51
|
Ji Z, Shen J, Lan Y, Yi Q, Liu H. Targeting signaling pathways in osteosarcoma: Mechanisms and clinical studies. MedComm (Beijing) 2023; 4:e308. [PMID: 37441462 PMCID: PMC10333890 DOI: 10.1002/mco2.308] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 07/15/2023] Open
Abstract
Osteosarcoma (OS) is a highly prevalent bone malignancy among adolescents, accounting for 40% of all primary malignant bone tumors. Neoadjuvant chemotherapy combined with limb-preserving surgery has effectively reduced patient disability and mortality, but pulmonary metastases and OS cells' resistance to chemotherapeutic agents are pressing challenges in the clinical management of OS. There has been an urgent need to identify new biomarkers for OS to develop specific targeted therapies. Recently, the continued advancements in genomic analysis have contributed to the identification of clinically significant molecular biomarkers for diagnosing OS, acting as therapeutic targets, and predicting prognosis. Additionally, the contemporary molecular classifications have revealed that the signaling pathways, including Wnt/β-catenin, PI3K/AKT/mTOR, JAK/STAT3, Hippo, Notch, PD-1/PD-L1, MAPK, and NF-κB, have an integral role in OS onset, progression, metastasis, and treatment response. These molecular classifications and biological markers have created new avenues for more accurate OS diagnosis and relevant treatment. We herein present a review of the recent findings for the modulatory role of signaling pathways as possible biological markers and treatment targets for OS. This review also discusses current OS therapeutic approaches, including signaling pathway-based therapies developed over the past decade. Additionally, the review covers the signaling targets involved in the curative effects of traditional Chinese medicines in the context of expression regulation of relevant genes and proteins through the signaling pathways to inhibit OS cell growth. These findings are expected to provide directions for integrating genomic, molecular, and clinical profiles to enhance OS diagnosis and treatment.
Collapse
Affiliation(s)
- Ziyu Ji
- School of Integrated Traditional Chinese and Western MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Jianlin Shen
- Department of OrthopaedicsAffiliated Hospital of Putian UniversityPutianFujianChina
| | - Yujian Lan
- School of Integrated Traditional Chinese and Western MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Qian Yi
- Department of PhysiologySchool of Basic Medical ScienceSouthwest Medical UniversityLuzhouSichuanChina
| | - Huan Liu
- Department of OrthopaedicsThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouSichuanChina
| |
Collapse
|
52
|
Tuerxun H, Zhao Y, Li Y, Liu X, Wen S, Cao J, Cui J, Zhao Y. Immune Checkpoint Inhibitors as A Threat to Reproductive Function: A Systematic Review. Crit Rev Oncol Hematol 2023:104064. [PMID: 37379960 DOI: 10.1016/j.critrevonc.2023.104064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/08/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023] Open
Abstract
In recent years, the indications for immunotherapy in cancer treatment have been expanding. The increased risk of cancer in young people, coupled with the fact that many women or men choose to delay childbearing, has made an increasing number of patients of childbearing age eligible for immunotherapy. Furthermore, with the improvements of various treatments, more young people and children are able to survive cancer. As a result, long-term sequelae of cancer treatments, such as reproductive dysfunction, are increasingly important for survivors. While many anti-cancer drugs are known to cause reproduction dysfunction, the effects of immune checkpoint inhibitors (ICIs) on reproduction function remain largely unknown. Through a retrospective analysis of previous reports and literature, this article aims to elucidate the causes of reproductive dysfunction induced by ICIs and focus on their specific mechanisms, in order to providing some guidance to clinicians and patients.
Collapse
Affiliation(s)
- Halahati Tuerxun
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yixin Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yawen Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xingyu Liu
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Shuhui Wen
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jingjing Cao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jiuwei Cui
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yuguang Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
53
|
Faleck DM, Dougan M, Tello M, Grossman JE, Moss AC, Postow MA. Accelerating the Evolution of Immune-Related Enterocolitis Management. J Clin Oncol 2023; 41:3110-3115. [PMID: 37040601 PMCID: PMC10256374 DOI: 10.1200/jco.22.02914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/14/2023] [Accepted: 03/09/2023] [Indexed: 04/13/2023] Open
Affiliation(s)
- David M. Faleck
- Gastroenterology, Hepatology & Nutrition Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Michael Dougan
- Division of Gastroenterology and Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA
| | | | | | - Alan C. Moss
- Division of Gastroenterology, Department of Medicine, Boston Medical Center, Boston, MA
| | - Michael A. Postow
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
54
|
Mishra R, Sukhbaatar A, Mori S, Kodama T. Metastatic lymph node targeted CTLA4 blockade: a potent intervention for local and distant metastases with minimal ICI-induced pneumonia. J Exp Clin Cancer Res 2023; 42:132. [PMID: 37259163 DOI: 10.1186/s13046-023-02645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/14/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) elicits a strong and durable therapeutic response, but its application is limited by disparate responses and its associated immune-related adverse events (irAEs). Previously, in a murine model of lymph node (LN) metastasis, we showed that intranodal administration of chemotherapeutic agents using a lymphatic drug delivery system (LDDS) elicits stronger therapeutic responses in comparison to systemic drug delivery approaches, while minimizing systemic toxicity, due to its improved pharmacokinetic profile at the intended site. Importantly, the LN is a reservoir of immunotherapeutic targets. We therefore hypothesized that metastatic LN-targeted ICB can amplify anti-tumor response and uncouple it from ICB-induced irAEs. METHODS To test our hypothesis, models of LN and distant metastases were established with luciferase expressing LM8 cells in MXH10/Mo-lpr/lpr mice, a recombinant inbred strain of mice capable of recapitulating ICB-induced interstitial pneumonia. This model was used to interrogate ICB-associated therapeutic response and immune related adverse events (irAEs) by in vivo imaging, high-frequency ultrasound imaging and histopathology. qPCR and flowcytometry were utilized to uncover the mediators of anti-tumor immunity. RESULTS Tumor-bearing LN (tbLN)-directed CTLA4 blockade generated robust anti-tumor response against local and systemic metastases, thereby improving survival. The anti-tumor effects were accompanied by an upregulation of effector CD8T cells in the tumor-microenvironment and periphery. In comparison, non-specific CTLA4 blockade was found to elicit weaker anti-tumor effect and exacerbated ICI-induced irAEs, especially interstitial pneumonia. Together these data highlight the importance of tbLN-targeted checkpoint blockade for efficacious response. CONCLUSIONS Intranodal delivery of immune checkpoint inhibitors to metastatic LN can potentiate therapeutic response while minimizing irAEs stemming from systemic lowering of immune activation threshold.
Collapse
Affiliation(s)
- Radhika Mishra
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
55
|
Braun DS, Patel S, Schwartz A. Subclinical Celiac Disease Unmasked by Immune Checkpoint Inhibitor Therapy. J Immunother 2023; 46:152-153. [PMID: 36780126 DOI: 10.1097/cji.0000000000000452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/12/2023] [Indexed: 02/14/2023]
Abstract
Immune checkpoint inhibitors (ICI) are antibodies that block immune checkpoint proteins from binding with their partner proteins on cancer cells, subsequently allowing cytotoxic T-cell-associated enhancement of antitumor responses. Although ICIs have become the standard of care for various malignancies, their use is often limited by unique immune-related adverse events, including dermatologic, endocrine, inflammatory, hepatic, and gastrointestinal events. Diarrhea and colitis are common lower gastrointestinal tract immune-related adverse events, however, only a few cases have reported the association between celiac disease (CD) and ICIs. We report here a case of a 75-year-old man with new onset CD after exposure to the cytotoxic T-lymphocyte-associated antigen-4 ICI, ipilimumab. Although ICI-induced CD is relatively rare, it is essential to consider it in a genetically susceptible patient undergoing treatment with ICI. Patients with known high susceptibility to CD, such as a family history of CD, or with the ancestry of high celiac penetrance (eg, Northern Europe, North Africa, etc), dermatitis herpetiformis, or chronic bowel symptoms, we feel should have celiac panel testing before initiating ICI therapy.
Collapse
Affiliation(s)
| | | | - Armond Schwartz
- Digestive Health Associates of Texas, Methodist Dallas Medical Center, Dallas, TX
| |
Collapse
|
56
|
Ter Heine R, van den Heuvel MM, Piet B, Deenen MJ, van der Wekken AJ, Hendriks LEL, Croes S, van Geel RMJM, Jansman FGA, Boshuizen RC, Franssen EJF, Smit AAJ, Dumoulin DW, Oude Munnink TH, Smit EF, Derijks HJ, van der Leest CH, Hendrikx JJMA, Moes DJAR, de Rouw N. A Systematic Evaluation of Cost-Saving Dosing Regimens for Therapeutic Antibodies and Antibody-Drug Conjugates for the Treatment of Lung Cancer. Target Oncol 2023; 18:441-450. [PMID: 37081309 DOI: 10.1007/s11523-023-00958-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Expensive novel anticancer drugs put a serious strain on healthcare budgets, and the associated drug expenses limit access to life-saving treatments worldwide. OBJECTIVE We aimed to develop alternative dosing regimens to reduce drug expenses. METHODS We developed alternative dosing regimens for the following monoclonal antibodies used for the treatment of lung cancer: amivantamab, atezolizumab, bevacizumab, durvalumab, ipilimumab, nivolumab, pembrolizumab, and ramucirumab; and for the antibody-drug conjugate trastuzumab deruxtecan. The alternative dosing regimens were developed by means of modeling and simulation based on the population pharmacokinetic models developed by the license holders. They were based on weight bands and the administration of complete vials to limit drug wastage. The resulting dosing regimens were developed to comply with criteria used by regulatory authorities for in silico dose development. RESULTS We found that alternative dosing regimens could result in cost savings that range from 11 to 28%, and lead to equivalent pharmacokinetic exposure with no relevant increases in variability in exposure. CONCLUSIONS Dosing regimens based on weight bands and the use of complete vials to reduce drug wastage result in less expenses while maintaining equivalent exposure. The level of evidence of our proposal is the same as accepted by regulatory authorities for the approval of alternative dosing regimens of other monoclonal antibodies in oncology. The proposed alternative dosing regimens can, therefore, be directly implemented in clinical practice.
Collapse
Affiliation(s)
- Rob Ter Heine
- Department of Pharmacy, Radboud University Medical Center, Radboud Institute for Health Sciences, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, The Netherlands.
| | | | - Berber Piet
- Department of Pulmonology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maarten J Deenen
- Department of Clinical Pharmacy, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Anthonie J van der Wekken
- Department of Pulmonary Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lizza E L Hendriks
- Department of Pulmonary Diseases, GROW-School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Sander Croes
- Department of Clinical Pharmacy and Toxicology, Maastricht University Medical Center, Maastricht, The Netherlands
- CARIM School for Cardiovascular Disease, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Robin M J M van Geel
- Department of Clinical Pharmacy and Toxicology, Maastricht University Medical Center, Maastricht, The Netherlands
- CARIM School for Cardiovascular Disease, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Frank G A Jansman
- Department of Clinical Pharmacy, Deventer Hospital, Deventer, The Netherlands
- Unit of PharmacoTherapy, Epidemiology and Economics, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
| | | | - Eric J F Franssen
- Department of Clinical Pharmacy, Onze Lieve Vrouwe Gasthuis Hospital AC, Amsterdam, The Netherlands
| | - Arthur A J Smit
- Department of Pulmonology, Onze Lieve Vrouwe Gasthuis Hospital AC, Amsterdam, The Netherlands
| | - Daphne W Dumoulin
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Thijs H Oude Munnink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Egbert F Smit
- Department of Pulmonology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Hieronymus J Derijks
- Department of Pharmacy, Radboud University Medical Center, Radboud Institute for Health Sciences, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, The Netherlands
- Department of Pharmacy, Jeroen Bosch Hospital, 's-Hertogenbosch, The Netherlands
| | | | - Jeroen J M A Hendrikx
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute (NKI-AVL), Amsterdam, The Netherlands
| | - Dirk J A R Moes
- Department of Clinical Pharmacology and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nikki de Rouw
- Department of Pharmacy, Radboud University Medical Center, Radboud Institute for Health Sciences, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, The Netherlands
- Department of Clinical Pharmacy, Amphia Hospital, Breda, The Netherlands
| |
Collapse
|
57
|
Cole K, Al-Kadhimi Z, Talmadge JE. Highlights into historical and current immune interventions for cancer. Int Immunopharmacol 2023; 117:109882. [PMID: 36848790 PMCID: PMC10355273 DOI: 10.1016/j.intimp.2023.109882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 03/01/2023]
Abstract
Immunotherapy is an additional pillar when combined with traditional standards of care such as chemotherapy, radiotherapy, and surgery for cancer patients. It has revolutionized cancer treatment and rejuvenated the field of tumor immunology. Several types of immunotherapies, including adoptive cellular therapy (ACT) and checkpoint inhibitors (CPIs), can induce durable clinical responses. However, their efficacies vary, and only subsets of cancer patients benefit from their use. In this review, we address three goals: to provide insight into the history of these approaches, broaden our understanding of immune interventions, and discuss current and future approaches. We highlight how cancer immunotherapy has evolved and discuss how personalization of immune intervention may address present limitations. Cancer immunotherapy is considered a recent medical achievement and in 2013 was selected as the "Breakthrough of the Year" by Science. While the breadth of immunotherapeutics has been rapidly expanding, to include the use of chimeric antigen receptor (CAR) T-cell therapy and immune checkpoint inhibitor (ICI) therapy, immunotherapy dates back over 3000 years. The expansive history of immunotherapy, and related observations, have resulted in several approved immune therapeutics beyond the recent emphasis on CAR-T and ICI therapies. In addition to other classical forms of immune intervention, including human papillomavirus (HPV), hepatitis B, and the Mycobacterium bovis Bacillus Calmette-Guérin (BCG) tuberculosis vaccines, immunotherapies have had a broad and durable impact on cancer therapy and prevention. One classic example of immunotherapy was identified in 1976 with the use of intravesical administration of BCG in patients with bladder cancer; resulting in a 70 % eradication rate and is now standard of care. However, a greater impact from the use of immunotherapy is documented by the prevention of HPV infections that are responsible for 98 % of cervical cancer cases. In 2020, the World Health Organization (WHO) estimated that 341,831 women died from cervical cancer [1]. However, administration of a single dose of a bivalent HPV vaccine was shown to be 97.5 % effective in preventing HPV infections. These vaccines not only prevent cervical squamous cell carcinoma and adenocarcinoma, but also oropharyngeal, anal, vulvar, vaginal, and penile squamous cell carcinomas. The breadth, response and durability of these vaccines can be contrasted with CAR-T-cell therapies, which have significant barriers to their widespread use including logistics, manufacturing limitations, toxicity concerns, financial burden and lasting remissions observed in only 30 to 40 % of responding patients. Another, recent immunotherapy focus are ICIs. ICIs are a class of antibodies that can increase the immune responses against cancer cells in patients. However, ICIs are only effective against tumors with a high mutational burden and are associated with a broad spectrum of toxicities requiring interruption of administration and/or administration corticosteroids; both of which limit immune therapy. In summary, immune therapeutics have a broad impact worldwide, utilizing numerous mechanisms of action and when considered in their totality are more effective against a broader range of tumors than initially considered. These new cancer interventions have tremendous potential notability when multiple mechanisms of immune intervention are combined as well as with standard of care modalities.
Collapse
Affiliation(s)
- Kathryn Cole
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zaid Al-Kadhimi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - James E Talmadge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
58
|
Walker CA, Spirtos AN, Miller DS. Pembrolizumab plus lenvatinib combination therapy for advanced endometrial carcinoma. Expert Rev Anticancer Ther 2023; 23:361-368. [PMID: 36944439 DOI: 10.1080/14737140.2023.2194634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Advanced and recurrent endometrial carcinoma remains a difficult diagnosis to treat due to the limited and ineffective available treatment options following platinum and taxane chemotherapy. Patients who are microsatellite stable (MSS) or mismatch repair proficient (pMMR) have even poorer outcomes with fewer effective therapies. Fortunately, recent Phase Ib/II and Phase III trials have demonstrated that combination pembrolizumab and lenvatinib resulted in improved ORR, PFS and OS than currently used therapies in this setting. AREAS COVERED In this article, we review the history and notable clinical trials responsible for the advancement and status of treatment options available for advanced endometrial cancer. Most importantly, we review the recently published data on the efficacy, safety and tolerability of the combination pembrolizumab and lenvatinib in advanced and recurrent endometrial cancer. EXPERT OPINION The combination pembrolizumab and lenvatinib is an effective treatment regimen for patients with advanced and recurrent endometrial cancer who are MSS or pMMR who have failed prior platinum-based treatment. This combination should be routinely offered to patients following progression or recurrence of systemic platinum and taxane chemotherapy. Although this regimen is safe and effective, clinicians should be aware of the known toxicities and assess patients regularly to determine if dose modifications or interruptions are indicated.
Collapse
Affiliation(s)
- Christopher A Walker
- University of Texas Southwestern Medical Center, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Alexandra N Spirtos
- University of Texas Southwestern Medical Center, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - David S Miller
- University of Texas Southwestern Medical Center, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, 5323 Harry Hines Blvd, Dallas, TX 75390
| |
Collapse
|
59
|
Tian H, Cao J, Li B, Nice EC, Mao H, Zhang Y, Huang C. Managing the immune microenvironment of osteosarcoma: the outlook for osteosarcoma treatment. Bone Res 2023; 11:11. [PMID: 36849442 PMCID: PMC9971189 DOI: 10.1038/s41413-023-00246-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 03/01/2023] Open
Abstract
Osteosarcoma, with poor survival after metastasis, is considered the most common primary bone cancer in adolescents. Notwithstanding the efforts of researchers, its five-year survival rate has only shown limited improvement, suggesting that existing therapeutic strategies are insufficient to meet clinical needs. Notably, immunotherapy has shown certain advantages over traditional tumor treatments in inhibiting metastasis. Therefore, managing the immune microenvironment in osteosarcoma can provide novel and valuable insight into the multifaceted mechanisms underlying the heterogeneity and progression of the disease. Additionally, given the advances in nanomedicine, there exist many advanced nanoplatforms for enhanced osteosarcoma immunotherapy with satisfactory physiochemical characteristics. Here, we review the classification, characteristics, and functions of the key components of the immune microenvironment in osteosarcoma. This review also emphasizes the application, progress, and prospects of osteosarcoma immunotherapy and discusses several nanomedicine-based options to enhance the efficiency of osteosarcoma treatment. Furthermore, we examine the disadvantages of standard treatments and present future perspectives for osteosarcoma immunotherapy.
Collapse
Affiliation(s)
- Hailong Tian
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Jiangjun Cao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Bowen Li
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Edouard C. Nice
- grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800 Australia
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315020, People's Republic of China.
| | - Yi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
60
|
Immune-related adverse events as potential surrogates of immune checkpoint inhibitors' efficacy: a systematic review and meta-analysis of randomized studies. ESMO Open 2023; 8:100787. [PMID: 36842300 PMCID: PMC9984799 DOI: 10.1016/j.esmoop.2023.100787] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/03/2022] [Accepted: 01/04/2023] [Indexed: 02/28/2023] Open
Abstract
BACKGROUND Immune-related adverse events (irAEs) are frequently reported during immune checkpoint inhibitor (ICI) therapy and are associated with long-term outcomes. It is unknown if the irAE occurrence is a valid surrogate of ICIs' efficacy. METHODS We identified articles reporting the results of randomized trials of experimental ICI therapy in solid tumors with a systematic search. The control arms could be placebo, cytotoxic/targeted therapy, or ICI therapy. We extracted the hazard ratios for overall survival (OS) with the number of OS events per arm and the number and percentages of overall and specific irAEs of grade 1-2 and grade 3-4 per arm. We estimated the treatment effect on the potential surrogate outcome with the odds ratio of the irAE rate between the experimental and the control arm. The statistical analysis consisted of weighted linear regression on a logarithmic scale between treatment effects on irAE rate and treatment effects on OS. RESULTS Sixty-two randomized trials were included for a total of 79 contrasts and 42 247 patients. The analyses found no significant association between the treatment effects for overall grade 1-2 or grade 3-4 irAE rates or specific (skin, gastrointestinal, endocrine) irAE rates. In the non-small-cell lung cancer (NSCLC) trial subset, we observed a negative association between treatment effects on overall grade 1-2 irAEs and treatment effects on OS in studies with patients selected for programmed death-ligand 1 expression (R2 = 0.55; 95% confidence interval 0.20-0.95; R = -0.69). In the melanoma trial subset, a negative association was shown between treatment effects on gastrointestinal grade 3-4 irAEs and treatment effects on OS in trials without an ICI-based control arm (R2 = 0.77; 95% confidence interval 0.24-0.99; R = -0.89). CONCLUSIONS We found low-strength correlations between the ICI therapy effects on overall or specific irAE rates and the treatment effects on OS in several cancer types.
Collapse
|
61
|
Li Y, Liang X, Li H, Chen X. Comparative efficacy and safety of immune checkpoint inhibitors for unresectable advanced melanoma: A systematic review and network meta-analysis. Int Immunopharmacol 2023; 115:109657. [PMID: 36608446 DOI: 10.1016/j.intimp.2022.109657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have entered the treatment paradigm for unresectable advanced melanoma, but there is a lack of evidence regarding its relative efficacy and safety. This study aim to compare the efficacy and safety of ICIs in patients with advanced unresectable melanoma. METHODS Studies included randomized clinical trials (RCTs) that compared ICIs, or combination therapy of ICIs, or with chemotherapy drugs, different ICIs, or one of the ICIs at different dosing schedules. Random-effects models of Bayesian network meta-analysis were performed following the PRISMA reporting guideline. Primary outcomes were overall survival (OS) and progression-free survival (PFS). Secondary outcomes included objective response rate (ORR), disease control rate (DCR), and adverse events. PROSPERO CRD42021229086. RESULTS Twenty-four RCTs with 18 different treatment regimens for advanced melanoma involving 10,090 patients were included. Overall, nivolumab 1 mg/kg plus ipilimumab 3 mg/kg treatment regimen were associated with the highest beneficial effect on OS, PFS, and DCR. Closely followed by nivolumab 3 mg/kg plus ipilimumab 1 mg/kg, and nivolumab plus relatlimab treatment regimens. However, three regimens had less favorable safety profiles. Although ipilimumab 0.3 mg/kg was ranked as the best options with the lowest risk of grade ≥ 3 treatment or immune-related adverse events, less therapeutic benefit was performed. The pembrolizumab 10 mg/kg regimen may be the preferred treatment with relative higher efficiency and safety among the ICIs regimens reported, as well as the nivolumab 3 mg/kg regimen. Head-to-head trials showed similar results. CONCLUSIONS This study shown the preferred treatment regimens with relatively higher efficiency and safety among the reported ICI regimens. Our results may complement the current standard of care, while its direct drug comparisons will aid future trials.
Collapse
Affiliation(s)
- Yan Li
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Xueyan Liang
- Phase 1 Clinical Trial Laboratory, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Huijuan Li
- Phase 1 Clinical Trial Laboratory, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Xiaoyu Chen
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China; Phase 1 Clinical Trial Laboratory, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
62
|
Soltantabar P, Lon HK, Parivar K, Wang DD, Elmeliegy M. Optimizing benefit/risk in oncology: Review of post-marketing dose optimization and reflections on the road ahead. Crit Rev Oncol Hematol 2023; 182:103913. [PMID: 36681205 DOI: 10.1016/j.critrevonc.2023.103913] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Oncology therapies shifted from chemotherapy to molecularly targeted agents and finally to the era of immune-oncology agents. In contrast to cytotoxic agents, molecularly targeted agents are more selective, exhibit a wider therapeutic window, and may maximally modulate tumor growth at doses lower than the maximum tolerated dose (MTD). However, first-in-patient oncology studies for molecularly targeted agents continued to evaluate escalating doses using limited number of patients per dose cohort assessing dose-limiting toxicities to identify the MTD which is commonly selected for further development adopting a 'more is better' approach that led to several post-marketing requirement (PMR) studies to evaluate alternative, typically lower, doses or dosing frequencies to optimize the benefit-risk profile. In this review, post-marketing dose optimization efforts were reviewed including those required by a regulatory pathway or voluntarily conducted by the sponsor to improve efficacy, safety, or method of administration. Lessons learned and future implications from this deep dive review are discussed considering the evolving regulatory landscape on dose optimization for oncology compounds.
Collapse
Affiliation(s)
| | - Hoi-Kei Lon
- Global Product Development, Pfizer Inc, San Diego, CA, USA
| | | | - Diane D Wang
- Global Product Development, Pfizer Inc, San Diego, CA, USA
| | | |
Collapse
|
63
|
Efficacy of immune checkpoint inhibitor monotherapy or combined with other small molecule-targeted agents in ovarian cancer. Expert Rev Mol Med 2023; 25:e6. [PMID: 36691778 DOI: 10.1017/erm.2023.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ovarian cancer is the most lethal female reproductive system tumour. Despite the great advances in surgery and systemic chemotherapy over the past two decades, almost all patients in stages III and IV relapse and develop resistance to chemotherapy after first-line treatment. Ovarian cancer has an extraordinarily complex immunosuppressive tumour microenvironment in which immune checkpoints negatively regulate T cells activation and weaken antitumour immune responses by delivering immunosuppressive signals. Therefore, inhibition of immune checkpoints can break down the state of immunosuppression. Indeed, Immune checkpoint inhibitors (ICIs) have revolutionised the therapeutic landscape of many solid tumours. However, ICIs have yielded modest benefits in ovarian cancer. Therefore, a more comprehensive understanding of the mechanistic basis of the immune checkpoints is needed to improve the efficacy of ICIs in ovarian cancer. In this review, we systematically introduce the mechanisms and expression of immune checkpoints in ovarian cancer. Moreover, this review summarises recent updates regarding ICI monotherapy or combined with other small-molecule-targeted agents in ovarian cancer.
Collapse
|
64
|
Liu Z, Zhu Y, Xie H, Zou Z. Immune-mediated hepatitis induced by immune checkpoint inhibitors: Current updates and future perspectives. Front Pharmacol 2023; 13:1077468. [PMID: 36699050 PMCID: PMC9868416 DOI: 10.3389/fphar.2022.1077468] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
In recent years, cancer immunotherapy has made remarkable achievements. Immune checkpoint inhibitors (ICIs) have been used successfully in several types of cancer in the past decade. However, expanded indication and increased use of Immune checkpoint inhibitors have resulted in increased reports of toxicity called immune-related adverse events (irAEs). Due to the unique immunological characteristics of the liver, a hepatic immune-related adverse events has also been reported, which is usually termed Immune-mediated hepatitis (IMH). So far, it is generally considered that the mechanism of IMH induced by Immune checkpoint inhibitors is mainly the overactivation of T cells. It has been reported that the incidence of IMH ranges from 1% to 15%. Because of the lack of specific markers, a diagnosis of exclusion of IMH is critical. Although most IMH is mild and recoverable, several death cases have been reported, which has been increasingly concerned. This review summarizes the current understanding of the pathophysiology, epidemiology, diagnosis, management and prognosis of IMH caused by Immune checkpoint inhibitors. It also discusses the controversial issues in IMH, such as the role of liver biopsy, grading criteria, risk factors, rational treatment strategies with steroids, and the timing of Immune checkpoint inhibitors rechallenging, which may provide helpful information for IMH in future clinical practice.
Collapse
Affiliation(s)
- Zherui Liu
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China,Medical School of Chinese PLA, Beijing, China
| | - Yun Zhu
- Medical School of Chinese PLA, Beijing, China
| | - Huan Xie
- Medical School of Chinese PLA, Beijing, China
| | - Zhengsheng Zou
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China,Medical School of Chinese PLA, Beijing, China,*Correspondence: Zhengsheng Zou,
| |
Collapse
|
65
|
Verhé M, De Somer T, Defoort B, Vanderstraeten E, Monsaert E, Bouderez V, Dias S, Delombaerde D, Vulsteke C, Van Steenkiste C. The Role of Abdominal Surgery in Refractory Immune Checkpoint Inhibitor Enterocolitis: A Case Report. Case Rep Oncol 2023; 16:438-445. [PMID: 37384210 PMCID: PMC10294263 DOI: 10.1159/000530832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/18/2023] [Indexed: 06/30/2023] Open
Abstract
This article describes the case of a 73-year-old patient with grade 3 immune checkpoint inhibitor (ICI)-induced enteritis. Five different immunosuppressive agents (glucocorticoids, high-dose infliximab, methotrexate, mycophenolate mofetil, and vedolizumab) were administered, however, with no clinical or radiographical benefit. A laparotomy was performed, as the patient showed signs of intestinal obstruction, with a segmental resection of the ileal loop. Biopsy results showed multiple fibrotic strictures. The current treatment guidelines for ICI enterocolitis only include drugs as a treatment option. Nevertheless, it remains important to consider early surgical intervention in order to avoid serious complications due to persistent and pronounced inflammation. The current case highlights the importance of surgery as a treatment modality in the multidisciplinary approach for ICI-induced enteritis, which should be taken into consideration after second- or third-line treatment.
Collapse
Affiliation(s)
- Manon Verhé
- Department of Gastroenterology, AZ Maria Middelares, Ghent, Belgium
| | - Thomas De Somer
- Department of Gastroenterology, AZ Maria Middelares, Ghent, Belgium
| | | | - Erik Vanderstraeten
- Department of Gastroenterology, AZ Maria Middelares, Ghent, Belgium
- Integrated Cancer Center Ghent, Department of Medical Oncology, AZ Maria Middelares, Ghent, Belgium
| | - Els Monsaert
- Department of Gastroenterology, AZ Maria Middelares, Ghent, Belgium
- Integrated Cancer Center Ghent, Department of Medical Oncology, AZ Maria Middelares, Ghent, Belgium
| | - Vincent Bouderez
- Department of Gastroenterology, AZ Maria Middelares, Ghent, Belgium
- Integrated Cancer Center Ghent, Department of Medical Oncology, AZ Maria Middelares, Ghent, Belgium
| | - Stefanie Dias
- Integrated Cancer Center Ghent, Department of Medical Oncology, AZ Maria Middelares, Ghent, Belgium
| | - Danielle Delombaerde
- Integrated Cancer Center Ghent, Department of Medical Oncology, AZ Maria Middelares, Ghent, Belgium
| | - Christof Vulsteke
- Integrated Cancer Center Ghent, Department of Medical Oncology, AZ Maria Middelares, Ghent, Belgium
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Christophe Van Steenkiste
- Department of Gastroenterology, AZ Maria Middelares, Ghent, Belgium
- Integrated Cancer Center Ghent, Department of Medical Oncology, AZ Maria Middelares, Ghent, Belgium
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
- Department of Gastroenterology, University of Antwerp, Edegem, Belgium
| |
Collapse
|
66
|
Vidovic D, Helyer LK, Pasternak S, Giacomantonio CA. Abscopal responses in patients with metastatic melanoma involving skin and subcutaneous tissues treated with intralesional IL2 plus BCG. Front Oncol 2023; 13:1160269. [PMID: 37182189 PMCID: PMC10172468 DOI: 10.3389/fonc.2023.1160269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Cutaneous melanoma is relatively common with increasing incidence and significant mortality. While the mainstay of therapy is surgical, patients with stage III and IV disease fare poorer than those with early-stage disease and often benefit from adjuvant therapies. While systemic immunotherapy has changed the landscape of melanoma treatment, for some patients systemic toxicities related to these treatments prohibit successful administration or completion of therapy. Moreover, it is becoming increasingly evident that nodal, regional, and in-transit disease appears to be resistant to systemic immunotherapy relative to responses observed in distant metastatic disease sites. In this scenario, intralesional immunotherapies may offer benefit. In this case series, we describe the use of intralesional IL-2 and BCG at our institution in ten patients with in-transit plus or minus distant cutaneous metastatic melanoma over the last twelve years. All patients received intralesional IL2 and BCG. Both treatments were very well tolerated with only grade 1/2 adverse events. In our cohort, complete clinical response was 60% (6/10), progressive disease in 20% (2/10), and no response in 20% (2/10) of patients. The overall response rate (ORR) was 70%. The median overall survival was 35.5 months and mean overall survival 43 months in this cohort. Herein we further highlight the clinical, histopathological, and radiological course of two complete responders, showing evidence of an abscopal effect with resolution of distant untreated metastasis. Together, this limited data supports the safe and effective use of intralesional IL2 and BCG for the treatment of metastatic or in-transit melanoma in this challenging patient cohort. To our knowledge, this is the first formal study to report on this combination therapy for the treatment of melanoma.
Collapse
Affiliation(s)
- Dejan Vidovic
- Division of General and Gastrointestinal Surgery, Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Lucy Kathryn Helyer
- Division of General and Gastrointestinal Surgery, Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Sylvia Pasternak
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Carman Anthony Giacomantonio
- Division of General and Gastrointestinal Surgery, Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- *Correspondence: Carman Anthony Giacomantonio,
| |
Collapse
|
67
|
Antitumor Therapy Targeting the Tumor Microenvironment. JOURNAL OF ONCOLOGY 2023; 2023:6886135. [PMID: 36908706 PMCID: PMC10005879 DOI: 10.1155/2023/6886135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
The development and progression of tumors in human tissues extensively rely on its surrounding environment, that is, tumor microenvironment which includes a variety of cells, molecules, and blood vessels. These components are modified, organized, and integrated to support and facilitate the growth, invasion, and metabolism of tumor cells, suggesting them as potential therapeutic targets in anticancer treatment. An increasing number of pharmacological agents have been developed and clinically applied to target the oncogenic components in the tumor microenvironment, and in this review, we will summarize these pharmacological agents that directly or indirectly target the cellular or molecular components in the tumor microenvironment. However, difficulties and challenges still exist in this field, which will also be reported in this literature.
Collapse
|
68
|
Liu W, Luo Z, Liu Y, Sun B. Current landscape and tailored management of immune-related adverse events. Front Pharmacol 2023; 14:1078338. [PMID: 36950013 PMCID: PMC10025325 DOI: 10.3389/fphar.2023.1078338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Unprecedented advances have been made in immune checkpoint inhibitors (ICIs) in the treatment of cancer. However, the overall benefits from ICIs are impaired by the increasing incidence of immune-related adverse events (irAEs). Although several factors and mechanisms have been proposed in the development of irAEs, there is still incomprehensive understanding of irAEs. Therefore, it is urgent to identify certain risk factors and biomarkers that predict the development of irAEs, as well as to understand the underlying mechanisms of these adverse events. Herein, we comprehensively summarize the state-of-the-art knowledge about clinical features and the related risk factors of irAEs. Particularly, we also discuss relevant mechanisms of irAEs and address the mechanism-based strategies, aiming to develop a tailored management approach for irAEs.
Collapse
Affiliation(s)
- Wenhui Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Zhiying Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yiping Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Bao Sun,
| |
Collapse
|
69
|
Da Cunha T, Wu GY, Vaziri H. Immunotherapy-induced Hepatotoxicity: A Review. J Clin Transl Hepatol 2022; 10:1194-1204. [PMID: 36381098 PMCID: PMC9634765 DOI: 10.14218/jcth.2022.00105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 12/04/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) suppress the function of immune checkpoints, which are involved in downregulating immune responses. These lead to an increased activation of the function of T cells, increased release of cytokines, and decreased activity of regulatory T cells. This allows for a more significant and less regulated immune response and subsequent enhanced cytotoxic activity against cancer cells. A number of cancers are now being treated with these agents and this increased use has resulted in more reports of toxicity. While almost every organ can be affected, the skin, gastrointestinal tract, liver, and endocrine glands are most commonly involved. It is necessary that gastroenterologists and hepatologists familiarize themselves with diagnostic steps and management plan in patients with these undesirable outcomes. When assessing for possible ICIs induced hepatotoxicity, it is of utmost importance to use a formal scoring system such as the Roussel Uclaf causality assessment method (RUCAM) to assess for risk factors, alternative causes, and response to cessation and re-exposure of a given drug. While this review is based on studies with and without RUCAM, the conclusions were carefully established mainly from studies that used RUCAM. The aim of this review is to provide information on the epidemiology, risk factors, clinical presentation, diagnostic tools, and management plan based on the most recent studies of immunotherapy-induced hepatotoxicity.
Collapse
Affiliation(s)
- Teresa Da Cunha
- Department of Medicine, Division of Gastroenterology-Hepatology, University of Connecticut Health Center, Farmington, CT, USA
| | - George Y. Wu
- Department of Medicine, Division of Gastroenterology-Hepatology, University of Connecticut Health Center, Farmington, CT, USA
| | - Haleh Vaziri
- Department of Medicine, Division of Gastroenterology-Hepatology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
70
|
Liu F, Wang Z, Li X, Zhang Z, Yang Y, Chen J, Chen D, Wu L, Liu X, Han S, Wang F, Wahafu W, Gao Y, Ren S, Xing N, Cai G, Chen X. Comparative risk of acute kidney injury among cancer patients treated with immune checkpoint inhibitors. Cancer Commun (Lond) 2022; 43:214-224. [PMID: 36528491 PMCID: PMC9926960 DOI: 10.1002/cac2.12396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/22/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
With the development and introduction of immune checkpoint inhibitors (ICIs) in cancer patients, immune-related side effects have increasingly attracted attention. However, the risks of immune-related renal toxicity are poorly characterized. In this study, we performed a network meta-analysis (NMA) of ICI-related randomized clinical trials (RCTs) to elucidate the comparative risk of acute kidney injury (AKI) in cancer patients receiving different ICIs. We also sought to identify other factors potentially affecting the risk of AKI. PubMed and EMBASE were searched for peer-reviewed trial reports published between January 2000 and May 2021. Eligible studies were RCTs studying ICIs in cancer patients and reporting AKI data. We performed a frequentist NMA to evaluate the risk ratios for grade 1-5 and grade 3-5 AKI between the treatment groups. We also assessed the absolute incidence of AKI in the ICI-containing arm using traditional direct meta-analysis. Once significant heterogeneity was detected in a traditional direct meta-analysis, multivariable meta-regression analysis was applied to identify factors that significantly affected the absolute incidence of AKI. A total of 85 RCTs were included in this study. In the NMA for the risk of grade 1-5 and 3-5 AKI, ipilimumab showed a significantly higher risk than avelumab and durvalumab, whereas 1 mg/kg nivolumab plus 3 mg/kg ipilimumab (N1I3) showed a significantly higher risk than other groups. In terms of treatment ranking, durvalumab ± low-dose tremelimumab and avelumab were consistently among the top three safest treatments for grade 1-5 or 3-5 AKI, whereas N1I3, ipilimumab and tremelimumab were consistently among the top three treatments with the highest risk for grade 1-5 or 3-5 AKI. Compared with other cancers, renal cell carcinoma and urothelial carcinoma showed a significantly higher risk of AKI. The incidence of AKI was significantly higher with ICI+chemotherapy than with ICI monotherapy. In this NMA involving large-scale up-to-date ICI trials, we demonstrated the comparative safety of existing ICI drugs for grade 1-5 and grade 3-5 AKI. Based on data from the ICI arms of these trials, we also revealed several potential risk factors for immune-related AKI, including tumor type and treatment paradigm.
Collapse
Affiliation(s)
- Fei Liu
- Department of UrologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China,Laboratory of Translational MedicineNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China,Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Zixian Wang
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Xiaofan Li
- Department of NephrologyFirst Medical Center of Chinese PLA General HospitalNephrology Institute of the Chinese People's Liberation ArmyState Key Laboratory of Kidney DiseasesNational Clinical Research Center for Kidney DiseasesBeijing Key Laboratory of Kidney Disease ResearchBeijingP. R. China
| | - Zhen Zhang
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Yue Yang
- Department of NephrologyFirst Medical Center of Chinese PLA General HospitalNephrology Institute of the Chinese People's Liberation ArmyState Key Laboratory of Kidney DiseasesNational Clinical Research Center for Kidney DiseasesBeijing Key Laboratory of Kidney Disease ResearchBeijingP. R. China
| | - Junquan Chen
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Dinghua Chen
- Department of NephrologyFirst Medical Center of Chinese PLA General HospitalNephrology Institute of the Chinese People's Liberation ArmyState Key Laboratory of Kidney DiseasesNational Clinical Research Center for Kidney DiseasesBeijing Key Laboratory of Kidney Disease ResearchBeijingP. R. China
| | - Lingling Wu
- Department of NephrologyFirst Medical Center of Chinese PLA General HospitalNephrology Institute of the Chinese People's Liberation ArmyState Key Laboratory of Kidney DiseasesNational Clinical Research Center for Kidney DiseasesBeijing Key Laboratory of Kidney Disease ResearchBeijingP. R. China
| | - Xiangyu Liu
- Department of Plastic SurgeryPlastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingPR China
| | - Sujun Han
- Department of UrologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Fangming Wang
- Department of UrologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Wasilijiang Wahafu
- Department of UrologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Yibo Gao
- Laboratory of Translational MedicineNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China,Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China,State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China,Central LaboratoryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenGuangdongP. R. China
| | - Shancheng Ren
- Department of UrologyShanghai Changzheng HospitalShanghaiP. R. China
| | - Nianzeng Xing
- Department of UrologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China,State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Guangyan Cai
- Department of NephrologyFirst Medical Center of Chinese PLA General HospitalNephrology Institute of the Chinese People's Liberation ArmyState Key Laboratory of Kidney DiseasesNational Clinical Research Center for Kidney DiseasesBeijing Key Laboratory of Kidney Disease ResearchBeijingP. R. China
| | - Xiangmei Chen
- Department of NephrologyFirst Medical Center of Chinese PLA General HospitalNephrology Institute of the Chinese People's Liberation ArmyState Key Laboratory of Kidney DiseasesNational Clinical Research Center for Kidney DiseasesBeijing Key Laboratory of Kidney Disease ResearchBeijingP. R. China
| |
Collapse
|
71
|
Jiang ST, Liu YG, Zhang L, Sang XT, Xu YY, Lu X. Immune-related adverse events: A bibliometric analysis. Front Immunol 2022; 13:1096806. [PMID: 36591239 PMCID: PMC9797501 DOI: 10.3389/fimmu.2022.1096806] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Background Despite providing clinical benefit, immune checkpoint inhibitors (ICIs) can cause immune-related adverse events (irAEs) in a number of patients. This study explored the development pattern in irAEs research from a bibliometric perspective. Methods We obtained articles and reviews related to irAEs from the Web of Science Core Collection (WoSCC) (retrieved on September 13, 2022). Using the R package "Bibliometrix", the main bibliometric features were calculated, and a three-filed plot was generated to show the relationship between authors, institutions, and topics. VOSviewer was used for co-authorship and keyword co-occurrence analysis and visualization. CiteSpace was used to detect burst references and keywords. Results A total of 3995 publications on irAEs were included. The United States (US), Japan, and China had the highest publications. The Journal for ImmunoTherapy of Cancer had the highest number of publications. In addition to "immune-related adverse events", "immune checkpoint inhibitors", "immunotherapy", and "nivolumab" were the most frequently used keywords. Conclusions A bibliometric analysis of 17 years of irAEs research was conducted to map a basic knowledge structure including countries, institutions, authors, journals, and publications. The findings provided a comprehensive perspective on the broad future of this research area.
Collapse
|
72
|
Immunotherapy for Cancer: Common Gastrointestinal, Liver, and Pancreatic Side Effects and Their Management. Am J Gastroenterol 2022; 117:1917-1932. [PMID: 36455219 DOI: 10.14309/ajg.0000000000001983] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 07/29/2022] [Indexed: 12/03/2022]
Abstract
Cancer cells can block the activation of T lymphocytes by deploying inhibitory signals to cell surface receptors that downregulate the immune response. Immune checkpoint inhibitors (ICI) are monoclonal antibodies that regulate the immune response by acting on these receptors. The use of ICI has been successful for cancer types that do not respond well to conventional chemotherapy, showing clinical benefit in various advanced and metastatic cancers and supporting the promise of cancer immunotherapy. However, in some cases, these treatments are associated with immune-related adverse events, many of which affect the digestive system. The treatment of immune-related adverse events depends on the affected organ and the severity of symptoms. Here, we review the commonly used US FDA-approved ICI and briefly outline their mechanism of action. We also describe the resulting collateral effects on the gastrointestinal tract, liver, and pancreas and discuss their management and prognosis.
Collapse
|
73
|
Davis KL, Fox E, Isikwei E, Reid JM, Liu X, Minard CG, Voss S, Berg SL, Weigel BJ, Mackall CL. A Phase I/II Trial of Nivolumab plus Ipilimumab in Children and Young Adults with Relapsed/Refractory Solid Tumors: A Children's Oncology Group Study ADVL1412. Clin Cancer Res 2022; 28:5088-5097. [PMID: 36190525 PMCID: PMC10597535 DOI: 10.1158/1078-0432.ccr-22-2164] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/29/2022] [Accepted: 09/29/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE In many cancers, nivolumab in combination with ipilimumab improves response rates compared with either agent alone, but the combination has not been evaluated in childhood cancer. We conducted a phase I/II trial of nivolumab plus ipilimumab in children and young adults with recurrent/refractory solid tumors. PATIENTS AND METHODS ADVL1412, Part C assessed safety of nivolumab plus ipilimumab at two dose levels (DL): DL1 1 mg/kg of each drug and DL2 3 mg/kg nivolumab plus 1 mg/kg ipilimumab. Part D evaluated response at the recommended phase II dose (RP2D) in Ewing sarcoma, rhabdomyosarcoma, and osteosarcoma. Part E tested DL3 (1 mg/kg nivolumab plus 3 mg/kg ipilimumab) in Ewing sarcoma and rhabdomyosarcoma. Tumor response was measured using RECIST v1.1. Pharmacokinetics and PD-L1 expression on archival tissues were assessed. RESULTS Fifty-five eligible patients enrolled. Based on safety, tolerability, and similar drug exposure to the same doses administered in adults, DL2 was defined as the pediatric RP2D. Among 41 patients treated at the RP2D, 2 patients experienced dose-limiting toxicities during cycle 1, and 4 patients experienced toxicities beyond that period. Two patients had clinically significant sustained partial responses (1 rhabdomyosarcoma, 1 Ewing sarcoma) and 4 had stable disease. Among 8 patients treated at DL3, 3 dose-limiting toxicities (DLT) occurred, all immune-related adverse events; no objective responses were observed. CONCLUSIONS The RP2D of nivolumab (3 mg/kg) plus ipilimumab (1 mg/kg) is well tolerated in children and young adults with solid tumors and shows some clinical activity. Increased dose of ipilimumab (3 mg/kg) plus nivolumab (1 mg/kg) was associated with increased toxicity without clinical benefit.
Collapse
Affiliation(s)
- Kara L. Davis
- Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Dept. of Pediatrics, Stanford University, Stanford, CA
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford CA
| | | | | | | | | | | | - Stephan Voss
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | | | - Crystal L. Mackall
- Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Dept. of Pediatrics, Stanford University, Stanford, CA
- Division of Blood and Marrow Transplantation and Cell Therapy, Dept. of Medicine, Stanford University, Stanford, California
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford CA
| |
Collapse
|
74
|
Chen Y, Chen Y, Xie J, Liu D, Hong X. Multisystem immune-related adverse events due to toripalimab: Two cases-based review. Front Cardiovasc Med 2022; 9:1036603. [PMID: 36505392 PMCID: PMC9732722 DOI: 10.3389/fcvm.2022.1036603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/24/2022] [Indexed: 11/27/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have significantly improved the survival of patients with advanced tumors. However, immune-related adverse events (irAEs) caused by ICIs, especially high-grade irAEs, are of growing concern. High-grade multisystem irAEs due to toripalimab, a programmed cell death-1 (PD-1) inhibitor, have been rarely reported. Two patients with malignant metastatic tumors were treated with anti-PD-1 immunotherapy. However, both patients developed high-grade multisystem irAEs based on myocarditis, with chest discomfort and malaise as the main clinical manifestation. Both patients had an elevation of cardiac enzymes, abnormal electrocardiography and left ventricular wall motion. Patient 2 was also diagnosed with organizing pneumonia. Immunotherapy was suspended. High-dose intravenous methylprednisolone was immediately initiated. The patients' symptoms were significantly relieved in a short period of time. Immunosuppressants were discontinued at the 6th month follow-up in patient 1 without relapse. However, patient 2 was lost to follow up due to financial reasons. To the best of our knowledge, this is the first report regarding ICI-associated myocarditis-pneumonia due to toripalimab, indicating the significance of early recognition and management of high-grade multisystem irAEs in clinical practice.
Collapse
Affiliation(s)
- Yanran Chen
- The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Yulan Chen
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Jingyi Xie
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Xiaoping Hong
- The Second Clinical Medical College, Jinan University, Shenzhen, China,Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China,*Correspondence: Xiaoping Hong, , orcid.org/0000-0002-2062-8394
| |
Collapse
|
75
|
Zhang M, Wang G, Ma Z, Xiong G, Wang W, Huang Z, Wan Y, Xu X, Hoyle RG, Yi C, Hou J, Liu X, Chen D, Li J, Wang C. BET inhibition triggers antitumor immunity by enhancing MHC class I expression in head and neck squamous cell carcinoma. Mol Ther 2022; 30:3394-3413. [PMID: 35923111 PMCID: PMC9637808 DOI: 10.1016/j.ymthe.2022.07.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 06/02/2022] [Accepted: 07/30/2022] [Indexed: 12/24/2022] Open
Abstract
BET inhibition has been shown to have a promising antitumor effect in multiple tumors. However, the impact of BET inhibition on antitumor immunity was still not well documented in HNSCC. In this study, we aim to assess the functional role of BET inhibition in antitumor immunity and clarify its mechanism. We show that BRD4 is highly expressed in HNSCC and inversely correlated with the infiltration of CD8+ T cells. BET inhibition potentiates CD8+ T cell-based antitumor immunity in vitro and in vivo. Mechanistically, BRD4 acts as a transcriptional suppressor and represses the expression of MHC class I molecules by recruiting G9a. Pharmacological inhibition or genetic depletion of BRD4 potently increases the expression of MHC class I molecules in the absence and presence of IFN-γ. Moreover, compared to PD-1 blocking antibody treatment or JQ1 treatment individually, the combination of BET inhibition with anti-PD-1 antibody treatment significantly enhances the antitumor response in HNSCC. Taken together, our data unveil a novel mechanism by which BET inhibition potentiates antitumor immunity via promoting the expression of MHC class I molecules and provides a rationale for the combination of ICBs with BET inhibitors for HNSCC treatment.
Collapse
Affiliation(s)
- Ming Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 51055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 51055, China
| | - Ganping Wang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Zhikun Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0540, USA; Institute for Structural Biology, Drug Discovery, and Development, Virginia Commonwealth University, Richmond, VA 23298-0540, USA
| | - Gan Xiong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 51055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 51055, China
| | - Wenjin Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 51055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 51055, China
| | - Zhengxian Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 51055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 51055, China
| | - Yuehan Wan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 51055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 51055, China
| | - Xiuyun Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 51055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 51055, China
| | - Rosalie G Hoyle
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0540, USA; Institute for Structural Biology, Drug Discovery, and Development, Virginia Commonwealth University, Richmond, VA 23298-0540, USA
| | - Chen Yi
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 51055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 51055, China
| | - Jinsong Hou
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 51055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 51055, China
| | - Xiqiang Liu
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Demeng Chen
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiong Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0540, USA; Institute for Structural Biology, Drug Discovery, and Development, Virginia Commonwealth University, Richmond, VA 23298-0540, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298-0540, USA; Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298-0540, USA; Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298-0540, USA.
| | - Cheng Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 51055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 51055, China.
| |
Collapse
|
76
|
Miao J, Sise ME, Herrmann SM. Immune checkpoint inhibitor related nephrotoxicity: Advances in clinicopathologic features, noninvasive approaches, and therapeutic strategy and rechallenge. FRONTIERS IN NEPHROLOGY 2022; 2:1017921. [PMID: 37674988 PMCID: PMC10479679 DOI: 10.3389/fneph.2022.1017921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/28/2022] [Indexed: 09/08/2023]
Abstract
Immune checkpoint inhibitors (ICIs) are used increasingly to treat more than 17 cancers and have shown promising therapeutic results. However, ICI use can result in a variety of immune-related adverse events (IRAEs) which can occur in any organ, including the kidneys. Acute kidney injury (AKI) is the most common nephrotoxicity, classically related to acute interstitial nephritis. Much more diverse patterns and presentations of ICI-related kidney injury can occur, and have implications for diagnostic and therapeutic management approaches. In this review, we summarize the recently approved ICIs for cancer, the incidence and risk factors for nephrotoxicity, our current understanding of the pathophysiological mechanisms and the key clinicopathological features of ICI-related AKI, and therapeutic strategies. We also explore important knowledge that require further investigation, such as the risks/benefits of ICI rechallenge in patients who recover from an episode of ICI-related AKI, and the application of liquid biopsy and microbiome to identify noninvasive biomarkers to diagnose and predict kidney injury and guide ICI therapy.
Collapse
Affiliation(s)
- Jing Miao
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Meghan E. Sise
- Department of Internal Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, MA, United States
| | - Sandra M. Herrmann
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
77
|
Giannopoulos S, Bozkus CC, Zografos E, Athanasiou A, Bongiovanni AM, Doulaveris G, Bakoyiannis CN, Theodoropoulos GE, Zografos GC, Witkin SS, Orfanelli T. Targeting Both Autophagy and Immunotherapy in Breast Cancer Treatment. Metabolites 2022; 12:metabo12100966. [PMID: 36295867 PMCID: PMC9607060 DOI: 10.3390/metabo12100966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
As clinical efforts towards breast-conserving therapy and prolonging survival of those with metastatic breast cancer increase, innovative approaches with the use of biologics are on the rise. Two areas of current focus are cancer immunotherapy and autophagy, both of which have been well-studied independently but have recently been shown to have intertwining roles in cancer. An increased understanding of their interactions could provide new insights that result in novel diagnostic, prognostic, and therapeutic strategies. In this breast cancer-focused review, we explore the interactions between autophagy and two clinically relevant immune checkpoint pathways; the programmed cell death-1 receptor with its ligand (PD-L1)/PD-1 and the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)/CD80 and CD86 (B7-1 and B7-2). Furthermore, we discuss emerging preclinical and clinical data supporting targeting both immunotherapy and autophagy pathway manipulation as a promising approach in the treatment of breast cancer.
Collapse
Affiliation(s)
- Spyridon Giannopoulos
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Cansu Cimen Bozkus
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY 10029, USA
| | - Eleni Zografos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Aikaterini Athanasiou
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ann Marie Bongiovanni
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Georgios Doulaveris
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Chris N Bakoyiannis
- First Department of Surgery, Division of Vascular Surgery, Laikon General Hospital, National Kapodistrian University of Athens, 15772 Athens, Greece
| | - Georgios E Theodoropoulos
- First Department of Propaedeutic Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Georgios C Zografos
- First Department of Propaedeutic Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Steven S Witkin
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Theofano Orfanelli
- First Department of Propaedeutic Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece
| |
Collapse
|
78
|
Foster D, Karam I, Nadella S, Adekunle D, Meyer M, Rana M, Sokhn J. A Therapy-Terminating Event: Programmed Death-1 Inhibitor-Induced Mucositis. Cureus 2022; 14:e29377. [DOI: 10.7759/cureus.29377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2022] [Indexed: 11/05/2022] Open
|
79
|
Boosting the Immune Response—Combining Local and Immune Therapy for Prostate Cancer Treatment. Cells 2022; 11:cells11182793. [PMID: 36139368 PMCID: PMC9496996 DOI: 10.3390/cells11182793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Due to its slow progression and susceptibility to radical forms of treatment, low-grade PC is associated with high overall survival (OS). With the clinical progression of PC, the therapy is becoming more complex. The immunosuppressive tumor microenvironment (TME) makes PC a difficult target for most immunotherapeutics. Its general immune resistance is established by e.g., immune evasion through Treg cells, synthesis of immunosuppressive mediators, and the defective expression of surface neoantigens. The success of sipuleucel-T in clinical trials initiated several other clinical studies that specifically target the immune escape of tumors and eliminate the immunosuppressive properties of the TME. In the settings of PC treatment, this can be commonly achieved with radiation therapy (RT). In addition, focal therapies usually applied for localized PC, such as high-intensity focused ultrasound (HIFU) therapy, cryotherapy, photodynamic therapy (PDT), and irreversible electroporation (IRE) were shown to boost the anti-cancer response. Nevertheless, the present guidelines restrict their application to the context of a clinical trial or a prospective cohort study. This review explains how RT and focal therapies enhance the immune response. We also provide data supporting the combination of RT and focal treatments with immune therapies.
Collapse
|
80
|
Matsui JK, Perlow HK, Raj RK, Nalin AP, Lehrer EJ, Kotecha R, Trifiletti DM, McClelland S, Kendra K, Williams N, Owen DH, Presley CJ, Thomas EM, Beyer SJ, Blakaj DM, Ahluwalia MS, Raval RR, Palmer JD. Treatment of Brain Metastases: The Synergy of Radiotherapy and Immune Checkpoint Inhibitors. Biomedicines 2022; 10:2211. [PMID: 36140312 PMCID: PMC9496359 DOI: 10.3390/biomedicines10092211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/27/2022] Open
Abstract
Brain metastases are a devastating sequela of common primary cancers (e.g., lung, breast, and skin) and have limited effective therapeutic options. Previously, systemic chemotherapy failed to demonstrate significant benefit in patients with brain metastases, but in recent decades, targeted therapies and more recently immune checkpoint inhibitors (ICIs) have yielded promising results in preclinical and clinical studies. Furthermore, there is significant interest in harnessing the immunomodulatory effects of radiotherapy (RT) to synergize with ICIs. Herein, we discuss studies evaluating the impact of RT dose and fractionation on the immune response, early studies supporting the synergistic interaction between RT and ICIs, and ongoing clinical trials assessing the benefit of combination therapy in patients with brain metastases.
Collapse
Affiliation(s)
| | - Haley K. Perlow
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Rohit K. Raj
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Ansel P. Nalin
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Eric J. Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
| | | | - Shearwood McClelland
- Departments of Radiation Oncology and Neurological Surgery, University Hospitals Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kari Kendra
- Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Nicole Williams
- Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Dwight H. Owen
- Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Carolyn J. Presley
- Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Evan M. Thomas
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Sasha J. Beyer
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Dukagjin M. Blakaj
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Manmeet S. Ahluwalia
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
| | - Raju R. Raval
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Joshua D. Palmer
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
81
|
Sussman TA, Knackstedt R, Wei W, Funchain P, Gastman BR. Outcomes of stage IV melanoma in the era of immunotherapy: a National Cancer Database (NCDB) analysis from 2014 to 2016. J Immunother Cancer 2022; 10:jitc-2022-004994. [PMID: 35998982 PMCID: PMC9403163 DOI: 10.1136/jitc-2022-004994] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND To evaluate factors affecting the utilization of immunotherapy and to stratify results based on the approval of ipilimumab in 2011 and programmed death-1 inhibitors in 2014, an analysis of available data from the National Cancer Database (NCDB) was performed. METHODS The NCDB was analyzed to identify patients with stage IV melanoma from 2004 to 2016. Patients were categorized during the time periods 2004-2010, 2011-2014, and 2015-2016. Overall survival (OS) was analyzed by Kaplan-Meier, log-rank, and Cox proportional hazard models; IO status was analyzed using logistic regression. RESULTS 24,544 patients were analyzed. Overall, 5238 patients (21.3%) who received IO had improved median OS compared with those who did not (20.2 months vs 7.4 months; p<0.0001). Between 2004 and 2010, 9.7% received immunotherapy; from 2011 to 2014, 21.9% received immunotherapy; and from 2015 to 2016, 43.5% received immunotherapy. Three-year OS significantly improved in patients treated with IO across treatment years: 31% (95% CI 29% to 34%) from 2004 to 2010, 35% (95% CI 33% to 37%) from 2011 to 2014, and 46% (95% CI 44% to 48%) from 2015 to 2016 (p<0.0001). Survival was worse in patients who did not receive IO during these treatment years: 16% (15%-17%), 21% (20%-22%), and 27% (25%-28%), respectively. In the overall cohort, age <65 years, female gender, private insurance, no comorbidities, residence in metropolitan area, and treatment at academic centers were associated with better OS (p<0.0001 for all). In the multivariate analysis, receipt of IO from 2015 to 2016 was associated with age <65 years (OR 1.27, 95% CI 1.08 to 1.50), African American race (OR 5.88, 95% CI 1.60 to 28.58), lack of comorbidities (OR 1.43, 95% CI 1.23 to 1.66), and treatment at academic centers (OR 1.44, 95% CI 1.26 to 1.65) (p<0.05 for all). CONCLUSIONS OS improved in patients with stage IV melanoma receiving IO, with the highest OS rate in 2015-2016. Our findings, which represent a real-world population, are slightly lower than recent trials, such as KEYNOTE-006 and CheckMate 067. Significant socioeconomic factors may impact receipt of IO and survival.
Collapse
Affiliation(s)
- Tamara A Sussman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Rebecca Knackstedt
- Department of Dermatology and Plastic Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Wei Wei
- Department of Quantitative Health, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Pauline Funchain
- Department of Hematology/Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Brian R Gastman
- Department of Dermatology and Plastic Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
82
|
An anti-CTLA-4 heavy chain-only antibody with enhanced T reg depletion shows excellent preclinical efficacy and safety profile. Proc Natl Acad Sci U S A 2022; 119:e2200879119. [PMID: 35925889 PMCID: PMC9371702 DOI: 10.1073/pnas.2200879119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The value of anti-CTLA-4 antibodies in cancer therapy is well established. However, the broad application of currently available anti-CTLA-4 therapeutic antibodies is hampered by their narrow therapeutic index. It is therefore challenging and attractive to develop the next generation of anti-CTLA-4 therapeutics with improved safety and efficacy. To this end, we generated fully human heavy chain-only antibodies (HCAbs) against CTLA-4. The hIgG1 Fc domain of the top candidate, HCAb 4003-1, was further engineered to enhance its regulatory T (Treg) cell depletion effect and to decrease its half-life, resulting in HCAb 4003-2. We tested these HCAbs in in vitro and in vivo experiments in comparison with ipilimumab and other anti-CTLA4 antibodies. The results show that human HCAb 4003-2 binds human CTLA-4 with high affinity and potently blocks the binding of B7-1 (CD80) and B7-2 (CD86) to CTLA-4. The results also show efficient tumor penetration. HCAb 4003-2 exhibits enhanced antibody-dependent cellular cytotoxicity function, lower serum exposure, and more potent anti-tumor activity than ipilimumab in murine tumor models, which is partly driven by a substantial depletion of intratumoral Tregs. Importantly, the enhanced efficacy combined with the shorter serum half-life and less systemic drug exposure in vivo potentially provides an improved therapeutic window in cynomolgus monkeys and preliminary clinical applications. With its augmented efficacy via Treg depletion and improved safety profile, HCAb 4003-2 is a promising candidate for the development of next generation anti-CTLA-4 therapy.
Collapse
|
83
|
Li X, Tang J, Mao Y. Incidence and risk factors of drug-induced liver injury. Liver Int 2022; 42:1999-2014. [PMID: 35353431 DOI: 10.1111/liv.15262] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/08/2022] [Accepted: 03/26/2022] [Indexed: 12/17/2022]
Abstract
The epidemiology and aetiology of drug-induced liver injury (DILI) vary across different countries and populations. Overall, DILI is rare in the general population but has become more prevalent in hospitalized patients, especially among patients with unexplained liver conditions. In addition, drugs implicated in DILI differ between Western and Eastern countries. Antibiotics are the leading drugs implicated in DILI in the West, whereas traditional Chinese medicine is the primary cause implicated in DILI in the East. The incidence of herbal and dietary supplements-induced hepatotoxicity is increasing globally. Several genetic and nongenetic risk factors associated with DILI have been described in the literature; however, there are no confirmed risk factors for all-cause DILI. Some factors may contribute to the risk of DILI in a drug-specific manner.
Collapse
Affiliation(s)
- Xiaoyun Li
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jieting Tang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yimin Mao
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
84
|
Mukhopadhyay P, Ye J, Anderson KM, Roychoudhury S, Rubin EH, Halabi S, Chappell RJ. Log-Rank Test vs MaxCombo and Difference in Restricted Mean Survival Time Tests for Comparing Survival Under Nonproportional Hazards in Immuno-oncology Trials: A Systematic Review and Meta-analysis. JAMA Oncol 2022; 8:1294-1300. [PMID: 35862037 PMCID: PMC9305601 DOI: 10.1001/jamaoncol.2022.2666] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance The log-rank test is considered the criterion standard for comparing 2 survival curves in pivotal registrational trials. However, with novel immunotherapies that often violate the proportional hazards assumptions over time, log-rank can lose power and may fail to detect treatment benefit. The MaxCombo test, a combination of weighted log-rank tests, retains power under different types of nonproportional hazards. The difference in restricted mean survival time (dRMST) test is frequently proposed as an alternative to the log-rank under nonproportional hazard scenarios. Objective To compare the log-rank with the MaxCombo and dRMST in immuno-oncology trials to evaluate their performance in practice. Data Sources Comprehensive literature review using Google Scholar, PubMed, and other sources for randomized clinical trials published in peer-reviewed journals or presented at major clinical conferences before December 2019 assessing efficacy of anti-programmed cell death protein-1 or anti-programmed death/ligand 1 monoclonal antibodies. Study Selection Pivotal studies with overall survival or progression-free survival as the primary or key secondary end point with a planned statistical comparison in the protocol. Sixty-three studies on anti-programmed cell death protein-1 or anti-programmed death/ligand 1 monoclonal antibodies used as monotherapy or in combination with other agents in 35 902 patients across multiple solid tumor types were identified. Data Extraction and Synthesis Statistical comparisons (n = 150) were made between the 3 tests using the analysis populations as defined in the original protocol of each trial. Main Outcomes and Measures Nominal significance based on a 2-sided .05-level test was used to evaluate concordance. Case studies featuring different types of nonproportional hazards were used to discuss more robust ways of characterizing treatment benefit instead of sole reliance on hazard ratios. Results In this systematic review and meta-analysis of 63 studies including 35 902 patients, between the log-rank and MaxCombo, 135 of 150 comparisons (90%) were concordant; MaxCombo achieved nominal significance in 15 of 15 discordant cases, while log-rank did not. Several cases appeared to have clinically meaningful benefits that would not have been detected using log-rank. Between the log-rank and dRMST tests, 137 of 150 comparisons (91%) were concordant; log-rank was nominally significant in 5 of 13 cases, while dRMST was significant in 8 of 13. Among all 3 tests, 127 comparisons (85%) were concordant. Conclusions and Relevance The findings of this review show that MaxCombo may provide a pragmatic alternative to log-rank when departure from proportional hazards is anticipated. Both tests resulted in the same statistical decision in most comparisons. Discordant studies had modest to meaningful improvements in treatment effect. The dRMST test provided no added sensitivity for detecting treatment differences over log-rank.
Collapse
Affiliation(s)
| | - Jiabu Ye
- Merck & Co, Inc, Kenilworth, New Jersey
| | | | | | | | - Susan Halabi
- Duke Cancer Institute, Duke University, Durham, North Carolina.,Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina
| | - Richard J Chappell
- Department of Statistics, University of Wisconsin Madison.,Department of Biostatistics and Medical Informatics, University of Wisconsin Madison
| |
Collapse
|
85
|
Chye A, Allen I, Barnet M, Burnett DL. Insights Into the Host Contribution of Endocrine Associated Immune-Related Adverse Events to Immune Checkpoint Inhibition Therapy. Front Oncol 2022; 12:894015. [PMID: 35912205 PMCID: PMC9329613 DOI: 10.3389/fonc.2022.894015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
Blockade of immune checkpoints transformed the paradigm of systemic cancer therapy, enabling substitution of a cytotoxic chemotherapy backbone to one of immunostimulation in many settings. Invigorating host immune cells against tumor neo-antigens, however, can induce severe autoimmune toxicity which in many cases requires ongoing management. Many immune-related adverse events (irAEs) are clinically and pathologically indistinguishable from inborn errors of immunity arising from genetic polymorphisms of immune checkpoint genes, suggesting a possible shared driver for both conditions. Many endocrine irAEs, for example, have analogous primary genetic conditions with varied penetrance and severity despite consistent genetic change. This is akin to onset of irAEs in response to immune checkpoint inhibitors (ICIs), which vary in timing, severity and nature despite a consistent drug target. Host contribution to ICI response and irAEs, particularly those of endocrine origin, such as thyroiditis, hypophysitis, adrenalitis and diabetes mellitus, remains poorly defined. Improved understanding of host factors contributing to ICI outcomes is essential for tailoring care to an individual’s unique genetic predisposition to response and toxicity, and are discussed in detail in this review.
Collapse
Affiliation(s)
- Adrian Chye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
- Department of Medical Oncology, The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - India Allen
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
| | - Megan Barnet
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
- Department of Medical Oncology, The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- *Correspondence: Megan Barnet, ; Deborah L. Burnett,
| | - Deborah L. Burnett
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
- *Correspondence: Megan Barnet, ; Deborah L. Burnett,
| |
Collapse
|
86
|
Hercun J, Vincent C, Bilodeau M, Lapierre P. Immune-Mediated Hepatitis During Immune Checkpoint Inhibitor cancer Immunotherapy: Lessons From Autoimmune Hepatitis and Liver Immunology. Front Immunol 2022; 13:907591. [PMID: 35844534 PMCID: PMC9280269 DOI: 10.3389/fimmu.2022.907591] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) are being increasingly used to successfully treat several types of cancer. However, due to their mode of action, these treatments are associated with several immune-related adverse events (irAEs), including immune-mediated autoimmune-like hepatitis in 5 to 10% of cases. The specific immune mechanism responsible for the development of immune-mediated liver injury caused by immune checkpoint inhibitors (ILICI) is currently unknown. This review summarizes the current knowledge on hepatic irAEs during cancer immunotherapy. It also addresses the clinical management of ILICI and how it is becoming an increasingly important clinical issue. Clinical, histological, and laboratory features of autoimmune hepatitis (AIH) and ILICI are compared, and their shared and distinctive traits are discussed in an effort to better understand the development of hepatic irAEs. Finally, based on the current knowledge of liver immunology and AIH pathogenesis, we propose a series of events that could trigger the observed liver injury in ICI-treated patients. This model could be useful in the design of future studies aiming to identify the specific immune mechanism(s) at play in ILICI and improve immune checkpoint inhibitor cancer immunotherapy.
Collapse
Affiliation(s)
- Julian Hercun
- Département de médecine, Université de Montréal, Montréal, QC, Canada
- Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Catherine Vincent
- Département de médecine, Université de Montréal, Montréal, QC, Canada
- Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Marc Bilodeau
- Département de médecine, Université de Montréal, Montréal, QC, Canada
- Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Pascal Lapierre
- Département de médecine, Université de Montréal, Montréal, QC, Canada
- Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
- *Correspondence: Pascal Lapierre,
| |
Collapse
|
87
|
Dong M, Yu T, Zhang Z, Zhang J, Wang R, Tse G, Liu T, Zhong L. ICIs-Related Cardiotoxicity in Different Types of Cancer. J Cardiovasc Dev Dis 2022; 9:jcdd9070203. [PMID: 35877565 PMCID: PMC9324462 DOI: 10.3390/jcdd9070203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are rapidly developing immunotherapy cancer drugs that have prolonged patient survival. However, ICIs-related cardiotoxicity has been recognized as a rare, but fatal, consequence. Although there has been extensive research based on different types of ICIs, these studies have not indicated whether cardiotoxicity is specific to a type of cancer. Therefore, we conducted a systematic review to analyze a variety of ICIs-related cardiotoxicity, focusing on different types of cancer. We found that the incidence of ICIs-related cardiac adverse events (CAEs) and common cardiotoxic manifestations vary with cancer type. This inspired us to explore the underlying mechanisms to formulate targeted clinical strategies for maintaining the cardiovascular health of cancer patients.
Collapse
Affiliation(s)
- Mei Dong
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China; (M.D.); (Z.Z.); (J.Z.)
| | - Ting Yu
- Medical College, Qingdao University, Qingdao 266003, China;
| | - Zhenzhen Zhang
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China; (M.D.); (Z.Z.); (J.Z.)
| | - Jing Zhang
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China; (M.D.); (Z.Z.); (J.Z.)
| | - Rujian Wang
- Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China;
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300070, China;
- Kent and Medway Medical School, Canterbury CT2 7FS, UK
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300070, China;
- Correspondence: (T.L.); (L.Z.); Tel.: +86-139-0218-3163 (T.L.); +86-159-5355-0726 (L.Z.)
| | - Lin Zhong
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China; (M.D.); (Z.Z.); (J.Z.)
- Correspondence: (T.L.); (L.Z.); Tel.: +86-139-0218-3163 (T.L.); +86-159-5355-0726 (L.Z.)
| |
Collapse
|
88
|
Uchimiak K, Badowska-Kozakiewicz AM, Sobiborowicz-Sadowska A, Deptała A. Current State of Knowledge on the Immune Checkpoint Inhibitors in Triple-Negative Breast Cancer Treatment: Approaches, Efficacy, and Challenges. Clin Med Insights Oncol 2022; 16:11795549221099869. [PMID: 35721387 PMCID: PMC9201309 DOI: 10.1177/11795549221099869] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with limited treatment options. Recently, there has been a growing interest in immunotherapy with immune checkpoint inhibitors (ICIs) in TNBC, leading to extensive preclinical and clinical research. This review summarizes the current state of knowledge on ICIs efficacy and their predictive markers in TNBC and highlights the areas where the data are still limited. Currently, the only approved ICI-based regimen for TNBC is pembrolizumab with chemotherapy. Its advantage over chemotherapy alone was confirmed for non-metastatic TNBC regardless of programmed death-ligand 1 (PD-L1) expression (KEYNOTE-522) and for metastatic, PD-L1-positive TNBC (KEYNOTE-355). Pembrolizumab's efficacy was also evaluated in monotherapy, or in combination with niraparib and radiation therapy, showing potential efficacy and acceptable safety profile in phase 2 clinical trials. Atezolizumab + nab-paclitaxel increased the overall survival (OS) over placebo + nab-paclitaxel in early TNBC, regardless of PD-L1 status (IMpassion031). In IMpassion130 (untreated, advanced TNBC), the OS improvement was not statistically significant in the intention-to-treat population but clinically meaningful in the PD-L1 positive cohort. The durvalumab-anthracycline combination showed an increased response durability over placebo anthracycline in early TNBC (GeparNuevo). Several phase 1 clinical trials also showed a potential efficacy of atezolizumab and avelumab monotherapy in metastatic TNBC. ICIs appear to be applicable in both neoadjuvant and adjuvant settings, and are both pretreated and previously untreated patients. Further research is necessary to determine the most beneficial drug combinations and optimize patient selection. It is essential to identify the predictive markers for ICIs and factors affecting their expression.
Collapse
Affiliation(s)
- Katarzyna Uchimiak
- Students’ Scientific Organization of
Cancer Cell Biology, Department of Cancer Prevention, Medical University of Warsaw,
Warsaw, Poland
| | | | - Aleksandra Sobiborowicz-Sadowska
- Students’ Scientific Organization of
Cancer Cell Biology, Department of Cancer Prevention, Medical University of Warsaw,
Warsaw, Poland
| | - Andrzej Deptała
- Department of Cancer Prevention,
Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
89
|
Lopci E, Hicks RJ, Dimitrakopoulou-Strauss A, Dercle L, Iravani A, Seban RD, Sachpekidis C, Humbert O, Gheysens O, Glaudemans AWJM, Weber W, Wahl RL, Scott AM, Pandit-Taskar N, Aide N. Joint EANM/SNMMI/ANZSNM practice guidelines/procedure standards on recommended use of [ 18F]FDG PET/CT imaging during immunomodulatory treatments in patients with solid tumors version 1.0. Eur J Nucl Med Mol Imaging 2022; 49:2323-2341. [PMID: 35376991 PMCID: PMC9165250 DOI: 10.1007/s00259-022-05780-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/22/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE The goal of this guideline/procedure standard is to assist nuclear medicine physicians, other nuclear medicine professionals, oncologists or other medical specialists for recommended use of [18F]FDG PET/CT in oncological patients undergoing immunotherapy, with special focus on response assessment in solid tumors. METHODS In a cooperative effort between the EANM, the SNMMI and the ANZSNM, clinical indications, recommended imaging procedures and reporting standards have been agreed upon and summarized in this joint guideline/procedure standard. CONCLUSIONS The field of immuno-oncology is rapidly evolving, and this guideline/procedure standard should not be seen as definitive, but rather as a guidance document standardizing the use and interpretation of [18F]FDG PET/CT during immunotherapy. Local variations to this guideline should be taken into consideration. PREAMBLE The European Association of Nuclear Medicine (EANM) is a professional non-profit medical association founded in 1985 to facilitate worldwide communication among individuals pursuing clinical and academic excellence in nuclear medicine. The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and professional organization founded in 1954 to promote science, technology and practical application of nuclear medicine. The Australian and New Zealand Society of Nuclear Medicine (ANZSNM), founded in 1969, represents the major professional society fostering the technical and professional development of nuclear medicine practice across Australia and New Zealand. It promotes excellence in the nuclear medicine profession through education, research and a commitment to the highest professional standards. EANM, SNMMI and ANZSNM members are physicians, technologists, physicists and scientists specialized in the research and clinical practice of nuclear medicine. All three societies will periodically put forth new standards/guidelines for nuclear medicine practice to help advance the science of nuclear medicine and improve service to patients. Existing standards/guidelines will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated. Each standard/guideline, representing a policy statement by the EANM/SNMMI/ANZSNM, has undergone a thorough consensus process, entailing extensive review. These societies recognize that the safe and effective use of diagnostic nuclear medicine imaging requires particular training and skills, as described in each document. These standards/guidelines are educational tools designed to assist practitioners in providing appropriate and effective nuclear medicine care for patients. These guidelines are consensus documents based on current knowledge. They are not intended to be inflexible rules or requirements of practice, nor should they be used to establish a legal standard of care. For these reasons and those set forth below, the EANM, SNMMI and ANZSNM caution against the use of these standards/guidelines in litigation in which the clinical decisions of a practitioner are called into question. The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by medical professionals considering the unique circumstances of each case. Thus, there is no implication that an action differing from what is laid out in the guidelines/procedure standards, standing alone, is below standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the standards/guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources or advances in knowledge or technology subsequent to publication of the guidelines/procedure standards. The practice of medicine involves not only the science, but also the art of dealing with the prevention, diagnosis, alleviation and treatment of disease. The variety and complexity of human conditions make it impossible for general guidelines to consistently allow for an accurate diagnosis to be reached or a particular treatment response to be predicted. Therefore, it should be recognized that adherence to these standards/ guidelines will not ensure a successful outcome. All that should be expected is that practitioners follow a reasonable course of action, based on their level of training, current knowledge, clinical practice guidelines, available resources and the needs/context of the patient being treated. The sole purpose of these guidelines is to assist practitioners in achieving this objective. The present guideline/procedure standard was developed collaboratively by the EANM, the SNMMI and the ANZSNM, with the support of international experts in the field. They summarize also the views of the Oncology and Theranostics and the Inflammation and Infection Committees of the EANM, as well as the procedure standards committee of the SNMMI, and reflect recommendations for which the EANM and SNMMI cannot be held responsible. The recommendations should be taken into the context of good practice of nuclear medicine and do not substitute for national and international legal or regulatory provisions.
Collapse
Affiliation(s)
- E Lopci
- Nuclear Medicine Unit, IRCCS - Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milano, Italy.
| | - R J Hicks
- The Department of Medicine, St Vincent's Medical School, the University of Melbourne, Melbourne, Australia
| | - A Dimitrakopoulou-Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - L Dercle
- Department of Radiology, New York Presbyterian, Columbia University Irving Medical Center, New York, NY, USA
| | - A Iravani
- Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - R D Seban
- Department of Nuclear Medicine and Endocrine Oncology, Institut Curie, 92210, Saint-Cloud, France
- Laboratoire d'Imagerie Translationnelle en Oncologie, Inserm, Institut Curie, 91401, Orsay, France
| | - C Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - O Humbert
- Department of Nuclear Medicine, Centre Antoine-Lacassagne, Université Côte d'Azur, Nice, France
- TIRO-UMR E 4320, Université Côte d'Azur, Nice, France
| | - O Gheysens
- Department of Nuclear Medicine, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - A W J M Glaudemans
- Nuclear Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - W Weber
- Department of Nuclear Medicine, Klinikum Rechts Der Isar, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - R L Wahl
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - A M Scott
- Department of Molecular Imaging and Therapy, Austin Health, Studley Rd, Heidelberg, Victoria, 3084, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- Faculty of Medicine, University of Melbourne, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - N Pandit-Taskar
- Nuclear Medicine Service, Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY, 10021, USA
| | - N Aide
- Nuclear Medicine Department, University Hospital, Caen, France
- INSERM ANTICIPE, Normandie University, Caen, France
| |
Collapse
|
90
|
Fongaro B, Cian V, Gabaldo F, De Paoli G, Miolo G, Polverino de Laureto P. Managing antibody stability: effects of stressors on Ipilimumab from the commercial formulation to diluted solutions. Eur J Pharm Biopharm 2022; 176:54-74. [PMID: 35595030 DOI: 10.1016/j.ejpb.2022.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/19/2022]
Abstract
The stability of the monoclonal antibody Ipilimumab, the active ingredient of Yervoy®, used for the treatment of different types of cancer, has been investigated. Shaking/temperature, light exposure and dilution, protein drug renowned stressors, were applied on a 30-45-day series of experiments to observe the physicochemical and biological behavior of the molecule. Ipilimumab demonstrated stability under shaking and heat up to 45 days, without any unfolding during the induced combined stressors. Under artificial sunlight, the mAb showed to be sensitive even under the minimum dose tested (720 kJ/m2) with formation of aggregates, particularly when diluted in glucose solution. The light-induced soluble aggregates were higher in the case of diluted samples irradiated with much higher light doses (10460 kJ/m2). The aggregation of Ipilimumab took place also by irradiating the non-diluted formulation, indicating that the excipients did not protect completely the drug from photodegradation. Amino acid oxidation and deamidation were found. Anyway, after irradiation with both light doses, soluble Ipilimumab maintained its typical β-sheets structure, and the tertiary structure was nearly maintained compared to the dark. As an additional stressor test, the effect of dilution on the formulation was monitored by using a saline solution (1 mg/mL Ipilimumab) applied during hospital infusion. After two days from dilution, the protein exhibited aggregation and chemical modifications including oxidation and deamidation. When stability conditions were compromised, the viability of human cell lines treated with the stressed formulation slight decreased suggesting low potential biological toxicity of the modified mAb. As this study has demonstrated the susceptibility of Ipilimumab to light, specific solutions, and excipients as well as the use of safe light in manufacturing, handling, and storage of this drug should be promoted. Moreover, the use of proper primary and secondary packaging should be indicated to avoid the detrimental effect of light on the mAb structure and efficacy. A detailed understanding of Ipilimumab physicochemical properties, integrity, and stability could assure the best storage and manipulation conditions for its safe and successful application in cancer therapy.
Collapse
Affiliation(s)
- Benedetta Fongaro
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo, 5, 35131 Padova, Italy
| | - Valentina Cian
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo, 5, 35131 Padova, Italy
| | - Francesca Gabaldo
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo, 5, 35131 Padova, Italy
| | - Giorgia De Paoli
- Molecular and Clinical Medicine, School of Medicine, University of Dundee Nethergate, Dundee, Scotland DD1 4HN, UK
| | - Giorgia Miolo
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo, 5, 35131 Padova, Italy.
| | | |
Collapse
|
91
|
Harui A, Roth MD. Hyaluronidase Enhances Targeting of Hydrogel-Encapsulated Anti-CTLA-4 to Tumor Draining Lymph Nodes and Improves Anti-Tumor Efficacy. Gels 2022; 8:gels8050284. [PMID: 35621582 PMCID: PMC9141760 DOI: 10.3390/gels8050284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Immunotherapy targeting checkpoint inhibitors, such as CTLA-4 and/or PD-1, has emerged as a leading cancer therapy. While their combination produces superior efficacy compared to monotherapy, it also magnifies inflammatory and autoimmune toxicity that limits clinical utility. We previously reported that a peri-tumor injection of low-dose hydrogel-encapsulated anti-CTLA-4 produced anti-tumor responses that were equal to, or better than, systemic dosing despite a >80% reduction in total dose. Injection of hydrogel-encapsulated anti-CTLA-4 was associated with low serum exposure and limited autoimmune toxicity, but still synergized with anti-PD-1. In this report, we employ live and ex vivo imaging to examine whether peri-tumor administration specifically targets anti-CTLA-4 to tumor-draining lymph nodes (TDLN) and whether the incorporation of hyaluronidase enhances this effect. Tumor-free survival analysis was also used to measure the impact of hyaluronidase on tumor response. Compared to systemic dosing, peri-tumor injection of hydrogel-encapsulated anti-CTLA-4/DyLight 800 resulted in preferential labeling of TDLN. Incorporating hyaluronidase within the hydrogel improved the rapidity, intensity, and duration of TDLN labeling and significantly improved tumor-free survival. We conclude that hydrogel-encapsulated anti-CTLA acts as a localized antibody reservoir and that inclusion of hyaluronidase optimizes the blockade of CTLA-4 in TDLN and thereby imparts superior anti-tumor immunity.
Collapse
|
92
|
Noreña I, Fernández-Ruiz M, Aguado JM. Is there a real risk of bacterial infection in patients receiving targeted and biological therapies? ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2022; 40:266-272. [PMID: 35577446 DOI: 10.1016/j.eimce.2020.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/06/2020] [Indexed: 06/15/2023]
Abstract
Over the past decades, the advent of targeted and biological therapies has revolutionized the management of cancer and autoimmune, hematological and inflammatory conditions. Although a large amount of information is now available on the risk of opportunistic infections associated with some of these agents, the evidence regarding the susceptibility to bacterial infections is more limited. Biological agents have been shown to entail a variable risk of bacterial infections in pivotal randomized clinical trials and post-marketing studies. Recommendations on risk minimization strategies and therapeutic interventions are therefore scarce and often based on expert opinion, with only a few clear statements for some particular agents (i.e. meningococcal vaccination for patients receiving eculizumab). In the present review the available information regarding the incidence of and risk factors for bacterial infection associated with the use of different groups of biological agents is summarized according to their mechanisms of action, and recommendations based on this evidence are provided. Additional information coming from clinical research and real-world studies is required to address unmet questions in this emerging field.
Collapse
Affiliation(s)
- Ivan Noreña
- Teaching and Training Unit, Division of Infectious Diseases and Tropical Medicine, LMU University Hospital Munich, Munich, Germany.
| | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; School of Medicine, Universidad Complutense. Madrid, Spain
| |
Collapse
|
93
|
Neuenschwander B, Roychoudhury S, Wandel S, Natarajan K, Zuber E. The Predictive Individual Effect for Survival Data. Ther Innov Regul Sci 2022; 56:492-500. [PMID: 35294767 DOI: 10.1007/s43441-022-00386-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 02/18/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The call for patient-focused drug development is loud and clear, as expressed in the twenty-first Century Cures Act and in recent guidelines and initiatives of regulatory agencies. Among the factors contributing to modernized drug development and improved health-care activities are easily interpretable measures of clinical benefit. In addition, special care is needed for cancer trials with time-to-event endpoints if the treatment effect is not constant over time. OBJECTIVE To quantify the potential clinical survival benefit for a new patient, would he/she be treated with the test or control treatment. METHODS We propose the predictive individual effect which is a patient-centric and tangible measure of clinical benefit under a wide variety of scenarios. It can be obtained by standard predictive calculations under a rank preservation assumption that has been used previously in trials with treatment switching. RESULTS We discuss four recent Oncology trials that cover situations with proportional as well as non-proportional hazards (delayed treatment effect or crossing of survival curves). It is shown that the predictive individual effect offers valuable insights beyond p-values, estimates of hazard ratios or differences in median survival. CONCLUSION Compared to standard statistical measures, the predictive individual effect is a direct, easily interpretable measure of clinical benefit. It facilitates communication among clinicians, patients, and other parties and should therefore be considered in addition to standard statistical results.
Collapse
|
94
|
Gudd CLC, Possamai LA. The Role of Myeloid Cells in Hepatotoxicity Related to Cancer Immunotherapy. Cancers (Basel) 2022; 14:1913. [PMID: 35454819 PMCID: PMC9027811 DOI: 10.3390/cancers14081913] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 11/23/2022] Open
Abstract
Drug-related hepatotoxicity is an emerging clinical challenge with the widening use of immunotherapeutic agents in the field of oncology. This is an important complication to consider as more immune oncological targets are being identified to show promising results in clinical trials. The application of these therapeutics may be complicated by the development of immune-related adverse events (irAEs), a serious limitation often requiring high-dose immunosuppression and discontinuation of cancer therapy. Hepatoxicity presents one of the most frequently encountered irAEs and a better understanding of the underlying mechanism is crucial for the development of alternative therapeutic interventions. As a novel drug side effect, the immunopathogenesis of the condition is not completely understood. In the liver, myeloid cells play a central role in the maintenance of homeostasis and promotion of inflammation. Recent research has identified myeloid cells to be associated with hepatic adverse events of various immune modulatory monoclonal antibodies. In this review article, we provide an overview of the role of myeloid cells in the immune pathogenesis during hepatoxicity related to cancer immunotherapies and highlight potential treatment options.
Collapse
Affiliation(s)
- Cathrin L. C. Gudd
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK;
| | - Lucia A. Possamai
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
95
|
Babu M, Pavithran K. Therapeutic Drug Monitoring as a Tool for Therapy Optimization. Drug Metab Lett 2022; 15:DML-EPUB-122284. [PMID: 35382721 DOI: 10.2174/1872312815666220405122021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/21/2022] [Accepted: 02/09/2022] [Indexed: 11/22/2022]
Abstract
The use of pharmacotherapy for improving healthcare in society is increasing. A vast majority of patients have either received subtherapeutic treatment (which could result from low pharmacokinetic) or experienced adverse effects due to the toxic levels of the drug. The medicines used to treat chronic conditions, such as epilepsy; cardiovascular diseases; and oncological, neurological, and psychiatric disorders, require routine monitoring. New targeted therapies suggest an individualized treatment that can slowly move practitioners away from the concept of a one-size-fits-all-fixed-dosing approach. Therapeutic drug use can be monitored based on pharmacokinetic, pharmacodynamic, and pharmacometric methods. Based on the experiences of therapeutic drug monitoring of various agents across the globe, we can look ahead to the possible developments of therapeutic drug monitoring in India.
Collapse
Affiliation(s)
- Merin Babu
- Department of Medical Oncology, Amrita Institute of Medical Sciences and Research Centre Amrita Vishwa Vidyapeetham, Ponekkara P.O, Kochi, Kerala, India
| | - Keechilat Pavithran
- Department of Medical Oncology, Amrita Institute of Medical Sciences and Research Centre Amrita Vishwa Vidyapeetham, Ponekkara P.O, Kochi, Kerala, India
| |
Collapse
|
96
|
Farshidpour M, Hutson W. Immune Checkpoint Inhibitors Induced Hepatotoxicity; Gastroenterologists' Perspectives. Middle East J Dig Dis 2022; 14:244-253. [PMID: 36619143 PMCID: PMC9489307 DOI: 10.34172/mejdd.2022.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/10/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND: Immune checkpoint inhibitors (ICIs) have promising clinical activity and are essential medications for patients with several malignancies. However, by deranging the immune system, these novel agents could lead to immune-related adverse events (IRAEs). Hepatotoxicity with checkpoint inhibitors usually results in acute hepatitis or drug-induced liver injury. METHODS: This review article discusses the recent clinical evidence available regarding checkpoint inhibitor-induced hepatitis and reviews an approach to their diagnosis and management. CONCLUSION: ICIs have improved patients' outcomes with different forms of malignancy; however, ICIs-related liver damage is a clinically significant entity in these patients. All patients should be monitored carefully for IRAEs while undergoing treatment with ICIs.
Collapse
Affiliation(s)
- Maham Farshidpour
- Loma Linda University Transplantation Institute,Corresponding Author: Maham Farshidpour, MD Loma Linda University Transplant Institute 197 E Caroline St, Suite 1400, San Bernardino, CA 92408 Tel: + 909 558 3636 Fax: + 909 337 2222
| | - William Hutson
- West Virginia University - Department of Medicine Section of Gastroenterology & Hepatology
| |
Collapse
|
97
|
Vaddepally R, Doddamani R, Sodavarapu S, Madam NR, Katkar R, Kutadi AP, Mathew N, Garje R, Chandra AB. Review of Immune-Related Adverse Events (irAEs) in Non-Small-Cell Lung Cancer (NSCLC)—Their Incidence, Management, Multiorgan irAEs, and Rechallenge. Biomedicines 2022; 10:biomedicines10040790. [PMID: 35453540 PMCID: PMC9027181 DOI: 10.3390/biomedicines10040790] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of advanced malignancies, including non-small cell lung cancer (NSCLC). These agents have improved clinical outcomes and have become quite an attractive alternative alone or combined with other treatments. Although ICIs are tolerated better, they also lead to unique toxicities, termed immune-related adverse events (irAEs). A reconstituted immune system may lead to dysregulation in normal immune self-tolerance and cause inflammatory side effects (irAEs). Although any organ system can be affected, immune-related adverse events most commonly involve the gastrointestinal tract, endocrine glands, skin, and liver. They can occur anytime during the treatment course and rarely even after completion. Owen and colleagues showed that approximately 30% of patients with NSCLC treated with ICIs develop irAEs. Kichenadasse et al. conducted a thorough evaluation of multiorgan irAEs, which is of particular interest because information regarding these types of irAEs is currently sparse. It is important to delineate between infectious etiologies and symptom progression during the management of irAEs. Close consultation with disease-specific subspecialties is encouraged. Corticosteroids are the mainstay of treatment of most irAEs. Early intervention with corticosteroids is crucial in the general management of immune-mediated toxicity. Grade 1–2 irAEs can be closely monitored; hypothyroidism and other endocrine irAEs may be treated with hormone supplementation without the need for corticosteroid therapy. Moderate- to high-dose steroids and other additional immunosuppressants such as tocilizumab and cyclophosphamide might be required in severe, grade 3–4 cases. Recently, increasing research on irAEs after immunotherapy rechallenge has garnered much attention. Dolladille and colleagues assessed the safety in patients with cancer who resumed therapy with the same ICIs and found that rechallenge was associated with about 25–30% of the same irAEs experienced previously (4). However, such data should be carefully considered. Further pooled analyses may be required before we conclude about ICIs’ safety in rechallenge.
Collapse
Affiliation(s)
- Raju Vaddepally
- Yuma Regional Medical Center, 2400 S Avenue A, Yuma, AZ 85364, USA; (N.R.M.); (R.K.); (A.P.K.); (N.M.); (A.B.C.)
- Correspondence:
| | - Rajiv Doddamani
- Slidell Memorial Hospital, 1001 Gause Blvd, Slidell, LA 70458, USA;
| | - Soujanya Sodavarapu
- San Joaquin General Hospital, 500 W Hospital Road, French Camp, CA 95231, USA;
| | - Narasa Raju Madam
- Yuma Regional Medical Center, 2400 S Avenue A, Yuma, AZ 85364, USA; (N.R.M.); (R.K.); (A.P.K.); (N.M.); (A.B.C.)
| | - Rujuta Katkar
- Yuma Regional Medical Center, 2400 S Avenue A, Yuma, AZ 85364, USA; (N.R.M.); (R.K.); (A.P.K.); (N.M.); (A.B.C.)
| | - Anupama P. Kutadi
- Yuma Regional Medical Center, 2400 S Avenue A, Yuma, AZ 85364, USA; (N.R.M.); (R.K.); (A.P.K.); (N.M.); (A.B.C.)
| | - Nibu Mathew
- Yuma Regional Medical Center, 2400 S Avenue A, Yuma, AZ 85364, USA; (N.R.M.); (R.K.); (A.P.K.); (N.M.); (A.B.C.)
| | - Rohan Garje
- Department of Internal Medicine-Hematology/Oncology, University of Iowa, Iowa, IA 52242, USA;
| | - Abhinav B. Chandra
- Yuma Regional Medical Center, 2400 S Avenue A, Yuma, AZ 85364, USA; (N.R.M.); (R.K.); (A.P.K.); (N.M.); (A.B.C.)
| |
Collapse
|
98
|
|
99
|
Moschen AR, Sammy Y, Marjenberg Z, Heptinstall AB, Pooley N, Marczewska AM. The Underestimated and Overlooked Burden of Diarrhea and Constipation in Cancer Patients. Curr Oncol Rep 2022; 24:861-874. [PMID: 35325401 DOI: 10.1007/s11912-022-01267-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW This review aims to summarize and discuss the diverse causes of two major gastrointestinal dysfunction symptoms, diarrhea and constipation, in cancer patients. We also discuss short- and long-term clinical, economic, and humanistic consequences, including the impact on cancer treatment regimens and patient quality of life, highlighting the limitations of the literature. RECENT FINDINGS Diarrhea and constipation as a result of cancer and its treatment can risk the success of anti-cancer therapies by requiring treatment delay or withdrawal, and imposes a substantial humanistic burden in patients with cancer. Despite its importance and frequency, gastrointestinal side effects may be overlooked due to the focus on cancer treatment, and the impact on patients may be underestimated. Additionally, the burden reported may not fully reflect current cancer management, particularly the true impact of economic consequences. A full understanding of the burden of diarrhea and constipation in patients with cancer is required, including broad evaluation of clinical considerations, the patient experience, and an updated assessment of economic burden. This would improve caregivers' appreciation of the impact of gastrointestinal dysfunction and aid the prioritization of future research efforts.
Collapse
|
100
|
Lerner A, Benzvi C. Checkpoint Inhibitors and Induction of Celiac Disease-like Condition. Biomedicines 2022; 10:609. [PMID: 35327411 PMCID: PMC8945786 DOI: 10.3390/biomedicines10030609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint inhibitors herald a new era in oncological therapy-resistant cancer, thus bringing hope for better outcomes and quality of life for patients. However, as with other medications, they are not without serious side effects over time. Despite this, their advantages outweigh their disadvantages. Understanding the adverse effects will help therapists locate, apprehend, treat, and perhaps diminish them. The major ones are termed immune-related adverse events (irAEs), representing their auto-immunogenic capacity. This narrative review concentrates on the immune checkpoint inhibitors induced celiac disease (CD), highlighting the importance of the costimulatory inhibitors in CD evolvement and suggesting several mechanisms for CD induction. Unraveling those cross-talks and pathways might reveal some new therapeutic strategies.
Collapse
Affiliation(s)
- Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Research Department, Ramat Gan 52621, Israel;
- Research Department, Ariel University, Ariel 40700, Israel
| | - Carina Benzvi
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Research Department, Ramat Gan 52621, Israel;
| |
Collapse
|