforation. In contrast, low dose MMC, TGF-β3 and Hal treated areas appeared re-epithelialized and healthy. CONCLUSIONS Preliminary data on MMC and Hal demonstrated promise in reducing esophageal stricture formation after EEM. More animal data are needed to perform adequate statistical analysis in order to determine overall efficacy of antiscarring therapy.
Collapse
Affiliation(s)
- Yuhsin Wu
- Department of Surgery, University Hospitals Case Medical Center, 11100 Euclid Ave., Mail Stop LKS 5047, Cleveland, OH, 44106, USA,
| | | | | | | | | | | | | |
Collapse
|
76
|
Viswanath V, Phiske MM, Gopalani VV. Systemic sclerosis: current concepts in pathogenesis and therapeutic aspects of dermatological manifestations. Indian J Dermatol 2013; 58:255-68. [PMID: 23918994 PMCID: PMC3726870 DOI: 10.4103/0019-5154.113930] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic, multisystem connective tissue disease with protean clinical manifestations. Recent advances in understanding the pathogenic mechanisms have led to development of target-oriented and vasomodulatory drugs which play a pivotal role in treating various dermatological manifestations. An exhaustive literature search was done using Medline, Embase, and Cochrane library to review the recent concepts regarding pathogenesis and evidence-based treatment of salient dermatological manifestations. The concept of shared genetic risk factors for the development of autoimmune diseases is seen in SSc. It is divided into fibroproliferative and inflammatory groups based on genome-wide molecular profiling. Genetic, infectious, and environmental factors play a key role; vascular injury, fibrosis, and immune activation are the chief pathogenic factors. Vitamin D deficiency has been documented in SSc and correlates with the severity of skin involvement. Skin sclerosis, Raynaud's phenomenon (RP) with digital vasculopathies, pigmentation, calcinosis, and leg ulcers affect the patient's quality of life. Immunosuppressives, biologicals, and hematopoietic stem cell transplantation are efficacious in skin sclerosis. Endothelin A receptor antagonists, calcium-channel blockers, angiotensin receptor inhibitors, prostacyclin analogs, and phosphodiesterase type 5 (PDE-5) inhibitors are the mainstay in RP and digital vasculopathies. Pigmentation in SSc has been attributed to melanogenic potential of endothelin-1 (ET-1); the role of ET 1 antagonists and vitamin D analogs needs to be investigated. Sexual dysfunction in both male and female patients has been attributed to vasculopathy and fibrosis, wherein PDE-5 inhibitors are found to be useful. The future concepts of treating SSc may be based on the gene expression signature.
Collapse
Affiliation(s)
- Vishalakshi Viswanath
- Department of Dermatology, Rajiv Gandhi Medical College and CSM Hospital, Kalwa, Thane Municipal Corporation, India
| | | | | |
Collapse
|
77
|
Chu TL, Guan Q, Nguan CY, Du C. Halofuginone suppresses T cell proliferation by blocking proline uptake and inducing cell apoptosis. Int Immunopharmacol 2013; 16:414-23. [DOI: 10.1016/j.intimp.2013.04.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 04/17/2013] [Accepted: 04/25/2013] [Indexed: 01/31/2023]
|
78
|
Karadeniz Cerit K, Karakoyun B, Yüksel M, Özkan N, Cetinel Ş, Tolga Dağli E, Yeğen BÇ, Tuğtepe H. The antifibrotic drug halofuginone reduces ischemia/reperfusion-induced oxidative renal damage in rats. J Pediatr Urol 2013; 9:174-83. [PMID: 22373656 DOI: 10.1016/j.jpurol.2012.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 01/21/2012] [Indexed: 01/25/2023]
Abstract
AIM The objective of the present study was to evaluate the protective effects of halofuginone against renal ischemia/reperfusion (I/R) injury. MATERIALS AND METHODS Male Wistar albino rats were unilaterally nephrectomized and the left renal pedicles were occluded for 45 min to induce ischemia and then reperfused for 6 h (early) or for 72 h (late). The rats were treated intraperitoneally with either halofuginone (100 μg/kg/day) or saline 30 min prior to ischemia and the dose was repeated in the late reperfusion groups. In the sham groups, rats underwent unilateral nephrectomy and were treated at similar time points. The animals were decapitated at either 6 h or 72 h of reperfusion and trunk blood and kidney samples were obtained. RESULTS I/R injury increased renal malondialdehyde levels, myeloperoxidase activity and reactive oxygen radical levels, and decreased the renal glutathione content. Halofuginone treatment was found to reduce oxidative I/R injury and improve renal function in the rat kidney, as evidenced by reduced generation of reactive oxygen species, depressed lipid peroxidation and myeloperoxidase activity, and increased glutathione levels. CONCLUSIONS The present findings demonstrate the anti-inflammatory and antioxidant effects of halofuginone in renal I/R injury, supporting its potential use where renal I/R injury is inevitable.
Collapse
|
79
|
Maurer B, Distler O. Emerging targeted therapies in scleroderma lung and skin fibrosis. Best Pract Res Clin Rheumatol 2013; 25:843-58. [PMID: 22265265 DOI: 10.1016/j.berh.2011.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 11/14/2011] [Indexed: 01/08/2023]
Abstract
Systemic sclerosis (SSc) is a multisystemic fibrotic disorder that affects the skin and internal organs. Despite an improved outcome probably reflecting a better management of disease complications, morbidity and mortality remain higher than those of patients with other connective tissue diseases. SSc is still considered incurable; however, during recent years, intensive research activities have deepened the understanding of pathogenic mechanisms and have led to the identification of cellular and molecular anti-fibrotic targets. This review article will discuss potential future targeted therapeutic options based on data from in vitro studies, experimental models of fibrosis and first human trials with focus on scleroderma skin and lung fibrosis.
Collapse
Affiliation(s)
- Britta Maurer
- Department of Rheumatology and Center of Experimental Rheumatology, University Hospital Zurich, Zurich Center of Integrative Human Physiology (ZIHP), Zurich, Switzerland
| | | |
Collapse
|
80
|
Pines M. Targeting TGFβ signaling to inhibit fibroblast activation as a therapy for fibrosis and cancer: effect of halofuginone. Expert Opin Drug Discov 2013; 3:11-20. [PMID: 23480137 DOI: 10.1517/17460441.3.1.11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fibroblast to myofibroblast transition in wound healing, fibrosis and cancer has emerged as a viable target for pharmacological intervention. The myofibroblasts acquire specific characteristics because of differences in origin and localization, but also share common properties, such as TGFβ signaling. Halofuginone, an inhibitor of the Smad3 phosphorylation, downstream of the TGFβ signaling, inhibits the activation of fibroblasts and their ability to synthesize the extracellular matrix, regardless of their origin or location. Halofuginone prevented the new and stimulated resolution of pre-existing fibrosis of several organs and inhibited the development and progression of various tumors. Moreover, halofuginone synergizes with chemotherapy and reduces the need for high doses of toxic compounds without impairing the treatment efficacy. In fibrosis, where the myofibroblasts are the major participant, halofuginone can be used as a single therapy, whereas in cancer it should be considered in combination with other therapies that affect the tumor cells via different modalities.
Collapse
Affiliation(s)
- Mark Pines
- Institute of Animal Sciences, The Volcani Center, P.O. Box 6, Bet Dagan, 50250, Israel +972 8 9484408 ; +972 8 9475075 ;
| |
Collapse
|
81
|
The effect of Halofuginone in the amelioration of radiation induced-lung fibrosis. Med Hypotheses 2013; 80:357-9. [PMID: 23352286 DOI: 10.1016/j.mehy.2013.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 01/07/2013] [Accepted: 01/07/2013] [Indexed: 02/01/2023]
Abstract
The lung is one of the most sensitive organs to ionizing radiation, and damage to normal lung tissue remains a major dose limiting factor for patients receiving radiation to the thorax. Radiation induced lung injury (RILI) which is also named as "radiation pneumonpathy" is a continuous process and regarded as the result of an abnormal healing response. It has been shown that transforming growth factor β-1 (TGF-β1) plays an integral role in the radiation induced lung fibrosis formation by promoting the chemoattraction of fibroblasts and their conversion to myofibroblasts. Halofuginone is a, low molecular weight plant derived alkaloid, isolated from the Dichroa febrifuga plant that exhibits antifibrotic activity and inhibition of type I collagen synthesis. Halofuginone has been shown to protect against radiation induced soft tissue fibrosis by virtue of inhibiting various members of TFG-β signaling pathway. By the light of these findings, we hypothesize that Halofuginone may be able to ameliorate the radiation induced lung fibrosis.
Collapse
|
82
|
Abstract
Multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system (CNS), results from uncontrolled auto reactive T cells that infiltrate the CNS and attack the myelin sheath. Th17 cells play a prominent role in the pathogenesis of MS and experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Extensive studies have focused on understanding the roles of cytokine signaling and transcriptional network in the differentiation of Th17 cells and their pathogenicity in CNS inflammation. Aside from these events, activated T cells dynamically reprogram their metabolic pathways to fulfill the bioenergic and biosynthetic requirements for proper T cell functions. Emerging evidence indicates that modulation of these metabolic pathways impinges upon the differentiation of Th17 cells and the pathogenesis of EAE. Thus, a better understanding of the functions and mechanisms of T cell metabolism in Th17 cell biology may provide new avenues for therapeutic targeting of MS. In this review, we discuss the recent advances in our understanding of T cell metabolic pathways involved in Th17 cell differentiation and CNS inflammation.
Collapse
Affiliation(s)
- Kai Yang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
83
|
ATP-directed capture of bioactive herbal-based medicine on human tRNA synthetase. Nature 2012; 494:121-4. [PMID: 23263184 PMCID: PMC3569068 DOI: 10.1038/nature11774] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 11/09/2012] [Indexed: 12/17/2022]
|
84
|
Inhibition of matrix metalloproteinase-2 by halofuginone is mediated by the Egr1 transcription factor. Anticancer Drugs 2012; 23:1022-31. [DOI: 10.1097/cad.0b013e328357d186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
85
|
Topal AA, Dhurat RS. Scleroderma therapy: clinical overview of current trends and future perspective. Rheumatol Int 2012; 33:1-18. [PMID: 23011088 DOI: 10.1007/s00296-012-2486-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 07/07/2012] [Indexed: 12/20/2022]
Abstract
Systemic sclerosis is a chronic autoimmune condition with a complex pathogenesis and a high rate of mortality and morbidity. Internal organ involvement requires interdisciplinary approach in individual patient management. New discoveries in the pathogenesis of scleroderma herald a drastic change in the traditional outlook to therapy and have led to the development of the target-based approach in management. The challenge at present is to translate these advances in molecular mechanisms into well-designed clinical trials that will recognize potential disease-modifying therapies. This article is an evidence-based review of prevailing treatment options and future therapeutic targets in systemic sclerosis.
Collapse
Affiliation(s)
- Afsha A Topal
- T.N.M.C & BYL Nair Hospital, OPD 16, OPD building, Mumbai Central, Mumbai 400 008, India.
| | | |
Collapse
|
86
|
Reduction of burn scar formation by halofuginone-eluting silicone gel sheets: a controlled study on nude mice. Ann Plast Surg 2012; 68:271-5. [PMID: 22356780 DOI: 10.1097/sap.0b013e31824b3e06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Burn scar formations can cause disfiguration and loss of dermal function. The purpose of this study was to examine whether application of modified silicone gel sheets with an antifibrotic drug halofuginone-eluting hybrid surface produce an effect on scar development. There were a total of 2 animal groups. The athymic nude mice (nu/nu) of both groups underwent transplantation of full-thickness human skin grafts onto their backs and setting of partial thickness burn injury. The status of local scar development was observed over a period of 3 months after the application of silicone gel sheets and also after application of surface-modified halofuginone-eluting silicone gel sheets. Subsequently, via real-time polymerase chain reaction, the cDNA levels from key mediators of scar formation (transforming growth factor beta, COL1A1, connective tissue growth factor, fibroblast growth factor 2, matrix metalloproteinase 2, matrix metalloproteinase 9) were established and statistically evaluated. In comparison with uncoated silicone gel sheets, the application of halofuginone-eluting silicone gel sheets lead to a significant difference in gene expression activity in scar tissue. Halofuginone-eluting hybrid surface silicone gel sheets significantly increase the antiscarring effect of adhesive silicone gel sheets by deceleration and downregulation of scar development by normalization of the expression activity.
Collapse
|
87
|
Jordan MC, Zeplin PH. Local inhibition of angiogenesis by halofuginone coated silicone materials. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:1203-1210. [PMID: 22421950 DOI: 10.1007/s10856-012-4599-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 02/20/2012] [Indexed: 05/31/2023]
Abstract
Anti-angiogenic therapy is a promising approach for the treatment of increased angiogenesis in certain diseases. We aimed to investigate the local anti-angiogenic effect of silicone implants coated with Halofuginone, an angiogenesis inhibitor that inhibits synthesis of collagen-type-I and matrix metalloproteinases. The degree of angiogenesis was observed after implantation of surface modified Halofuginone eluting silicone implants into a submuscular pocket in rats over a period of 3 months. Subsequently, key mediators of angiogenesis (TGF-beta-1, bFGF, COL1A1, MMP-2, MMP-9, VEGF and PDGF) were established by immunohistological staining and RT-PCR and statistically evaluated. In comparison to uncoated silicone implants, Halofuginone eluting silicone implants lead to a significant local decrease of angiogenesis. Halofuginone eluting hybrid surface silicone implants have a significant local anti-angiogenic effect by down-regulating the expression activity of key mediators of angiogenesis.
Collapse
Affiliation(s)
- Martin C Jordan
- Department of Orthopaedic Surgery, König-Ludwig-Haus, Julius-Maximilians-University Würzburg, Brettreichstr. 11, 97074 Würzburg, Germany.
| | | |
Collapse
|
88
|
Leiba M, Jakubikova J, Klippel S, Mitsiades CS, Hideshima T, Tai YT, Leiba A, Pines M, Richardson PG, Nagler A, Anderson KC. Halofuginone inhibits multiple myeloma growth in vitro and in vivo and enhances cytotoxicity of conventional and novel agents. Br J Haematol 2012; 157:718-31. [PMID: 22533681 DOI: 10.1111/j.1365-2141.2012.09120.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 03/06/2012] [Indexed: 12/13/2022]
Abstract
Multiple Myeloma (MM), a malignancy of plasma cells, remains incurable despite the use of conventional and novel therapies. Halofuginone (HF), a synthetic derivative of quinazolinone alkaloid, has recently been shown to have anti-cancer activity in various preclinical settings. This study demonstrated the anti-tumour activity of HF against a panel of human MM cell lines and primary patient-derived MM cells, regardless of their sensitivity to conventional therapy or novel agents. HF showed anti-MM activity in vivo using a myeloma xenograft mouse model. HF suppressed proliferation of myeloma cells alone and when co-cultured with bone marrow stromal cells. Similarly, HF induced apoptosis in MM cells even in the presence of insulin-like growth factor 1 or interleukin 6. Importantly, HF, even at high doses, did not induce cytotoxicity against CD40 activated peripheral blood mononuclear cells from normal donors. HF treatment induced accumulation of cells in the G(0) /G(1) cell cycle and induction of apoptotic cell death associated with depletion of mitochondrial membrane potential; cleavage of poly (ADP-ribose) polymerase and caspases-3, 8 and 9 as well as down-regulation of anti-apoptotic proteins including Mcl-1 and X-IAP. Multiplex analysis of phosphorylation of diverse components of signalling cascades revealed that HF induced changes in P38MAPK activation; increased phosphorylation of c-jun, c-jun NH(2)-terminal kinase (JNK), p53 and Hsp-27. Importantly, HF triggered synergistic cytotoxicity in combination with lenalidomide, melphalan, dexamethasone, and doxorubicin. Taken together, these preclinical studies provide the preclinical framework for future clinical studies of HF in MM.
Collapse
Affiliation(s)
- Merav Leiba
- Department of Medical Oncology, The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Keller TL, Zocco D, Sundrud MS, Hendrick M, Edenius M, Yum J, Kim YJ, Lee HK, Cortese JF, Wirth DF, Dignam JD, Rao A, Yeo CY, Mazitschek R, Whitman M. Halofuginone and other febrifugine derivatives inhibit prolyl-tRNA synthetase. Nat Chem Biol 2012; 8:311-7. [PMID: 22327401 PMCID: PMC3281520 DOI: 10.1038/nchembio.790] [Citation(s) in RCA: 284] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 11/22/2011] [Indexed: 01/01/2023]
Abstract
Febrifugine, one of the fifty fundamental herbs of traditional Chinese medicine, has been characterized for its therapeutic activity whilst its molecular target has remained unknown. Febrifugine derivatives have been used to treat malaria, cancer, fibrosis, and inflammatory disease. We recently demonstrated that halofuginone (HF), a widely studied derivative of febrifugine, inhibits the development of Th17-driven autoimmunity in a mouse model of multiple sclerosis by activating the amino acid response pathway (AAR). Here we show that HF binds glutamyl-prolyl-tRNA synthetase (EPRS) inhibiting prolyl-tRNA synthetase activity; this inhibition is reversed by the addition of exogenous proline or EPRS. We further show that inhibition of EPRS underlies the broad bioactivities of this family of natural products. This work both explains the molecular mechanism of a promising family of therapeutics, and highlights the AAR pathway as an important drug target for promoting inflammatory resolution.
Collapse
Affiliation(s)
- Tracy L Keller
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Leibovici J, Itzhaki O, Huszar M, Sinai J. Targeting the tumor microenvironment by immunotherapy: part 2. Immunotherapy 2011; 3:1385-408. [DOI: 10.2217/imt.11.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer therapy was traditionally centered on the neoplastic cells. This included mainly surgery, radiation, and chemotherapy, in some cases hormone therapy and to a lesser extent immunotherapy – all traditionally targeted to the highly proliferating mutated tumor cells. In view of our present understanding of the powerfull influence of the tumor microenvironment (TME) on cancer behavior and response – and lack of response – to treatment, this previously ignored constituent of cancer now has to be considered as an important, even indispensable target for therapy. The TME may be targeted both to its immune and to its nonimmune components. The various immune evasion elements of the TME should be targeted as well.
Collapse
Affiliation(s)
| | - Orit Itzhaki
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Monica Huszar
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Judith Sinai
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel
| |
Collapse
|
91
|
Kamberov YG, Kim J, Mazitschek R, Kuo WP, Whitman M. Microarray profiling reveals the integrated stress response is activated by halofuginone in mammary epithelial cells. BMC Res Notes 2011; 4:381. [PMID: 21974968 PMCID: PMC3197508 DOI: 10.1186/1756-0500-4-381] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 10/05/2011] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The small molecule Halofuginone (HF) is a potent regulator of extracellular matrix (ECM ) gene expression and is unique in its therapeutic potential. While the basis for HF effects is unknown, inhibition of TGFβ signaling and activation of the amino acid restriction response (AAR) have been linked to HF transcriptional control of a number of ECM components and amelioration of fibrosis and alleviation of autoimmune disease by regulation of Th17 cell differentiation, respectively. The aim of this study was to generate a global expression profile of HF targets in epithelial cells to identify potential mediators of HF function in this cell type. RESULTS We report that HF modulation of the expression of the ECM remodeling protein Mmp13 in epithelial cells is separable from previously reported effects of HF on TGFβ signal inhibition, and use microarray expression analysis to correlate this with transcriptional responses characteristic of the Integrated Stress Response (ISR). CONCLUSIONS Our findings suggest activation of the ISR may be a common mechanism underlying HF biological effects.
Collapse
Affiliation(s)
- Yana G Kamberov
- Genetics Department, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
92
|
Pleiotropic effects of transforming growth factor-β in hematopoietic stem-cell transplantation. Transplantation 2011; 90:1139-44. [PMID: 20671593 DOI: 10.1097/tp.0b013e3181efd018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transforming growth factor (TGF)-β is a pleiotropic cytokine with beneficial and detrimental effects posthematopoietic stem-cell transplantation. TGF-β is increased in specific sites postengraftment and can suppress immune responses and maintain peripheral tolerance. Thus, TGF-β may promote allograft acceptance. However, TGF-β is also the central pathogenic cytokine in fibrotic disease and likely promotes pneumonitis. Although TGF-β can enhance leukocyte recruitment and IgA production, it inhibits both innate and adaptive immune cell function and antiviral host defense posthematopoietic stem-cell transplantation. This review will focus on the current understanding of TGF-β biology and the numerous ways it can impact outcomes posttransplant.
Collapse
|
93
|
Steen VD. Management of systemic sclerosis. Rheumatology (Oxford) 2011. [DOI: 10.1016/b978-0-323-06551-1.00140-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
94
|
Abstract
BACKGROUND Chronic graft-versus-host disease (CGVHD) is a serious and increasingly common complication after allogeneic (allo) hematopoietic stem-cell transplantation, but currently available therapies have demonstrated limited efficacy. Furthermore, the statins have been reported to be effective in various immune-mediated disease models, but their therapeutic potentials versus CGVHD have not been determined. METHODS We used a B10.D2→BALB/c model of CGVHD, which differs at minor histocompatibility loci, to address the therapeutic effect of statins on the development of CGVHD. Pravastatin (PST, 30 mg/kg/day) was intraperitoneally injected for 5 days per week from the day of transplantation until 4 weeks after allo hematopoietic stem-cell transplantation. RESULTS The onset of clinical cutaneous GVHD was significantly slower in PST-treated recipients than in allo-controls (36 days vs. 25 days, respectively, P<0.05), and pathologic changes in skin disease confirmed this clinical result. Animals injected with PST showed less submucosal fibrosis in lungs than allo-controls. In addition, collagen deposition in skin and lungs was markedly attenuated by PST treatment. PST also significantly reduced protein concentrations and numbers of inflammatory and epithelial cells in bronchoalveolar lavage fluid. Significantly lower numbers of donor CD11b and CD4, but not CD8 cells, were observed in skin and bronchoalveolar lavage fluid after PST treatment. The protein concentrations of monocyte chemoattractant protein-1 (MCP-1) and regulated on activation normal T cell expressed and secreted (RANTES) in skin and lungs were substantially reduced in PST-treated animals when compared with allo-controls. CONCLUSIONS This study suggests that the CGVHD-protecting effect of PST involves the down-regulation of chemokines and the reduction of collagen synthesis.
Collapse
|
95
|
Abstract
Scleroderma is a multisystem autoimmune disease characterized by an abnormal immune activation associated with the development of underlying vascular and fibrotic disease manifestations. This article highlights the current use of drugs targeting the immune system in scleroderma. Nonselective immunosuppression, and in particular cyclophosphamide, remains the main treatment for progressing skin involvement and active interstitial lung disease. Mycophenolate mofetil is a promising alternative to cyclophosphamide. The use of cyclosporine has been limited by modest efficacy and serious renal toxicity. Newer T-cell (sirolimus and alefacept) and B-cell (rituximab)-targeted therapies have provided some encouraging results in small pilot studies. Hematopoietic stem cell transplantation can be effective for severe fibrotic skin disease, but toxicity remains a concern. Clinical efficacy and safety of antifibrotic treatments (e.g., imatinib) await confirmation. Newer biological agents targeting key molecular or cellular effectors in scleroderma pathogenesis are now available for clinical testing.
Collapse
Affiliation(s)
- Rebecca Manno
- Division of Rheumatology, Johns Hopkins University, 5200 Eastern Av, MFLB-CT, Suite 4100, Baltimore, MD, USA
| | - Francesco Boin
- Division of Rheumatology, Johns Hopkins University, 5200 Eastern Av, MFLB-CT, Suite 4100, Baltimore, MD, USA
| |
Collapse
|
96
|
Meier JKH, Wolff D, Pavletic S, Greinix H, Gosau M, Bertz H, Lee SJ, Lawitschka A, Elad S. Oral chronic graft-versus-host disease: report from the International Consensus Conference on clinical practice in cGVHD. Clin Oral Investig 2010; 15:127-39. [PMID: 20859645 DOI: 10.1007/s00784-010-0450-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Accepted: 07/26/2010] [Indexed: 01/12/2023]
Abstract
Chronic graft-versus-host disease (cGVHD) is a multi-organ disease that occurs post-hematopoietic stem cell transplantation, with the mouth being one of the most frequently affected organs. In 2009, the German-Austrian-Swiss working party on bone marrow and blood stem cell transplantation held a consensus conference to define clinical management of cGVHD. The consensus conference aimed to summarize the literature on diagnosis and topical treatment options for oral cGVHD and to provide recommendations for clinical practice, including routine dental and oral care as well as monitoring for secondary malignancies and bisphophonate-induced osteonecrosis of the jaw.
Collapse
Affiliation(s)
- Johannes K-H Meier
- Department of Cranio-Maxillo-Facial Surgery, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Nevo Y, Halevy O, Genin O, Moshe I, Turgeman T, Harel M, Biton E, Reif S, Pines M. Fibrosis inhibition and muscle histopathology improvement in laminin-alpha2-deficient mice. Muscle Nerve 2010; 42:218-29. [PMID: 20589893 DOI: 10.1002/mus.21706] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In muscular dystrophies (MD) the loss of muscle and its ability to function are associated with fibrosis. We evaluated the efficacy of halofuginone in reducing fibrosis in the dy(2J)/dy(2J) mouse model of congenital MD. Mice were injected intraperitoneally with 5 microg of halofuginone 3 times a week for 5 or 15 weeks, starting at the age of 3 weeks. Halofuginone caused a reduction in collagen synthesis in hindlimb muscles. This was associated with reductions in the degenerated area, in cell proliferation, in the number of myofibers with central nuclei, with increased myofiber diameter, and with enhanced motor coordination and balance. Halofuginone caused a reduction in infiltrating fibroblasts that were located close to centrally nucleated myofibers. Our results suggest that halofuginone reduced the deleterious effects of fibrosis, thus improving muscle integrity. Halofuginone meets the criteria for a novel antifibrotic therapy for MD patients.
Collapse
Affiliation(s)
- Yoram Nevo
- Neuropediatric Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Surface Modification of Silicone Breast Implants by Binding the Antifibrotic Drug Halofuginone Reduces Capsular Fibrosis. Plast Reconstr Surg 2010; 126:266-274. [DOI: 10.1097/prs.0b013e3181dbc313] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
99
|
|
100
|
Karakoyun B, Yüksel M, Ercan F, Salva E, Işik I, Yeğen BC. Halofuginone, a specific inhibitor of collagen type 1 synthesis, ameliorates oxidant colonic damage in rats with experimental colitis. Dig Dis Sci 2010; 55:607-16. [PMID: 19390970 DOI: 10.1007/s10620-009-0798-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 03/17/2009] [Indexed: 01/28/2023]
Abstract
To evaluate the effect of halofuginone on trinitrobenzene sulfonic acid (TNBS)-induced colonic injury, rats were given halofuginone (40 microg/kg, intraperitoneally) or saline 1 h before the induction of colitis, and the injections were continued twice daily for 3 days until they were decapitated. High macroscopic and microscopic damage scores, elevated colonic wet weights, colonic myeloperoxidase activity, malondialdehyde and tissue collagen level, and luminol chemiluminescence values, and marked reduction in glutathione level of the saline-treated colitis group were all reversed by treatment with halofuginone. In conclusion, halofuginone exerts beneficial effects in TNBS-induced colonic inflammation in rats. The anti-inflammatory effects of halofuginone appear to involve suppression of neutrophil accumulation, preservation of endogenous glutathione, and inhibition of reactive oxidant generation. Halofuginone also shows antifibrotic effect via inhibition of tissue collagen production. The present data encourage possible use of the antifibrotic halofuginone as an anti-inflammatory agent in improving oxidative injury in colitis.
Collapse
Affiliation(s)
- Berna Karakoyun
- Health Sciences Faculty, Department of Nursing, Marmara University, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|