51
|
Ollivier H, Marchant J, Le Bayon N, Servili A, Claireaux G. Calcium response of KCl-excited populations of ventricular myocytes from the European sea bass (Dicentrarchus labrax): a promising approach to integrate cell-to-cell heterogeneity in studying the cellular basis of fish cardiac performance. J Comp Physiol B 2015. [PMID: 26205950 DOI: 10.1007/s00360-015-0924-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Climate change challenges the capacity of fishes to thrive in their habitat. However, through phenotypic diversity, they demonstrate remarkable resilience to deteriorating conditions. In fish populations, inter-individual variation in a number of fitness-determining physiological traits, including cardiac performance, is classically observed. Information about the cellular bases of inter-individual variability in cardiac performance is scarce including the possible contribution of excitation-contraction (EC) coupling. This study aimed at providing insight into EC coupling-related Ca(2+) response and thermal plasticity in the European sea bass (Dicentrarchus labrax). A cell population approach was used to lay the methodological basis for identifying the cellular determinants of cardiac performance. Fish were acclimated at 12 and 22 °C and changes in intracellular calcium concentration ([Ca(2+)]i) following KCl stimulation were measured using Fura-2, at 12 or 22 °C-test. The increase in [Ca(2+)]i resulted primarily from extracellular Ca(2+) entry but sarcoplasmic reticulum stores were also shown to be involved. As previously reported in sea bass, a modest effect of adrenaline was observed. Moreover, although the response appeared relatively insensitive to an acute temperature change, a difference in Ca(2+) response was observed between 12- and 22 °C-acclimated fish. In particular, a greater increase in [Ca(2+)]i at a high level of adrenaline was observed in 22 °C-acclimated fish that may be related to an improved efficiency of adrenaline under these conditions. In conclusion, this method allows a rapid screening of cellular characteristics. It represents a promising tool to identify the cellular determinants of inter-individual variability in fishes' capacity for environmental adaptation.
Collapse
Affiliation(s)
| | - James Marchant
- Unité PFOM-ARN, LEMAR, Centre Ifremer de Brest, Plouzané, France
| | - Nicolas Le Bayon
- Unité PFOM-ARN, LEMAR, Centre Ifremer de Brest, Plouzané, France
| | - Arianna Servili
- Unité PFOM-ARN, LEMAR, Centre Ifremer de Brest, Plouzané, France
| | - Guy Claireaux
- Unité PFOM-ARN, LEMAR, Centre Ifremer de Brest, Plouzané, France
| |
Collapse
|
52
|
Kochová P, Cimrman R, Štengl M, Ošťádal B, Tonar Z. A mathematical model of the carp heart ventricle during the cardiac cycle. J Theor Biol 2015; 373:12-25. [PMID: 25797310 DOI: 10.1016/j.jtbi.2015.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/06/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
Abstract
The poikilothermic heart has been suggested as a model for studying some of the mechanisms of early postnatal mammalian heart adaptations. We assessed morphological parameters of the carp heart (Cyprinus carpio L.) with diastolic dimensions: heart radius (5.73mm), thickness of the compact (0.50mm) and spongy myocardium (4.34mm), in two conditions (systole, diastole): volume fraction of the compact myocardium (20.7% systole, 19.6% diastole), spongy myocardium (58.9% systole, 62.8% diastole), trabeculae (37.8% systole, 28.6% diastole), and cavities (41.5% systole, 51.9% diastole) within the ventricle; volume fraction of the trabeculae (64.1% systole, 45.5% diastole) and sinuses (35.9% systole, 54.5% diastole) within the spongy myocardium; ratio between the volume of compact and spongy myocardium (0.35 systole, 0.31 diastole); ratio between compact myocardium and trabeculae (0.55 systole, 0.69 diastole); and surface density of the trabeculae (0.095μm(-1) systole, 0.147μm(-1) diastole). We created a mathematical model of the carp heart based on actual morphometric data to simulate how the compact/spongy myocardium ratio, the permeability of the spongy myocardium, and sinus-trabeculae volume fractions within the spongy myocardium influence stroke volume, stroke work, ejection fraction and p-V diagram. Increasing permeability led to increasing and then decreasing stroke volume and work, and increasing ejection fraction. An increased amount of spongy myocardium led to an increased stroke volume, work, and ejection fraction. Varying sinus-trabeculae volume fractions within the spongy myocardium showed that an increased sinus volume fraction led to an increased stroke volume and work, and a decreased ejection fraction.
Collapse
Affiliation(s)
- Petra Kochová
- European Centre of Excellence NTIS-New Technologies for Information Society, Faculty of Applied Sciences, University of West Bohemia, Univerzitní 22, 306 14 Pilsen, Czech Republic.
| | - Robert Cimrman
- New Technologies Research Centre, University of West Bohemia, Univerzitní 8, 306 14 Pilsen, Czech Republic.
| | - Milan Štengl
- Department of Physiology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Lidická 1, 301 66 Pilsen, Czech Republic.
| | - Bohuslav Ošťádal
- Instutite of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| | - Zbyněk Tonar
- European Centre of Excellence NTIS-New Technologies for Information Society, Faculty of Applied Sciences, University of West Bohemia, Univerzitní 22, 306 14 Pilsen, Czech Republic.
| |
Collapse
|
53
|
Elasmobranch Cardiovascular System. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/b978-0-12-801286-4.00001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
54
|
Cros C, Sallé L, Warren DE, Shiels HA, Brette F. The calcium stored in the sarcoplasmic reticulum acts as a safety mechanism in rainbow trout heart. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1493-501. [PMID: 25377479 PMCID: PMC4269670 DOI: 10.1152/ajpregu.00127.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiomyocyte contraction depends on rapid changes in intracellular Ca2+. In mammals, Ca2+ influx as L-type Ca2+ current (ICa) triggers the release of Ca2+ from sarcoplasmic reticulum (SR) and Ca2+-induced Ca2+ release (CICR) is critical for excitation-contraction coupling. In fish, the relative contribution of external and internal Ca2+ is unclear. Here, we characterized the role of ICa to trigger SR Ca2+ release in rainbow trout ventricular myocytes using ICa regulation by Ca2+ as an index of CICR. ICa was recorded with a slow (EGTA) or fast (BAPTA) Ca2+ chelator in control and isoproterenol conditions. In the absence of β-adrenergic stimulation, the rate of ICa inactivation was not significantly different in EGTA and BAPTA (27.1 ± 1.8 vs. 30.3 ± 2.4 ms), whereas with isoproterenol (1 μM), inactivation was significantly faster with EGTA (11.6 ± 1.7 vs. 27.3 ± 1.6 ms). When barium was the charge carrier, inactivation was significantly slower in both conditions (61.9 ± 6.1 vs. 68.0 ± 8.7 ms, control, isoproterenol). Quantification revealed that without isoproterenol, only 39% of ICa inactivation was due to Ca2+, while with isoproterenol, inactivation was Ca2+-dependent (∼65%) and highly reliant on SR Ca2+ (∼46%). Thus, SR Ca2+ is not released in basal conditions, and ICa is the main trigger of contraction, whereas during a stress response, SR Ca2+ is an important source of cytosolic Ca2+. This was not attributed to differences in SR Ca2+ load because caffeine-induced transients were not different in both conditions. Therefore, Ca2+ stored in SR of trout cardiomyocytes may act as a safety mechanism, allowing greater contraction when higher contractility is required, such as stress or exercise.
Collapse
Affiliation(s)
- Caroline Cros
- Faculty of Life Sciences, The University of Manchester, Core Technology Facility, Manchester, United Kingdom; and
| | | | - Daniel E Warren
- Faculty of Life Sciences, The University of Manchester, Core Technology Facility, Manchester, United Kingdom; and
| | - Holly A Shiels
- Faculty of Life Sciences, The University of Manchester, Core Technology Facility, Manchester, United Kingdom; and
| | - Fabien Brette
- Faculty of Life Sciences, The University of Manchester, Core Technology Facility, Manchester, United Kingdom; and
| |
Collapse
|
55
|
Haworth TE, Haverinen J, Shiels HA, Vornanen M. Electrical excitability of the heart in a Chondrostei fish, the Siberian sturgeon (Acipenser baerii). Am J Physiol Regul Integr Comp Physiol 2014; 307:R1157-66. [PMID: 25163915 DOI: 10.1152/ajpregu.00253.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sturgeon (family Acipenseridae) are regarded as living fossils due to their ancient origin and exceptionally slow evolution. To extend our knowledge of fish cardiac excitability to a Chondrostei fish, we examined electrophysiological phenotype of the Siberian sturgeon ( Acipenser baerii) heart with recordings of epicardial ECG, intracellular action potentials (APs), and sarcolemmal ion currents. Epicardial ECG of A. baerii had the typical waveform of the vertebrate ECG with Q-T interval (average duration of ventricular AP) of 650 ± 30 ms and an intrinsic heart rate of 45.5 ± 5 beats min−1 at 20°C. Similar to other fish species, atrial AP was shorter in duration (402 ± 33 ms) than ventricular AP (585 ± 40) ( P < 0.05) at 20°C. Densities of atrial and ventricular Na+ currents were similar (−47.6 ± 4.5 and −53.2 ± 5.1 pA/pF, respectively) and close to the typical values of teleost hearts. Two major K+ currents, the inward rectifier K+ current ( IK1), and the delayed rectifier K+ current ( IKr) were found under basal conditions in sturgeon cardiomyocytes. The atrial IKr (3.3 ± 0.2 pA/pF) was about twice as large as the ventricular IKr (1.3 ± 0.4 pA/pF) ( P < 0.05) conforming to the typical pattern of teleost cardiac IKr. Divergent from other fishes, the ventricular IK1 was remarkably small (−2.5 ± 0.07 pA/pF) and not different from that of the atrial myocytes (−1.9 ± 0.06 pA/pF) ( P > 0.05). Two ligand-gated K+ currents were also found: ACh-activated inward rectifier ( IKACh) was present only in atrial cells, while ATP-sensitive K+ current ( IKATP) was activated by a mitochondrial blocker, CCCP, in both atrial and ventricular cells. The most striking difference to other fishes appeared in Ca2+ currents ( ICa). In atrial myocytes, ICa was predominated by nickel-sensitive and nifedipine-resistant T-type ICa, while ventricular myocytes had mainly nifedipine-sensitive and nickel-resistant L-type ICa. ICaT/ ICaL ratio of the sturgeon atrial myocytes (2.42) is the highest value ever measured for a vertebrate species. In ventricular myocytes, ICaT/ ICaL ratio was 0.09. With the exception of the large atrial ICaT and small ventricular IK1, electrical excitability of A. baerii heart is similar to that of teleost hearts.
Collapse
Affiliation(s)
- Thomas Eliot Haworth
- University of Manchester, Faculty of Life Sciences, Manchester, United Kingdom; and
| | - Jaakko Haverinen
- University of Eastern Finland, Department of Biology, Joensuu, Finland
| | - Holly A. Shiels
- University of Manchester, Faculty of Life Sciences, Manchester, United Kingdom; and
| | - Matti Vornanen
- University of Eastern Finland, Department of Biology, Joensuu, Finland
| |
Collapse
|
56
|
Shiels HA, Galli GL. The Sarcoplasmic Reticulum and the Evolution of the Vertebrate Heart. Physiology (Bethesda) 2014; 29:456-69. [DOI: 10.1152/physiol.00015.2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The sarcoplasmic reticulum (SR) is crucial for contraction and relaxation of the mammalian cardiomyocyte, but its role in other vertebrate classes is equivocal. Recent evidence suggests differences in SR function across species may have an underlying structural basis. Here, we discuss how SR recruitment relates to the structural organization of the cardiomyocyte to provide new insight into the evolution of cardiac design and function in vertebrates.
Collapse
Affiliation(s)
- Holly A. Shiels
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom; and
| | - Gina L.J. Galli
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
57
|
Haverinen J, Egginton S, Vornanen M. Electrical Excitation of the Heart in a Basal Vertebrate, the European River Lamprey (Lampetra fluviatilis). Physiol Biochem Zool 2014; 87:817-28. [DOI: 10.1086/678954] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
58
|
The beat goes on: Cardiac pacemaking in extreme conditions. Comp Biochem Physiol A Mol Integr Physiol 2014; 186:52-60. [PMID: 25178563 DOI: 10.1016/j.cbpa.2014.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 08/17/2014] [Accepted: 08/20/2014] [Indexed: 11/21/2022]
Abstract
In order for an animal to survive, the heart beat must go on in all environmental conditions, or at least restart its beat. This review is about maintaining a rhythmic heartbeat under the extreme conditions of anoxia (or very severe hypoxia) and high temperatures. It starts by considering the primitive versions of the protein channels that are responsible for initiating the heartbeat, HCN channels, divulging recent findings from the ancestral craniate, the Pacific hagfish (Eptatretus stoutii). It then explores how a heartbeat can maintain a rhythm, albeit slower, for hours without any oxygen, and sometimes without autonomic innervation. It closes with a discussion of recent work on fishes, where the cardiac rhythm can become arrhythmic when a fish experiences extreme heat.
Collapse
|
59
|
Korajoki H, Vornanen M. Species- and chamber-specific responses of 12 kDa FK506-binding protein to temperature in fish heart. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:539-549. [PMID: 24048915 DOI: 10.1007/s10695-013-9864-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/10/2013] [Indexed: 06/02/2023]
Abstract
The sarcoplasmic reticulum (SR) Ca(2+) release channel or ryanodine receptor (RyR) of the vertebrate heart is regulated by the FK506-binding proteins, FKBP12 and FKBP12.6. This study examines whether temperature-related changes in the SR function of fish hearts are associated with changes in FKBP12 expression. For this purpose, a polyclonal antibody against trout FKBP12 was used to compare FKPB12 expression in cold-acclimated (4 °C, CA) and warm-acclimated (18 °C, WA) rainbow trout (Oncorhynchus mykiss), burbot (Lota lota) and crucian carp (Carassius carassius) hearts. FKBP12 expression was modulated in a species- and tissue-specific manner. Temperature acclimation affected FKBP12 expression only in atrial tissue. Changes in the ventricular FKBP12 expression were not detected in any of the fish species. In the atria of rainbow trout and crucian carp, temperature acclimation produced opposite thermal responses: FKBP12 increased in the trout atrium and decreased in the crucian carp atrium under cold acclimation. In the burbot heart, chronic temperature changes did not affect cardiac FKBP12 levels. Expression of FKBP12 mRNA in rainbow trout and crucian carp hearts suggests that the transcript levels are higher in the ventricle than in the atrium and are elevated by cold acclimation in trout, but not in crucian carp. Since FKBP12 is known to increase the Ca(2+) sensitivity of cardiac RyRs and thereby the opening frequency of the Ca(2+) release channels, temperature-related changes in FKBP12 expression may modify the SR function in excitation-contraction coupling. The cold-induced increase in FKBP12 in the trout atrium and decrease in the crucian carp atrium are consistent with the previously noted increase and decrease, respectively, of SR Ca(2+) stores in cardiac contraction in these species.
Collapse
Affiliation(s)
- Hanna Korajoki
- Department of Biology, University of Eastern Finland, P.O. Box 111, 80101, Joensuu, Finland,
| | | |
Collapse
|
60
|
Lin E, Ribeiro A, Ding W, Hove-Madsen L, Sarunic MV, Beg MF, Tibbits GF. Optical mapping of the electrical activity of isolated adult zebrafish hearts: acute effects of temperature. Am J Physiol Regul Integr Comp Physiol 2014; 306:R823-36. [PMID: 24671241 DOI: 10.1152/ajpregu.00002.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The zebrafish (Danio rerio) has emerged as an important model for developmental cardiovascular (CV) biology; however, little is known about the cardiac function of the adult zebrafish enabling it to be used as a model of teleost CV biology. Here, we describe electrophysiological parameters, such as heart rate (HR), action potential duration (APD), and atrioventricular (AV) delay, in the zebrafish heart over a range of physiological temperatures (18-28°C). Hearts were isolated and incubated in a potentiometric dye, RH-237, enabling electrical activity assessment in several distinct regions of the heart simultaneously. Integration of a rapid thermoelectric cooling system facilitated the investigation of acute changes in temperature on critical electrophysiological parameters in the zebrafish heart. While intrinsic HR varied considerably between fish, the ex vivo preparation exhibited impressively stable HRs and sinus rhythm for more than 5 h, with a mean HR of 158 ± 9 bpm (means ± SE; n = 20) at 28°C. Atrial and ventricular APDs at 50% repolarization (APD50) were 33 ± 1 ms and 98 ± 2 ms, respectively. Excitation originated in the atrium, and there was an AV delay of 61 ± 3 ms prior to activation of the ventricle at 28°C. APD and AV delay varied between hearts beating at unique HRs; however, APD and AV delay did not appear to be statistically dependent on intrinsic basal HR, likely due to the innate beat-to-beat variability within each heart. As hearts were cooled to 18°C (by 1°C increments), HR decreased by ~40%, and atrial and ventricular APD50 increased by a factor of ~3 and 2, respectively. The increase in APD with cooling was disproportionate at different levels of repolarization, indicating unique temperature sensitivities for ion currents at different phases of the action potential. The effect of temperature was more apparent at lower levels of repolarization and, as a whole, the atrial APD was the cardiac parameter most affected by acute temperature change. In conclusion, this study describes a preparation enabling the in-depth analysis of transmembrane potential dynamics in whole zebrafish hearts. Because the zebrafish offers some critical advantages over the murine model for cardiac electrophysiology, optical mapping studies utilizing zebrafish offer insightful information into the understanding and treatment of human cardiac arrhythmias, as well as serving as a model for other teleosts.
Collapse
Affiliation(s)
- Eric Lin
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Amanda Ribeiro
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Weiguang Ding
- Medical Image Analysis Laboratory, School of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Leif Hove-Madsen
- Cardiovascular Research Centre, CSIC-ICCC, Hospital de Sant Pau, Barcelona, Spain
| | - Marinko V Sarunic
- Biomedical Optics Research Group, School of Engineering Science, Simon Fraser University, Burnaby, Canada; and
| | - Mirza Faisal Beg
- Medical Image Analysis Laboratory, School of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Glen F Tibbits
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada; Cardiovascular Sciences, Child and Family Research Institute, Vancouver, Canada
| |
Collapse
|
61
|
Brette F, Machado B, Cros C, Incardona JP, Scholz NL, Block BA. Crude oil impairs cardiac excitation-contraction coupling in fish. Science 2014; 343:772-6. [PMID: 24531969 DOI: 10.1126/science.1242747] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Crude oil is known to disrupt cardiac function in fish embryos. Large oil spills, such as the Deepwater Horizon (DWH) disaster that occurred in 2010 in the Gulf of Mexico, could severely affect fish at impacted spawning sites. The physiological mechanisms underlying such potential cardiotoxic effects remain unclear. Here, we show that crude oil samples collected from the DWH spill prolonged the action potential of isolated cardiomyocytes from juvenile bluefin and yellowfin tunas, through the blocking of the delayed rectifier potassium current (I(Kr)). Crude oil exposure also decreased calcium current (I(Ca)) and calcium cycling, which disrupted excitation-contraction coupling in cardiomyocytes. Our findings demonstrate a cardiotoxic mechanism by which crude oil affects the regulation of cellular excitability, with implications for life-threatening arrhythmias in vertebrates.
Collapse
Affiliation(s)
- Fabien Brette
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950, USA
| | | | | | | | | | | |
Collapse
|
62
|
Seasonal acclimatization of the cardiac action potential in the Arctic navaga cod (Eleginus navaga, Gadidae). J Comp Physiol B 2014; 184:319-27. [PMID: 24395518 DOI: 10.1007/s00360-013-0797-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/10/2013] [Accepted: 12/20/2013] [Indexed: 10/25/2022]
Abstract
Freshwater fishes of north-temperate latitudes adjust electrical excitability of the heart to seasonal temperature changes by changing expression levels of ion channel isoforms. However, little is known about thermal responses of action potential (AP) in the hearts of marine polar fishes. To this end, we examined cardiac AP in the atrial myocardium of the Arctic navaga cod (Eleginus navaga) from the White Sea (Russia) acclimatized to winter (March) and summer (September) seasons. Acute increases in temperature from 4 to 10 °C were associated with increases in heart rate, maximum velocity of AP upstroke and negative resting membrane potential, while duration of AP was shortened in both winter-acclimatized and summer-acclimatized navaga hearts. In winter, there was a compensatory shortening (41.1%) of atrial AP duration and this was associated with a strong increase in transcript expression of Erg K(+) channels, known to produce the rapid component of the delayed rectifier K(+) current, I(Kr). Smaller increases were found in the expression of Kir2.1 channels that produce the inward rectifier K(+) current, I(K1). These findings indicate that the heart of navaga cod has a good acclimatory capacity in electrical excitation of cardiac myocytes, which enables cardiac function in the cold-eurythermal waters of the subarctic White Sea.
Collapse
|
63
|
Haverinen J, Vornanen M. Effects of deltamethrin on excitability and contractility of the rainbow trout (Oncorhynchus mykiss) heart. Comp Biochem Physiol C Toxicol Pharmacol 2014; 159:1-9. [PMID: 24100050 DOI: 10.1016/j.cbpc.2013.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/19/2013] [Accepted: 09/20/2013] [Indexed: 11/24/2022]
Abstract
Pyrethroids are extensively used for the control of pest insects and disease vectors. Pyrethroid use is regarded safe due to their selective toxicity: they are effective against insects but relatively harmless to mammals and birds. Unfortunately, pyrethroids are very toxic to fishes. The high toxicity of pyrethroids to fishes is only partly explained by slow elimination rate of toxins, suggesting that high affinity binding to their molecular targets, the Na(+) channels, is involved. This study tests the hypothesis that Na(+) channels of the fish heart are targets to a type II pyrethroid, deltamethrin (DM), and therefore pyrethroids are cardiotoxic to fishes. In ventricular myocytes of the rainbow trout (Oncorhynchus mykiss) heart DM (10(-7)-3·10(-5) M) modified Na(+) current by slowing inactivation and shifting the reversal potential of the current to the left. Maximally 31±2% of the cardiac Na(+) channels were modified by DM and the half-maximal effect occurred at the concentration of 2.1 μM. The effect of DM on trout cardiac Na(+) channels is stronger and occurs about an order of magnitude lower in concentration in comparison to the orthologous mammalian Na(+) channels. In sinoatrial preparations of the trout heart DM (10 μM) caused irregularities in rate, rhythm and force of the heartbeat indicating that DM can be arrhythmogenic for the trout heart. Consistent with this, DM (>0.1 μM) induced spontaneous action potentials in otherwise quiescent ventricular myocytes. DM (10 μM) did not affect calcium current or inward rectifier and delayed rectifier potassium currents. Collectively, these findings indicate that DM exerts cardiotoxic effects in trout, and suggest that the high sensitivity of fishes to pyrethroid toxicity might be partially due to the high affinity of fish Na(+) channels to pyrethroids.
Collapse
Affiliation(s)
- Jaakko Haverinen
- University of Eastern Finland, Department of Biology, P.O. Box 111, 80101 Joensuu, Finland.
| | | |
Collapse
|
64
|
Jayasundara N, Gardner LD, Block BA. Effects of temperature acclimation on Pacific bluefin tuna (Thunnus orientalis) cardiac transcriptome. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1010-20. [DOI: 10.1152/ajpregu.00254.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Little is known about the mechanisms underpinning thermal plasticity of vertebrate hearts. Bluefin tuna hearts offer a unique model to investigate processes underlying thermal acclimation. Their hearts, while supporting an endothermic physiology, operate at ambient temperature, and are presented with a thermal challenge when migrating to different thermal regimes. Here, we examined the molecular responses in atrial and ventricular tissues of Pacific bluefin tuna acclimated to 14°C, 20°C, and 25°C. Quantitative PCR studies showed an increase in sarcoplasmic reticulum Ca2+ ATPase gene expression with cold acclimation and an induction of Na+/Ca2+-exchanger gene at both cold and warm temperatures. These data provide evidence for thermal plasticity of excitation-contraction coupling gene expression in bluefin tunas and indicate an increased capacity for internal Ca2+ storage in cardiac myocytes at 14°C. Transcriptomic analysis showed profound changes in cardiac tissues with acclimation. A principal component analysis revealed that temperature effect was greatest on gene expression in warm-acclimated atrium. Overall data showed an increase in cardiac energy metabolism at 14°C, potentially compensating for cold temperature to optimize bluefin tuna performance in colder oceans. In contrast, metabolic enzyme activity and gene expression data suggest a decrease in ATP production at 25°C. Expression of genes involved in protein turnover and molecular chaperones was also decreased at 25°C. Expression of genes involved in oxidative stress response and programmed cell death suggest an increase in oxidative damage and apoptosis at 25°C, particularly in the atrium. These findings provide insights into molecular processes that may characterize cardiac phenotypes at upper thermal limits of teleosts.
Collapse
Affiliation(s)
| | - Luke D. Gardner
- Stanford University, Hopkins Marine Station, Pacific Grove, California
| | - Barbara A. Block
- Stanford University, Hopkins Marine Station, Pacific Grove, California
| |
Collapse
|
65
|
da Silveira LC, do Nascimento LFR, Colquhoun A, Abe AS, de Souza SCR. Cardiac hypertrophy and structural and metabolic remodeling related to seasonal dormancy in the first annual cycle in tegu lizards. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:371-80. [PMID: 23603066 DOI: 10.1016/j.cbpa.2013.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 11/16/2022]
Abstract
Morpho-functional adjustments in the heart of juvenile tegu lizards (Tupinambis merianae) were analyzed at distinct seasonal periods to investigate how the demands of growth and of energy saving are reconciled during the first annual cycle. The relative ventricular mass (Mv) was 31% and 69% larger in late autumn and winter dormancy, respectively, compared to early autumn. This effect did not persist during unfed arousal, suggesting that protein accumulates in the heart during hypometabolism and is degraded on arousal. Both the hypertrophy and the atrophy were disproportionate in the largest individuals. In contrast, Mv was smaller in lizards that were starved during spring activity compared to fed lizards, this effect being larger in smaller individuals. In late autumn and winter dormancy the spongy myocardium had 8% of the section area covered by lacunary spaces, which expanded after food intake during arousal and reached 29% in spring activity together with higher density of cardiomyocytes. Total and soluble proteins per mass unity were unchanged, and maximum activities of selected enzymes suggest sustained glycolytic and aerobic capacities during hypometabolism. Results indicate that important structural adjustments occur in the heart in anticipation of dormancy, and that the protein balance in the tissue is maintained at winter temperatures ~17°C.
Collapse
|
66
|
Cardiac molecular-acclimation mechanisms in response to swimming-induced exercise in Atlantic salmon. PLoS One 2013; 8:e55056. [PMID: 23372811 PMCID: PMC3555865 DOI: 10.1371/journal.pone.0055056] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 12/19/2012] [Indexed: 12/05/2022] Open
Abstract
Cardiac muscle is a principal target organ for exercise-induced acclimation mechanisms in fish and mammals, given that sustained aerobic exercise training improves cardiac output. Yet, the molecular mechanisms underlying such cardiac acclimation have been scarcely investigated in teleosts. Consequently, we studied mechanisms related to cardiac growth, contractility, vascularization, energy metabolism and myokine production in Atlantic salmon pre-smolts resulting from 10 weeks exercise-training at three different swimming intensities: 0.32 (control), 0.65 (medium intensity) and 1.31 (high intensity) body lengths s−1. Cardiac responses were characterized using growth, immunofluorescence and qPCR analysis of a large number of target genes encoding proteins with significant and well-characterized function. The overall stimulatory effect of exercise on cardiac muscle was dependent on training intensity, with changes elicited by high intensity training being of greater magnitude than either medium intensity or control. Higher protein levels of PCNA were indicative of cardiac growth being driven by cardiomyocyte hyperplasia, while elevated cardiac mRNA levels of MEF2C, GATA4 and ACTA1 suggested cardiomyocyte hypertrophy. In addition, up-regulation of EC coupling-related genes suggested that exercised hearts may have improved contractile function, while higher mRNA levels of EPO and VEGF were suggestive of a more efficient oxygen supply network. Furthermore, higher mRNA levels of PPARα, PGC1α and CPT1 all suggested a higher capacity for lipid oxidation, which along with a significant enlargement of mitochondrial size in cardiac myocytes of the compact layer of fish exercised at high intensity, suggested an enhanced energetic support system. Training also elevated transcription of a set of myokines and other gene products related to the inflammatory process, such as TNFα, NFκB, COX2, IL1RA and TNF decoy receptor. This study provides the first characterization of the underlying molecular acclimation mechanisms in the heart of exercise-trained fish, which resemble those reported for mammalian physiological cardiac growth.
Collapse
|
67
|
Imbert-Auvray N, Mercier C, Huet V, Bois P. Sarcoplasmic reticulum: a key factor in cardiac contractility of sea bass Dicentrarchus labrax and common sole Solea solea during thermal acclimations. J Comp Physiol B 2012; 183:477-89. [PMID: 23263664 DOI: 10.1007/s00360-012-0733-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 11/19/2012] [Accepted: 11/23/2012] [Indexed: 01/24/2023]
Abstract
This study investigated the effects of acclimation temperature upon (i) contractility of ventricular strips (ii) calcium movements in ventricular cardiomyocytes during excitation-contraction coupling (ECC), and (iii) the role of the sarcoplasmic reticulum (SR) in myocardial responses, in two marine teleosts, the sea bass (Dicentrarchus labrax) and the common sole (Solea solea). Because of the different sensitivities of their metabolism to temperature variation, both species were exposed to different thermal ranges. Sea bass were acclimated to 10, 15, 20, and 25 °C, and common sole to 6, 12, 18, and 24 °C, for 1 month. Isometric tension developed by ventricular strips was recorded over a range of physiological stimulation frequencies, whereas the depolarization-induced calcium transients were recorded on isolated ventricular cells through hyperpotassic solution application (at 100 mM). The SR contribution was assessed by ryanodine (RYAN) perfusion on ventricular strips and by caffeine application (at 10 mM) on isolated ventricular cells. Rates of contraction and relaxation of ventricular strip, in both species, increased with increasing acclimation temperature. At a low range of stimulation frequency, ventricular strips of common sole developed a positive force-frequency relationship at high acclimation temperature. In both the species, SR Ca(2+)-cycling was dependent on fish species, acclimation temperature and pacing frequency. The SR contribution was more important to force development at low acclimation temperatures in sea bass but at high acclimation temperatures in common sole. The results also revealed that high acclimation temperature causes an increase in the maximum calcium response amplitude on ventricular cells in both the species. Although sea bass and common sole occupy similar environments and tolerate similar environmental temperatures, this study indicated that sea bass and common sole can acclimatize to new thermal conditions, adjusting their cellular process in a different manner.
Collapse
Affiliation(s)
- N Imbert-Auvray
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, 17042 La Rochelle Cedex 01, France.
| | | | | | | |
Collapse
|
68
|
Temperature dependence of sarco(endo)plasmic reticulum Ca2+ ATPase expression in fish hearts. J Comp Physiol B 2012; 183:467-76. [PMID: 23239195 DOI: 10.1007/s00360-012-0724-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 10/10/2012] [Accepted: 11/22/2012] [Indexed: 10/27/2022]
Abstract
Cardiac function in fish acclimates to long-term temperature shifts by generating compensatory changes in structure and function of sarcoplasmic reticulum (SR) including the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2). The current study compares temperature responses of the cardiac SERCA in two fish species, burbot (Lota lota) and crucian carp (Carassius carassius), which differ in regard to thermal tolerance and activity pattern. Burbot are cold stenothermal and cold-active, while crucian carp are eurythermal and cold-dormant. The fish were acclimated at 4 °C (cold-acclimation, CA) or 18 °C (warm-acclimation, WA) and expression of SERCA proteins and transcript was measured from atrium and ventricle. Burbot heart expresses one major isoform of SERCA (110 kDa), while crucian carp heart expresses two isoforms (110 and 93 kDa). Expression of SERCA proteins was about four times higher (P < 0.05) in the heart of CA burbot than WA burbot, in both cardiac chambers. In the heart of crucian carp, thermal acclimation did not affect SERCA proteins, in either chamber (P > 0.05). The expression of SERCA transcripts did not follow the expression pattern of SERCA protein in either species, suggesting that SERCA expression is mainly regulated posttranscriptionally. These findings show that the stenothermal and cold-active burbot compensates for the decrease in ambient temperature by increasing the expression of SERCA. In the eurythermal and cold-dormant crucian carp SERCA expression is independent of temperature, while the presence of two SERCA isoforms may provide some thermal independence in SR Ca(2+) pumping.
Collapse
|
69
|
Yousaf MN, Amin AB, Koppang EO, Vuolteenaho O, Powell MD. Localization of natriuretic peptides in the cardiac pacemaker of Atlantic salmon (Salmo salar L.). Acta Histochem 2012; 114:819-26. [PMID: 22385580 DOI: 10.1016/j.acthis.2012.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/04/2012] [Accepted: 02/06/2012] [Indexed: 01/18/2023]
Abstract
This study describes the location of the primary pacemaker at the sino-atrial (SA) junction and the localization of salmon cardiac peptide (sCP) and ventricular natriuretic peptide (VNP) in Atlantic salmon (Salmo salar L.). The pacemaker tissue appeared lightly stained and composed of: (1) wavy nerve bundles with oval elongated wavy appearing nuclei with pointed ends, (2) ganglion cells (12-22 μm) with granular cytoplasm and (3) wide muscle fibers with large nuclei (modified cardiomyocytes) clearly distinguishing them from the other myocardial cells. Pacemaker tissue was further evaluated using immunohistochemical staining. Immunoreactivity of natriuretic peptides (sCP and VNP) antisera showed specific staining in pacemaker ganglion cells in addition to the cardiomyocytes. Positive staining with anti-CD3ɛ antisera in the pacemaker ganglion cells is a novel finding in teleosts and is consistent with observations in mammals. In conclusion, the Atlantic salmon pacemaker was shown to be located at the SA node and to harbor sCP and VNP peptides, suggesting a possible neuromodulatory and/or neurotransmitter role for these cardiac hormones within the teleost heart.
Collapse
|
70
|
Amelio D, Garofalo F, Capria C, Tota B, Imbrogno S. Effects of temperature on the nitric oxide-dependent modulation of the Frank-Starling mechanism: the fish heart as a case study. Comp Biochem Physiol A Mol Integr Physiol 2012; 164:356-62. [PMID: 23123761 DOI: 10.1016/j.cbpa.2012.10.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/24/2012] [Accepted: 10/24/2012] [Indexed: 01/03/2023]
Abstract
The Frank-Starling law is a fundamental property of the vertebrate myocardium which allows, when the end-diastolic volume increases, that the consequent stretch of the myocardial fibers generates a more forceful contraction. It has been shown that in the eel (Anguilla anguilla) heart, nitric oxide (NO) exerts a direct myocardial relaxant effect, increasing the sensitivity of the Frank-Starling response (Garofalo et al., 2009). With the use of isolated working heart preparations, this study investigated the relationship between NO modulation of Frank-Starling response and temperature challenges in the eel. The results showed that while, in long-term acclimated fish (spring animals perfused at 20 °C and winter animals perfused at 10 °C) the inhibition of NO production by L-N5 (1-iminoethyl)ornithine (L-NIO) significantly reduced the Frank-Starling response, under thermal shock conditions (spring animals perfused at 10 or 15 °C and winter animals perfused at 15 or 20 °C) L-NIO treatment resulted without effect. Western blotting analysis revealed a decrease of peNOS and pAkt expressions in samples subjected to thermal shock. Moreover, an increase in Hsp90 protein levels was observed under heat thermal stress. Together, these data suggest that the NO synthase/NO-dependent modulation of the Frank-Starling mechanism in fish is sensitive to thermal stress.
Collapse
Affiliation(s)
- D Amelio
- Dept. of Cell Biology, University of Calabria, Italy
| | | | | | | | | |
Collapse
|
71
|
Yousaf MN, Koppang EO, Skjødt K, Hordvik I, Zou J, Secombes C, Powell MD. Comparative cardiac pathological changes of Atlantic salmon (Salmo salar L.) affected with heart and skeletal muscle inflammation (HSMI), cardiomyopathy syndrome (CMS) and pancreas disease (PD). Vet Immunol Immunopathol 2012. [PMID: 23200434 DOI: 10.1016/j.vetimm.2012.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The heart is considered the powerhouse of the cardiovascular system. Heart and skeletal muscle inflammation (HSMI), cardiomyopathy syndrome (CMS) and pancreas disease (PD) are cardiac diseases of marine farmed Atlantic salmon (Salmo salar) which commonly affect the heart in addition to the skeletal muscle, liver and pancreas. The main findings of these diseases are necrosis and inflammatory cells infiltrates affecting different regions of the heart. In order to better characterize the cardiac pathology, study of the inflammatory cell characteristics and cell cycle protein expression was undertaken by immunohistochemistry. Immunohistochemistry was performed on paraffin embedded hearts from confirmed diseased cases applying specific antibodies. The inflammatory cells were predominantly CD3(+) T lymphocytes. The PD diseased hearts exhibited moderate hypoxia inducible factor-1α (HIF1α) immuno-reaction that suggested tissue hypoxia while recombinant tumor necrosis factor-α (rTNFα) antibody identified putative macrophages and eosinophilic granulocytes (EGCs) in addition to endocardial cells around lesions. There were strong to low levels of major histocompatibility complex (MHC) class II immunostaining in the diseased hearts associated with macrophage-like and lymphocyte-like cells. The diseased hearts expressed strong to low levels of apoptotic cells identified by caspase 3 and terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) staining. The strong signals for proliferative cell nuclear antigen (PCNA) and TUNEL, and moderate levels of caspase 3 immuno-reactivity suggested a high cell turnover where DNA damage/repair might be occurring in the diseased hearts. Interestingly, the apparently similar cardiac diseases exhibited differences in the immunopathological responses in Atlantic salmon.
Collapse
|
72
|
Methling C, Steffensen JF, Skov PV. The temperature challenges on cardiac performance in winter-quiescent and migration-stage eels Anguilla anguilla. Comp Biochem Physiol A Mol Integr Physiol 2012; 163:66-73. [PMID: 22587961 DOI: 10.1016/j.cbpa.2012.05.183] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 11/19/2022]
Abstract
The present study was undertaken to examine cardiac responses to some of the temperature challenges that eels encounter in their natural environment. The contractile properties of ventricular muscle was studied on electrically paced tissue strips after long term acclimation at 0 °C, 10 °C, or 20 °C, and following acute ± 10 °C temperature changes. The time-course of contraction, and thus maximal attainable heart rates, was greatly influenced by working temperature, but was independent of acclimation history. The absolute force of contraction and power production (i.e. the product of force and stimulation frequency) was significantly influenced by acute temperature decrease from 20 °C to 10 °C. The role of adrenaline as a modulator of contraction force, power production, rates of contraction and relaxation, and minimum time in contraction was assessed. Increased adrenergic tonus elicited a positive inotropic, temperature-dependent response, but did not influence twitch duration. This suggests that adrenaline acts as an agent in maintaining an adequate contractile force following temperature challenges. A significant increased relative ventricular mass was observed in 0 °C and 10 °C-acclimated eels compared to 20 °C-acclimated, which suggests that at low temperatures, eels secure cardiac output by heart enlargement. Inhibition of specific sarcolemmal Ca(2+) channels by selective drug treatment revealed that, depending on temperature, L-type channels is the major entry site, but also that reverse-mode Na(+)/Ca(2+)-exchange and store operated calcium entry contribute to the pool of activator Ca(2+).
Collapse
Affiliation(s)
- C Methling
- Marine Biological Section, University of Copenhagen Strandpromenaden 5, DK-3000, Helsingør, Denmark.
| | | | | |
Collapse
|
73
|
Cerra MC, Imbrogno S. Phospholamban and cardiac function: a comparative perspective in vertebrates. Acta Physiol (Oxf) 2012; 205:9-25. [PMID: 22463608 DOI: 10.1111/j.1748-1716.2012.02389.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phospholamban (PLN) is a small phosphoprotein closely associated with the cardiac sarcoplasmic reticulum (SR). Dephosphorylated PLN tonically inhibits the SR Ca-ATPase (SERCA2a), while phosphorylation at Ser16 by PKA and Thr17 by Ca(2+) /calmodulin-dependent protein kinase (CaMKII) relieves the inhibition, and this increases SR Ca(2+) uptake. For this reason, PLN is one of the major determinants of cardiac contractility and relaxation. In this review, we attempted to highlight the functional significance of PLN in vertebrate cardiac physiology. We will refer to the huge literature on mammals in order to describe the molecular characteristics of this protein, its interaction with SERCA2a and its role in the regulation of the mechanic and the electric performance of the heart under basal conditions, in the presence of chemical and physical stresses, such as β-adrenergic stimulation, response to stretch, force-frequency relationship and intracellular acidosis. Our aim is to provide the basis to discuss the role of PLN also on the cardiac function of nonmammalian vertebrates, because so far this aspect has been almost neglected. Accordingly, when possible, the literature on PLN will be analysed taking into account the nonuniform cardiac structural and functional characteristics encountered in ectothermic vertebrates, such as the peculiar and variable organization of the SR, the large spectrum of response to stresses and the disaptive absence of crucial proteins (i.e. haemoglobinless and myoglobinless species).
Collapse
Affiliation(s)
| | - S. Imbrogno
- Department of Cell Biology; University of Calabria; Arcavacata di Rende (CS); Italy
| |
Collapse
|
74
|
de Andrade Waldemarin KC, Alves RN, Beletti ME, Rantin FT, Kalinin AL. Copper sulfate affects Nile tilapia (Oreochromis niloticus) cardiomyocytes structure and contractile function. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:783-794. [PMID: 22160950 DOI: 10.1007/s10646-011-0838-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/30/2011] [Indexed: 05/31/2023]
Abstract
Copper sulfate (CuSO(4))is an inorganic chemical product worldwide used as an algaecide and a fungicide in aquaculture and agriculture and being discharged into freshwater environments where it can affect the freshwater fauna, especially fishes. The impact of copper on fish cardiac function was analyzed in two groups of Nile tilapias, Oreochromis niloticus (control group and group exposed to 1 mg l(-1) of CuSO(4) for 96 h). Structural and ultra-structural changes were studied and related to perturbations of the inotropic and chronotropic responses of ventricle strips. Fish of Cu exposed group did not show significant alterations in the medium diameter and in the percentage of collagen in the cardiac myocytes when evaluated through the light microscope. However, the ultrastructural analysis revealed cellular swelling followed by mitochondrial swelling. The myofibrils did not show significant variations among groups. Force contraction was significantly decreased, and rates of time to tension increase (contraction) and decrease (relaxation) were significantly augmented after copper exposure. The results suggest that the copper sulfate impairs the oxidative mitochondrial function and consequently alters the cardiac performance of this species.
Collapse
Affiliation(s)
- Kátia Cristina de Andrade Waldemarin
- Laboratory of Zoophysiology and Comparative Biochemistry, Department of Physiological Sciences, Center of Biological Sciences and Health, Federal University of São Carlos- UFSCar, Via Washington Luís km 235, São Carlos, SP 13.565-905, Brazil
| | | | | | | | | |
Collapse
|
75
|
Korajoki H, Vornanen M. Expression of SERCA and phospholamban in rainbow trout (Oncorhynchus mykiss) heart: comparison of atrial and ventricular tissue and effects of thermal acclimation. J Exp Biol 2012; 215:1162-9. [DOI: 10.1242/jeb.065102] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
In the heart of rainbow trout (Oncorhynchus mykiss), the rate of contraction and Ca2+ uptake into the sarcoplasmic reticulum (SR) are faster in atrial than ventricular muscle, and contraction force relies more on SR Ca2+ stores after acclimation to cold. This study tested the hypothesis that differences in contractile properties and Ca2+ regulation between atrial and ventricular muscle, and between warm-(WA) and cold-acclimated (CA) trout hearts, are associated with differences in expression of sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) and/or phospholamban (PLN), an inhibitor of the cardiac SERCA. Quantitative PCR (SERCA only) and antibodies raised against SERCA and PLN were used to determine abundances of SERCA2 transcripts and SERCA and PLN proteins, respectively, in atrium and ventricle of trout acclimated to cold (+4°C, CA) and warm (+18°C, WA) temperatures. Expression of SERCA2 transcripts was 1.6 and 2.1 times higher in atrium than ventricle of WA and CA trout, respectively (P<0.05). At the protein level, differences in SERCA expression between atrium and ventricle were 6.1- and 23-fold for WA and CA trout, respectively (P<0.001). Acclimation to cold increased SERCA2 transcripts 2.6- and 2.0-fold in atrial and ventricular muscle, respectively (P<0.05). At the protein level, cold-induced elevation of SERCA (4.6-fold) was noted only in atrial (P<0.05) but not in ventricular tissue (P>0.05). The expression pattern of PLN was similar to that of the SERCA protein, but chamber-specific and temperature-induced differences were much smaller than in the case of SERCA. In the ventricle, PLN/SERCA ratio was 2.1 and 7.0 times higher than in the atrium for WA and CA fish, respectively. These findings are consistent with the hypothesis that low PLN/SERCA ratio in atrial tissue enables faster SR Ca2+ reuptake and thus contributes to faster kinetics of contraction in comparison with ventricular muscle. Similarly, cold-induced decrease in PLN/SERCA ratio may be associated with faster contraction kinetics of the CA trout heart, in particular in the atrial muscle.
Collapse
Affiliation(s)
- Hanna Korajoki
- University of Eastern Finland, Department of Biology, PO Box 111, 80101 Joensuu, Finland
| | - Matti Vornanen
- University of Eastern Finland, Department of Biology, PO Box 111, 80101 Joensuu, Finland
| |
Collapse
|
76
|
Landeira-Fernandez AM, Castilho PC, Block BA. Thermal dependence of cardiac SR Ca2+-ATPase from fish and mammals. J Therm Biol 2012. [DOI: 10.1016/j.jtherbio.2012.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
77
|
Ballesta S, Hanson LM, Farrell AP. The effect of adrenaline on the temperature dependency of cardiac action potentials in pink salmon Oncorhynchus gorbuscha. JOURNAL OF FISH BIOLOGY 2012; 80:876-885. [PMID: 22471806 DOI: 10.1111/j.1095-8649.2011.03187.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Using sharp electrode impalement, action potentials recorded from atrial and ventricular tissue of pink salmon Oncorhynchus gorbuscha generally decreased in duration with increasing test temperature (6, 10, 16 and 20° C). Stimulation of the tissue using 500 nM adrenaline had no significant effect on the duration of the atrial action potential at any test temperature but lengthened the ventricular action potential by ~17%.
Collapse
Affiliation(s)
- S Ballesta
- University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4 Canada.
| | | | | |
Collapse
|
78
|
Cerra MC, Imbrogno S. Phospholamban and cardiac function: a comparative perspective in vertebrates. Acta Physiol (Oxf) 2012. [DOI: 10.1111/j.1748-1716.2011.02389.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - S. Imbrogno
- Department of Cell Biology; University of Calabria; Arcavacata di Rende (CS); Italy
| |
Collapse
|
79
|
Galli GLJ, Lipnick MS, Shiels HA, Block BA. Temperature effects on Ca2+ cycling in scombrid cardiomyocytes: a phylogenetic comparison. ACTA ACUST UNITED AC 2011; 214:1068-76. [PMID: 21389190 DOI: 10.1242/jeb.048231] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Specialisations in excitation-contraction coupling may have played an important role in the evolution of endothermy and high cardiac performance in scombrid fishes. We examined aspects of Ca(2+) handling in cardiomyocytes from Pacific bonito (Sarda chiliensis), Pacific mackerel (Scomber japonicus), yellowfin tuna (Thunnus albacares) and Pacific bluefin tuna (Thunnus orientalis). The whole-cell voltage-clamp technique was used to measure the temperature sensitivity of the L-type Ca(2+) channel current (I(Ca)), density, and steady-state and maximal sarcoplasmic reticulum (SR) Ca(2+) content (ssSR(load) and maxSR(load)). Current-voltage relations, peak I(Ca) density and charge density of I(Ca) were greatest in mackerel and yellowfin at all temperatures tested. I(Ca) density and kinetics were temperature sensitive in all species studied, and the magnitude of this response was not related to the thermal preference of the species. SR(load) was greater in atrial than in ventricular myocytes in the Pacific bluefin tuna, and in species that are more cold tolerant (bluefin tuna and mackerel). I(Ca) and SR(load) were particularly small in bonito, suggesting the Na(+)/Ca(2+) exchanger plays a more pivotal role in Ca(2+) entry into cardiomyocytes of this species. Our comparative approach reveals that the SR of cold-tolerant scombrid fishes has a greater capacity for Ca(2+) storage. This specialisation may contribute to the temperature tolerance and thermal niche expansion of the bluefin tuna and mackerel.
Collapse
Affiliation(s)
- Gina L J Galli
- Hopkins Marine Station of Stanford University, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA.
| | | | | | | |
Collapse
|
80
|
Shiels HA, Di Maio A, Thompson S, Block BA. Warm fish with cold hearts: thermal plasticity of excitation-contraction coupling in bluefin tuna. Proc Biol Sci 2010; 278:18-27. [PMID: 20667881 DOI: 10.1098/rspb.2010.1274] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bluefin tuna have a unique physiology. Elevated metabolic rates coupled with heat exchangers enable bluefin tunas to conserve heat in their locomotory muscle, viscera, eyes and brain, yet their hearts operate at ambient water temperature. This arrangement of a warm fish with a cold heart is unique among vertebrates and can result in a reduction in cardiac function in the cold despite the elevated metabolic demands of endothermic tissues. In this study, we used laser scanning confocal microscopy and electron microscopy to investigate how acute and chronic temperature change affects tuna cardiac function. We examined the temporal and spatial properties of the intracellular Ca2+ transient (Δ[Ca2+]i) in Pacific bluefin tuna (Thunnus orientalis) ventricular myocytes at the acclimation temperatures of 14°C and 24°C and at a common test temperature of 19°C. Acute (less than 5 min) warming and cooling accelerated and slowed the kinetics of Δ[Ca2+]i, indicating that temperature change limits cardiac myocyte performance. Importantly, we show that thermal acclimation offered partial compensation for these direct effects of temperature. Prolonged cold exposure (more than four weeks) increased the amplitude and kinetics of Δ[Ca2+]i by increasing intracellular Ca2+ cycling through the sarcoplasmic reticulum (SR). These functional findings are supported by electron microscopy, which revealed a greater volume fraction of ventricular SR in cold-acclimated tuna myocytes. The results indicate that SR function is crucial to the performance of the bluefin tuna heart in the cold. We suggest that SR Ca2+ cycling is the malleable unit of cellular Ca2+ flux, offering a mechanism for thermal plasticity in fish hearts. These findings have implications beyond endothermic fish and may help to delineate the key steps required to protect vertebrate cardiac function in the cold.
Collapse
Affiliation(s)
- H A Shiels
- Faculty of Life Sciences, The University of Manchester, Core Technology Facility, Grafton Street, Manchester M13 9PL, UK.
| | | | | | | |
Collapse
|
81
|
Postganglionic nerve cell bodies and neurotransmitter localization in the teleost heart. Acta Histochem 2010; 112:328-36. [PMID: 19493562 DOI: 10.1016/j.acthis.2009.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 02/11/2009] [Accepted: 02/13/2009] [Indexed: 11/21/2022]
Abstract
A study was undertaken to determine the distribution of specific types of autonomic nerves and the presence of various transmitter substances in the heart of two teleost species: the mullet (Mugil cephalus) and the Nile catfish (Synodontis nigriventris). Large nerve trunks in the sinus venosus were shown to contain tyrosine hydroxylase immunoreactivity and indicate the location of adrenergic nerve fibers, which are also associated with a coronary circulation to the ventricular myocardium in the mullet heart. Fluorescence immunolabelling methods revealed that the atrium and the outer and inner compact muscle of the ventricle have nerves in which substance P and galanin (GA) are localized. It seems likely that the cell bodies (perikarya) of the substance P and GA-immunopositive axons are located at sites outside the heart. The GA-immunopositive nerve fibers may represent a population of axons of intramural postganglionic nerve cell bodies. Most intracardiac nerve cell bodies are located in the sinus venosus and in the sinoatrial junction and reveal immunoreactivity to substance P, GA, neuronal nitric oxide synthase (nNOS), vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP). Furthermore, substance P immunoreactivity is present in the cardiac cells intermingled with the substance P-immunopositive nerve fibers. A nerve plexus consisting of a well-developed network of nerve fibers and nerve cell bodies may possibly correspond to a cardiac pacemaker, but its function in fish cardiac regulation is unknown and remains to be elucidated.
Collapse
|
82
|
Adult zebrafish heart as a model for human heart? An electrophysiological study. J Mol Cell Cardiol 2010; 48:161-71. [DOI: 10.1016/j.yjmcc.2009.08.034] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 08/27/2009] [Accepted: 08/31/2009] [Indexed: 01/22/2023]
|
83
|
Simonot DL, Farrell AP. Coronary vascular volume remodelling in rainbow trout Oncorhynchus mykiss. JOURNAL OF FISH BIOLOGY 2009; 75:1762-1772. [PMID: 20738647 DOI: 10.1111/j.1095-8649.2009.02427.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The 34% increase in relative ventricular mass (Mrv) resulting from chronic anaemia (induced by an intraperitoneal injection of phenylhydrazine hydrochloride) was accompanied by a 117% increase in coronary vascular volume of diploid rainbow trout Oncorhynchus mykiss. Coronary vascular volume of normocythemic triploid fish was similar to that of normocythemic diploid fish despite a larger Mrv. These observations, in combination with previous studies, suggest that the vascularity of compact myocardium in O. mykiss can vary independently of Mrv.
Collapse
Affiliation(s)
- D L Simonot
- Department of Biological Sciences, 8888 University Drive, Simon Fraser University, Burnaby, BC, V5A 1S6 Canada
| | | |
Collapse
|
84
|
Pieperhoff S, Bennett W, Farrell AP. The intercellular organization of the two muscular systems in the adult salmonid heart, the compact and the spongy myocardium. J Anat 2009; 215:536-47. [PMID: 19627390 PMCID: PMC2780571 DOI: 10.1111/j.1469-7580.2009.01129.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2009] [Indexed: 01/12/2023] Open
Abstract
The ventricle of the salmonid heart consists of an outer compact layer of circumferentially arranged cardiomyocytes encasing a spongy myocardium that spans the lumen of the ventricle with a fine arrangement of muscular trabeculae. While many studies have detailed the anatomical structure of fish hearts, few have considered how these two cardiac muscle architectures are attached to form a functional working unit. The present study considers how the spindle-like cardiomyocytes, unlike the more rectangular structure of adult mammalian cardiomyocytes, form perpendicular connections between the two muscle layers that withstand the mechanical forces generated during cardiac systole and permit a simultaneous, coordinated contraction of both ventricular components. Therefore, hearts of rainbow trout (Oncorhynchus mykiss) and sockeye salmon (Oncorhynchus nerka) were investigated in detail using scanning electron microscopy (SEM) and various light microscopic techniques. In contrast to earlier suggestions, we found no evidence for a distinct connective tissue layer between the two muscle architectures that might 'glue' together the compact and the spongy myocardium. Instead, the contact layer between the compact and the spongy myocardium was characterized by a significantly higher amount of desmosome-like (D) and fascia adhaerens-like (FA) adhering junctions compared with either region alone. In addition, we observed that the trabeculae form muscular sheets of fairly uniform thickness and variable width rather than thick cylinders of variable diameter. This sheet-like trabecular anatomy would minimize diffusion distance while maximizing the area of contact between the trabecular muscle and the venous blood as well as the muscle tension generated by a single trabecular sheet.
Collapse
Affiliation(s)
- Sebastian Pieperhoff
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada.
| | | | | |
Collapse
|
85
|
Galli GLJ, Warren DE, Shiels HA. Ca2+ cycling in cardiomyocytes from a high-performance reptile, the varanid lizard (Varanus exanthematicus). Am J Physiol Regul Integr Comp Physiol 2009; 297:R1636-44. [PMID: 19812356 PMCID: PMC2803631 DOI: 10.1152/ajpregu.00381.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The varanid lizard possesses one of the largest aerobic capacities among reptiles with maximum rates of oxygen consumption that are twice that of other lizards of comparable sizes at the same temperature. To support this aerobic capacity, the varanid heart possesses morphological adaptations that allow the generation of high heart rates and blood pressures. Specializations in excitation-contraction coupling may also contribute to the varanids superior cardiovascular performance. Therefore, we investigated the electrophysiological properties of the l-type Ca(2+) channel and the Na(+)/Ca(2+) exchanger (NCX) and the contribution of the sarcoplasmic reticulum to the intracellular Ca(2+) transient (Delta[Ca(2+)](i)) in varanid lizard ventricular myocytes. Additionally, we used confocal microscopy to visualize myocytes and make morphological measurements. Lizard ventricular myocytes were found to be spindle-shaped, lack T-tubules, and were approximately 190 microm in length and 5-7 microm in width and depth. Cardiomyocytes had a small cell volume ( approximately 2 pL), leading to a large surface area-to-volume ratio (18.5), typical of ectothermic vertebrates. The voltage sensitivity of the l-type Ca(2+) channel current (I(Ca)), steady-state activation and inactivation curves, and the time taken for recovery from inactivation were also similar to those measured in other reptiles and teleosts. However, transsarcolemmal Ca(2+) influx via reverse mode Na(+)/Ca(2+) exchange current was fourfold higher than most other ectotherms. Moreover, pharmacological inhibition of the sarcoplasmic reticulum led to a 40% reduction in the Delta[Ca(2+)](i) amplitude, and slowed the time course of decay. In aggregate, our results suggest varanids have an enhanced capacity to transport Ca(2+) through the Na(+)/Ca(2+) exchanger, and sarcoplasmic reticulum suggesting specializations in excitation-contraction coupling may provide a means to support high cardiovascular performance.
Collapse
Affiliation(s)
- Gina L J Galli
- Faculty of Life Sciences, The University of Manchester, Core Technology Facility, Manchester, United Kingdom.
| | | | | |
Collapse
|
86
|
Farrell AP, Eliason EJ, Sandblom E, Clark TD. Fish cardiorespiratory physiology in an era of climate changeThe present review is one of a series of occasional review articles that have been invited by the Editors and will feature the broad range of disciplines and expertise represented in our Editorial Advisory Board. CAN J ZOOL 2009. [DOI: 10.1139/z09-092] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review examines selected areas of cardiovascular physiology where there have been impressive gains of knowledge and indicates fertile areas for future research. Because arterial blood is usually fully saturated with oxygen, increasing cardiac output is the only means for transferring substantially more oxygen to tissues. Consequently, any behavioural or environmental change that alters oxygen uptake typically involves a change in cardiac output, which in fishes can amount to a threefold change. During exercise, not all fishes necessarily have the same ability as salmonids to increase cardiac output by increasing stroke volume; they rely more on increases in heart rate instead. The benefits associated with increasing cardiac output via stroke volume or heart rate are unclear. Regardless, all fishes examined so far show an exquisite cardiac sensitivity to filling pressure and the cellular basis for this heightened cardiac stretch sensitivity in fish is being unraveled. Even so, a fully integrated picture of cardiovascular functioning in fishes is hampered by a dearth of studies on venous circulatory control. Potent positive cardiac inotropy involves stimulation of sarcolemmal β-adrenoceptors, which increases the peak trans-sarcolemmal current for calcium and the intracellular calcium transient available for binding to troponin C. However, adrenergic sensitivity is temperature-dependent in part through effects on membrane currents and receptor density. The membrane currents contributing to the pacemaker action potential are also being studied but remain a prime area for further study. Why maximum heart rate is limited to a low rate in most fishes compared with similar-sized mammals, even when Q10 effects are considered, remains a mystery. Fish hearts have up to three oxygen supply routes. The degree of coronary capillarization circulation is of primary importance to the compact myocardium, unlike the spongy myocardium, where venous oxygen partial pressure appears to be the critical factor in terms of oxygen delivery. Air-breathing fishes can boost the venous oxygen content and oxygen partial pressure by taking an air breath, thereby providing a third myocardial oxygen supply route that perhaps compensates for the potentially precarious supply to the spongy myocardium during hypoxia and exercise. In addition to venous hypoxemia, acidemia and hyperkalemia can accompany exhaustive exercise and acute warming, perhaps impairing the heart were it not for a cardiac protection mechanism afforded by β-adrenergic stimulation. With warming, however, a mismatch between an animal’s demand for oxygen (a Q10 effect) and the capacity of the circulatory and ventilatory systems to delivery this oxygen develops beyond an optimum temperature. At temperature extremes in salmon, it is proposed that detrimental changes in venous blood composition, coupled with a breakdown of the cardiac protective mechanism, is a potential mechanism to explain the decline in maximum and cardiac arrhythmias that are observed. Furthermore, the fall off in scope for heart rate and cardiac output is used to explain the decrease in aerobic scope above the optimum temperature, which may then explain the field observation that adult sockeye salmon ( Oncorhynchus nerka (Walbaum in Artedi, 1792)) have difficulty migrating to their spawning area at temperatures above their optimum. Such mechanistic linkages to lifetime fitness, whether they are cardiovascular or not, should assist with predictions in this era of global climate change.
Collapse
Affiliation(s)
- A. P. Farrell
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - E. J. Eliason
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - E. Sandblom
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - T. D. Clark
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
87
|
Haverinen J, Vornanen M. Responses of Action Potential and K+Currents to Temperature Acclimation in Fish Hearts: Phylogeny or Thermal Preferences? Physiol Biochem Zool 2009; 82:468-82. [DOI: 10.1086/590223] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
88
|
Haverinen J, Vornanen M. Comparison of sarcoplasmic reticulum calcium content in atrial and ventricular myocytes of three fish species. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1180-7. [PMID: 19692664 DOI: 10.1152/ajpregu.00022.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ryanodine (Ry) sensitivity of cardiac contraction differs between teleost species, between atrium and ventricle, and according to the thermal history of the fish. The hypothesis that variability in Ry sensitivity of contraction is due to species-specific, chamber-specific, and temperature-related differences in the sarcoplasmic reticulum (SR) Ca(2+) content, was tested by comparing steady-state (SS) and maximal (Max) Ca(2+) loads of the SR in three teleost fish, rainbow trout (Oncorhynchus mykiss), burbot (Lota lota), and crucian carp (Carassius carassius), which differ in the extent of SR contribution to excitation-contraction coupling. Fish were acclimated at 4 degrees C (cold-acclimation, CA) or 18 degrees C (warm-acclimation, WA), and SR Ca(2+) content was released by a rapid application of 10 mM caffeine to single cardiac myocytes; its amount was determined from the Na(+)-Ca(2+) exchange current at 18 degrees C. SS Ca(2+) load was larger in atrial (304-915 micromol/l) than ventricular (224-540 micromol/l) myocytes in all fish species (P < 0.05), and the same was true for Max SR Ca(2+) content: 550-1,522 micromol/l and 438-840 micromol/l for atrial and ventricular myocytes, respectively (P < 0.05). Consistent with the hypothesis, acclimation to cold increased Ca(2+) load of the cardiac SR in the burbot heart, but contrary to the hypothesis, temperature acclimation did not affect SR Ca(2+) content in rainbow trout and crucian carp hearts. Furthermore, there was an inverse relation between SR Ca(2+) content and Ry sensitivity of contraction force: the species with the smallest SR Ca(2+) content (burbot) is most sensitive to Ry. Collectively, these findings show that SR Ca(2+) content of fish cardiac myocytes is several times larger than that in mammalian cardiac SR.
Collapse
Affiliation(s)
- Jaakko Haverinen
- University of Joensuu, Faculty of Biosciences, Joensuu, Finland.
| | | |
Collapse
|
89
|
Stecyk JAW, Bock C, Overgaard J, Wang T, Farrell AP, Pörtner HO. Correlation of cardiac performance with cellular energetic components in the oxygen-deprived turtle heart. Am J Physiol Regul Integr Comp Physiol 2009; 297:R756-68. [PMID: 19587113 DOI: 10.1152/ajpregu.00102.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The relationship between cardiac energy metabolism and the depression of myocardial performance during oxygen deprivation has remained enigmatic. Here, we combine in vivo (31)P-NMR spectroscopy and MRI to provide the first temporal profile of in vivo cardiac energetics and cardiac performance of an anoxia-tolerant vertebrate, the freshwater turtle (Trachemys scripta) during long-term anoxia exposure (approximately 3 h at 21 degrees C and 11 days at 5 degrees C). During anoxia, phosphocreatine (PCr), unbound levels of inorganic phosphate (effective P(i)(2-)), intracellular pH (pH(i)), and free energy of ATP hydrolysis (dG/dxi) exhibited asymptotic patterns of change, indicating that turtle myocardial high-energy phosphate metabolism and energetic state are reset to new, reduced steady states during long-term anoxia exposure. At 21 degrees C, anoxia caused a reduction in pH(i) from 7.40 to 7.01, a 69% decrease in PCr and a doubling of effective P(i)(2-). ATP content remained unchanged, but the free energy of ATP hydrolysis (dG/dxi) decreased from -59.6 to -52.5 kJ/mol. Even so, none of these cellular changes correlated with the anoxic depression of cardiac performance, suggesting that autonomic cardiac regulation may override putative cellular feedback mechanisms. In contrast, during anoxia at 5 degrees C, when autonomic cardiac control is severely blunted, the decrease of pH(i) from 7.66 to 7.12, 1.9-fold increase of effective P(i)(2-), and 6.4 kJ/mol decrease of dG/dxi from -53.8 to -47.4 kJ/mol were significantly correlated to the anoxic depression of cardiac performance. Our results provide the first evidence for a close, long-term coordination of functional cardiac changes with cellular energy status in a vertebrate, with a potential for autonomic control to override these immediate relationships.
Collapse
Affiliation(s)
- Jonathan A W Stecyk
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | | | | |
Collapse
|
90
|
Birkedal R, Christopher J, Thistlethwaite A, Shiels HA. Temperature acclimation has no effect on ryanodine receptor expression or subcellular localization in rainbow trout heart. J Comp Physiol B 2009; 179:961-9. [DOI: 10.1007/s00360-009-0377-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/29/2009] [Accepted: 06/02/2009] [Indexed: 11/30/2022]
|
91
|
Galli GLJ, Shiels HA, Brill RW. Temperature sensitivity of cardiac function in pelagic fishes with different vertical mobilities: yellowfin tuna (Thunnus albacares), bigeye tuna (Thunnus obesus), mahimahi (Coryphaena hippurus), and swordfish (Xiphias gladius). Physiol Biochem Zool 2009; 82:280-90. [PMID: 19284308 DOI: 10.1086/597484] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We measured the temperature sensitivity, adrenergic sensitivity, and dependence on sarcoplasmic reticulum (SR) Ca(2+) of ventricular muscle from pelagic fishes with different vertical mobility patterns: bigeye tuna (Thunnus obesus), yellowfin tuna (Thunnus albacares), and mahimahi (Coryphaena hippurus) and a single specimen from swordfish (Xiphias gladius). Ventricular muscle from the bigeye tuna and mahimahi exhibited a biphasic response to an acute decrease in temperature (from 26 degrees to 7 degrees C); twitch force and kinetic parameters initially increased and then declined. The magnitude of this response was larger in the bigeye tuna than in the mahimahi. Under steady state conditions at 26 degrees C, inhibition of SR Ca(2+) release and reuptake with ryanodine and thapsigargin decreased twitch force and kinetic parameters, respectively, in the bigeye tuna only. However, the initial inotropy associated with decreasing temperature was abolished by SR inhibition in both the bigeye tuna and the mahimahi. Application of adrenaline completely reversed the effects of ryanodine and thapsigargin, but this effect was diminished at cold temperatures. In the yellowfin tuna, temperature and SR inhibition had minor effects on twitch force and kinetics, while adrenaline significantly increased these parameters. Limited data suggest that swordfish ventricular muscle responds to acute temperature reduction, SR inhibition, and adrenergic stimulation in a manner similar to that of bigeye tuna ventricular muscle. In aggregate, our results show that the temperature sensitivity, SR dependence, and adrenergic sensitivity of pelagic fish hearts are species specific and that these differences reflect species-specific vertical mobility patterns.
Collapse
Affiliation(s)
- Gina L J Galli
- Faculty of Life Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, United Kingdom.
| | | | | |
Collapse
|
92
|
Vornanen M, Stecyk JA, Nilsson GE. Chapter 9 The Anoxia-Tolerant Crucian Carp (Carassius Carassius L.). FISH PHYSIOLOGY 2009. [DOI: 10.1016/s1546-5098(08)00009-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
93
|
Stecyk JAW, Galli GL, Shiels HA, Farrell AP. Cardiac survival in anoxia-tolerant vertebrates: An electrophysiological perspective. Comp Biochem Physiol C Toxicol Pharmacol 2008; 148:339-54. [PMID: 18589002 DOI: 10.1016/j.cbpc.2008.05.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 05/31/2008] [Accepted: 05/31/2008] [Indexed: 11/24/2022]
Abstract
Certain vertebrates, such as freshwater turtles of the genus Chrysemys and Trachemys and crucian carp (Carassius carassius), have anoxia-tolerant hearts that continue to function throughout prolonged periods of anoxia (up to many months) due to successful balancing of cellular ATP supply and demand. In the present review, we summarize the current and limited understanding of the cellular mechanisms underlying this cardiac anoxia tolerance. What emerges is that cold temperature substantially modifies cardiac electrophysiology to precondition the heart for winter anoxia. Intrinsic heart rate is slowed and density of sarcolemmal ion currents substantially modified to alter cardiac action potential (AP) characteristics. These changes depress cardiac activity and reduce the energetic costs associated with ion pumping. In contrast, anoxia per se results in limited changes to cardiac AP shape or ion current densities in turtle and crucian carp, suggesting that anoxic modifications of cardiac electrophysiology to reduce ATP demand are not extensive. Additionally, as knowledge of cellular physiology in non-mammalian vertebrates is still in its infancy, we briefly discuss the cellular defense mechanisms towards the acidosis that accompanies anoxia as well as mammalian cardiac models of hypoxia/ischemia tolerance. By examining if fundamental cellular mechanisms have been conserved during the evolution of anoxia tolerance we hope to have provided a framework for the design of future experiments investigating cardiac cellular mechanisms of anoxia survival.
Collapse
Affiliation(s)
- Jonathan A W Stecyk
- Physiology Programme, Department of Molecular Biosciences, University of Oslo, PO Box 1041, N-0316, Oslo, Norway.
| | | | | | | |
Collapse
|
94
|
Ultrastructure of the sarcoplasmic reticulum in cardiac myocytes from Pacific bluefin tuna. Cell Tissue Res 2008; 334:121-34. [DOI: 10.1007/s00441-008-0669-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 07/01/2008] [Indexed: 10/21/2022]
|
95
|
Characterization of isolated ventricular myocytes from adult zebrafish (Danio rerio). Biochem Biophys Res Commun 2008; 374:143-6. [PMID: 18602892 PMCID: PMC2581121 DOI: 10.1016/j.bbrc.2008.06.109] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 06/26/2008] [Indexed: 11/23/2022]
Abstract
The zebrafish is widely used for human related disease studies. Surprisingly, there is no information about the electrical activity of single myocytes freshly isolated from adult zebrafish ventricle. In this study, we present an enzymatic method to isolate ventricular myocytes from zebrafish heart that yield a large number of calcium tolerant cells. Ventricular myocytes from zebrafish were imaged using light and confocal microscopy. Myocytes were mostly rod shaped and responded by vigorous contraction to field electrical stimulation. Whole cell configuration of the patch clamp technique was used to record electrophysiological characteristics of myocytes. Action potentials present a long duration and a plateau phase and action potential duration decreases when increasing stimulation frequency (as observed in larger mammals). Together these results indicate that zebrafish is a species ideally suited for investigation of ion channels related mutation screening of cardiac alteration important in human.
Collapse
|
96
|
Hassinen M, Haverinen J, Vornanen M. Electrophysiological properties and expression of the delayed rectifier potassium (ERG) channels in the heart of thermally acclimated rainbow trout. Am J Physiol Regul Integr Comp Physiol 2008; 295:R297-308. [DOI: 10.1152/ajpregu.00612.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In ectotherms, compensatory changes in ion channel number and activity are needed to maintain proper cardiac function at variable temperatures. The rapid component of the delayed rectifier K+current ( IKr) is important for repolarization of cardiac action potential and, therefore, crucial for regulation of cellular excitability and heart rate. To examine temperature plasticity of cardiac IKr, we cloned the ether-à- go- go-related gene (ERG) channel and measured its electrophysiological properties in thermally acclimated rainbow trout ( Oncorhynchus mykiss; omERG). The present findings demonstrate a complete thermal compensation in the whole cell conductance of the atrial IKrin rainbow trout acclimated to 4°C (cold acclimation) and 18°C (warm acclimation). In situ hybridization indicates that transcripts of the omERG channel are present throughout the muscular tissue of the heart, and quantitative PCR shows increased expression of the omERG in cold-acclimated trout compared with warm-acclimated trout. In both acclimation groups, omERG expression is higher in atrium than ventricle. In addition, the omERG has some functional features that support IKractivity at low temperatures. Voltage dependence of steady-state activation is completely resistant to temperature changes, and steady-state inactivation and activation kinetics are little affected by temperatures below 11°C. Collectively, these findings suggest that high density of cardiac IKris achieved by cold-induced increase in the number of functional omERG channels and inherent insensitivity of the omERG to temperature below 11°C. These adaptations are probably important in maintaining high heart rates and proper excitability and contractility of trout cardiac myocytes in the cold.
Collapse
|
97
|
Xie Y, Ottolia M, John SA, Chen JN, Philipson KD. Conformational changes of a Ca2+-binding domain of the Na+/Ca2+ exchanger monitored by FRET in transgenic zebrafish heart. Am J Physiol Cell Physiol 2008; 295:C388-93. [PMID: 18550703 DOI: 10.1152/ajpcell.00178.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Na(+)/Ca(2+) exchanger is the major Ca(2+) extrusion mechanism in cardiac myocytes. The activity of the cardiac Na(+)/Ca(2+) exchanger is dynamically regulated by intracellular Ca(2+). Previous studies indicate that Ca(2+) binding to a high-affinity Ca(2+)-binding domain (CBD1) in the large intracellular loop is involved in regulation. We generated transgenic zebrafish with cardiac-specific expression of CBD1 linked to yellow and cyan fluorescent protein. Ca(2+) binding to CBD1 induces conformational changes, as detected by fluorescence resonance energy transfer. With this transgenic fish model, we were able to monitor conformational changes of the Ca(2+) regulatory domain of Na(+)/Ca(2+) exchanger in intact hearts. Treatment with the positive inotropic agents ouabain and isoproterenol increased both Ca(2+) transients and Ca(2+)-induced changes in fluorescence resonance energy transfer. The results indicate that Ca(2+) regulation of the Na(+)/Ca(2+) exchanger domain CBD1 changes with inotropic state. The transgenic fish models will be useful to further characterize the regulatory properties of the Na(+)/Ca(2+) exchanger in vivo.
Collapse
Affiliation(s)
- Yi Xie
- Department of Physiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1760, USA
| | | | | | | | | |
Collapse
|
98
|
Franklin CE, Davison W, Seebacher F. Antarctic fish can compensate for rising temperatures: thermal acclimation of cardiac performance in Pagothenia borchgrevinki. ACTA ACUST UNITED AC 2007; 210:3068-74. [PMID: 17704081 DOI: 10.1242/jeb.003137] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Antarctic fish Pagothenia borchgrevinki in McMurdo Sound, Antarctica, inhabit one of the coldest and most thermally stable of all environments. Sea temperatures under the sea ice in this region remain a fairly constant -1.86 degrees C year round. This study examined the thermal plasticity of cardiac function in P. borchgrevinki to determine whether specialisation to stable low temperatures has led to the loss of the ability to acclimate physiological function. Fish were acclimated to -1 degree C and 4 degrees C for 4-5 weeks and cardiac output was measured at rest and after exhaustive exercise in fish acutely transferred from their acclimation temperature to -1, 2, 4, 6 and 8 degrees C. In the -1 degree C acclimated fish, the factorial scope for cardiac output was greatest at -1 degree C and decreased with increasing temperature. Increases in cardiac output with exercise in the -1 degree C acclimated fish was achieved by increases in both heart rate and stroke volume. With acclimation to 4 degrees C, resting cardiac output was thermally independent across the test temperatures; furthermore, factorial scope for cardiac output was maintained at 4, 6 and 8 degrees C, demonstrating thermal compensation of cardiac function at the higher temperatures. This was at the expense of cardiac function at -1 degrees C, where there was a significant decrease in factorial scope for cardiac output in the 4 degrees C acclimated fish. Increases in cardiac output with exercise in the 4 degrees C acclimated fish at the higher temperatures was achieved by changes in heart rate alone, with stroke volume not varying between rest and exercise. The thermal compensation of cardiac function in P. borchgrevinki at higher temperatures was the result of a change in pumping strategy from a mixed inotropic/chronotropic modulated heart in -1 degrees C acclimated fish at low temperatures to a purely chronotropic modulated heart in the 4 degrees C acclimated fish at higher temperatures. In spite of living in a highly stenothermal cold environment, P. borchgrevinki demonstrated the capacity to thermally acclimate cardiac function to elevated temperatures, thereby allowing the maintenance of factorial scope and the support of aerobic swimming at higher temperatures.
Collapse
Affiliation(s)
- Craig E Franklin
- School of Integrative Biology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | |
Collapse
|
99
|
Rocha ML, Rantin FT, Kalinin AL. Importance of the sarcoplasmic reticulum and adrenergic stimulation on the cardiac contractility of the neotropical teleost Synbranchus marmoratus under different thermal conditions. J Comp Physiol B 2007; 177:713-21. [PMID: 17562053 DOI: 10.1007/s00360-007-0166-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Revised: 04/16/2007] [Accepted: 04/26/2007] [Indexed: 11/24/2022]
Abstract
Experiments were carried out to investigate the heart rate of Synbranchus marmoratus after changing the temperature of the water contained in the experimental chamber of the acclimated fish (from 25 to 35 degrees C and from 25 to 15 degrees C). Then, an isometric cardiac muscle preparation was used to test the relative importance of Ca(2+) released from the sarcoplasmic reticulum and Ca(2+) influx across the sarcolemma for the cardiac performance under different thermal conditions: 25 degrees C (acclimation temperature), 15 and 35 degrees C. Adrenaline and ryanodine were used to modulate the Ca(2+) flux through the sarcolemma and the sarcoplasmic reticulum, respectively. Ryanodine reduced the peak tension by approximately 47% at 25 degrees C, and by 53% at 35 degrees C; however, it had no effect at 15 degrees C. A high adrenaline concentration was able to ameliorate the negative effects of ryanodine. Despite increasing the peak tension, adrenaline increased the times necessary for contraction and relaxation. We conclude that the sarcoplasmic reticulum is active in contributing Ca(2+) to the development of tension at physiological contraction frequencies. The adrenaline-stimulated Ca(2+) influx is able to increase the peak tension, even after addition of ryanodine, at physiologically relevant temperatures and pacing frequencies.
Collapse
Affiliation(s)
- Matheus L Rocha
- Department of Physiological Science, Federal University of São Carlos, Via Washington Luiz, Km 235, 13565-905, São Carlos (SP), Brazil
| | | | | |
Collapse
|
100
|
Rocha ML, Rantin FT, Kalinin AL. Effects of temperature and calcium availability on cardiac contractility in Synbranchus marmoratus, a neotropical teleost. Comp Biochem Physiol A Mol Integr Physiol 2007; 146:544-50. [PMID: 16716619 DOI: 10.1016/j.cbpa.2006.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 03/06/2006] [Accepted: 03/08/2006] [Indexed: 11/16/2022]
Abstract
An isometric muscle preparation was used to investigate the importance of the ventricular sarcoplasmic reticulum (SR) and extracellular Ca2+ (1.25 up to 11.25 mM) to force generation at 25 degrees C (acclimation temperature), 15 and 35 degrees C. The post-rest tension and force-frequency relationship were conducted with and without 10 microM ryanodine in the bathing medium. Increments in extracellular Ca2+ resulted in increases in twitch force development only at 35 degrees C. A significant post-rest potentiation was recorded for the control preparations at 25 degrees C (100% to 119.8+/-4.1%). However, this post-rest potentiation was inhibited by ryanodine only at 25 degrees C (100% to 97.6+/-1.5%). At 35 degrees C, force remained unchanged in the control preparations, but a significant post-rest decay was recorded in the presence of ryanodine (100% to 76.6+/-4.6%) while at 15 degrees C, ryanodine was not able to preventing the post-rest potentiation observed in the control preparations. The increases in the imposed contraction frequency caused a decline of the force at 25 and 35 degrees C and ryanodine decreased significantly peak tension at both temperatures. The findings suggest a high or medium calcium turnover, possibly related to the presence of a functional SR, whose functionality is diminished when temperature is decreased.
Collapse
Affiliation(s)
- Matheus Lavorenti Rocha
- Department of Physiological Science, Federal University of São Carlos, Via Washington Luiz, Km 235-13565-905, São Carlos, SP, Brazil
| | | | | |
Collapse
|