51
|
Li X, Luan X, Zhang M, Wang R, Guo J, Lv J, Qiu W, Zhao S. Potential therapeutic option for EGFR-mutant small cell lung cancer transformation: a case report and literature review. Front Immunol 2024; 15:1439033. [PMID: 39234244 PMCID: PMC11371601 DOI: 10.3389/fimmu.2024.1439033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Transformation from non-small cell lung cancer (NSCLC) to small cell lung cancer (SCLC) is rare and is associated with poor prognosis. However, the standard treatment protocols for patients with SCLC transformation remain unknown. Here, we report the case of a patient with advanced EGFR exon 19 deletion (19del) NSCLC who underwent SCLC transformation during targeted therapy. Biopsies and genetic testing were performed to adjust treatment regimens accordingly. The patient responded favorably to a combined treatment regimen comprising etoposide plus cisplatin chemotherapy and adebrelimab plus osimertinib. This case highlights the critical importance of acknowledging tumor heterogeneity in clinical decision-making and identifying potentially effective treatment options for patients with SCLC transformation. Additionally, we reviewed cases of the transformation of NSCLC to SCLC from 2017 to 2023.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wensheng Qiu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shufen Zhao
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
52
|
Qiang M, Liu H, Yang L, Wang H, Guo R. Immunotherapy for small cell lung cancer: the current state and future trajectories. Discov Oncol 2024; 15:355. [PMID: 39152301 PMCID: PMC11329494 DOI: 10.1007/s12672-024-01119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/21/2024] [Indexed: 08/19/2024] Open
Abstract
Small cell lung cancer (SCLC) constitutes approximately 10% to 15% of all lung cancer diagnoses and represents a pressing global public health challenge due to its high mortality rates. The efficacy of conventional treatments for SCLC is suboptimal, characterized by limited anti-tumoral effects and frequent relapses. In this context, emerging research has pivoted towards immunotherapy combined with chemotherapy, a rapidly advancing field that has shown promise in ameliorating the clinical outcomes of SCLC patients. Through originally developed for non-small cell lung cancer (NSCLC), these therapies have extended new treatment avenues for SCLC. Currently, a nexus of emerging hot-spot treatments has demonstrated significant therapeutic efficacy. Based on the amalgamation of chemotherapy and immunotherapy, and the development of new immunotherapy agents, the treatment of SCLC has seen the hoping future. Progress has been achieved in enhancing the tumor immune microenvironment through the concomitant use of chemotherapy, immunotherapy, and tyrosine kinase inhibitors (TKI), as evinced by emerging clinical trial data. Moreover, a tripartite approach involving immunotherapy, targeted therapy, and chemotherapy appears auspicious for future clinical applications. Overcoming resistance to post-immunotherapy regimens remains an urgent area of exploration. Finally, bispecific antibodies, adoptive cell transfer (ACT), oncolytic virus, monotherapy, including Delta-like ligand 3 (DLL3) and T cell immunoreceptor with Ig and ITIM domains (TIGIT), as well as precision medicine, may present a prospective route towards achieving curative outcomes in SCLC. This review aims to synthesize extant literature and highlight future directions in SCLC treatment, acknowledging the persistent challenges in the field. Furthermore, the continual development of novel therapeutic agents and technologies renders the future of SCLC treatment increasingly optimistic.
Collapse
Affiliation(s)
- Min Qiang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hongyang Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lei Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Rui Guo
- Clinical Laboratory, The First Hospital of Jilin University, Jilin University, Changchun, China.
| |
Collapse
|
53
|
Zhang X, Shao S, Song N, Yang B, Liu F, Tong Z, Wang F, Li J. Integrated omics characterization reveals reduced cancer indicators and elevated inflammatory factors after thermal ablation in non-small cell lung cancer patients. Respir Res 2024; 25:309. [PMID: 39143582 PMCID: PMC11325606 DOI: 10.1186/s12931-024-02917-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Thermal ablation is a minimally invasive treatment for non-small cell lung cancer (NSCLC). Aside from causing an immediate direct tumour cell injury, the effects of thermal ablation on the internal microenvironment are unknown. This study aimed to investigate the effects of thermal ablation on the plasma internal environment in patients with NSCLC. METHODS 128 plasma samples were collected from 48 NSCLC (pre [LC] and after thermal ablation [LC-T]) patients and 32 healthy controls (HCs). Olink proteomics and metabolomics were utilized to construct an integrated landscape of the cancer-related immune and inflammatory responses after ablation. RESULTS Compared with HCs, LC patients exhibited 58 differentially expressed proteins (DEPs) and 479 differentially expressed metabolites (DEMs), which might participate in tumour progression and metastasis. Moreover, 75 DEPs were identified among the HC, LC, and LC-T groups. Forty-eight highly expressed DEPs (eg, programmed death-ligand 1 [PD-L1]) in the LC group were found to be downregulated after thermal ablation. These DEPs had significant impacts on pathways such as angiogenesis, immune checkpoint blockade, and pro-tumour chemotaxis. Metabolites involved in tumour cell survival were associated with these proteins at the expression and functional levels. In contrast, 19 elevated proteins (eg, interleukin [IL]-6) were identified after thermal ablation. These proteins were mainly associated with inflammatory response pathways (NF-κB signalling and tumour necrosis factor signalling) and immune cell activation. CONCLUSIONS Thermal ablation-induced changes in the host plasma microenvironment contribute to anti-tumour immunity in NSCLC, offering new insights into tumour ablation combined with immunotherapy. Trial registration This study was registered on the Chinese Clinical Trial Registry ( https://www.chictr.org.cn/index.html ). ID: ChiCTR2300076517. Registration Date: 2023-10-11.
Collapse
Affiliation(s)
- Xinglu Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongti South Road, Beijing, 100020, Chaoyang District, China
| | - Shuai Shao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongti South Road, Beijing, 100020, Chaoyang District, China
| | - Nan Song
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Baolu Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongti South Road, Beijing, 100020, Chaoyang District, China
| | - Fengjiao Liu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongti South Road, Beijing, 100020, Chaoyang District, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongti South Road, Beijing, 100020, Chaoyang District, China.
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Feng Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongti South Road, Beijing, 100020, Chaoyang District, China.
| | - Jieqiong Li
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
54
|
Dutkowska A, Domańska-Senderowska D, Czarnecka-Chrebelska KH, Pikus E, Zielińska A, Biskup L, Kołodziejska A, Madura P, Możdżan M, Załuska U, Zheng E, Adamczyk E, Kędzia K, Wcisło S, Wawrzycki M, Brzeziańska-Lasota E, Jabłoński S, Antczak A, Poznański M. Mitochondrial Dynamics in Non-Small Cell Lung Cancer. Cancers (Basel) 2024; 16:2823. [PMID: 39199596 PMCID: PMC11352408 DOI: 10.3390/cancers16162823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
In lung cancer patients, two complementary abnormalities were found that can cause disruption of the mitochondrial network: increased fusion and impaired fission, manifested by reduced levels of FIS1, a mitochondrial division regulator, and increased expression of MFN1, a mitochondrial fusion mediator. Immunoexpression studies of MFN1 and FIS1 proteins were performed in serum samples obtained from 47 patients with non-small cell lung cancer (NSCLC) and 21 controls. In the NSCLC patients, the immunoexpression of the MFN1 protein was significantly higher, and the FIS1 protein level was significantly lower than in the control group (p < 0.01; p < 0.001; UMW test). Patients with early, operable lung cancer had significantly lower levels of MFN1 immunoexpression compared to patients with advanced, metastatic lung cancer (p < 0.05; UMW test). This suggests that early stages of the disease are characterized by greater fragmentation of damaged mitochondria and apoptosis. In contrast, lower FIS1 protein levels were associated with a worse prognosis. Increased mitochondrial fusion in the blood of lung cancer patients may suggest an increase in protective and repair mechanisms. This opens up questions about why these mechanisms fail in the context of existing advanced cancer disease and is a starting point for further research into why protective mechanisms fail in lung cancer patients.
Collapse
Affiliation(s)
- Agata Dutkowska
- Department of General and Oncological Pulmonology, Medical University of Lodz, 90-647 Lodz, Poland; (A.D.); (A.Z.); (L.B.); (A.K.); (P.M.); (M.M.); (U.Z.); (E.Z.); (A.A.); (M.P.)
| | - Daria Domańska-Senderowska
- Department of Biomedicine and Genetics, Medical University of Lodz, 90-647 Lodz, Poland; (K.H.C.-C.); (E.P.); (E.A.); (E.B.-L.)
| | | | - Ewa Pikus
- Department of Biomedicine and Genetics, Medical University of Lodz, 90-647 Lodz, Poland; (K.H.C.-C.); (E.P.); (E.A.); (E.B.-L.)
| | - Aleksandra Zielińska
- Department of General and Oncological Pulmonology, Medical University of Lodz, 90-647 Lodz, Poland; (A.D.); (A.Z.); (L.B.); (A.K.); (P.M.); (M.M.); (U.Z.); (E.Z.); (A.A.); (M.P.)
| | - Laura Biskup
- Department of General and Oncological Pulmonology, Medical University of Lodz, 90-647 Lodz, Poland; (A.D.); (A.Z.); (L.B.); (A.K.); (P.M.); (M.M.); (U.Z.); (E.Z.); (A.A.); (M.P.)
| | - Agata Kołodziejska
- Department of General and Oncological Pulmonology, Medical University of Lodz, 90-647 Lodz, Poland; (A.D.); (A.Z.); (L.B.); (A.K.); (P.M.); (M.M.); (U.Z.); (E.Z.); (A.A.); (M.P.)
| | - Paulina Madura
- Department of General and Oncological Pulmonology, Medical University of Lodz, 90-647 Lodz, Poland; (A.D.); (A.Z.); (L.B.); (A.K.); (P.M.); (M.M.); (U.Z.); (E.Z.); (A.A.); (M.P.)
| | - Maria Możdżan
- Department of General and Oncological Pulmonology, Medical University of Lodz, 90-647 Lodz, Poland; (A.D.); (A.Z.); (L.B.); (A.K.); (P.M.); (M.M.); (U.Z.); (E.Z.); (A.A.); (M.P.)
| | - Urszula Załuska
- Department of General and Oncological Pulmonology, Medical University of Lodz, 90-647 Lodz, Poland; (A.D.); (A.Z.); (L.B.); (A.K.); (P.M.); (M.M.); (U.Z.); (E.Z.); (A.A.); (M.P.)
| | - Edward Zheng
- Department of General and Oncological Pulmonology, Medical University of Lodz, 90-647 Lodz, Poland; (A.D.); (A.Z.); (L.B.); (A.K.); (P.M.); (M.M.); (U.Z.); (E.Z.); (A.A.); (M.P.)
| | - Eliza Adamczyk
- Department of Biomedicine and Genetics, Medical University of Lodz, 90-647 Lodz, Poland; (K.H.C.-C.); (E.P.); (E.A.); (E.B.-L.)
| | - Konrad Kędzia
- Department of Thoracic, General and Oncological Surgery, Medical University of Lodz, 90-647 Lodz, Poland; (K.K.); (S.W.); (M.W.); (S.J.)
| | - Szymon Wcisło
- Department of Thoracic, General and Oncological Surgery, Medical University of Lodz, 90-647 Lodz, Poland; (K.K.); (S.W.); (M.W.); (S.J.)
| | - Marcin Wawrzycki
- Department of Thoracic, General and Oncological Surgery, Medical University of Lodz, 90-647 Lodz, Poland; (K.K.); (S.W.); (M.W.); (S.J.)
| | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Medical University of Lodz, 90-647 Lodz, Poland; (K.H.C.-C.); (E.P.); (E.A.); (E.B.-L.)
| | - Sławomir Jabłoński
- Department of Thoracic, General and Oncological Surgery, Medical University of Lodz, 90-647 Lodz, Poland; (K.K.); (S.W.); (M.W.); (S.J.)
| | - Adam Antczak
- Department of General and Oncological Pulmonology, Medical University of Lodz, 90-647 Lodz, Poland; (A.D.); (A.Z.); (L.B.); (A.K.); (P.M.); (M.M.); (U.Z.); (E.Z.); (A.A.); (M.P.)
| | - Michał Poznański
- Department of General and Oncological Pulmonology, Medical University of Lodz, 90-647 Lodz, Poland; (A.D.); (A.Z.); (L.B.); (A.K.); (P.M.); (M.M.); (U.Z.); (E.Z.); (A.A.); (M.P.)
| |
Collapse
|
55
|
Zhang J, Zeng X, Guo Q, Sheng Z, Chen Y, Wan S, Zhang L, Zhang P. Small cell lung cancer: emerging subtypes, signaling pathways, and therapeutic vulnerabilities. Exp Hematol Oncol 2024; 13:78. [PMID: 39103941 DOI: 10.1186/s40164-024-00548-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/27/2024] [Indexed: 08/07/2024] Open
Abstract
Small cell lung cancer (SCLC) is a recalcitrant cancer characterized by early metastasis, rapid tumor growth and poor prognosis. In recent decades, the epidemiology, initiation and mutation characteristics of SCLC, as well as abnormal signaling pathways contributing to its progression, have been widely studied. Despite extensive investigation, fewer drugs have been approved for SCLC. Recent advancements in multi-omics studies have revealed diverse classifications of SCLC that are featured by distinct characteristics and therapeutic vulnerabilities. With the accumulation of SCLC samples, different subtypes of SCLC and specific treatments for these subtypes were further explored. The identification of different molecular subtypes has opened up novel avenues for the treatment of SCLC; however, the inconsistent and uncertain classification of SCLC has hindered the translation from basic research to clinical applications. Therefore, a comprehensives review is essential to conclude these emerging subtypes and related drugs targeting specific therapeutic vulnerabilities within abnormal signaling pathways. In this current review, we summarized the epidemiology, risk factors, mutation characteristics of and classification, related molecular pathways and treatments for SCLC. We hope that this review will facilitate the translation of molecular subtyping of SCLC from theory to clinical application.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Xiaoping Zeng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Qiji Guo
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Zhenxin Sheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yan Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Shiyue Wan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Lele Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| |
Collapse
|
56
|
Suárez GM, Catalá M, Peña Y, Portela S, Añé-Kourí AL, González A, Lorenzo-Luaces P, Díaz M, Molina MDLA, Pereira K, Hernández JDLC, Reyes MC, Ledón N, Mazorra Z, Crombet T, Lage A, Bencomo-Hernandez A, Saavedra D. Assessment of non-classical lymphocyte populations in patients with advanced lung cancer treated with Biomodulina T following platinum-based chemotherapy. EXPLORATION OF IMMUNOLOGY 2024; 4:433-445. [DOI: 10.37349/ei.2024.00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/30/2024] [Indexed: 01/03/2025]
Abstract
Aim: Currently, malignant diseases represent a health issue worldwide. Among these, lung cancer is of growing importance, due to its high incidence and mortality. Chemotherapy, one of the most frequently used treatments, has shown its ability to induce accelerated immunosenescence in classic and as well non-classic lymphocyte compartments, being less described in the latter. The immune restoration strategies have demonstrated their ability to reverse immunosenescence and exhaustion markers in conventional lymphocyte subpopulations after chemotherapy. However, the possible immunorestorative effect on non-classical lymphocytes has not been widely reported. The aim of this study was to evaluate the effect of chemotherapy and the administration of a thymic polypeptide factor on non-classical lymphocyte populations in patients with advanced lung cancer.
Methods: Eighteen patients with advanced lung cancer, were evaluated at baseline before and after platinum-based chemotherapy (4–6 cycles). All patients could complete treatment with a thymic polypeptide factor [Biomodulina T (BT)] at the end of chemotherapy. Blood from patients was collected by venipuncture in heparinized tubes before and after chemotherapy and at the end of BT treatment to analyze the frequencies of non-classical immune subpopulations by flow cytometry.
Results: Natural killer (NK), natural killer T cells (NKT), and double-positive T lymphocyte (DPT) proportions reached normal values in patients diagnosed with advanced lung cancer before receiving cytotoxic treatment. Chemotherapy did not induce modifications in the total percent of NK, NKT, and DPT populations in these patients. However, the administration of BT decreased DPTs and NK cells expressing the cluster of differentiation (CD)57 molecule, which is considered a marker of immunosenescence.
Conclusions: These results suggest a lower influence of platinum-based chemotherapy on non-classical lymphocytes and the potential to generate a reconstitution of lymphocyte subpopulations in patients with advanced lung cancer by using the thymic factor BT, which reveals a new possibility for improving the response to cancer immunotherapies [Cuban Public Registry of Clinical Trial (RPCEC, https://rpcec.sld.cu/en/trials/RPCEC00000358-En) identifier: RPCEC00000358].
Collapse
Affiliation(s)
- Gisela María Suárez
- Clinical Immunology Department, Center of Molecular Immunology, Havana 11600, Cuba; Laboratory of Immunology, Abu Dhabi Stem Cells Center, Abu Dhabi, United Arab Emirates
| | - Mauricio Catalá
- Oncology Unit, Medical & Surgical Research Center (CIMEQ), Havana 11300, Cuba
| | - Yadira Peña
- Oncology Unit, Medical & Surgical Research Center (CIMEQ), Havana 11300, Cuba
| | - Susana Portela
- Oncology Unit, Medical & Surgical Research Center (CIMEQ), Havana 11300, Cuba
| | - Ana Laura Añé-Kourí
- Clinical Immunology Department, Center of Molecular Immunology, Havana 11600, Cuba
| | - Amnely González
- Clinical Immunology Department, Center of Molecular Immunology, Havana 11600, Cuba
| | | | - Manuel Díaz
- Benéfico-Jurídico Pneumological Hospital, Havana 10600, Cuba
| | | | - Karla Pereira
- Clinical Immunology Department, Center of Molecular Immunology, Havana 11600, Cuba
| | | | - Mary Carmen Reyes
- Clinical Direction, National Center for Biopreparations, Bejucal, Mayabeque 32600, Cuba
| | - Nuris Ledón
- Clinical Immunology Department, Center of Molecular Immunology, Havana 11600, Cuba
| | - Zaima Mazorra
- Clinical Immunology Department, Center of Molecular Immunology, Havana 11600, Cuba; Laboratory of Immunology, Abu Dhabi Stem Cells Center, Abu Dhabi, United Arab Emirates
| | - Tania Crombet
- Clinical Immunology Department, Center of Molecular Immunology, Havana 11600, Cuba
| | - Agustin Lage
- Clinical Immunology Department, Center of Molecular Immunology, Havana 11600, Cuba
| | | | - Danay Saavedra
- Clinical Immunology Department, Center of Molecular Immunology, Havana 11600, Cuba
| |
Collapse
|
57
|
Xu X, Liu Y, Gong Q, Ma L, Wei W, Zhao L, Luo Z. PARP1 promotes EGFR-TKI drug-resistance via PI3K/AKT pathway in non-small-cell lung cancer. Cancer Chemother Pharmacol 2024; 94:209-221. [PMID: 38609654 DOI: 10.1007/s00280-024-04668-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
PURPOSE Tyrosine kinase inhibitor (TKI) resistance is the main type of drug resistance in lung cancer patients with epidermal growth factor receptor (EGFR) mutations, but its underlying mechanism remains unclear. The purpose of this work was to investigate the mechanism by which PARP1 regulates EGFR-TKI resistance to identify potential targets for combating drug resistance. METHODS The GEO databases, TCGA databases, western blot and qPCR studies were used to investigate the expression of PARP1 in lung cancer cells and tissues and its correlation with the prognosis of lung cancer. The expression of PARP1 in lung cancer TKI resistant cell PC9-ER and TKI sensitive cell PC9 was analyzed by qPCR and western blot. After knocking down of PARP1, CCK-8 assays, colony formation, flow cytometry were used to investigate its impact on erlotinib sensitivity, cell survival, cell cycle, and apoptosis. RNA-seq was used to investigate the mechanism by which PARP1 participates in EGFR-TKI resistance, and the results were validated in vitro and in vivo studies. RESULTS PARP1 was highly expressed in both lung cancer tissues and cells. Subsequently, increased PARP1 expression was observed in PC9-ER compared with its parental cell line. Knockdown of PARP1 increased erlotinib sensitivity, promoted cell apoptosis, and suppressed cell growth. RNA-seq and previous studies have shown that the PI3K/AKT/mTOR/P70S6K pathway is involved in PARP1-mediated TKI resistance, and these results were confirmed by Western blot in vitro and in vivo. CONCLUSION PARP1 may serve as a potential therapeutic target for reversing EGFR-TKI resistance in NSCLC via the PI3K/AKT/mTOR/P70S6K pathway.
Collapse
Affiliation(s)
- Xianping Xu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District Luzhou, Sichuan, 646000, China
- Department of Oncology, Chongqing Genaral Hospital, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China
| | - Yu Liu
- Department of Oncology, Chongqing Genaral Hospital, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China
| | - Qiang Gong
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Road Street, Shapingba District, Chongqing, 400038, China
| | - Le Ma
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Road Street, Shapingba District, Chongqing, 400038, China
| | - Wei Wei
- Department of Oncology, Chongqing Genaral Hospital, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China
| | - Linqiong Zhao
- Department of Oncology, Chongqing Genaral Hospital, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China
| | - Zhibin Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District Luzhou, Sichuan, 646000, China.
- Department of Oncology, Chongqing Genaral Hospital, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China.
| |
Collapse
|
58
|
Huang S, Zhao H, Lou X, Chen D, Shi C, Ren Z. TM6SF1 suppresses the progression of lung adenocarcinoma and M2 macrophage polarization by inactivating the PI3K/AKT/mtor pathway. Biochem Biophys Res Commun 2024; 718:149983. [PMID: 38718735 DOI: 10.1016/j.bbrc.2024.149983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/23/2024]
Abstract
Transmembrane 6 superfamily 1 (TM6SF1) is lowly expressed in lung adenocarcinoma (LUAD), but the function and mechanisms of TM6SF1 remain unclear. Thus, we attempt to explore the function of TM6SF1 and its underlying mechanisms in LUAD. qRT-PCR was used for detecting TM6SF1 mRNA expression. Immunohistochemistry staining was used for detecting the expression of MMP-2, TM6SF1, Ki67, MMP-9, and CD163 proteins. E-cadherin, p-PI3K, Vimentin, AKT, N-cadherin, PI3K, p-AKT, mTOR, p-mTOR, and marker proteins of M2 macrophages were evaluated using Western blot. CD206 protein expression was examined via immunofluorescence. The IL-10 concentration was measured via enzyme-linked immunosorbent assay (ELISA). Using CCK-8, colony formation and transwell assays, cell proliferation, migration, and invasion were assessed. A549 cells were injected into the mice's flank for establishing a mouse tumor model and into the tail vein for establishing the lung metastasis model. HE staining was performed to detect pathological changes in lung tissues. Decreased TM6SF1 expression was found in LUAD tissues and cells. TM6SF1 overexpression inhibited cell viability, proliferation, invasion, migration, EMT, and polarization of M2 macrophages in LUAD cells, along with tumor growth and metastasis in xenograft mice. Bioinformatics analysis demonstrated that TM6SF1 was correlated with the tumor microenvironment. TM6SF1 overexpression reduced expression levels of p-mTOR, p-PI3K, p-AKT, mTOR, and AKT. TM6SF1-caused inhibition of proliferation, migration, invasion and EMT, as M2 macrophage polarization was reversed by the PI3K activator in LUAD cells. TM6SF1 inactivated the PI3K/AKT/mTOR pathway to suppress LUAD malignancy and polarization of M2 macrophages, providing insight for developing new LUAD treatments.
Collapse
Affiliation(s)
- Shucheng Huang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, China
| | - Hengchi Zhao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, China
| | - Xiaolong Lou
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, China
| | - Dong Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, China
| | - Chengwei Shi
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, China
| | - Zhe Ren
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, China.
| |
Collapse
|
59
|
Pavlinkova G, Smolik O. NEUROD1: transcriptional and epigenetic regulator of human and mouse neuronal and endocrine cell lineage programs. Front Cell Dev Biol 2024; 12:1435546. [PMID: 39105169 PMCID: PMC11298428 DOI: 10.3389/fcell.2024.1435546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Transcription factors belonging to the basic helix-loop-helix (bHLH) family are key regulators of cell fate specification and differentiation during development. Their dysregulation is implicated not only in developmental abnormalities but also in various adult diseases and cancers. Recently, the abilities of bHLH factors have been exploited in reprogramming strategies for cell replacement therapy. One such factor is NEUROD1, which has been associated with the reprogramming of the epigenetic landscape and potentially possessing pioneer factor abilities, initiating neuronal developmental programs, and enforcing pancreatic endocrine differentiation. The review aims to consolidate current knowledge on NEUROD1's multifaceted roles and mechanistic pathways in human and mouse cell differentiation and reprogramming, exploring NEUROD1 roles in guiding the development and reprogramming of neuroendocrine cell lineages. The review focuses on NEUROD1's molecular mechanisms, its interactions with other transcription factors, its role as a pioneer factor in chromatin remodeling, and its potential in cell reprogramming. We also show a differential potential of NEUROD1 in differentiation of neurons and pancreatic endocrine cells, highlighting its therapeutic potential and the necessity for further research to fully understand and utilize its capabilities.
Collapse
Affiliation(s)
- Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, Vestec, Czechia
| | | |
Collapse
|
60
|
Zhang H, Zhang Y, Zhu Y, Dong T, Liu Z. Understanding the treatment response and resistance to targeted therapies in non-small cell lung cancer: clinical insights and perspectives. Front Oncol 2024; 14:1387345. [PMID: 39055566 PMCID: PMC11269125 DOI: 10.3389/fonc.2024.1387345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Lung cancer remains the leading cause of mortality worldwide. Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer with a generally poor prognosis. In recent years, advances in targeted therapy and sequencing technology have brought significant improvement in the therapeutic outcomes of patients with advanced NSCLC. Targeted inhibitors directed against specific mutated or rearranged oncogenes, such as epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), and receptor tyrosine kinase ROS proto-oncogene 1(ROS1) among others, exhibit promising anti-tumor activity. Unfortunately, some patients develop acquired resistance and disease progression soon after initial remission. Despite the continuous development of new drugs and strategies to overcome drug resistance, it is still a major challenge in the treatment of NSCLC. The landscape of targeted therapy for NSCLC is evolving rapidly in response to the pace of scientific research. This study aimed to provide a comprehensive review of tumor target antigens and agents related to targeted therapy in NSCLC.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Yingying Zhang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Yingying Zhu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Dong
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Zheng Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
61
|
Lin H, Zhang X, Feng Y, Gong Z, Li J, Wang W, Fan J. Advancing lung adenocarcinoma prognosis and immunotherapy prediction with a multi-omics consensus machine learning approach. J Cell Mol Med 2024; 28:e18520. [PMID: 38958523 PMCID: PMC11221067 DOI: 10.1111/jcmm.18520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is a tumour characterized by high tumour heterogeneity. Although there are numerous prognostic and immunotherapeutic options available for LUAD, there is a dearth of precise, individualized treatment plans. We integrated mRNA, lncRNA, microRNA, methylation and mutation data from the TCGA database for LUAD. Utilizing ten clustering algorithms, we identified stable multi-omics consensus clusters (MOCs). These data were then amalgamated with ten machine learning approaches to develop a robust model capable of reliably identifying patient prognosis and predicting immunotherapy outcomes. Through ten clustering algorithms, two prognostically relevant MOCs were identified, with MOC2 showing more favourable outcomes. We subsequently constructed a MOCs-associated machine learning model (MOCM) based on eight MOCs-specific hub genes. Patients characterized by a lower MOCM score exhibited better overall survival and responses to immunotherapy. These findings were consistent across multiple datasets, and compared to many previously published LUAD biomarkers, our MOCM score demonstrated superior predictive performance. Notably, the low MOCM group was more inclined towards 'hot' tumours, characterized by higher levels of immune cell infiltration. Intriguingly, a significant positive correlation between GJB3 and the MOCM score (R = 0.77, p < 0.01) was discovered. Further experiments confirmed that GJB3 significantly enhances LUAD proliferation, invasion and migration, indicating its potential as a key target for LUAD treatment. Our developed MOCM score accurately predicts the prognosis of LUAD patients and identifies potential beneficiaries of immunotherapy, offering broad clinical applicability.
Collapse
Affiliation(s)
- Haoran Lin
- Department of Thoracic SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Xiao Zhang
- Department of Thoracic SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yanlong Feng
- Department of Thoracic SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zetian Gong
- Department of Thoracic SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jun Li
- Department of Thoracic SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Wei Wang
- Department of Thoracic SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jun Fan
- Department of Thoracic SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
62
|
Li S, Li W, Liu B, Krysan K, Dubinett SM. Noninvasive Lung Cancer Subtype Classification Using Tumor-Derived Signatures and cfDNA Methylome. CANCER RESEARCH COMMUNICATIONS 2024; 4:1738-1747. [PMID: 38856716 PMCID: PMC11249519 DOI: 10.1158/2767-9764.crc-23-0564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Accurate diagnosis of lung cancer is important for treatment decision-making. Tumor biopsy and histologic examination are the standard for determining histologic lung cancer subtypes. Liquid biopsy, particularly cell-free DNA (cfDNA), has recently shown promising results in cancer detection and classification. In this study, we investigate the potential of cfDNA methylome for the noninvasive classification of lung cancer histologic subtypes. We focused on the two most prevalent lung cancer subtypes, lung adenocarcinoma and lung squamous cell carcinoma. Using a fragment-based marker discovery approach, we identified robust subtype-specific methylation markers from tumor samples. These markers were successfully validated in independent cohorts and associated with subtype-specific transcriptional activity. Leveraging these markers, we constructed a subtype classification model using cfDNA methylation profiles, achieving an AUC of 0.808 in cross-validation and an AUC of 0.747 in the independent validation. Tumor copy-number alterations inferred from cfDNA methylome analysis revealed potential for treatment selection. In summary, our study demonstrates the potential of cfDNA methylome analysis for noninvasive lung cancer subtyping, offering insights for cancer monitoring and early detection. SIGNIFICANCE This study explores the use of cfDNA methylomes for the classification of lung cancer subtypes, vital for effective treatment. By identifying specific methylation markers in tumor tissues, we developed a robust classification model achieving high accuracy for noninvasive subtype detection. This cfDNA methylome approach offers promising avenues for early detection and monitoring.
Collapse
Affiliation(s)
- Shuo Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| | - Wenyuan Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| | - Bin Liu
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, California.
| | - Kostyantyn Krysan
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, California.
- VA Greater Los Angeles Health Care System, Los Angeles, California.
| | - Steven M. Dubinett
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, California.
- VA Greater Los Angeles Health Care System, Los Angeles, California.
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| |
Collapse
|
63
|
Ebrahimnezhad M, Valizadeh A, Majidinia M, Tabnak P, Yousefi B. Unveiling the potential of FOXO3 in lung cancer: From molecular insights to therapeutic prospects. Biomed Pharmacother 2024; 176:116833. [PMID: 38843589 DOI: 10.1016/j.biopha.2024.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/18/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024] Open
Abstract
Lung cancer poses a significant challenge regarding molecular heterogeneity, as it encompasses a wide range of molecular alterations and cancer-related pathways. Recent discoveries made it feasible to thoroughly investigate the molecular mechanisms underlying lung cancer, giving rise to the possibility of novel therapeutic strategies relying on molecularly targeted drugs. In this context, forkhead box O3 (FOXO3), a member of forkhead transcription factors, has emerged as a crucial protein commonly dysregulated in cancer cells. The regulation of the FOXO3 in reacting to external stimuli plays a key role in maintaining cellular homeostasis as a component of the molecular machinery that determines whether cells will survive or dies. Indeed, various extrinsic cues regulate FOXO3, affecting its subcellular location and transcriptional activity. These regulations are mediated by diverse signaling pathways, non-coding RNAs (ncRNAs), and protein interactions that eventually drive post-transcriptional modification of FOXO3. Nevertheless, while it is no doubt that FOXO3 is implicated in numerous aspects of lung cancer, it is unclear whether they act as tumor suppressors, promotors, or both based on the situation. However, FOXO3 serves as an intriguing possible target in lung cancer therapeutics while widely used anti-cancer chemo drugs can regulate it. In this review, we describe a summary of recent findings on molecular mechanisms of FOXO3 to clarify that targeting its activity might hold promise in lung cancer treatment.
Collapse
Affiliation(s)
- Mohammad Ebrahimnezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Amir Valizadeh
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Peyman Tabnak
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bahman Yousefi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
64
|
Kim B, Zhang S, Huang Y, Ko KP, Jung YS, Jang J, Zou G, Zhang J, Jun S, Kim KB, Park KS, Park JI. CRACD loss induces neuroendocrine cell plasticity of lung adenocarcinoma. Cell Rep 2024; 43:114286. [PMID: 38796854 PMCID: PMC11216895 DOI: 10.1016/j.celrep.2024.114286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 03/01/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Tumor cell plasticity contributes to intratumoral heterogeneity and therapy resistance. Through cell plasticity, some lung adenocarcinoma (LUAD) cells transform into neuroendocrine (NE) tumor cells. However, the mechanisms of NE cell plasticity remain unclear. CRACD (capping protein inhibiting regulator of actin dynamics), a capping protein inhibitor, is frequently inactivated in cancers. CRACD knockout (KO) is sufficient to de-repress NE-related gene expression in the pulmonary epithelium and LUAD cells. In LUAD mouse models, Cracd KO increases intratumoral heterogeneity with NE gene expression. Single-cell transcriptomic analysis showed that Cracd KO-induced NE cell plasticity is associated with cell de-differentiation and stemness-related pathway activation. The single-cell transcriptomic analysis of LUAD patient tumors recapitulates that the distinct LUAD NE cell cluster expressing NE genes is co-enriched with impaired actin remodeling. This study reveals the crucial role of CRACD in restricting NE cell plasticity that induces cell de-differentiation of LUAD.
Collapse
Affiliation(s)
- Bongjun Kim
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Shengzhe Zhang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuanjian Huang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kyung-Pil Ko
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Youn-Sang Jung
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jinho Jang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gengyi Zou
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sohee Jun
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kee-Beom Kim
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kwon-Sik Park
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
65
|
Alshehri MA, Asiri SA, Helmi N, Baeissa HM, Hamadi A, Alzahrani A, Alghamdi RM, Rafeeq MM, Alharbi ZM, Kamal MA. Unrevealing the multitargeted potency of 3-1-BCMIYPPA against lung cancer structural maintenance and suppression proteins through pharmacokinetics, QM-DFT, and multiscale MD simulation studies. PLoS One 2024; 19:e0303784. [PMID: 38905286 PMCID: PMC11192378 DOI: 10.1371/journal.pone.0303784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/30/2024] [Indexed: 06/23/2024] Open
Abstract
Lung cancer, a relentless and challenging disease, demands unwavering attention in drug design research. Single-target drugs have yielded limited success, unable to effectively address this malignancy's profound heterogeneity and often developed resistance. Consequently, the clarion call for lung cancer drug design echoes louder than ever, and multitargeted drug design emerges as an imperative approach in this landscape, which is done by concurrently targeting multiple proteins and pathways and offering a beacon of hope. This study is focused on the multitargeted drug designing approach by identifying drug candidates against human cyclin-dependent kinase-2, SRC-2 domains of C-ABL, epidermal growth factor and receptor extracellular domains, and insulin-like growth factor-1 receptor kinase. We performed the multitargeted molecular docking studies of Drug Bank compounds using HTVS, SP and XP algorithms and poses filter with MM\GBSA against all proteins and identified DB02504, namely [3-(1-Benzyl-3-Carbamoylmethyl-2-Methyl-1h-Indol-5-Yloxy)-Propyl-]-Phosphonic Acid (3-1-BCMIYPPA) as multitargeted lead with docking and MM\GBSA score range from -8.242 to -6.274 and -28.2 and -44.29 Kcal/mol, respectively. Further, the QikProp-based pharmacokinetic computations and QM-based DFT showed acceptance results against standard values, and interaction fingerprinting reveals that THR, MET, GLY, VAL, LEU, GLU and ASP were among the most interacting residues. The NPT ensemble-based 100ns MD simulation in a neutralised state with an SPC water model has also shown a stable performance and produced deviation and fluctuations <2Å with huge interactions, making it a promising multitargeted drug candidate-however, experimental studies are suggested.
Collapse
Affiliation(s)
- Mohammed Ali Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Kingdom of Saudi Arabia
| | - Saeed A. Asiri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Kingdom of Saudi Arabia
| | - Nawal Helmi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Hanadi M. Baeissa
- Department of Biological Science, College of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Abdullah Hamadi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Abdulrahman Alzahrani
- Department of Applied Medical Sciences, Applied College, Al-Baha University, Al-Baha City, Kingdom of Saudi Arabia
| | - Rashed Mohammed Alghamdi
- Department of Laboratory Medicine, Faculty of Applied College, Al-Baha University, Al-Baha City, Kingdom of Saudi Arabia
| | - Misbahuddin M. Rafeeq
- Department of Pharmacology, Faculty of Medicine, Rabigh. King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Zeyad M. Alharbi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| |
Collapse
|
66
|
Miyamoto K, Ogino H, Kakimoto T, Matsumura Y, Haji K, Mitsuhashi A, Morita Y, Tsukazaki Y, Yabuki Y, Ozaki R, Yoneda H, Sato S, Hanibuchi M, Bando Y, Nokihara H, Nishioka Y. Transformation of epidermal growth factor receptor mutated lung adenocarcinoma to small-cell carcinoma long after the cessation of tyrosine kinase inhibitor treatment: A case series and literature review. Respir Med Case Rep 2024; 51:102076. [PMID: 39027818 PMCID: PMC11255952 DOI: 10.1016/j.rmcr.2024.102076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
Histological transformation to small-cell lung cancer (SCLC) is a well-known mechanism of acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), and almost all patients receive EGFR-TKIs at the time of transformation. We herein report three cases of EGFR-mutated lung adenocarcinoma that transformed into SCLC long after the cessation of EGFR-TKIs. Rapid tumor progression and elevated SCLC marker levels were observed at the time of transformation. Our case highlights the importance of considering SCLC transformation throughout the clinical course. Careful observation of the tumor behavior and SCLC markers should be performed to avoid diagnostic delays.
Collapse
Affiliation(s)
- Kenya Miyamoto
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Hirokazu Ogino
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Takumi Kakimoto
- Division of Pathology, Tokushima University Hospital, 2-50-1, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yugo Matsumura
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Keiko Haji
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Atsushi Mitsuhashi
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yutaka Morita
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yuki Tsukazaki
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yohei Yabuki
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Ryohiko Ozaki
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Hiroto Yoneda
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Seidai Sato
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Masaki Hanibuchi
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
- Department of Community Medicine for Respirology, Hematology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yoshimi Bando
- Division of Pathology, Tokushima University Hospital, 2-50-1, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Hiroshi Nokihara
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
- Respiratory Medicine, Center Hospital of the National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjyuku-ku, Tokyo, 162-8655, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| |
Collapse
|
67
|
Cheong TC, Jang A, Wang Q, Leonardi GC, Ricciuti B, Alessi JV, Di Federico A, Awad MM, Lehtinen MK, Harris MH, Chiarle R. Mechanistic patterns and clinical implications of oncogenic tyrosine kinase fusions in human cancers. Nat Commun 2024; 15:5110. [PMID: 38877018 PMCID: PMC11178778 DOI: 10.1038/s41467-024-49499-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
Tyrosine kinase (TK) fusions are frequently found in cancers, either as initiating events or as a mechanism of resistance to targeted therapy. Partner genes and exons in most TK fusions are followed typical recurrent patterns, but the underlying mechanisms and clinical implications of these patterns are poorly understood. By developing Functionally Active Chromosomal Translocation Sequencing (FACTS), we discover that typical TK fusions involving ALK, ROS1, RET and NTRK1 are selected from pools of chromosomal rearrangements by two major determinants: active transcription of the fusion partner genes and protein stability. In contrast, atypical TK fusions that are rarely seen in patients showed reduced protein stability, decreased downstream oncogenic signaling, and were less responsive to inhibition. Consistently, patients with atypical TK fusions were associated with a reduced response to TKI therapies. Our findings highlight the principles of oncogenic TK fusion formation and selection in cancers, with clinical implications for guiding targeted therapy.
Collapse
Affiliation(s)
- Taek-Chin Cheong
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Ahram Jang
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
| | - Qi Wang
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Giulia C Leonardi
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Joao V Alessi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | | | - Mark M Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Marian H Harris
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Roberto Chiarle
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, 10126, Italy.
- Division of Hematopathology, IEO European Institute of Oncology IRCCS, 20141, Milan, Italy.
| |
Collapse
|
68
|
Hobor S, Al Bakir M, Hiley CT, Skrzypski M, Frankell AM, Bakker B, Watkins TBK, Markovets A, Dry JR, Brown AP, van der Aart J, van den Bos H, Spierings D, Oukrif D, Novelli M, Chakrabarti T, Rabinowitz AH, Ait Hassou L, Litière S, Kerr DL, Tan L, Kelly G, Moore DA, Renshaw MJ, Venkatesan S, Hill W, Huebner A, Martínez-Ruiz C, Black JRM, Wu W, Angelova M, McGranahan N, Downward J, Chmielecki J, Barrett C, Litchfield K, Chew SK, Blakely CM, de Bruin EC, Foijer F, Vousden KH, Bivona TG, Hynds RE, Kanu N, Zaccaria S, Grönroos E, Swanton C. Mixed responses to targeted therapy driven by chromosomal instability through p53 dysfunction and genome doubling. Nat Commun 2024; 15:4871. [PMID: 38871738 PMCID: PMC11176322 DOI: 10.1038/s41467-024-47606-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/28/2024] [Indexed: 06/15/2024] Open
Abstract
The phenomenon of mixed/heterogenous treatment responses to cancer therapies within an individual patient presents a challenging clinical scenario. Furthermore, the molecular basis of mixed intra-patient tumor responses remains unclear. Here, we show that patients with metastatic lung adenocarcinoma harbouring co-mutations of EGFR and TP53, are more likely to have mixed intra-patient tumor responses to EGFR tyrosine kinase inhibition (TKI), compared to those with an EGFR mutation alone. The combined presence of whole genome doubling (WGD) and TP53 co-mutations leads to increased genome instability and genomic copy number aberrations in genes implicated in EGFR TKI resistance. Using mouse models and an in vitro isogenic p53-mutant model system, we provide evidence that WGD provides diverse routes to drug resistance by increasing the probability of acquiring copy-number gains or losses relative to non-WGD cells. These data provide a molecular basis for mixed tumor responses to targeted therapy, within an individual patient, with implications for therapeutic strategies.
Collapse
Affiliation(s)
- Sebastijan Hobor
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Crispin T Hiley
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
- Department of Medical Oncology, University College London Hospitals, 235 Euston Rd, Fitzrovia, London, NW1 2BU, UK
| | - Marcin Skrzypski
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
- Department of Medical Oncology, University College London Hospitals, 235 Euston Rd, Fitzrovia, London, NW1 2BU, UK
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, ul. Mariana Smoluchowskiego 17, 80-214, Gdańsk, Poland
| | - Alexander M Frankell
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Bjorn Bakker
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713, the Netherlands
| | - Thomas B K Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | | | - Jonathan R Dry
- Late Development, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Andrew P Brown
- Late Development, Oncology R&D, AstraZeneca, Boston, MA, USA
| | | | - Hilda van den Bos
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713, the Netherlands
| | - Diana Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713, the Netherlands
| | - Dahmane Oukrif
- Research Department of Pathology, University College London Medical School, University Street, London, WC1E 6JJ, UK
| | - Marco Novelli
- Research Department of Pathology, University College London Medical School, University Street, London, WC1E 6JJ, UK
| | - Turja Chakrabarti
- Department of Medicine, University of California, San Francisco, CA, 94158, USA
| | - Adam H Rabinowitz
- Furlong Laboratory, EMBL Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Laila Ait Hassou
- European Organization for Research and Treatment of Cancer, Brussels, Belgium
| | - Saskia Litière
- Bioinformatics & Biostatistics; Francis Crick Institute, London, UK
| | - D Lucas Kerr
- Department of Medicine, University of California, San Francisco, CA, 94158, USA
| | - Lisa Tan
- Department of Medicine, University of California, San Francisco, CA, 94158, USA
| | - Gavin Kelly
- Bioinformatics & Biostatistics; Francis Crick Institute, London, UK
| | - David A Moore
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - Matthew J Renshaw
- Advanced Light Microscopy, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Subramanian Venkatesan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - William Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Ariana Huebner
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Carlos Martínez-Ruiz
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - James R M Black
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, CA, 94158, USA
| | - Mihaela Angelova
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | | | - Carl Barrett
- Late Development, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Kevin Litchfield
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Su Kit Chew
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Collin M Blakely
- Department of Medicine, University of California, San Francisco, CA, 94158, USA
| | - Elza C de Bruin
- Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713, the Netherlands
| | - Karen H Vousden
- p53 and Metabolism Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, CA, 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, USA
| | - Robert E Hynds
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Nnennaya Kanu
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK.
| | - Simone Zaccaria
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK.
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK.
| | - Eva Grönroos
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK.
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK.
- Department of Medical Oncology, University College London Hospitals, 235 Euston Rd, Fitzrovia, London, NW1 2BU, UK.
| |
Collapse
|
69
|
Yang C, Ma S, Zhang J, Han Y, Wan L, Zhou W, Dong X, Yang W, Chen Y, Gao L, Cui W, Jia L, Yang J, Wu C, Wang Q, Wang L. EHMT2-mediated transcriptional reprogramming drives neuroendocrine transformation in non-small cell lung cancer. Proc Natl Acad Sci U S A 2024; 121:e2317790121. [PMID: 38814866 PMCID: PMC11161775 DOI: 10.1073/pnas.2317790121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
The transformation of lung adenocarcinoma to small cell lung cancer (SCLC) is a recognized resistance mechanism and a hindrance to therapies using epidermal growth factor receptor tyrosine kinase inhibitors (TKIs). The paucity of pretranslational/posttranslational clinical samples limits the deeper understanding of resistance mechanisms and the exploration of effective therapeutic strategies. Here, we developed preclinical neuroendocrine (NE) transformation models. Next, we identified a transcriptional reprogramming mechanism that drives resistance to erlotinib in NE transformation cell lines and cell-derived xenograft mice. We observed the enhanced expression of genes involved in the EHMT2 and WNT/β-catenin pathways. In addition, we demonstrated that EHMT2 increases methylation of the SFRP1 promoter region to reduce SFRP1 expression, followed by activation of the WNT/β-catenin pathway and TKI-mediated NE transformation. Notably, the similar expression alterations of EHMT2 and SFRP1 were observed in transformed SCLC samples obtained from clinical patients. Importantly, suppression of EHMT2 with selective inhibitors restored the sensitivity of NE transformation cell lines to erlotinib and delayed resistance in cell-derived xenograft mice. We identify a transcriptional reprogramming process in NE transformation and provide a potential therapeutic target for overcoming resistance to erlotinib.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Shuxiang Ma
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou450008, China
| | - Jie Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Yuchen Han
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Li Wan
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Wenlong Zhou
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Xiaoyu Dong
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Weiming Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Yu Chen
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Lingyue Gao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Lina Jia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou450008, China
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| |
Collapse
|
70
|
Abstract
All cancers arise from normal cells whose progeny acquire the cancer-initiating mutations and epigenetic modifications leading to frank tumorigenesis. The identity of those "cells-of-origin" has historically been a source of controversy across tumor types, as it has not been possible to witness the dynamic events giving rise to human tumors. Genetically engineered mouse models (GEMMs) of cancer provide an invaluable substitute, enabling researchers to interrogate the competence of various naive cellular compartments to initiate tumors in vivo. Researchers using these models have relied on lineage-specific promoters, knowledge of preneoplastic disease states in humans, and technical advances allowing more precise manipulations of the mouse germline. These approaches have given rise to the emerging view that multiple lineages within a given organ may generate tumors with similar histopathology. Here, we review some of the key studies leading to this conclusion in solid tumors and highlight the biological and clinical ramifications.
Collapse
Affiliation(s)
- Jason R Pitarresi
- Division of Hematology and Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01655, USA
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01655, USA
| | - Ben Z Stanger
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
71
|
Xu L, Jiang Y, Bi Y, Zheng S, Wu Y, Wu Y, Xu Y, Chen J. Suppression of PERK/eIF2α/CHOP pathway enhances oridonin-induced apoptosis by inhibiting autophagy in Small-Cell lung cancer cells. Biomed Pharmacother 2024; 175:116684. [PMID: 38713951 DOI: 10.1016/j.biopha.2024.116684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024] Open
Abstract
Chinese herbs have been used to treat small-cell lung cancer (SCLC) due to their low toxicity and significant efficacy. This study focused on oridonin, a natural compound extracted from Rabdosia rubescens, and aimed to investigate its potential antitumor activity on SCLC and to evaluate the synergistic effect of combining oridonin with other small molecules. In this study, oridonin exhibited a dual effect. At lower concentrations, it suppressed the cell viability of SCLC cells (H1688 and H446). At high concentrations, oridonin induced SCLC cell apoptosis, damaged HBE cells in vitro and compromised the function of the liver and heart in vivo. The lower concentration of oridonin induced autophagy by enhancing the expression of p62 and the LC3B-II/LC3B-I ratio. This phenomenon might be associated with the activation of the protein kinase RNA-like ER kinase (PERK)/eukaryotic initiation factor 2 alpha (eIF2α)/growth arrest and DNA damage-inducible gene 153 (CHOP/GAD153) pathway. Therefore, the combined effect of oridonin with GSK2606414 or 3- methyladenine increased apoptosis in SCLC cells and reduced tumor growth. A similar phenomenon was observed after oridonin was combined with p62 or CHOP RNA interference treatment. Simultaneously, the combination of oridonin and GSK2606414 exhibited therapeutic efficacy without manifesting adverse effects. Our findings suggest that oridonin at lower concentrations can induce autophagy by activating the PERK/eIF2α/CHOP signaling pathway. The inhibition of the PERK/eIF2α/CHOP pathway could enhance oridonin therapeutic responses by triggering apoptosis. The novel therapeutic approach of combining oridonin with a PERK inhibitor is promising as a strategy for the treatment of SCLC.
Collapse
Affiliation(s)
- Linhao Xu
- Department of Cardiology, Hangzhou First People's Hospital, Zhejiang 310006, China; School of Basic Medical Sciences and Forensic Medicine, Hangzhou medical college, Hangzhou, Zhejiang 310053, China; Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, China
| | - Yuxin Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou medical college, Hangzhou, Zhejiang 310053, China
| | - Yanli Bi
- Department of Clinical Laboratorial Examination, Air Force Hangzhou Special Service Recuperation Center Sanatorium Area 3, Hangzhou, Zhejiang 310013, China
| | - Senwen Zheng
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou medical college, Hangzhou, Zhejiang 310053, China
| | - Yirong Wu
- Department of Cardiology, Hangzhou First People's Hospital, Zhejiang 310006, China
| | - Yihao Wu
- Department of Cardiology, Hangzhou First People's Hospital, Zhejiang 310006, China
| | - Yizhou Xu
- Department of Cardiology, Hangzhou First People's Hospital, Zhejiang 310006, China.
| | - Jian Chen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou medical college, Hangzhou, Zhejiang 310053, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
72
|
Katic L, Choi J, Diaz Saravia S, Silverman A, Nagourney A, Torelli V, Gupta S, Glavan M, Gulati A, Khurana S, Tsyvkin E. The Interplay Between Cardiovascular Disease and Lung Cancer. Cureus 2024; 16:e62953. [PMID: 39044884 PMCID: PMC11265258 DOI: 10.7759/cureus.62953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2024] [Indexed: 07/25/2024] Open
Abstract
Cardiovascular disease (CVD) and lung cancer are among the leading causes of mortality worldwide, with a significant interplay that complicates patient management and treatment outcomes. This review explores the complex relationship between various forms of CVD - such as coronary artery disease, heart failure (HF), arrhythmias, and valvular heart disease - and lung cancer. Shared risk factors, including smoking, aging, and chronic inflammation, contribute to the co-occurrence of these conditions. Additionally, treatments for lung cancer, particularly chemotherapy and radiation therapy, can exacerbate CVD, necessitating a multidisciplinary approach to patient care. We delve into specific CVD-related impacts on lung cancer prognosis and vice versa, examining mechanisms, clinical outcomes, and management strategies. Our findings highlight the need for integrated care involving oncologists, cardiologists, and other healthcare providers to optimize treatment plans and improve patient outcomes. Emphasizing comprehensive cardiovascular risk management in lung cancer patients, we advocate for further research to deepen our understanding and develop novel therapeutic approaches, ultimately enhancing the quality of life and survival rates in patients suffering from both CVD and lung cancer.
Collapse
Affiliation(s)
- Luka Katic
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - James Choi
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sara Diaz Saravia
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | | | - Vincent Torelli
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Soumya Gupta
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Amit Gulati
- Cardiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sakshi Khurana
- Radiology, New York Presbyterian-Columbia University Irving Medical Center, New York, USA
| | - Elina Tsyvkin
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
73
|
Abdulkareem SJ, Jafari-Gharabaghlou D, Farhoudi-Sefidan-Jadid M, Salmani-Javan E, Toroghi F, Zarghami N. Co-delivery of artemisinin and metformin via PEGylated niosomal nanoparticles: potential anti-cancer effect in treatment of lung cancer cells. Daru 2024; 32:133-144. [PMID: 38168007 PMCID: PMC11087397 DOI: 10.1007/s40199-023-00495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
PURPOSE Despite the advances in treatment, lung cancer is a global concern and necessitates the development of new treatments. Biguanides like metformin (MET) and artemisinin (ART) have recently been discovered to have anti-cancer properties. As a consequence, in the current study, the anti-cancer effect of MET and ART co-encapsulated in niosomal nanoparticles on lung cancer cells was examined to establish an innovative therapy technique. METHODS Niosomal nanoparticles (Nio-NPs) were synthesized by thin-film hydration method, and their physicochemical properties were assessed by FTIR. The morphology of Nio-NPs was evaluated with FE-SEM and AFM. The MTT assay was applied to evaluate the cytotoxic effects of free MET, free ART, their encapsulated form with Nio-NPs, as well as their combination, on A549 cells. Apoptosis assay was utilized to detect the biological processes involved with programmed cell death. The arrest of cell cycle in response to drugs was assessed using a cell cycle assay. Following a 48-h drug treatment, the expression level of hTERT, Cyclin D1, BAX, BCL-2, Caspase 3, and 7 genes were assessed using the qRT-PCR method. RESULTS Both MET and ART reduced the survival rate of lung cancer cells in the dose-dependent manner. The IC50 values of pure ART and MET were 195.2 μM and 14.6 mM, respectively while in nano formulated form their IC50 values decreased to 56.7 μM and 78.3 μM, respectively. The combination of MET and ART synergistically decreased the proliferation of lung cancer cells, compared to the single treatments. Importantly, the combination of MET and ART had a higher anti-proliferative impact against A549 lung cancer cells, with lower IC50 values. According to the result of Real-time PCR, hTERT, Cyclin D1, BAX, BCL-2, Caspase 3, and Caspase 7 genes expression were considerably altered in treated with combination of nano formulated MET and ART compared to single therapies. CONCLUSION The results of this study showed that the combination of MET and ART encapsulated in Nio-NPs could be useful for the treatment of lung cancer and can increase the efficiency of lung cancer treatment.
Collapse
Affiliation(s)
- Salah Jaafar Abdulkareem
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Farhoudi-Sefidan-Jadid
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Salmani-Javan
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Toroghi
- Research Center for Molecular Medicine, Hamedan University of Medical Science, Hamedan, Iran
| | - Nosratollah Zarghami
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| |
Collapse
|
74
|
Mabe NW, Perry JA, Malone CF, Stegmaier K. Pharmacological targeting of the cancer epigenome. NATURE CANCER 2024; 5:844-865. [PMID: 38937652 PMCID: PMC11936478 DOI: 10.1038/s43018-024-00777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 04/19/2024] [Indexed: 06/29/2024]
Abstract
Epigenetic dysregulation is increasingly appreciated as a hallmark of cancer, including disease initiation, maintenance and therapy resistance. As a result, there have been advances in the development and evaluation of epigenetic therapies for cancer, revealing substantial promise but also challenges. Three epigenetic inhibitor classes are approved in the USA, and many more are currently undergoing clinical investigation. In this Review, we discuss recent developments for each epigenetic drug class and their implications for therapy, as well as highlight new insights into the role of epigenetics in cancer.
Collapse
Affiliation(s)
- Nathaniel W Mabe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jennifer A Perry
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Clare F Malone
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
75
|
Tomic K, Krpina K, Baticic L, Samarzija M, Vranic S. Comprehensive molecular and clinical insights into non-small cell lung cancer transformation to small cell lung cancer with an illustrative case report. J Drug Target 2024; 32:499-509. [PMID: 38506620 DOI: 10.1080/1061186x.2024.2332733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
Histologic transformation to small cell lung cancer (tSCLC) is a rare but increasingly recognised mechanism of acquired resistance to tyrosine kinase inhibitors (TKI) in patients with epidermal growth factor receptor (EGFR)-positive non-small cell lung cancer (NSCLC). Beyond its acknowledged role in TKI resistance, histologic transformation to SCLC might be an important, yet under-recognised, mechanism of resistance in NSCLC treated with immunotherapy. Our review identified 32 studies that investigated tSCLC development in patients with EGFR-mutated NSCLC treated with TKI therapy and 16 case reports of patients treated with immunotherapy. It revealed the rarity of tSCLC, with a predominance of EGFR exon 19 mutations and limited therapeutic options and outcomes. Across all analysed studies in EGFR-mutated NSCLC treated with TKI therapy, the median time to tSCLC development was ∼17 months, with a median overall survival of 10 months. Histologic transformation of EGFR-mutated NSCLC to SCLC is a rare, but challenging clinical problem with a poor prognosis. A small number of documented cases of tSCLC after immunotherapy highlight the need for rebiopsies at progression to diagnose this potential resistance mechanism. Further research is needed to better understand the mechanisms underlying this phenomenon and to develop more effective treatment strategies for patients with tSCLC.
Collapse
Affiliation(s)
- Kresimir Tomic
- Department of Oncology, University Clinical Hospital Mostar, Mostar, Bosnia and Herzegovina
| | - Kristina Krpina
- Clinic for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Miroslav Samarzija
- Clinic for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
76
|
Yazaki T, Kimoto M, Minagawa A, Maruno T, Yamanaka M, Sonehara K, Hama M, Nakamura T, Kanda S, Hanaoka M, Hachiya T. Simultaneous Acquisition of T790M Mutation and SCLC Transformation during Targeted Therapy in EGFR-Mutated Lung Adenocarcinoma: A Rare Case Report. AMERICAN JOURNAL OF CASE REPORTS 2024; 25:e943466. [PMID: 38822519 PMCID: PMC11155200 DOI: 10.12659/ajcr.943466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/09/2024] [Accepted: 03/30/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Various resistance mechanisms of the epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) have been reported, and approximately half of the cases show a T790M point mutation as resistance to EGFR-TKI. In addition, 3-14% of cases of non-small cell lung cancer transform into small cell lung carcinoma (SCLC) during treatment. However, there are few reported cases in which 2 mechanisms of resistance have been observed simultaneously. This report describes a 66-year-old man with initial presentation of stage IIA right-sided lung adenocarcinoma with EGFR gene exon 21 L858R mutation and 3 years of stable disease. During treatment with erlotinib, the patient developed SCLC and adenocarcinoma with EGFR exon 21 L858R and exon 20 T790M mutation. CASE REPORT A 66-year-old man underwent right pneumonectomy plus nodal dissection 2a for right hilar lung cancer and was diagnosed with an EGFR exon21 L858R mutated lung adenocarcinoma. Three years later, pleural dissemination was observed in the right chest wall. Although erlotinib was continued for 52 months, new metastases to the right ribs were detected. Chest wall tumor resection was performed. Based on the World Health Organization classification, the patient was diagnosed with combined SCLC, with EGFR exon21 L858R and exon20 T790M mutation. The patient received 4 cycles of carboplatin plus etoposide, 14 cycles of amrubicin, and 2 cycles of irinotecan. Chemotherapy continued for 25 months. CONCLUSIONS Long-term survival was achieved by chemotherapy after transformation. Since EGFR mutation-positive lung cancer shows a variety of acquired resistances, it is important to consider the treatment strategy of performing re-biopsy.
Collapse
Affiliation(s)
- Tatsuya Yazaki
- Department of Respiratory Medicine, Japanese Red Cross Society Suwa Hospital, Suwa, Nagano, Japan
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Masanobu Kimoto
- Department of Respiratory Medicine, Japanese Red Cross Society Suwa Hospital, Suwa, Nagano, Japan
| | - Ayumi Minagawa
- Department of Respiratory Medicine, Japanese Red Cross Society Suwa Hospital, Suwa, Nagano, Japan
| | - Takashi Maruno
- Department of Respiratory Medicine, Japanese Red Cross Society Suwa Hospital, Suwa, Nagano, Japan
| | - Miwa Yamanaka
- Department of Respiratory Medicine, Japanese Red Cross Society Suwa Hospital, Suwa, Nagano, Japan
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Kei Sonehara
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Mineyuki Hama
- Department of Respiratory Medicine, Japanese Red Cross Society Suwa Hospital, Suwa, Nagano, Japan
| | - Toshitsugu Nakamura
- Department of Diagnostic Pathology, Ina Central Hospital, Ina, Nagano, Japan
| | - Shintaro Kanda
- Department of Hematology and Medical Oncology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Masayuki Hanaoka
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Tsutomu Hachiya
- Department of Respiratory Medicine, Japanese Red Cross Society Suwa Hospital, Suwa, Nagano, Japan
| |
Collapse
|
77
|
Shi Q, Xue C, Zeng Y, Yuan X, Chu Q, Jiang S, Wang J, Zhang Y, Zhu D, Li L. Notch signaling pathway in cancer: from mechanistic insights to targeted therapies. Signal Transduct Target Ther 2024; 9:128. [PMID: 38797752 PMCID: PMC11128457 DOI: 10.1038/s41392-024-01828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Notch signaling, renowned for its role in regulating cell fate, organ development, and tissue homeostasis across metazoans, is highly conserved throughout evolution. The Notch receptor and its ligands are transmembrane proteins containing epidermal growth factor-like repeat sequences, typically necessitating receptor-ligand interaction to initiate classical Notch signaling transduction. Accumulating evidence indicates that the Notch signaling pathway serves as both an oncogenic factor and a tumor suppressor in various cancer types. Dysregulation of this pathway promotes epithelial-mesenchymal transition and angiogenesis in malignancies, closely linked to cancer proliferation, invasion, and metastasis. Furthermore, the Notch signaling pathway contributes to maintaining stem-like properties in cancer cells, thereby enhancing cancer invasiveness. The regulatory role of the Notch signaling pathway in cancer metabolic reprogramming and the tumor microenvironment suggests its pivotal involvement in balancing oncogenic and tumor suppressive effects. Moreover, the Notch signaling pathway is implicated in conferring chemoresistance to tumor cells. Therefore, a comprehensive understanding of these biological processes is crucial for developing innovative therapeutic strategies targeting Notch signaling. This review focuses on the research progress of the Notch signaling pathway in cancers, providing in-depth insights into the potential mechanisms of Notch signaling regulation in the occurrence and progression of cancer. Additionally, the review summarizes pharmaceutical clinical trials targeting Notch signaling for cancer therapy, aiming to offer new insights into therapeutic strategies for human malignancies.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shuwen Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinzhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
78
|
Yubin LI, Xiaoyan LI. [Advances in Clinical Application of Cerebrospinal Fluid Circulating Tumor DNA
in Leptomeningeal Metastasis of Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:376-382. [PMID: 38880925 PMCID: PMC11183312 DOI: 10.3779/j.issn.1009-3419.2024.102.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Indexed: 06/18/2024]
Abstract
Leptomeningeal metastasis (LM) is a lethal complication of malignant tumors, with an incidence rate of 3%-5% among patients with non-small cell lung cancer (NSCLC). LM poses significant challenges in diagnosis, has poor prognosis, limited treatment options, and lacks standardized criteria for evaluating therapeutic efficacy, making it a difficult aspect of NSCLC management. Circulating tumor DNA (ctDNA), shed from tumor cells and carrying cancer-related information, holds significant value in precision oncology. Cerebrospinal fluid (CSF), present in the subarachnoid space of the brain, the spinal cord, and the central canal, and in direct contact with meningeal tissues, serves as the fluid medium that best reflects the genetic characteristics of LM. In recent years, CSF ctDNA has become a focal point due to its multi-omics features, playing a crucial role in the management of central nervous system (CNS) metastatic tumors. Its applications span the entire continuum of care, including aiding in diagnosis, assessing treatment response, predicting prognosis, and analyzing resistance mechanisms. This article provides a concise overview of CSF ctDNA detection techniques and their clinical applications in patients with NSCLC-LM.
.
Collapse
|
79
|
Zheng G, Ye H, Bai J, Zhang X. Downregulation of lncRNA MIR17HG reduced tumorigenicity and Treg-mediated immune escape of non-small-cell lung cancer cells through targeting the miR-17-5p/RUNX3 axis. J Biochem Mol Toxicol 2024; 38:e23715. [PMID: 38704830 DOI: 10.1002/jbt.23715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/10/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
Long noncoding RNA MIR17HG was involved with the progression of non-small-cell lung cancer (NSCLC), but specific mechanisms of MIR17HG-mediated immune escape of NSCLC cells were still unknown. The present study investigated the function of MIR17HG on regulatory T cell (Treg)-mediated immune escape and the underlying mechanisms in NSCLC. Expression of MIR17HG and miR-17-5p in NSCLC tissue samples were detected using quantitative real-time PCR (qRT-PCR). A549 and H1299 cells were transfected with sh-MIR17HG, miR-17-5p inhibitor, or sh-MIR17HG + miR-17-5p inhibitor, followed by cocultured with Tregs. Cell proliferation was measured using 5-ethynyl-20-deoxyuridine (Edu) staining assay and cell counting kit-8 (CCK-8) assay. Flow cytometry was used for determining positive numbers of FOXP3+CD4+/CD25+/CD8+ Tregs. Through subcutaneous injection with transfected A549 cells, a xenograft nude mouse model was established. Weights and volumes of xenograft tumors were evaluated. Additionally, the expressions of immune-related factors including transforming growth factor beta (TGF-β), vascular endothelial growth factor A (VEGF-A), interleukin-10 (IL-10), IL-4, and interferon-gamma (IFN-γ) in cultured cells, were evaluated by enzyme-linked immunosorbent assay and western blot analysis. Then, miR-17-5p was decreased and MIR17HG was enhanced in both NSCLC tissues and cell lines. MIR17HG knockdown significantly suppressed cell proliferation, tumorigenicity, and immune capacity of Tregs in A549 and H1299 cells, whereas sh-MIR17HG significantly reduced expression levels of VEGF-A, TGF-β, IL-4, and IL-10 but promoted the IFN-γ level in vitro and in vivo. Moreover, downregulation of miR-17-5p significantly reversed the effects of sh-MIR17HG. Additionally, we identified that runt- related transcription factor 3 (RUNX3) was a target of miR-17-5p, and sh-MIR17HG and miR-17-5p mimics downregulated RUNX3 expression. In conclusion, downregulation of MIR17HG suppresses tumorigenicity and Treg-mediated immune escape in NSCLC through downregulating the miR-17-5p/RUNX3 axis, indicating that this axis contains potential biomarkers for NSCLC.
Collapse
Affiliation(s)
- Guanghua Zheng
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Hui Ye
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Junjun Bai
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Xia Zhang
- Department of Respiratory Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| |
Collapse
|
80
|
Tang J, Yin C, Chen M, Dong M, Xu Y. Yifei Sanjie formula alleviates lung cancer progression via regulating PRMT6-YBX1-CDC25A axis. ENVIRONMENTAL TOXICOLOGY 2024; 39:3225-3237. [PMID: 38357781 DOI: 10.1002/tox.24160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/23/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
Lung cancer (LC) is the most prevalent cancer type, with a high mortality rate worldwide. The current treatment options for LC have not been particularly successful in improving patient outcomes. Yifei Sanjie (YFSJ), a well-applicated traditional Chinese medicine formula, is widely used to treat pulmonary diseases, especially LC, yet little is known about its molecular mechanisms. This study was conducted to explore the molecular mechanism by which YFSJ ameliorated LC progression. The A549, NCI-H1975, and Calu-3 cells were treated with the YFSJ formula and observed for colony number, apoptosis, migration, and invasion properties recorded via corresponding assays. The PRMT6-YBX1-CDC25A axis was tested and verified through luciferase reporter, RNA immunoprecipitation, and chromatin immunoprecipitation assays and rescue experiments. Our results demonstrated that YFSJ ameliorated LC cell malignant behaviors by increasing apoptosis and suppressing proliferation, migration, and invasion processes. We also noticed that the xenograft mouse model treated with YFSJ significantly reduced tumor growth compared with the control untreated group in vivo. Mechanistically, it was found that YFSJ suppressed the expression of PRMT6, YBX1, and CDC25A, while the knockdown of these proteins significantly inhibited colony growth, migration, and invasion, and boosted apoptosis in LC cells. In summary, our results suggest that YFSJ alleviates LC progression via the PRMT6-YBX1-CDC25A axis, confirming its efficacy in clinical use. The findings of our study provide a new regulatory network for LC growth and metastasis, which could shed new insights into pulmonary medical research.
Collapse
Affiliation(s)
- Jie Tang
- Department of Oncology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chenyan Yin
- Department of Pharmacy, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Meiyun Chen
- Department of Oncology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mengjia Dong
- Department of Oncology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Youqi Xu
- Department of Oncology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
81
|
Zhang H, Cao C, Xiong H. Identification of risk factors of EGFR-TKIs primary resistance in lung adenocarcinoma patients and construction of a risk predictive model: a case-control study. Transl Cancer Res 2024; 13:1762-1772. [PMID: 38737684 PMCID: PMC11082657 DOI: 10.21037/tcr-23-2172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/19/2024] [Indexed: 05/14/2024]
Abstract
Background Lung cancer is one of the malignancies with the highest incidence and mortality rates. Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are recommended as the first-line treatment for patients with EGFR-mutated lung adenocarcinoma (LUAD). However, some patients with EGFR-sensitive mutations develop primary resistance to EGFR-TKIs. This study aims to analyze the clinical characteristics of LUAD patients with primary resistance to EGFR-TKIs, identify independent risk factors for primary resistance, and establish a risk predictive model to provide reference for clinical decision-making. Methods We collected data from LUAD patients with EGFR-sensitive mutations (19del/21L858R) who were hospitalized in our institution between 2020 and 2022 and received first-generation EGFR-TKIs with follow-up exceeding 6 months. These patients were categorized into primary resistance and sensitive groups based on treatment outcomes. We compared general clinical data, laboratory tests, and tumor-related characteristics between the two groups, analyzed risk factors for primary resistance to EGFR-TKIs, and constructed a risk predictive model. The model's predictive value was comprehensively assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curves. Results Serum neuron-specific enolase (NSE) concentration (P=0.03), serum pro-gastrin-releasing peptide (ProGRP) concentration (P=0.01), and Ki67 expression (P<0.001) were identified as independent risk factors for primary resistance to EGFR-TKIs in LUAD. The combined presence of these three risk factors had the highest predictive value [area under the curve (AUC) =0.975, P<0.001]. We constructed a predictive model for the risk of primary resistance to EGFR-TKIs in LUAD patients, incorporating these three parameters, and represented it through a visually interpretable nomogram. The calibration curve of the nomogram demonstrated its strong predictive ability. Further decision curve analysis indicated the model's clinical utility. Conclusions Based on a single-center retrospective case-control study, we identified serum NSE concentration, ProGRP concentration, and Ki67 expression as independent risk factors for primary resistance to EGFR-TKIs in LUAD patients. We constructed and validated a risk predictive model based on these findings. This predictive model holds promise for clinical application, aiding in the development of personalized treatment strategies and providing a scientific basis for early identification of primary resistance patients.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenlin Cao
- Department of the Second Clinical College, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
82
|
Chen R, Jian Y, Liu Y, Xie J. ALK-rearranged and EGFR wild-type lung adenocarcinoma transformed to small cell lung cancer: a case report. Front Oncol 2024; 14:1395654. [PMID: 38720809 PMCID: PMC11078020 DOI: 10.3389/fonc.2024.1395654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Background Cases of ALK-rearranged EGFR wild-type lung adenocarcinoma (LUAD) transforming into small cell lung cancer (SCLC) are rarely reported, and diagnosis is often delayed. The emergence of this transformation phenomenon is often regarded as a consequence of acquired resistance mechanisms. Case presentation A 47-year-old male diagnosed with poorly differentiated adenocarcinoma of the right middle lung (pT2N2M0, stage IIIA) achieved a 46-month progression-free survival (PFS) following surgery and adjuvant chemotherapy. During routine follow-up, tumor recurrence and metastasis was detected. Genetic testing revealed ALK rearrangement and wild-type EGFR, prompting treatment with ALK-TKIs. In May 2023, abdominal CT scans showed significant progression of liver metastases and abnormal elevation of the tumor marker NSE. Immunohistochemical results from percutaneous liver biopsy indicated metastatic SCLC. Results After resistance to ALK-TKIs and transformation to SCLC, the patient received chemotherapy combined with immunotherapy for SCLC, but the patient's disease progressed rapidly. Currently, the patient is being treated with albumin-bound paclitaxel in combination with oral erlotinib and remains stable. Conclusion Histological transformation emerges as a compelling mechanism of resistance to ALK-TKIs, necessitating the utmost urgency for repeat biopsies in patients displaying disease progression after resistance. These biopsies are pivotal in enabling the tailor-made adaptation of treatment regimens to effectively counteract the assorted mechanisms of acquired resistance, thus optimizing patient outcomes in the battle against ALK-driven malignancies.
Collapse
Affiliation(s)
- Rui Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yan Jian
- Jiangxi Provincial Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Yuzhen Liu
- Graduate School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Junping Xie
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
83
|
Zhang P, Xu J, Wu Q, Qian J, Wang S. Development of crizotinib-associated renal cyst in a non-small cell lung cancer patient with ALK fusion: a case report and review of the literature. Diagn Pathol 2024; 19:58. [PMID: 38616252 PMCID: PMC11016210 DOI: 10.1186/s13000-024-01480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/21/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Crizotinib, an oral first-generation tyrosine kinase inhibitor (TKI), is superior to systemic chemotherapy for the treatment of non-small cell lung cancer (NSCLC) with positive rearrangement of anaplastic lymphoma kinase (ALK). However, an increased incidence of renal and hepatic cysts has been reported in the patients on crizotinib treatment. CASE PRESENTATION Here, we describe a case of a 71-year-old Chinese women developed multiple cystic lesions in kidney and liver during crizotinib treatment for the primary and metastatic NSCLC. The renal and hepatic cysts were noted by CT scan 3 months after crizotinib treatment, which were spontaneously and significantly regressed after stopping crizotinib. CONCLUSIONS Based on literature review and our experience in this case report, we concluded that crizotinib-associated renal cyst (CARCs) has features of malignancy and abscess in radiographic imaging, and thus, pathological confirmation is necessary to avoid inappropriate treatment decision. In addition, to benefit the patients with progress-free survival (PFS), switching from crizotinib to alectinib is recommended for the treatment of NSCLC patients who developed CARCs.
Collapse
Affiliation(s)
- Peng Zhang
- Six Departments of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - JiaHua Xu
- Seven Departments of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Wu
- Seven Departments of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianxin Qian
- Seven Departments of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Song Wang
- Department of Radiology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
84
|
Mourino N, Varela-Lema L, Ruano-Ravina A, Peiteado C, Candal-Pedreira C, Rey-Brandariz J, Torres-Cadavid E, García G, Pérez-Ríos M. Occupational exposure to endotoxins and small cell lung cancer: a systematic review with meta-analysis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:91-105. [PMID: 38369511 DOI: 10.1080/10937404.2024.2316151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The relationship of occupational exposure to endotoxins with different histologic subtypes of lung cancer has not been established. Our objective was to conduct a systematic review with meta-analysis to assess the effect of exposure to endotoxins on the development of small cell lung cancer (SCLC). A bibliographic search was conducted using MEDLINE, Embase, CENTRAL, and Web of Science databases until December 2022, including all cohort and/or case-control studies that examined occupational exposure to endotoxins and SCLC. Risk of bias was assessed using the U.S. Office of Health Assessment and Translation tool. A random effects model was applied, publication bias were assessed, and a sensitivity analysis was conducted. Four papers were selected for meta-analysis purposes. A total of 144 incident cases of SCLC and 897 population or hospital controls were included. Occupational exposure to endotoxins was considered for textile/leather industry and agricultural sector workers exposed to endotoxins originating from wool, cotton, or leather dust. Except for one study, all investigations were classified as having a low probability of risk of biases. The results of the meta-analysis were not statistically significant (pooled OR: 0.86; 95% CI:0.69-1.08). In addition, neither between-study heterogeneity (I2=0%;p=0.92) nor publication bias was observed (p=0.49). The results of the sensitivity analysis, after including five studies that assessed the risk of SCLC among textile industry and crop/livestock farm workers (not specifically exposed to endotoxins), showed a negative statistically non-significant association and low between-study heterogeneity (pooled OR: 0.90; 95% CI:0.79-1.02; I2=22%;p=0.23). Subjects exposed to occupational exposure to endotoxins seem to exhibit a negative association with the development of SCLC, although the results are not conclusive.
Collapse
Affiliation(s)
- Nerea Mourino
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Leonor Varela-Lema
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Alberto Ruano-Ravina
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Cristina Peiteado
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Cristina Candal-Pedreira
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Julia Rey-Brandariz
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Eliana Torres-Cadavid
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Guadalupe García
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mónica Pérez-Ríos
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
85
|
Binshaya AS, Alkahtani OS, Aldakheel FM, Hjazi A, Almasoudi HH. Structure-based multitargeted docking screening, pharmacokinetics, DFT, and dynamics simulation studies reveal mitoglitazone as a potent inhibitor of cellular survival and stress response proteins of lung cancer. Med Oncol 2024; 41:101. [PMID: 38546811 DOI: 10.1007/s12032-024-02342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 04/02/2024]
Abstract
Lung cancer is a disease in which lung cells grow abnormally and uncontrollably, and the cause of it is direct smoking, secondhand smoke, radon, asbestos, and certain chemicals. The worldwide leading cause of death is lung cancer, which is responsible for more than 1.8 million deaths yearly and is expected to rise to 2.2 million by 2030. The most common type of lung cancer is non-small cell lung cancer (NSCLC), which accounts for about 80% and small cell lung cancer (SCLC), which is more aggressive than NSCLC and is often diagnosed later and accounts for 20% of cases. The global concern for lung cancer demands efficient drugs with the slightest chance of developing resistance, and the idea of multitargeted drug designing came up with the solution. In this study, we have performed multitargeted molecular docking studies of Drug Bank compounds with HTVS, SP and XP algorithms followed by MM\GBSA against the four proteins of lung cancer cellular survival and stress responses, which revealed Mitoglitazone as a multitargeted inhibitor with a docking and MM\GBSA score ranging from - 5.784 to - 7.739 kcal/mol and - 25.81 to - 47.65kcal/mol, respectively. Moreover, we performed pharmacokinetics studies and QM-based DFT analysis, showing suitable candidate and interaction pattern analysis revealed the most count of interacting residues was 4GLY, 5PHE, 6ASP, 6GLU, 6LYS, and 6THR. Further, the results were validated with SPC water model-based MD simulation for 100ns in neutralised condition, showing the cumulative deviation and fluctuation < 2Å with many intermolecular interactions. The whole analysis has suggested that Mitoglitazone can be used as a multitargeted inhibitor against lung cancer-however, experimental studies are needed before human use.
Collapse
Affiliation(s)
- Abdulkarim S Binshaya
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Omar Saad Alkahtani
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Fahad M Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Hassan H Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, 61441, Saudi Arabia
| |
Collapse
|
86
|
Junping Z, Zheng W, ZhengFang T, Yue LIJ, PengHang A, Mingli Z, Hongzhi A. Novel electrochemical platform based on C 3N 4-graphene composite for the detection of neuron-specific enolase as a biomarker for lung cancer. Sci Rep 2024; 14:6350. [PMID: 38491108 PMCID: PMC10943129 DOI: 10.1038/s41598-024-56784-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
Lung cancer remains the leading cause of cancer mortality worldwide. Small cell lung cancer (SCLC) accounts for 10-15% of cases and has an overall 5-years survival rate of only 15%. Neuron-specific enolase (NSE) has been identified as a useful biomarker for early SCLC diagnosis and therapeutic monitoring. This work reports an electrochemical immunosensing platform based on a graphene-graphitic carbon nitride (g-C3N4) nanocomposite for ultrasensitive NSE detection. The g-C3N4 nanosheets and graphene nanosheets were synthesized via liquid exfoliation and integrated through self-assembly to form the nanocomposite. This nanocomposite was used to modify screen-printed carbon electrodes followed by covalent immobilization of anti-NSE antibodies. The unique properties of the graphene-g-C3N4 composite facilitated efficient antibody loading while also enhancing electron transfer efficiency and electrochemical response. Systematic optimization of experimental parameters was performed. The immunosensor exhibited a wide linear detection range of 10 pg/mL to 100 ng/mL and low limit of detection of 3 pg/mL for NSE along with excellent selectivity against interferences. Real serum matrix analysis validated the applicability of the developed platform for sensitive and accurate NSE quantifica-tion at clinically relevant levels. This novel graphene-g-C3N4 nanocomposite based electro-chemical immunoassay demonstrates great promise for early diagnosis of SCLC.
Collapse
Affiliation(s)
- Zhang Junping
- Cancer Research Institute, Henan Integrative Medicine Hospital 45000, Zhengzhou, China
| | - Wei Zheng
- Cancer Research Institute, Henan Integrative Medicine Hospital 45000, Zhengzhou, China.
| | - Tang ZhengFang
- The First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450004, China
| | - L I Ji Yue
- The First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450004, China
| | - An PengHang
- The First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450004, China
| | - Zhang Mingli
- Cancer Research Institute, Henan Integrative Medicine Hospital 45000, Zhengzhou, China.
| | - An Hongzhi
- Cancer Research Institute, Henan Integrative Medicine Hospital 45000, Zhengzhou, China.
| |
Collapse
|
87
|
Jennings EM, Camidge DR, Gadgeel S, Barker S. Trial Design and Optimal Determination of CNS Activity of Small Molecule Targeted Therapy in NSCLC. Clin Lung Cancer 2024; 25:91-99. [PMID: 38135566 DOI: 10.1016/j.cllc.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Central nervous system (CNS) metastases are frequently diagnosed in patients with non-small cell lung cancer (NSCLC). Only recently, clinical trials are broadening eligibility to include patients with brain metastases, offering the potential for some assessment of CNS efficacy to be made. In this work we aim to review the available information on the activity of small molecule targeted drugs for advanced NSCLC with respect to CNS metastases. We analyze a framework for evaluation assessment regarding trials of systemic agents being conducted in patients with, or at risk from, CNS metastases, and provide examples of NSCLC targeted therapies evaluated in the CNS.
Collapse
Affiliation(s)
| | - D Ross Camidge
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO.
| | - Shirish Gadgeel
- Division of Hematology and Oncology, Department of Internal Medicine, Henry Ford Cancer Institute/ Henry Ford Health, Detroit, MI
| | | |
Collapse
|
88
|
Hering S, Nieto A, Marschner S, Hofmaier J, Schmidt-Hegemann NS, da Silva Mendes V, Landry G, Niyazi M, Manapov F, Belka C, Corradini S, Eze C. The role of online MR-guided multi-fraction stereotactic ablative radiotherapy in lung tumours. Clin Transl Radiat Oncol 2024; 45:100736. [PMID: 38433949 PMCID: PMC10909605 DOI: 10.1016/j.ctro.2024.100736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 03/05/2024] Open
Abstract
Background The aim of this prospective observational study was to evaluate the dosimetry benefits, changes in pulmonary function, and clinical outcome of online adaptive MR-guided SBRT. Methods From 11/2020-07/2022, 45 consecutive patients with 59 lesions underwent multi-fraction SBRT (3-8 fractions) at our institution. Patients were eligible if they had biopsy-proven NSCLC or lung cancer/metastases diagnosed via clinical imaging. Endpoints were local control (LC) and overall survival (OS). We evaluated PTV/GTV dose coverage, organs at risk exposure, and changes in pulmonary function (PF). Acute toxicity was classified per the National Cancer Institute-Common Terminology Criteria for Adverse Events version 5.0. Results The median PTV was 14.4 cm3 (range: 3.4 - 96.5 cm3). In total 195/215 (91%) plans were reoptimised. In the reoptimised vs. predicted plans, PTV coverage by the prescribed dose increased in 94.6% of all fractions with a median increase in PTV VPD of 5.6% (range: -1.8 - 44.6%, p < 0.001), increasing the number of fractions with PTV VPD ≥ 95% from 33% to 98%. The PTV D95% and D98% (BED10) increased in 93% and 95% of all fractions with a median increase of 7.7% (p < 0.001) and 10.6% (p < 0.001). The PTV D95% (BED10) increased by a mean of 9.6 Gy (SD: 10.3 Gy, p < 0.001). At a median follow-up of 21.4 months (95% CI: 12.3-27.0 months), 1- and 2-year LC rates were 94.8% (95% CI: 87.6 - 100.0%) and 91.1% (95% CI: 81.3 - 100%); 1- and 2-year OS rates were 85.6% (95% CI: 75.0 - 96.3%) and 67.1 % (95% CI: 50.3 - 83.8%). One grade ≥ 3 toxicity and no significant reduction in short-term PF parameters were recorded. Conclusions Online adaptive MR-guided SBRT is an effective, safe and generally well tolerated treatment option for lung tumours achieving encouraging local control rates with significantly improved target volume coverage.
Collapse
Affiliation(s)
- Svenja Hering
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Alexander Nieto
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Marschner
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Jan Hofmaier
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | | | | | - Guillaume Landry
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Farkhad Manapov
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Chukwuka Eze
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
89
|
Yang Y, Fan S. Small cell lung cancer transformations from non-small cell lung cancer: Biological mechanism and clinical relevance. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:42-47. [PMID: 39170959 PMCID: PMC11332903 DOI: 10.1016/j.pccm.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 08/23/2024]
Abstract
Lung cancer is a leading cause of cancer deaths worldwide, consisting of two major histological subtypes: small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). In some cases, NSCLC patients may undergo a histological transformation to SCLC during clinical treatments, which is associated with resistance to targeted therapy, immunotherapy, or chemotherapy. The review provides a comprehensive analysis of SCLC transformation from NSCLC, including biological mechanism, clinical relevance, and potential treatment options after transformation, which may give a better understanding of SCLC transformation and provide support for further research to define better therapy options.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
90
|
Li Y, Hu X, Zhang R, Wu N, Xia Q, Gu P. Analysis of treatment-related adverse events and wound complications of surgical resection after neoadjuvant chemoimmunotherapy for non-small cell lung cancer. Int Wound J 2024; 21:e14831. [PMID: 38484730 PMCID: PMC10940003 DOI: 10.1111/iwj.14831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
Neoadjuvant chemoimmunotherapy is becoming an increasingly important part of the management of lung cancer to facilitate surgical resection. This study aimed to summarize the treatment-related adverse events (TRAEs) and wound complications of neoadjuvant chemoimmunotherapy in non-small cell lung cancer (NSCLC). Eligible studies of neoadjuvant chemoimmunotherapy for NSCLC were identified from PubMed, Embase and Web of Science. The endpoints mainly included TRAEs and wound complications. Stata18 software was used for statistical analysis with p < 0.05 considered statistically significant. Twenty studies including a total of 1072 patients were eligible for this study. Among the patients who received neoadjuvant chemoimmunotherapy, the pooled prevalence of any grade TRAEs was 77% (95% confidence interval [CI] [0.64-0.86]), grade 1-2 TRAEs was 77% (95% CI [0.58-0.89]) and grade ≥3 TRAEs was 26% (95% CI [0.16-0.38]). Surgery-related complications rate was 22% (95% CI [0.14-0.33]). Among the wound complications, the pooled rate of air leakage was 10% (95% CI [0.04-0.23]), pulmonary/wound infection was 8% (95% CI [0.05-0.13]), bronchopleural fistula was 8% (95% CI [0.02-0.27]), bronchopulmonary haemorrhage was 3% (95% CI [0.01-0.05]), pneumonia was 5% (95% CI [0.02-0.10]), pulmonary embolism was 1% (95% CI [0.01-0.03]), pleural effusion was 7% (95% CI [0.03-0.14]) and chylothorax was 4% (95% CI [0.02-0.09]). Overall, neoadjuvant chemoimmunotherapy in NSCLC results a high incidence of grade 1-2 TRAEs but a low risk of increasing the incidence of ≥3 grade TRAEs and wound complications. These results need to be confirmed by more large-scale prospective randomized controlled trials and studies.
Collapse
Affiliation(s)
- Yihang Li
- Jiangyin Hospital of Traditional Chinese MedicineJiangyinJiangsu ProvinceChina
| | - Xiaodong Hu
- Jiangyin Hospital of Traditional Chinese MedicineJiangyinJiangsu ProvinceChina
| | - Ruhu Zhang
- Jiangyin Hospital of Traditional Chinese MedicineJiangyinJiangsu ProvinceChina
| | - Nan Wu
- Jiangyin Hospital of Traditional Chinese MedicineJiangyinJiangsu ProvinceChina
| | - Qingqing Xia
- Jiangyin Hospital of Traditional Chinese MedicineJiangyinJiangsu ProvinceChina
| | - Peijie Gu
- Jiangyin Hospital of Traditional Chinese MedicineJiangyinJiangsu ProvinceChina
| |
Collapse
|
91
|
Liang J, Bi G, Sui Q, Zhao G, Zhang H, Bian Y, Chen Z, Huang Y, Xi J, Shi Y, Wang Q, Zhan C. Transcription factor ZNF263 enhances EGFR-targeted therapeutic response and reduces residual disease in lung adenocarcinoma. Cell Rep 2024; 43:113771. [PMID: 38335093 DOI: 10.1016/j.celrep.2024.113771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/05/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) have achieved clinical success in lung adenocarcinoma (LUAD). However, tumors often show profound but transient initial response and then gain resistance. We identify transcription factor ZNF263 as being significantly decreased in osimertinib-resistant or drug-tolerant persister LUAD cells and clinical residual tumors. ZNF263 overexpression improves the initial response of cells and delays the formation of persister cells with osimertinib treatment. We further show that ZNF263 binds and recruits DNMT1 to the EGFR gene promoter, suppressing EGFR transcription with DNA hypermethylation. ZNF263 interacts with nuclear EGFR, impairing the EGFR-STAT5 interaction to enhance AURKA expression. Overexpressing ZNF263 also makes tumor cells with wild-type EGFR expression or refractory EGFR mutations more susceptible to EGFR inhibition. More importantly, lentivirus or adeno-associated virus (AAV)-mediated ZNF263 overexpression synergistically suppresses tumor growth and regrowth with osimertinib treatment in xenograft animal models. These findings suggest that enhancing ZNF263 may achieve complete response in LUAD with EGFR-targeted therapies.
Collapse
Affiliation(s)
- Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guangyin Zhao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Huan Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Junjie Xi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
92
|
Chen J, Lu W, Chen M, Cai Z, Zhan P, Liu X, Zhu S, Ye M, Lv T, Lv J, Song Y, Wang D. Efficacy of immunotherapy in patients with oncogene-driven non-small-cell lung cancer: a systematic review and meta-analysis. Ther Adv Med Oncol 2024; 16:17588359231225036. [PMID: 38420602 PMCID: PMC10901068 DOI: 10.1177/17588359231225036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/18/2023] [Indexed: 03/02/2024] Open
Abstract
Background Immunotherapy is an emerging antitumor therapy that can improve the survival of patients with advanced non-small-cell lung cancer (NSCLC). However, only about 20% of NSCLC patients can benefit from this treatment. At present, whether patients with driving gene-positive NSCLC can benefit from immunotherapy is one of the hot issues. Therefore, we conducted a meta-analysis to evaluate the efficacy of immunotherapy in patients with oncogene-driven NSCLC and concluded the efficacy of altered subtypes. Methods A literature search was performed using PubMed, Web of Science, and Cochrane databases. The primary endpoints included the objective response rate (ORR), median progression-free survival (mPFS), and median overall survival (mOS) in patients with oncogene-driven NSCLC. Results In all, 86 studies involving 4524 patients with oncogene-driven NSCLC were included in this meta-analysis. The pooled ORRs in clinical trials treated with monoimmunotherapy of EGFR, ALK, and KRAS alteration were 6%, 0%, and 23%, respectively. In retrospective studies, the pooled ORRs of EGFR, ALK, KRAS, BRAF, MET, HER2, RET, and ROS1 alteration were 8%, 3%, 28%, 24%, 23%, 14%, 7%, and 8%, respectively. Among them, the pooled ORRs of KRAS non-G12C mutation, KRAS G12C mutation, BRAF V600E mutation, BRAF non-V600E mutation, MET-exon 14 skipping, and MET-amplification were 33% 40%, 20%, 34%, 17%, and 60%, respectively. In addition, the pooled mPFS rates of EGFR, KRAS, MET, HER2, and RET alteration were 2.77, 3.24, 2.48, 2.31, and 2.68 months, while the pooled mOS rates of EGFR and KRAS alteration were 9.98 and 12.29 months, respectively. In prospective data concerning EGFR mutation, the pooled ORR and mPFS treated with chemo-immunotherapy (IC) reached 38% and 6.20 months, while 58% and 8.48 months with chemo-immunotherapy plus anti-angiogenesis therapy (ICA). Moreover, the pooled mPFS and mOS of monoimmunotherapy was 2.33 months and 12.43 months. Conclusions EGFR-, ALK-, HER2-, RET-, and ROS1-altered NSCLC patients have poor reactivity to monoimmunotherapy but the efficacy of immune-based combined therapy is significantly improved. KRAS G12C mutation, BRAF non-V600E mutation, and MET amplification have better responses to immunotherapy, and more prospective studies are needed for further research.
Collapse
Affiliation(s)
- Jiayan Chen
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wanjun Lu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Mo Chen
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zijing Cai
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Zhan
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xin Liu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Suhua Zhu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Mingxiang Ye
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jiawen Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002 China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002 China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002 China
| | - Dong Wang
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002 China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002 China
| |
Collapse
|
93
|
Solta A, Ernhofer B, Boettiger K, Megyesfalvi Z, Heeke S, Hoda MA, Lang C, Aigner C, Hirsch FR, Schelch K, Döme B. Small cells - big issues: biological implications and preclinical advancements in small cell lung cancer. Mol Cancer 2024; 23:41. [PMID: 38395864 PMCID: PMC10893629 DOI: 10.1186/s12943-024-01953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Current treatment guidelines refer to small cell lung cancer (SCLC), one of the deadliest human malignancies, as a homogeneous disease. Accordingly, SCLC therapy comprises chemoradiation with or without immunotherapy. Meanwhile, recent studies have made significant advances in subclassifying SCLC based on the elevated expression of the transcription factors ASCL1, NEUROD1, and POU2F3, as well as on certain inflammatory characteristics. The role of the transcription regulator YAP1 in defining a unique SCLC subset remains to be established. Although preclinical analyses have described numerous subtype-specific characteristics and vulnerabilities, the so far non-existing clinical subtype distinction may be a contributor to negative clinical trial outcomes. This comprehensive review aims to provide a framework for the development of novel personalized therapeutic approaches by compiling the most recent discoveries achieved by preclinical SCLC research. We highlight the challenges faced due to limited access to patient material as well as the advances accomplished by implementing state-of-the-art models and methodologies.
Collapse
Affiliation(s)
- Anna Solta
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Büsra Ernhofer
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Kristiina Boettiger
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Zsolt Megyesfalvi
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Simon Heeke
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christian Lang
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Division of Pulmonology, Department of Medicine II, Medical University of Vienna, Vienna, Austria
| | - Clemens Aigner
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Fred R Hirsch
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Center for Thoracic Oncology, Mount Sinai Health System, Tisch Cancer Institute, New York, NY, USA.
| | - Karin Schelch
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Balazs Döme
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.
- National Koranyi Institute of Pulmonology, Budapest, Hungary.
- Department of Translational Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
94
|
Ma W, Zhou T, Song M, Liu J, Chen G, Zhan J, Ji L, Luo F, Gao X, Li P, Xia X, Huang Y, Zhang L. Genomic and transcriptomic profiling of combined small-cell lung cancer through microdissection: unveiling the transformational pathway of mixed subtype. J Transl Med 2024; 22:189. [PMID: 38383412 PMCID: PMC10880258 DOI: 10.1186/s12967-024-04968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Combined small-cell lung carcinoma (cSCLC) represents a rare subtype of SCLC, the mechanisms governing the evolution of cancer genomes and their impact on the tumor immune microenvironment (TIME) within distinct components of cSCLC remain elusive. METHODS Here, we conducted whole-exome and RNA sequencing on 32 samples from 16 cSCLC cases. RESULTS We found striking similarities between two components of cSCLC-LCC/LCNEC (SCLC combined with large-cell carcinoma/neuroendocrine) in terms of tumor mutation burden (TMB), tumor neoantigen burden (TNB), clonality structure, chromosomal instability (CIN), and low levels of immune cell infiltration. In contrast, the two components of cSCLC-ADC/SCC (SCLC combined with adenocarcinoma/squamous-cell carcinoma) exhibited a high level of tumor heterogeneity. Our investigation revealed that cSCLC originated from a monoclonal source, with two potential transformation modes: from SCLC to SCC (mode 1) and from ADC to SCLC (mode 2). Therefore, cSCLC might represent an intermediate state, potentially evolving into another histological tumor morphology through interactions between tumor and TIME surrounding it. Intriguingly, RB1 inactivation emerged as a factor influencing TIME heterogeneity in cSCLC, possibly through neoantigen depletion. CONCLUSIONS Together, these findings delved into the clonal origin and TIME heterogeneity of different components in cSCLC, shedding new light on the evolutionary processes underlying this enigmatic subtype.
Collapse
Affiliation(s)
- Wenjuan Ma
- Department of Intensive Care Unit, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Ting Zhou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Mengmeng Song
- Geneplus-Beijing Institute, Beijing, 102206, People's Republic of China
| | - Jiaqing Liu
- Department of Intensive Care Unit, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Gang Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Jianhua Zhan
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Liyan Ji
- Geneplus-Beijing Institute, Beijing, 102206, People's Republic of China
| | - Fan Luo
- Department of Intensive Care Unit, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Xuan Gao
- Geneplus-Beijing Institute, Beijing, 102206, People's Republic of China
| | - Pansong Li
- Geneplus-Beijing Institute, Beijing, 102206, People's Republic of China
| | - Xuefeng Xia
- Geneplus-Beijing Institute, Beijing, 102206, People's Republic of China
| | - Yan Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| |
Collapse
|
95
|
Li Q, Zhang G, Yang H, Li J. Rare case report: a case of histological type transformation of lung cancer caused by neoadjuvant immunotherapy. Front Oncol 2024; 14:1329152. [PMID: 38425340 PMCID: PMC10902098 DOI: 10.3389/fonc.2024.1329152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Lung cancer remains the leading cause of cancer-related mortality, with 1.8 million deaths per year. Small cell lung cancer and non-small cell lung cancer (NSCLC) are the main cancer types. Approximately 85% of cases are NSCLC, including adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. In this reported treatment case, the tumor histological type changed after targeted therapy, which has not been previously well documented. The patient was a 67-year-old woman diagnosed with squamous cell carcinoma via bronchoscopy. She received five neoadjuvant immune monotherapies. The lesion shrank but then progressed, with a diagnosis of small cell carcinoma via bronchoscopy. This finding suggests that tumor acquisition of resistance as manifested by cancer-type changes needs consideration and study in the application of this particular type of immunotherapy.
Collapse
Affiliation(s)
| | - Guangxin Zhang
- Department of Thoracic of the Second Hospital of Jilin University, Changchun, Jilin, China
| | | | | |
Collapse
|
96
|
Gardner EE, Earlie EM, Li K, Thomas J, Hubisz MJ, Stein BD, Zhang C, Cantley LC, Laughney AM, Varmus H. Lineage-specific intolerance to oncogenic drivers restricts histological transformation. Science 2024; 383:eadj1415. [PMID: 38330136 PMCID: PMC11155264 DOI: 10.1126/science.adj1415] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/08/2023] [Indexed: 02/10/2024]
Abstract
Lung adenocarcinoma (LUAD) and small cell lung cancer (SCLC) are thought to originate from different epithelial cell types in the lung. Intriguingly, LUAD can histologically transform into SCLC after treatment with targeted therapies. In this study, we designed models to follow the conversion of LUAD to SCLC and found that the barrier to histological transformation converges on tolerance to Myc, which we implicate as a lineage-specific driver of the pulmonary neuroendocrine cell. Histological transformations are frequently accompanied by activation of the Akt pathway. Manipulating this pathway permitted tolerance to Myc as an oncogenic driver, producing rare, stem-like cells that transcriptionally resemble the pulmonary basal lineage. These findings suggest that histological transformation may require the plasticity inherent to the basal stem cell, enabling tolerance to previously incompatible oncogenic driver programs.
Collapse
Affiliation(s)
| | - Ethan M. Earlie
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Kate Li
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Jerin Thomas
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Melissa J. Hubisz
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY
| | - Benjamin D. Stein
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Department of Medicine, Weill Cornell Medicine
| | - Chen Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Lewis C. Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Department of Medicine, Weill Cornell Medicine
| | - Ashley M. Laughney
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Harold Varmus
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| |
Collapse
|
97
|
Luo X, Zheng R, Zhang J, He J, Luo W, Jiang Z, Li Q. CT-based radiomics for predicting Ki-67 expression in lung cancer: a systematic review and meta-analysis. Front Oncol 2024; 14:1329801. [PMID: 38384802 PMCID: PMC10879429 DOI: 10.3389/fonc.2024.1329801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Background Radiomics, an emerging field, presents a promising avenue for the accurate prediction of biomarkers in different solid cancers. Lung cancer remains a significant global health challenge, contributing substantially to cancer-related mortality. Accurate assessment of Ki-67, a marker reflecting cellular proliferation, is crucial for evaluating tumor aggressiveness and treatment responsiveness, particularly in non-small cell lung cancer (NSCLC). Methods A systematic review and meta-analysis conducted following the preferred reporting items for systematic review and meta-analysis of diagnostic test accuracy studies (PRISMA-DTA) guidelines. Two authors independently conducted a literature search until September 23, 2023, in PubMed, Embase, and Web of Science. The focus was on identifying radiomics studies that predict Ki-67 expression in lung cancer. We evaluated quality using both Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and the Radiomics Quality Score (RQS) tools. For statistical analysis in the meta-analysis, we used STATA 14.2 to assess sensitivity, specificity, heterogeneity, and diagnostic values. Results Ten retrospective studies were pooled in the meta-analysis. The findings demonstrated that the use of computed tomography (CT) scan-based radiomics for predicting Ki-67 expression in lung cancer exhibited encouraging diagnostic performance. Pooled sensitivity, specificity, and area under the curve (AUC) in training cohorts were 0.78, 0.81, and 0.85, respectively. In validation cohorts, these values were 0.78, 0.70, and 0.81. Quality assessment using QUADAS-2 and RQS indicated generally acceptable study quality. Heterogeneity in training cohorts, attributed to factors like contrast-enhanced CT scans and specific Ki-67 thresholds, was observed. Notably, publication bias was detected in the training cohort, indicating that positive results are more likely to be published than non-significant or negative results. Thus, journals are encouraged to publish negative results as well. Conclusion In summary, CT-based radiomics exhibit promise in predicting Ki-67 expression in lung cancer. While the results suggest potential clinical utility, additional research efforts should concentrate on enhancing diagnostic accuracy. This could pave the way for the integration of radiomics methods as a less invasive alternative to current procedures like biopsy and surgery in the assessment of Ki-67 expression.
Collapse
Affiliation(s)
- Xinmin Luo
- Department of Radiology, People’s Hospital of Yuechi County, Guang’an, Sichuan, China
| | - Renying Zheng
- Department of Oncology, People’s Hospital of Yuechi County, Guang’an, Sichuan, China
| | - Jiao Zhang
- Department of Radiology, People’s Hospital of Yuechi County, Guang’an, Sichuan, China
| | - Juan He
- Department of Radiology, People’s Hospital of Yuechi County, Guang’an, Sichuan, China
| | - Wei Luo
- Department of Radiology, People’s Hospital of Yuechi County, Guang’an, Sichuan, China
| | - Zhi Jiang
- Department of Radiology, People’s Hospital of Yuechi County, Guang’an, Sichuan, China
| | - Qiang Li
- Department of Radiology, Yuechi County Traditional Chinese Medicine Hospital in Sichuan Province, Guang’an, Sichuan, China
| |
Collapse
|
98
|
Zhang B, Lewis W, Stewart CA, Morris BB, Solis LM, Serrano A, Xi Y, Wang Q, Lopez ER, Concannon K, Heeke S, Tang X, Raso G, Cardnell RJ, Vokes N, Blumenschein G, Elamin Y, Fosella F, Tsao A, Skoulidis F, Hume CB, Sasak K, Lewis J, Rinsurongkawong W, Rinsurongkawong V, Lee J, Tran H, Zhang J, Gibbons D, Vaporciyan A, Wang J, Park K, Heymach JV, Byers LA, Gay CM, Le X. Brief Report: Comprehensive Clinicogenomic Profiling of Small Cell Transformation From EGFR-Mutant NSCLC Informs Potential Therapeutic Targets. JTO Clin Res Rep 2024; 5:100623. [PMID: 38357092 PMCID: PMC10864847 DOI: 10.1016/j.jtocrr.2023.100623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 02/16/2024] Open
Abstract
Introduction NSCLC transformation to SCLC has been best characterized with EGFR-mutant NSCLC, with emerging case reports seen in ALK, RET, and KRAS-altered NSCLC. Previous reports revealed transformed SCLC from EGFR-mutant NSCLC portends very poor prognosis and lack effective treatment. Genomic analyses revealed TP53 and RB1 loss of function increase the risk of SCLC transformation. Little has been reported on the detailed clinicogenomic characteristics and potential therapeutic targets for this patient population. Methods In this study, we conducted a single-center retrospective analysis of clinical and genomic characteristics of patients with EGFR-mutant NSCLC transformed to SCLC. Demographic data, treatment course, and clinical molecular testing reports were extracted from electronic medical records. Kaplan-Meier analyses were used to estimate survival outcomes. Next generation sequencing-based assays was used to identify EGFR and co-occurring genetic alterations in tissue or plasma before and after SCLC transformation. Single-cell RNA sequencing (scRNA-seq) was performed on a patient-derived-xenograft model generated from a patient with EGFR-NSCLC transformed SCLC tumor. Results A total of 34 patients were identified in our study. Median age at initial diagnosis was 58, and median time to SCLC transformation was 24.2 months. 68% were female and 82% were never smokers. 79% of patients were diagnosed as stage IV disease, and over half had brain metastases at baseline. Median overall survival of the entire cohort was 38.3 months from initial diagnoses and 12.4 months from time of SCLC transformation. Most patients harbored EGFR exon19 deletions as opposed to exon21 L858R alteration. Continuing EGFR tyrosine kinase inhibitor post-transformation did not improve overall survival compared with those patients where tyrosine kinase inhibitor was stopped in our cohort. In the 20 paired pretransformed and post-transformed patient samples, statistically significant enrichment was seen with PIK3CA alterations (p = 0.04) post-transformation. Profiling of longitudinal liquid biopsy samples suggest emergence of SCLC genetic alterations before biopsy-proven SCLC, as shown by increasing variant allele frequency of TP53, RB1, PIK3CA alterations. ScRNA-seq revealed potential therapeutic targets including DLL3, CD276 (B7-H3) and PTK7 were widely expressed in transformed SCLC. Conclusions SCLC transformation is a potential treatment resistance mechanism in driver-mutant NSCLC. In our cohort of 34 EGFR-mutant NSCLC, poor prognosis was observed after SCLC transformation. Clinicogenomic analyses of paired and longitudinal samples identified genomic alterations emerging post-transformation and scRNA-seq reveal potential therapeutic targets in this population. Further studies are needed to rigorously validate biomarkers and therapeutic targets for this patient population.
Collapse
Affiliation(s)
- Bingnan Zhang
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Whitney Lewis
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - C. Allison Stewart
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Benjamin B. Morris
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luisa M. Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alejandra Serrano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuanxin Xi
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qi Wang
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elyse R. Lopez
- Department of Internal Medicine, Baylor College of Medicine, Houston, Texas
| | - Kyle Concannon
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Simon Heeke
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ximing Tang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert J. Cardnell
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Natalie Vokes
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - George Blumenschein
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yasir Elamin
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Frank Fosella
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anne Tsao
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ferdinandos Skoulidis
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Celyne Bueno Hume
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Koji Sasak
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeff Lewis
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Waree Rinsurongkawong
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vadeerat Rinsurongkawong
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jack Lee
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hai Tran
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianjun Zhang
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Don Gibbons
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ara Vaporciyan
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keunchil Park
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V. Heymach
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lauren A. Byers
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carl M. Gay
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiuning Le
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
99
|
Ma Y, Deng Y, Shao T, Cui Y, Shen Y. Causal effects of gut microbiota in the development of lung cancer and its histological subtypes: A Mendelian randomization study. Thorac Cancer 2024; 15:486-495. [PMID: 38214421 PMCID: PMC10883858 DOI: 10.1111/1759-7714.15220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Numerous studies have characterized the gut microbiome (GM) in lung cancer (LC). Yet, the causality between GM and LC and its subtypes remain uncharacterized. METHODS Two-sample Mendelian randomization (MR) was designed to investigate the causal relationship between the GM and LC and its subtypes, using publicly available summary data of genome-wide association studies. The researchers ran two groups of MR analyses, including the genome-wide statistical significance threshold (5 × 10-8 ) and the locus-wide significance level (1 × 10-5 ). RESULTS Using MR analysis, we ascertained 42 groups of GM that are intimately linked to LC and its subtypes at the locus-wide significance level. Of the 42 groups, 12 were in LC, nine in non-small cell lung cancer (NSCLC), six in small cell lung cancer (SCLC), two in lung adenocarcinomas, and 13 in lung squamous carcinomas. After false discovery rate correction, we still found a remarkable causal interaction between the Eubacterium ruminantium group and SCLC. Moreover, five groups of GM closely linked to LC and its subtypes were recognised at the genome-wide statistical significance threshold. This finding included one group each in LC, NSCLC and SCLC, two groups in lung adenocarcinoma and none in lung squamous carcinoma. None of the foregoing findings were heterogeneous or horizontal pleiotropy. Reverse MR revealed that genetic susceptibility to LC and its subtypes caused significant changes in three groups of GM. CONCLUSION Our findings substantiate the causality between GM and LC and its subtypes. This study offers fresh insights into the function of GM in mediating the progression of LC.
Collapse
Affiliation(s)
- Yunlei Ma
- Department of Thoracic Surgery, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Yuqing Deng
- Department of Thoracic Surgery, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Tingting Shao
- Department of Thoracic Surgery, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yong Cui
- Department of Thoracic Surgery, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Yefeng Shen
- Department of Thoracic Surgery, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
100
|
Xie X, Qiu G, Chen Z, Liu T, Yang Y, You Z, Zeng C, Lin X, Xie Z, Qin Y, Wang Y, Ma X, Zhou C, Liu M. Characteristics and prognosis of EGFR mutations in small cell lung cancer patients in the NGS era. Clin Transl Oncol 2024; 26:434-445. [PMID: 37436674 PMCID: PMC10811109 DOI: 10.1007/s12094-023-03263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE Targeted therapy has not been effective for small cell lung cancer (SCLC) patients. Although some studies have reported on EGFR mutations in SCLC, a systematic investigation into the clinical, immunohistochemical, and molecular characteristics and prognosis of EGFR-mutated SCLCs is lacking. METHODS Fifty-seven SCLC patients underwent next-generation sequencing technology, with 11 in having EGFR mutations (group A) and 46 without (group B). Immunohistochemistry markers were assessed, and the clinical features and first-line treatment outcomes of both groups were analyzed. RESULTS Group A consisted primarily of non-smokers (63.6%), females (54.5%), and peripheral-type tumors (54.5%), while group B mainly comprised heavy smokers (71.7%), males (84.8%), and central-type tumors (67.4%). Both groups showed similar immunohistochemistry results and had RB1 and TP53 mutations. When treated with tyrosine kinase inhibitors (TKIs) plus chemotherapy, group A had a higher treatment response rate with overall response and disease control rates of 80% and 100%, respectively, compared to 57.1% and 100% in group B. Group A also had a significantly longer median progression-free survival (8.20 months, 95% CI 6.91-9.49 months) than group B (2.97 months, 95% CI 2.79-3.15), with a significant difference (P = 0.043). Additionally, the median overall survival was significantly longer in group A (16.70 months, 95% CI 1.20-32.21) than in group B (7.37 months, 95% CI 3.85-10.89) (P = 0.016). CONCLUSION EGFR-mutated SCLCs occurred more frequently in non-smoking females and were linked to prolonged survival, implying a positive prognostic impact. These SCLCs shared immunohistochemical similarities with conventional SCLCs, and both types had prevalent RB1 and TP53 mutations.
Collapse
Affiliation(s)
- Xiaohong Xie
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, 151 Yanjiang Road, Guangzhou, 510120, China
| | - Guihuan Qiu
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, 151 Yanjiang Road, Guangzhou, 510120, China
| | - Ziyao Chen
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, 151 Yanjiang Road, Guangzhou, 510120, China
| | - Ting Liu
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, 151 Yanjiang Road, Guangzhou, 510120, China
| | - Yilin Yang
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, 151 Yanjiang Road, Guangzhou, 510120, China
| | - Zhixuan You
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, 151 Yanjiang Road, Guangzhou, 510120, China
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Chen Zeng
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, 151 Yanjiang Road, Guangzhou, 510120, China
| | - Xinqing Lin
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, 151 Yanjiang Road, Guangzhou, 510120, China
| | - Zhanhong Xie
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, 151 Yanjiang Road, Guangzhou, 510120, China
| | - Yinyin Qin
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, 151 Yanjiang Road, Guangzhou, 510120, China
| | - Yansheng Wang
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, 151 Yanjiang Road, Guangzhou, 510120, China
| | - Xiaodong Ma
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, China, Guangzhou
| | - Chengzhi Zhou
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, 151 Yanjiang Road, Guangzhou, 510120, China.
| | - Ming Liu
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, 151 Yanjiang Road, Guangzhou, 510120, China.
| |
Collapse
|