51
|
Liu G, Chen T, Zhang X, Ma X, Shi H. Small molecule inhibitors targeting the cancers. MedComm (Beijing) 2022; 3:e181. [PMID: 36254250 PMCID: PMC9560750 DOI: 10.1002/mco2.181] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Compared with traditional therapies, targeted therapy has merits in selectivity, efficacy, and tolerability. Small molecule inhibitors are one of the primary targeted therapies for cancer. Due to their advantages in a wide range of targets, convenient medication, and the ability to penetrate into the central nervous system, many efforts have been devoted to developing more small molecule inhibitors. To date, 88 small molecule inhibitors have been approved by the United States Food and Drug Administration to treat cancers. Despite remarkable progress, small molecule inhibitors in cancer treatment still face many obstacles, such as low response rate, short duration of response, toxicity, biomarkers, and resistance. To better promote the development of small molecule inhibitors targeting cancers, we comprehensively reviewed small molecule inhibitors involved in all the approved agents and pivotal drug candidates in clinical trials arranged by the signaling pathways and the classification of small molecule inhibitors. We discussed lessons learned from the development of these agents, the proper strategies to overcome resistance arising from different mechanisms, and combination therapies concerned with small molecule inhibitors. Through our review, we hoped to provide insights and perspectives for the research and development of small molecule inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Gui‐Hong Liu
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Tao Chen
- Department of CardiologyThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xin Zhang
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Xue‐Lei Ma
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Hua‐Shan Shi
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
52
|
Que D, Zou H, Mao B, Zhang H, Liang W, Liu Q, Ke L, Guo L, Xie Q. Pathological complete remission in ALK-positive lung cancer patient after multiple lines of conversion therapy. Front Oncol 2022; 12:967675. [DOI: 10.3389/fonc.2022.967675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
IntroductionTraditional therapeutic approaches for the treatment of advanced non-small-cell lung cancer (NSCLC) are based on chemotherapy. However, the discovery and understanding of oncogenic driver alterations has led to the development of targeted therapies that have substantially improved patient outcomes. Still, to date, there have been no reports of patients with advanced anaplastic lymphoma kinase (ALK)-positive lung cancer achieving clinical complete response (cCR) in the systemic lesion and pathological complete remission (pCR) in primary lung lesion after multiple lines of conversion therapy.MethodsIn this case, a 55-year-old man was diagnosed with ALK-positive, stage IV lung adenocarcinoma using immunohistochemistry and next generation sequencing (NGS) tests.ResultsCrizotinib and two other ATP-competitive ALK inhibitors, ceritinib and alectinib, were used respectively as first-line, second-line, and third-line therapy. The patient received treatment with crizotinib and achieved partial response (PR), but 5 months later the efficacy was evaluated as progressive disease (PD). Ceritinib was used as the second-line treatment, but the disease progressed 6 months later. Alectinib was used as the third-line treatment, but the efficacy was evaluated as PD. From April 2019 to November 2019, the patient received 4 cycles of induction chemotherapy with pemetrexed/carboplatin/bevacizumab and then switched to pemetrexed/bevacizumab as the fourth-line treatment, and received the fifth line treatment, cetuximab/paclitaxel liposome/nedaplatin, for 1 cycle, but the disease still progressed. Then the patient received the sixth line of treatment, camrelizumab/lorlatinib, for 9 antitumor cycles, resulting in PR. The patient underwent surgery followed by maintenance treatment with lorlatinib and achieved cCR. To our knowledge, this is the first documented case of cCR in a patient with ALK-positive advanced lung adenocarcinoma treated with multiple lines of therapy followed by surgical treatment.DiscussionThis case reveals the possible survival benefit of immunotherapy after multiple line treatment in ALK-positive advanced lung adenocarcinoma, indicating that it is possible find new therapeutic targets based on NGS molecular detection and provide precise therapeutic strategies for clinical practice when drug resistance or progression occurs in cancer therapy.
Collapse
|
53
|
Xing P, Zhao Q, Zhang L, Wang H, Huang D, Hu P, Sun Y, Shi Y. Conteltinib (CT-707) in patients with advanced ALK-positive non-small cell lung cancer: a multicenter, open-label, first-in-human phase 1 study. BMC Med 2022; 20:453. [PMID: 36424628 PMCID: PMC9694544 DOI: 10.1186/s12916-022-02646-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Conteltinib (CT-707) is a potent second-generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor (TKI) showing promising anti-tumor activities in preclinical studies. This study aimed to assess the safety, pharmacokinetic (PK), and efficacy of conteltinib in patients with ALK-positive non-small cell lung cancer (NSCLC). METHODS In this multicenter, single-arm, open-label, first-in-human phase 1 study, conteltinib was taken orally at doses of 50 to 800 mg quaque die (QD) in a dose-escalation phase. If the response was observed in a dose cohort of the dose-escalation phase, dose expansion was started. The primary endpoints were maximum tolerated dose (MTD), dose-limiting toxicity (DLT), and adverse events assessed by investigators. RESULTS Between April 13, 2016, and February 8, 2020, 64 ALK-positive NSCLC patients were enrolled, including 41 (64.1%) patients with ALK TKI-naïve and 23 (35.9%) patients who received crizotinib previously. In the dose-escalation phase, 26 patients were treated with conteltinib at doses of 50 mg, 100 mg, 200 mg, 300 mg, 450 mg, 600 mg, and 800 mg QD. One DLT event was reported at the dose of 600 mg. MTD was not reached. Overall, 58 (90.6%) patients experienced treatment-related adverse events (TRAEs) and 9 (14.1%) patients had grade ≥ 3 TRAEs. The most common TRAEs were diarrhea (46 [71.9%]), serum creatinine elevated (29 [45.3%]), aspartate aminotransferase elevated (25 [39.1%]), and nausea (24 [37.5%]). Among 39 ALK TKI-naïve patients, the overall response rate (ORR) was 64.1% (25 of 39; 95% confidence interval [CI], 47.2-78.8), median progression-free survival (PFS) was 15.9 months (95% CI, 9.26-23.3), and median duration of response (DoR) was 15.0 months (95% CI, 9.06-25.8). Among 21 patients who received crizotinib previously, the ORR was 33.3% (7 of 21; 95% CI, 14.6-57.0), median PFS was 6.73 months (95% CI, 4.73-8.54), and median DoR was 6.60 months (95% CI, 3.77-13.3). CONCLUSIONS In this study, conteltinib showed manageable safety profile, favorable PK properties, and anti-tumor activity in advanced ALK-positive NSCLC patients. The recommended phase 2 dose was determined to be 600 mg QD for ALK TKI-naïve patients and 300 mg bis in die (BID) for patients who received crizotinib previously. TRIAL REGISTRATION ClinicalTrials.gov, NCT02695550.
Collapse
Affiliation(s)
- Puyuan Xing
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Qian Zhao
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Hanping Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Dingzhi Huang
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China
| | - Pei Hu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yinghui Sun
- Department of Clinical Medicine, Shouyao Holdings (Beijing) Co., Ltd, Beijing, 100195, China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
54
|
Aizer AA, Lamba N, Ahluwalia MS, Aldape K, Boire A, Brastianos PK, Brown PD, Camidge DR, Chiang VL, Davies MA, Hu LS, Huang RY, Kaufmann T, Kumthekar P, Lam K, Lee EQ, Lin NU, Mehta M, Parsons M, Reardon DA, Sheehan J, Soffietti R, Tawbi H, Weller M, Wen PY. Brain metastases: A Society for Neuro-Oncology (SNO) consensus review on current management and future directions. Neuro Oncol 2022; 24:1613-1646. [PMID: 35762249 PMCID: PMC9527527 DOI: 10.1093/neuonc/noac118] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Brain metastases occur commonly in patients with advanced solid malignancies. Yet, less is known about brain metastases than cancer-related entities of similar incidence. Advances in oncologic care have heightened the importance of intracranial management. Here, in this consensus review supported by the Society for Neuro-Oncology (SNO), we review the landscape of brain metastases with particular attention to management approaches and ongoing efforts with potential to shape future paradigms of care. Each coauthor carried an area of expertise within the field of brain metastases and initially composed, edited, or reviewed their specific subsection of interest. After each subsection was accordingly written, multiple drafts of the manuscript were circulated to the entire list of authors for group discussion and feedback. The hope is that the these consensus guidelines will accelerate progress in the understanding and management of patients with brain metastases, and highlight key areas in need of further exploration that will lead to dedicated trials and other research investigations designed to advance the field.
Collapse
Affiliation(s)
- Ayal A Aizer
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Nayan Lamba
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Radiation Oncology Program, Boston, Massachusetts, USA
| | | | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Adrienne Boire
- Department of Neurology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Priscilla K Brastianos
- Departments of Neuro-Oncology and Medical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - D Ross Camidge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Veronica L Chiang
- Departments of Neurosurgery and Radiation Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Leland S Hu
- Department of Radiology, Neuroradiology Division, Mayo Clinic, Phoenix, Arizona, USA
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | - Priya Kumthekar
- Department of Neurology at The Feinberg School of Medicine at Northwestern University and The Malnati Brain Tumor Institute at the Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Keng Lam
- Department of Neurology, Kaiser Permanente, Los Angeles Medical Center, Los Angeles, California, USA
| | - Eudocia Q Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Minesh Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida, USA
| | - Michael Parsons
- Departments of Oncology and Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David A Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jason Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, USA
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Hussein Tawbi
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Patrick Y Wen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
55
|
Singh K, Saxena S, Khosla AA, McDermott MW, Kotecha RR, Ahluwalia MS. Update on the Management of Brain Metastasis. Neurotherapeutics 2022; 19:1772-1781. [PMID: 36422836 PMCID: PMC9723062 DOI: 10.1007/s13311-022-01312-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 11/27/2022] Open
Abstract
Brain metastases occur in almost one-third of adult patients with solid tumor malignancies and lead to considerable patient morbidity and mortality. The rising incidence of brain metastases has been ascribed to the development of better imaging and screening techniques and the formulation of better systemic therapies. Until recently, the multimodal management of brain metastases focused primarily on the utilization of neurosurgical techniques, with varying combinations of whole-brain radiation therapy and stereotactic radio-surgical procedures. Over the past 2 decades, in particular, the increment in knowledge pertaining to molecular genetics and the pathogenesis of brain metastases has led to significant developments in targeted therapies and immunotherapies. This review article highlights the recent updates in the management of brain metastases with an emphasis on novel systemic therapies.
Collapse
Affiliation(s)
- Karanvir Singh
- Division of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, 33176, USA
| | - Shreya Saxena
- Division of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, 33176, USA
| | - Atulya A Khosla
- Division of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, 33176, USA
| | - Michael W McDermott
- Division of Neurosurgery, Miami Neuroscience Institute, Baptist Health South Florida, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Rupesh R Kotecha
- Division of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Manmeet S Ahluwalia
- Division of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, 33176, USA.
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
56
|
Canale M, Petracci E, Cravero P, Mariotti M, Minuti G, Metro G, Ludovini V, Baglivo S, Puccetti M, Dubini A, Martinelli G, Delmonte A, Crinò L, Ulivi P. Prognosis of ALK-rearranged non-small-cell lung cancer patients carrying TP53 mutations. Transl Oncol 2022; 23:101471. [PMID: 35779323 PMCID: PMC9253903 DOI: 10.1016/j.tranon.2022.101471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 11/15/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the primary cause of cancer-related death. Gene rearrangements involving the anaplastic lymphoma kinase (ALK) tyrosine kinase identify a clinical and molecular subset of NSCLC patients, who benefit from the monotherapy with ALK tyrosine kinase inhibitors. Nonetheless, responsiveness to TKIs and prognosis of these patients are influenced by several factors, including resistance mechanisms and mutations affecting genes involved in key molecular pathways of cancer cells. In a cohort of 98 NSCLC patients with ALK gene rearrangements, we investigated the role of Tumor Protein (TP53) gene mutations in predicting patients prognosis. TP53 mutations were evaluated in relation to disease control rate (DCR), objective response rate (ORR), progression-free survival (PFS) and overall survival (OS).Results: In patients with available clinical and TP53 mutation information, we found that 13 patients (20.3%) were affected by TP53 mutations. Considered together, even though showing a trend, TP53 mutations were not associated with PFS and OS. Considering the different TP53 mutations by functionality in terms of disruptive and non-disruptive mutations, we observed that TP53 non-disruptive mutations were able to predict worse OS in the overall case series. Moreover, a worse PFS was seen in the subgroup of patients with TP53 non-disruptive mutation, in first-, second-, and third line of treatment. Our results show that mutations affecting TP53 gene, especially non-disruptive mutations, are able to affect prognosis of ALK-rearranged NSCLC patients.
Collapse
Affiliation(s)
- Matteo Canale
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Elisabetta Petracci
- Biostatistics and Clinical Trials Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Paola Cravero
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Marita Mariotti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Gabriele Minuti
- Department of Medical Oncology, IRCCS Regina Elena National Cancer Institute, 00128 Rome, Italy.
| | - Giulio Metro
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, 61029 Perugia, Italy.
| | - Vienna Ludovini
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, 61029 Perugia, Italy.
| | - Sara Baglivo
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, 61029 Perugia, Italy.
| | - Maurizio Puccetti
- Anatomia Istologia Patologica e Citodiagnostica, Azienda Unità Sanitaria Locale, 40026 Imola, Italy.
| | - Alessandra Dubini
- Department of Pathology, Morgagni-Pierantoni Hospital, 47121 Forlì, Italy.
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Angelo Delmonte
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Lucio Crinò
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| |
Collapse
|
57
|
Yu ZQ, Wang M, Zhou W, Mao MX, Chen YY, Li N, Peng XC, Cai J, Cai ZQ. ROS1-positive non-small cell lung cancer (NSCLC): biology, diagnostics, therapeutics and resistance. J Drug Target 2022; 30:845-857. [PMID: 35658765 DOI: 10.1080/1061186x.2022.2085730] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/30/2022] [Indexed: 10/18/2022]
Abstract
ROS1 is a proto-oncogene encoding a receptor tyrosine protein kinase (RTK), homologous to the v - Ros sequence of University of Manchester tumours virus 2 (UR2) sarcoma virus, whose ligands are still being investigated. ROS1 fusion genes have been identified in various types of tumours. As an oncoprotein, it promotes cell proliferation, activation and cell cycle progression by activating downstream signalling pathways, accelerating the development and progression of non-small cell lung cancer (NSCLC). Studies have demonstrated that ROS1 inhibitors are effective in patients with ROS1-positive NSCLC and are used for first-line clinical treatment. These small molecule inhibitors provide a rational therapeutic option for the treatment of ROS1-positive patients. Inevitably, ROS1 inhibitor resistance mutations occur, leading to tumours recurrence or progression. Here, we comprehensively review the identified biological properties and Differential subcellular localisation of ROS1 fusion oncoprotein promotes tumours progression. We summarise recently completed and ongoing clinical trials of the classic and new ROS1 inhibitors. More importantly, we classify the complex evolving tumours cell resistance mechanisms. This review contributes to our understanding of the biological properties of ROS1 and current therapeutic advances and resistant tumours cells, and the future directions to develop ROS1 inhibitors with durable effects.
Collapse
Affiliation(s)
- Zhi-Qiong Yu
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| | - Meng Wang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| | - Wen Zhou
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| | - Meng-Xia Mao
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| | - Yuan-Yuan Chen
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| | - Na Li
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, Jingzhou, PR China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, PR China
| | - Jun Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| | - Zhi-Qiang Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| |
Collapse
|
58
|
Jawarkar RD, Sharma P, Jain N, Gandhi A, Mukerjee N, Al-Mutairi AA, Zaki MEA, Al-Hussain SA, Samad A, Masand VH, Ghosh A, Bakal RL. QSAR, Molecular Docking, MD Simulation and MMGBSA Calculations Approaches to Recognize Concealed Pharmacophoric Features Requisite for the Optimization of ALK Tyrosine Kinase Inhibitors as Anticancer Leads. Molecules 2022; 27:molecules27154951. [PMID: 35956900 PMCID: PMC9370430 DOI: 10.3390/molecules27154951] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
ALK tyrosine kinase ALK TK is an important target in the development of anticancer drugs. In the present work, we have performed a QSAR analysis on a dataset of 224 molecules in order to quickly predict anticancer activity on query compounds. Double cross validation assigns an upward plunge to the genetic algorithm−multi linear regression (GA-MLR) based on robust univariate and multivariate QSAR models with high statistical performance reflected in various parameters like, fitting parameters; R2 = 0.69−0.87, F = 403.46−292.11, etc., internal validation parameters; Q2LOO = 0.69−0.86, Q2LMO = 0.69−0.86, CCCcv = 0.82−0.93, etc., or external validation parameters Q2F1 = 0.64−0.82, Q2F2 = 0.63−0.82, Q2F3 = 0.65−0.81, R2ext = 0.65−0.83 including RMSEtr < RMSEcv. The present QSAR evaluation successfully identified certain distinct structural features responsible for ALK TK inhibitory potency, such as planar Nitrogen within four bonds from the Nitrogen atom, Fluorine atom within five bonds beside the non-ring Oxygen atom, lipophilic atoms within two bonds from the ring Carbon atoms. Molecular docking, MD simulation, and MMGBSA computation results are in consensus with and complementary to the QSAR evaluations. As a result, the current study assists medicinal chemists in prioritizing compounds for experimental detection of anticancer activity, as well as their optimization towards more potent ALK tyrosine kinase inhibitor.
Collapse
Affiliation(s)
- Rahul D. Jawarkar
- Faculty of Pharmacy, Oriental University, Indore 453555, Madhya Pradesh, India; (P.S.); (N.J.)
- Correspondence: (R.D.J.); (M.E.A.Z.); Tel.: +91-7385178762 (R.D.J.)
| | - Praveen Sharma
- Faculty of Pharmacy, Oriental University, Indore 453555, Madhya Pradesh, India; (P.S.); (N.J.)
| | - Neetesh Jain
- Faculty of Pharmacy, Oriental University, Indore 453555, Madhya Pradesh, India; (P.S.); (N.J.)
| | - Ajaykumar Gandhi
- Department of Chemistry, Government College of Arts and Science, Aurangabad 431004, Maharashtra, India;
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata 700118, West Bengal, India;
| | - Aamal A. Al-Mutairi
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 13318, Saudi Arabia; (A.A.A.-M.); (S.A.A.-H.)
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 13318, Saudi Arabia; (A.A.A.-M.); (S.A.A.-H.)
- Correspondence: (R.D.J.); (M.E.A.Z.); Tel.: +91-7385178762 (R.D.J.)
| | - Sami A. Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 13318, Saudi Arabia; (A.A.A.-M.); (S.A.A.-H.)
| | - Abdul Samad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tishk International University, Erbil 44001, Kurdistan Region, Iraq;
| | - Vijay H. Masand
- Department of Chemistry, Vidyabharati Mahavidyalalya, Camp Road, Amravati 444602, Maharashtra, India;
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati 781014, Assam, India;
| | - Ravindra L. Bakal
- Department of Medicinal Chemistry, Dr. Rajendra Gode Institute of Pharmacy, University-Mardi Road, Amravati 444603, Maharashtra, India;
| |
Collapse
|
59
|
Cooper AJ, Sequist LV, Lin JJ. Third-generation EGFR and ALK inhibitors: mechanisms of resistance and management. Nat Rev Clin Oncol 2022; 19:499-514. [PMID: 35534623 PMCID: PMC9621058 DOI: 10.1038/s41571-022-00639-9] [Citation(s) in RCA: 270] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 02/07/2023]
Abstract
The discoveries of EGFR mutations and ALK rearrangements as actionable oncogenic drivers in non-small-cell lung cancer (NSCLC) has propelled a biomarker-directed treatment paradigm for patients with advanced-stage disease. Numerous EGFR and ALK tyrosine kinase inhibitors (TKIs) with demonstrated efficacy in patients with EGFR-mutant and ALK-rearranged NSCLCs have been developed, culminating in the availability of the highly effective third-generation TKIs osimertinib and lorlatinib, respectively. Despite their marked efficacy, resistance to these agents remains an unsolved fundamental challenge. Both 'on-target' mechanisms (largely mediated by acquired resistance mutations in the kinase domains of EGFR or ALK) and 'off-target' mechanisms of resistance (mediated by non-target kinase alterations such as bypass signalling activation or phenotypic transformation) have been identified in patients with disease progression on osimertinib or lorlatinib. A growing understanding of the biology and spectrum of these mechanisms of resistance has already begun to inform the development of more effective therapeutic strategies. In this Review, we discuss the development of third-generation EGFR and ALK inhibitors, predominant mechanisms of resistance, and approaches to tackling resistance in the clinic, ranging from novel fourth-generation TKIs to combination regimens and other investigational therapies.
Collapse
Affiliation(s)
- Alissa J Cooper
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Lecia V Sequist
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Jessica J Lin
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA.
| |
Collapse
|
60
|
Martin M, Hernanz R, Vallejo C, Guerrero L, Mielgo X, Lopez A, Trujillo-Reyes JC, Couñago F. Brain metastases from non-small cell lung carcinoma: an overview of classical and novel treatment strategies. Rep Pract Oncol Radiother 2022; 27:527-544. [PMID: 36186687 PMCID: PMC9518765 DOI: 10.5603/rpor.a2022.0050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The development of brain metastases is a common problem in patients diagnosed with non-small cell lung carcinoma (NSCLC). Technological advances in surgery and radiotherapy have allowed greater local control. Moreover, the emergence of targeted therapies and immunotherapy with greater activity on the central nervous system than classical chemotherapy have given way to new strategies in the treatment of brain metastases. We review the current role of local treatments, surgery and radiotherapy, and the most effective combination strategies with the new systemic treatments. RELEVANCE FOR PATIENTS Brain metastases frequently occur during the course of NSCLC. In recent years, a range of treatments have appeared, such as targeted treatments or immunotherapy, with greater activity at the brain level than classical chemotherapy. Radiotherapy treatment is also now much more conformal and ablative doses can be delivered to the volume of the metastatic area, providing greater local control and less neurological toxicity. However, surgery is still required in cases where anatomopathological specimens are needed and when compressive effects appear. An important challenge is how to combine these treatments to achieve the best control and minimise patients' neurological impairments, especially because of limited experience with the new target drugs, and the unknown toxicity of the different combinations. Future research should therefore focus on these areas in order to establish the best strategies for the treatment of brain metastases from non-small cell lung cancer. CORE TIPS In this work, we intend to elucidate the best therapeutic options for patients diagnosed with brain metastases of NSCL, which include: surgery, WBRT, radiosurgery or systemic treatment, and the most effective combinations and timings of them, and the ones with the lowest associated toxicity.
Collapse
Affiliation(s)
- Margarita Martin
- Radiation Oncology, Hospital Universitario Ramon y Cajal Servicio de Oncologia Radioterapica, Madrid, Spain
| | - Raúl Hernanz
- Radiation Oncology, Hospital Universitario Ramon y Cajal Servicio de Oncologia Radioterapica, Madrid, Spain
| | - Carmen Vallejo
- Radiation Oncology, Hospital Universitario Ramon y Cajal Servicio de Oncologia Radioterapica, Madrid, Spain
| | - Leonardo Guerrero
- Oncología Radioterápica, Hospital La Luz, Grupo Quirónsalud, Madrid, Spain
| | - Xabier Mielgo
- Medical Oncology, Hospital Universitario Fundación Alcorcón, Alcorcon, Spain
| | - Ana Lopez
- Medical Oncology, Hospital Severo Ochoa, Leganes, Spain
| | | | | |
Collapse
|
61
|
Alternative Treatment Options to ALK Inhibitor Monotherapy for EML4-ALK-Driven Lung Cancer. Cancers (Basel) 2022; 14:cancers14143452. [PMID: 35884511 PMCID: PMC9325236 DOI: 10.3390/cancers14143452] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
EML4-ALK is an oncogenic fusion protein that accounts for approximately 5% of NSCLC cases. Targeted inhibitors of ALK are the standard of care treatment, often leading to a good initial response. Sadly, some patients do not respond well, and most will develop resistance over time, emphasizing the need for alternative treatments. This review discusses recent advances in our understanding of the mechanisms behind EML4-ALK-driven NSCLC progression and the opportunities they present for alternative treatment options to ALK inhibitor monotherapy. Targeting ALK-dependent signalling pathways can overcome resistance that has developed due to mutations in the ALK catalytic domain, as well as through activation of bypass mechanisms that utilise the same pathways. We also consider evidence for polytherapy approaches that combine targeted inhibition of these pathways with ALK inhibitors. Lastly, we review combination approaches that use targeted inhibitors of ALK together with chemotherapy, radiotherapy or immunotherapy. Throughout this article, we highlight the importance of alternative breakpoints in the EML4 gene that result in the generation of distinct EML4-ALK variants with different biological and pathological properties and consider monotherapy and polytherapy approaches that may be selective to particular variants.
Collapse
|
62
|
Chow LQM, Barlesi F, Bertino EM, van den Bent MJ, Wakelee HA, Wen PY, Chiu CH, Orlov S, Chiari R, Majem M, McKeage M, Yu CJ, Garrido P, Hurtado FK, Arratia PC, Song Y, Branle F, Shi M, Kim DW. ASCEND-7: Efficacy and Safety of Ceritinib Treatment in Patients with ALK-Positive Non-Small Cell Lung Cancer Metastatic to the Brain and/or Leptomeninges. Clin Cancer Res 2022; 28:2506-2516. [PMID: 35091443 DOI: 10.1158/1078-0432.ccr-21-1838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/25/2021] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Central nervous system metastases are a prominent cause of morbidity and mortality in patients with ALK-positive (ALK+) non-small cell lung cancer (NSCLC). The phase II ASCEND-7 (NCT02336451) study was specifically designed to assess the efficacy and safety of the ALK inhibitor (ALKi) ceritinib in patients with ALK+ NSCLC metastatic to the brain and/or leptomeninges. PATIENTS AND METHODS Patients with active brain metastases were allocated to study arms 1 to 4 based on prior exposure to an ALKi and/or prior brain radiation (arm 1: prior radiotherapy/ALKi-pretreated; arm 2: no radiotherapy/ALKi-pretreated; arm 3: prior radiotherapy/ALKi-naïve; arm 4: no radiotherapy/ALKi-naïve). Arm 5 included patients with leptomeningeal carcinomatosis. Patients received ceritinib 750 mg once daily (fasted condition). Primary endpoint was investigator-assessed whole-body overall response rate (ORR) per RECIST v1.1. Secondary endpoints included disease control rate (DCR) and intracranial/extracranial responses. RESULTS Per investigator assessment, in arms 1 (n = 42), 2 (n = 40), 3 (n = 12), and 4 (n = 44), respectively: whole-body ORRs [95% confidence interval (CI)] were 35.7% (21.6-52.0), 30.0% (16.6-46.5), 50.0% (21.1-78.9), and 59.1% (43.2-73.7); whole-body DCR (95% CI): 66.7% (50.5-80.4), 82.5% (67.2-92.7), 66.7% (34.9-90.1), and 70.5% (54.8-83.2); intracranial ORRs (95% CI): 39.3% (21.5-59.4), 27.6% (12.7-47.2), 28.6% (3.7-71.0), and 51.5% (33.5-69.2). In arm 5 (n = 18), whole-body ORR was 16.7% (95% CI, 3.6-41.4) and DCR was 66.7% (95% CI, 41.0-86.7). Paired cerebrospinal fluid and plasma sampling revealed that ceritinib penetrated the human blood-brain barrier. CONCLUSIONS Ceritinib showed antitumor activity in patients with ALK+ NSCLC with active brain metastases and/or leptomeningeal disease, and could be considered in the management of intracranial disease. See related commentary by Murciano-Goroff et al., p. 2477.
Collapse
Affiliation(s)
- Laura Q M Chow
- University of Washington, Seattle, Washington and University of Texas at Austin, Dell Medical School, Department of Oncology, Austin, Texas
| | - Fabrice Barlesi
- Aix-Marseille University, CNRS, INSERM, CRCM, APHM, Marseille, France
| | - Erin M Bertino
- The Ohio State University Comprehensive Cancer Centre, Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio
| | - Martin J van den Bent
- Department of Neurology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - Patrick Y Wen
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Chao-Hua Chiu
- Department of Chest Medicine, Taipei Veterans General Hospital, National Yang-Ming University, Taipei, Taiwan
| | - Sergey Orlov
- State Pavlov Medical University, St. Petersburg, Russia
| | - Rita Chiari
- Department of Oncology, AULSS6 Euganea, Padova, Italy
| | | | | | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Pilar Garrido
- Department of Medical Oncology, Hospital Universitario Ramon Y Cajal, Madrid, Spain
| | | | | | - Yuanbo Song
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | | | - Michael Shi
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Dong-Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
63
|
Zhou W, Yan LD, Yu ZQ, Li N, Yang YH, Wang M, Chen YY, Mao MX, Peng XC, Cai J. Role of STK11 in ALK-positive non-small cell lung cancer. Oncol Lett 2022; 23:181. [PMID: 35527776 PMCID: PMC9073580 DOI: 10.3892/ol.2022.13301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/01/2022] [Indexed: 11/10/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) inhibitors have been shown to be effective in treating patients with ALK-positive non-small cell lung cancer (NSCLC), and crizotinib, ceritinib and alectinib have been approved as clinical first-line therapeutic agents. The availability of these inhibitors has also largely changed the treatment strategy for advanced ALK-positive NSCLC. However, patients still inevitably develop resistance to ALK inhibitors, leading to tumor recurrence or metastasis. The most critical issues that need to be addressed in the current treatment of ALK-positive NSCLC include the high cost of targeted inhibitors and the potential for increased toxicity and resistance to combination therapy. Recently, it has been suggested that the serine/threonine kinase 11 (STK11) mutation may serve as one of the biomarkers for immunotherapy in NSCLC. Therefore, the main purpose of this review was to summarize the role of STK11 in ALK-positive NSCLC. The present review also summarizes the treatment and drug resistance studies in ALK-positive NSCLC and the current status of STK11 research in NSCLC.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Lu-Da Yan
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Zhi-Qiong Yu
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Na Li
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yong-Hua Yang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Meng Wang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yuan-Yuan Chen
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Meng-Xia Mao
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Jun Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
64
|
Failure of crizotinib based systemic treatment in ALK positive histiocytosis involving the central nervous system: a case report and literature review. BMC Pediatr 2022; 22:308. [PMID: 35614430 PMCID: PMC9131667 DOI: 10.1186/s12887-022-03368-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/17/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Among the histiocytic disorders, anaplastic lymphoma kinase (ALK)-positive histiocytosis emerged in 2008. As more and more cases of the novel entity are reported, our understanding of it is deepened. However, only a few cases with central nervous system (CNS) involvement have been reported. Furthermore, the lesion in the suprasellar region has not been documented. CASE PRESENTATION: We presented a case of ALK-positive histiocytosis involving the suprasellar region of a one-year-and-four-month-old boy. Through clinical, neuropathological, and genomic analyses, the patient was diagnosed with ALK-positive histiocytosis. After lesions were resected he started treatment with a combination of the three compounds vincristine, prednisolone, and crizotinib, but they did not work. Cytarabine was then added as an additional chemotherapy drug for him, and the lesions in the brain and lungs were shrunk by combining treatment of crizotinib, dexamethasone, vincristine, and cytarabine according to the RECIST (esponse Evaluation Criteria In Solid Tumours). CONCLUSIONS Additional adjuvant chemotherapy drugs are needed when ALK-inhibitor treatment is ineffective.
Collapse
|
65
|
Advances in the Diagnosis and Treatment of Leptomeningeal Disease. Curr Neurol Neurosci Rep 2022; 22:413-425. [PMID: 35588045 DOI: 10.1007/s11910-022-01198-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Leptomeningeal disease (LMD) is a rare, late complication of systemic cancer and is associated with significant neurological morbidity and high mortality. Here we provide an overview of this condition, summarizing key recent research findings and clinical practice trends in its diagnosis and treatment. We also review current clinical trials for LMD. RECENT FINDINGS Improved molecular diagnostic tools are in development to enable more sensitive detection of LMD, including circulating tumor cells and circulating tumor DNA. The use of targeted and CNS-penetrant therapeutics has shown survival improvements with tyrosine kinase inhibitors, antibody-drug conjugates, and select chemotherapy. However, these studies have primarily been phase I/II and retrospective analyses. There remains a dearth of clinical trials that include LMD patients. The combination of patient-specific molecular information and novel therapeutic approaches holds significant promise for improving outcomes in patients with LMD.
Collapse
|
66
|
André L, Antherieu G, Boinet A, Bret J, Gilbert T, Boulahssass R, Falandry C. Oncological Treatment-Related Fatigue in Oncogeriatrics: A Scoping Review. Cancers (Basel) 2022; 14:2470. [PMID: 35626074 PMCID: PMC9139887 DOI: 10.3390/cancers14102470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/17/2022] Open
Abstract
Fatigue is a highly prevalent symptom in both cancer patients and the older population, and it contributes to quality-of-life impairment. Cancer treatment-related fatigue should thus be included in the risk/benefit assessment when introducing any treatment, but tools are lacking to a priori estimate such risk. This scoping review was designed to report the current evidence regarding the frequency of fatigue for the different treatment regimens proposed for the main cancer indications, with a specific focus on age-specific data, for the following tumors: breast, ovary, prostate, urothelium, colon, lung and lymphoma. Fatigue was most frequently reported using the National Cancer Institute Common Terminology Criteria for Adverse Events (NCI CTCAE) versions 3 to 5. A total of 324 regimens were analyzed; data on fatigue were available for 217 (67%) of them, and data specific to older patients were available for 35 (11%) of them; recent pivotal trials have generally reported more fatigue grades than older studies, illustrating increasing concern over time. This scoping review presents an easy-to-understand summary that is expected to provide helpful information for shared decisions with patients regarding the anticipation and prevention of fatigue during each cancer treatment.
Collapse
Affiliation(s)
- Louise André
- Hospices Civils de Lyon, Geriatrics Department, Hôpital Lyon Sud, 69230 Saint Genis-Laval, France; (L.A.); (G.A.); (A.B.); (J.B.); (T.G.)
| | - Gabriel Antherieu
- Hospices Civils de Lyon, Geriatrics Department, Hôpital Lyon Sud, 69230 Saint Genis-Laval, France; (L.A.); (G.A.); (A.B.); (J.B.); (T.G.)
| | - Amélie Boinet
- Hospices Civils de Lyon, Geriatrics Department, Hôpital Lyon Sud, 69230 Saint Genis-Laval, France; (L.A.); (G.A.); (A.B.); (J.B.); (T.G.)
| | - Judith Bret
- Hospices Civils de Lyon, Geriatrics Department, Hôpital Lyon Sud, 69230 Saint Genis-Laval, France; (L.A.); (G.A.); (A.B.); (J.B.); (T.G.)
| | - Thomas Gilbert
- Hospices Civils de Lyon, Geriatrics Department, Hôpital Lyon Sud, 69230 Saint Genis-Laval, France; (L.A.); (G.A.); (A.B.); (J.B.); (T.G.)
- Research on Healthcare Professionals and Performance RESHAPE, Inserm U1290, Lyon 1 University, 69008 Lyon, France
| | - Rabia Boulahssass
- Geriatric Coordination Unit for Geriatric Oncology (UCOG) PACA Est CHU de Nice, 06000 Nice, France;
- FHU OncoAge, 06000 Nice, France
- Faculty of Medicine, University of Nice Sofia Antilpolis, 06000 Nice, France
| | - Claire Falandry
- Hospices Civils de Lyon, Geriatrics Department, Hôpital Lyon Sud, 69230 Saint Genis-Laval, France; (L.A.); (G.A.); (A.B.); (J.B.); (T.G.)
- FHU OncoAge, 06000 Nice, France
- CarMeN Laboratory, INSERM U.1060/Université Lyon1/INRA U. 1397/INSA Lyon/Hospices Civils Lyon, Bâtiment CENS-ELI 2D, Hôpital Lyon Sud Secteur 2, 69310 Pierre-Bénite, France
- UCOGIR—Auvergne-Rhône-Alpes Ouest–Guyane, Hôpital Lyon Sud, 69495 Pierre-Bénite, France
- Faculty of Medicine and Maieutics Charles Mérieux, Lyon 1 University, 69310 Pierre-Bénite, France
| |
Collapse
|
67
|
Ma X, Yang S, Zhang K, Xu J, Lv P, Gao H, Qin H, Wang H, Liu X. Efficacy of different sequential patterns after crizotinib progression in advanced anaplastic lymphoma kinase-positive non-small cell lung cancer. Thorac Cancer 2022; 13:1788-1794. [PMID: 35560808 PMCID: PMC9200878 DOI: 10.1111/1759-7714.14455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022] Open
Abstract
Background The efficacy difference between the second‐ and third‐generation of anaplastic lymphoma kinase‐tyrosine kinase inhibitors (ALK‐TKIs) after crizotinib failure in advanced ALK‐positive non–small cell lung cancer (NSCLC) has not been clarified. This study evaluates the efficacy of different sequential patterns after crizotinib progression. Methods Data of patients who met the study criteria were retrospectively analyzed. The Kaplan–Meier method was used to draw survival curves, log‐rank method was used to compare the differences between groups, and Cox multivariate analysis was used to evaluate the significance of influencing factors. Results A total of 128 patients developed disease progression after crizotinib. The overall survival (OS) of 57 patients in the sequential second‐generation ALK‐TKIs group was significantly longer than that of 65 patients with other systemic treatment (58.5 months vs. 33.0 months, p < 0.001); The OS of the direct sequential lorlatinib group was significantly longer than the second‐generation ALK‐TKIs group (114.0 months vs. 58.5 months, p = 0.020). Similarly, of the 48 patients who developed disease progression after first‐ and second‐generation ALK‐TKIs treatment, 16 patients with sequential lorlatinib had significantly longer OS than the others (62.0 months vs. 43.0 months, p = 0.014). The progression‐free survival (PFS) of second‐line and third‐ or later‐line lorlatinib were statistically different (20.0 months vs. 5.5 months, p = 0.011). Conclusions The application of next‐generation ALK‐TKIs after crizotinib progression significantly prolonged survival, whereas direct sequencing lorlatinib seemed advantageous. Similarly, lorlatinib also prolonged survival in patients with first‐ and second‐generation ALK‐TKIs failure.
Collapse
Affiliation(s)
- Xiya Ma
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.,Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shaoxing Yang
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Kun Zhang
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jing Xu
- Medical School of Chinese PLA, Beijing, China
| | - Panpan Lv
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongjun Gao
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haifeng Qin
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hong Wang
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoqing Liu
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
68
|
TABBÒ F, DE FILIPPIS M, JACOBS F, NOVELLO S. Strengths and pitfalls of brigatinib in non-small cell lung cancer patients' management. Minerva Med 2022; 113:315-332. [DOI: 10.23736/s0026-4806.21.07693-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
69
|
Peng L, Zhu L, Sun Y, Stebbing J, Selvaggi G, Zhang Y, Yu Z. Targeting ALK Rearrangements in NSCLC: Current State of the Art. Front Oncol 2022; 12:863461. [PMID: 35463328 PMCID: PMC9020874 DOI: 10.3389/fonc.2022.863461] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/08/2022] [Indexed: 12/25/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) alterations in non-small cell lung cancer (NSCLC) can be effectively treated with a variety of ALK-targeted drugs. After the approval of the first-generation ALK inhibitor crizotinib which achieved better results in prolonging the progression-free survival (PFS) compared with chemotherapy, a number of next-generation ALK inhibitors have been developed including ceritinib, alectinib, brigatinib, and ensartinib. Recently, a potent, third-generation ALK inhibitor, lorlatinib, has been approved by the Food and Drug Administration (FDA) for the first-line treatment of ALK-positive (ALK+) NSCLC. These drugs have manageable toxicity profiles. Responses to ALK inhibitors are however often not durable, and acquired resistance can occur as on-target or off-target alterations. Studies are underway to explore the mechanisms of resistance and optimal treatment options beyond progression. Efforts have also been undertaken to develop further generations of ALK inhibitors. This review will summarize the current situation of targeting the ALK signaling pathway.
Collapse
Affiliation(s)
- Ling Peng
- Cancer Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Liping Zhu
- Department of Medical Oncology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, China
| | - Yilan Sun
- Cancer Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Justin Stebbing
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | | | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, China
| | - Zhentao Yu
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
70
|
Toxicity profile of anaplastic lymphoma kinase tyrosine kinase inhibitors for patients with non-small cell lung cancer: A systematic review and meta-analysis. Invest New Drugs 2022; 40:831-840. [DOI: 10.1007/s10637-022-01242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
|
71
|
Abstract
The high prices of new anticancer drugs and the marginal added benefit perceived by some stakeholders have fuelled a debate on the value of anticancer drugs in the European Union, even though an agreed definition of what constitutes a drug's value does not exist. In this Perspective, we discuss the value of drugs from different viewpoints and objectives of decision makers: for regulators, assessment of the benefit-risk balance of a drug is a cornerstone for approval; payers rely on cost-effectiveness analyses carried out by health technology assessment agencies for reimbursement decisions; for patients, treatment choices are based on personal preferences and attitudes to risk; and clinicians can use several scales (such as the ESMO Magnitude of Clinical Benefit Scale (ESMO-MCBS)) that have been developed as an attempt to measure value objectively. Although a unique definition that fully captures the concept of value is unlikely to emerge, herein we discuss the importance of understanding different perspectives, and how regulators can help to inform different decision makers.
Collapse
|
72
|
Review of Therapeutic Strategies for Anaplastic Lymphoma Kinase-Rearranged Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14051184. [PMID: 35267492 PMCID: PMC8909087 DOI: 10.3390/cancers14051184] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) was first reported in 2007. Following the development of crizotinib as a tyrosine kinase inhibitor (TKI) targeting ALK, the treatment of advanced NSCLC with ALK-rearrangements has made remarkable progress. Currently, there are five ALK-TKIs approved by the FDA, and the development of new agents, including fourth-generation TKI, is ongoing. Clinical trials with angiogenesis inhibitors and immune checkpoint inhibitors are also underway, and further progress in the treatment of ALK-rearranged advanced NSCLC is expected. The purpose of this manuscript is to provide information on the recent clinical trials of ALK-TKIs, angiogenesis inhibitors, immune checkpoint inhibitors, and chemotherapy, to describe tissue and liquid biopsy as a method to investigate the mechanisms of resistance against ALK-TKIs and suggest a proposed treatment algorithm. Abstract Non-small cell lung cancer (NSCLC) with anaplastic lymphoma kinase rearrangement (ALK) was first reported in 2007. ALK-rearranged NSCLC accounts for about 3–8% of NSCLC. The first-line therapy for ALK-rearranged advanced NSCLC is tyrosine kinase inhibitors (TKI) targeting ALK. Following the development of crizotinib, the first ALK-TKI, patient prognosis has been greatly improved. Currently, five TKIs are approved by the FDA. In addition, clinical trials of the novel TKI, ensartinib, and fourth-generation ALK-TKI for compound ALK mutation are ongoing. Treatment with angiogenesis inhibitors and immune checkpoint inhibitors is also being studied. However, as the disease progresses, cancers tend to develop resistance mechanisms. In addition to ALK mutations, other mechanisms, including the activation of bypass signaling pathways and histological transformation, cause resistance, and the identification of these mechanisms is important in selecting subsequent therapy. Studies on tissue and liquid biopsy have been reported and are expected to be useful tools for identifying resistance mechanisms. The purpose of this manuscript is to provide information on the recent clinical trials of ALK-TKIs, angiogenesis inhibitors, immune checkpoint inhibitors, and chemotherapy to describe tissue and liquid biopsy as a method to investigate the mechanisms of resistance against ALK-TKIs and suggest a proposed treatment algorithm.
Collapse
|
73
|
Pisano C, De Filippis M, Jacobs F, Novello S, Reale ML. Management of Oligoprogression in Patients with Metastatic NSCLC Harboring ALK Rearrangements. Cancers (Basel) 2022; 14:cancers14030718. [PMID: 35158987 PMCID: PMC8833409 DOI: 10.3390/cancers14030718] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The growing efficacy and availability of new targeted systemic therapies have markedly improved the prognosis of metastatic lung cancer patients harboring ALK rearrangements. The use of effective targeted therapies capable of maintaining a prolonged control of disease, for as long as possible, is paramount to ensure the best survival outcomes. In this regard, in cases of oligoprogression, “beyond progression” systemic treatment added to local ablative therapies is considered a feasible option in an attempt to improve the quality and quantity of patients’ lives, even if based on retrospective data. Certainly, treatment of ALK rearranged lung cancer patients with oligoprogressive disease must be individualized and based on multidisciplinary decisions. Above all, when further molecular targeted therapies are available, options must always be evaluated, especially in case of cerebral progression. In this review, we provide an updated and comprehensive overview of the main treatment strategies in cases of ALK rearranged oligoprogression. Abstract Personalized treatment based on driver molecular alterations, such as ALK rearrangement, has revolutionized the therapeutic management of advanced oncogene-addicted NSCLC patients. Multiple effective ALK tyrosine kinase inhibitors (TKIs), with the amelioration of the activity at central nervous system level, are now available, leading to substantial prognosis improvement. The exposure to TKIs triggers resistance mechanisms and the sequential administration of other TKIs and chemotherapy is, for the most part, not targeted. In this context, extending the benefit deriving from precision medicine is paramount, above all, when disease progression occurs in a limited number of sites. Retrospective data indicate that, in oligoprogressive disease, targeted therapy beyond progression combined with definitive local treatment of the progressing site(s) is an effective alternative. In these cases, a multidisciplinary approach becomes essential for an integrated treatment strategy, depending on the site of disease progression, in order to improve not only survival, but also quality of life. In this review we provide an updated and comprehensive overview of the main treatment strategies in cases of ALK rearranged oligoprogression, including systemic treatment as well as local therapy, and report a real-world clinical story, with the final aim of identifying the most promising management for this subset of patients.
Collapse
|
74
|
Safety and activity of WX-0593 (Iruplinalkib) in patients with ALK- or ROS1-rearranged advanced non-small cell lung cancer: a phase 1 dose-escalation and dose-expansion trial. Signal Transduct Target Ther 2022; 7:25. [PMID: 35087031 PMCID: PMC8795197 DOI: 10.1038/s41392-021-00841-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022] Open
Abstract
WX-0593 (Iruplinalkib) is a novel, highly selective oral ALK and ROS1 tyrosine kinase inhibitor (TKI). In this study, the safety, antitumor activity, and pharmacokinetics of WX-0593 were evaluated in advanced non-small cell lung cancer (NSCLC) patients with ALK or ROS1 rearrangement. In the dose-escalation phase and dose-expansion phase, patients were treated with WX-0593 until disease progression, unacceptable toxicity, or subject withdrawal. In the dose-escalation phase, the primary endpoints were maximum tolerated dose (MTD), dose-limiting toxicity (DLT), and safety assessed by investigators. In the dose-expansion phase, the primary endpoint was objective response rate (ORR) assessed by investigators. Between September 25, 2017 and October 15, 2018, a total of 153 patients received WX-0593 treatment. Two dose-limiting toxicities (DLTs) including one grade 3 QT interval prolonged and one grade 2 chronic heart failure were reported at the dose of 300 mg in one patient. MTD was not reached. Overall, 140 of the 152 (92%) patients experienced treatment-related adverse events (TRAEs) and 35 of the 152 (23%) patients had TRAEs ≥grade 3. The overall ORR was 59.3% (32 of 54) for the dose-escalation phase and 56.6% (56 of 99) for the dose-expansion phase. For patients who were ALK-rearranged and ALK TKI naive, the ORR were 81.0% (17 of 21) in the dose-escalation phase and 76.3% (29 of 38) in the dose-expansion phase, and for patients who previously received crizotinib as the only ALK TKI, the ORR were 38.1% (8 of 21) and 45.7% (21 of 46) for the two phases, respectively. For patients who were ROS1-rearranged, the ORR were 30.0% (3 of 10) in the dose-escalation phase and 44.4% (4 of 9) in the dose-expansion phase. WX-0593 showed favorable safety and promising antitumor activity in advanced NSCLC patients with ALK or ROS1 rearrangement.
Collapse
|
75
|
Mehta S, Fiorelli R, Bao X, Pennington-Krygier C, Derogatis A, Kim S, Yoo W, Li J, Sanai N. A Phase 0 Trial of Ceritinib in Patients with Brain Metastases and Recurrent Glioblastoma. Clin Cancer Res 2022; 28:289-297. [PMID: 34702773 PMCID: PMC9306447 DOI: 10.1158/1078-0432.ccr-21-1096] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/28/2021] [Accepted: 10/20/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Ceritinib is an orally bioavailable, small-molecule inhibitor of anaplastic lympoma kinase (ALK), insulin-like growth factor 1 receptor (IGFR1), and focal adhesion kinase (FAK), which are highly expressed in glioblastoma and many brain metastases. Preclinical and clinical studies indicate that ceritinib has antitumor activity in central nervous system (CNS) malignancies. This phase 0 trial measured the tumor pharmacokinetics (PK) and pharmacodynamics (PD) of ceritinib in patients with brain metastasis or recurrent glioblastoma. PATIENTS AND METHODS Preoperative patients with brain tumors demonstrating high expression of pSTAT5b/pFAK/pIGFR1 were administered ceritinib for 10 days prior to tumor resection. Plasma, tumor, and cerebrospinal fluid (CSF) samples were collected at predefined timepoints following the final dose. Total and unbound drug concentrations were determined using LC-MS/MS. In treated tumor and matched archival tissues, tumor PD was quantified through IHC analysis of pALK, pSTAT5b, pFAK, pIGFR1, and pIRS1. RESULTS Ten patients (3 brain metastasis, 7 glioblastoma) were enrolled and no dose-limiting toxicities were observed. Ceritinib was highly bound to human plasma protein [median fraction unbound (Fu), 1.4%] and to brain tumor tissue (median Fu, 0.051% and 0.045% in gadolinium-enhancing and -nonenhancing regions respectively). Median unbound concentrations in enhancing and nonenhancing tumor were 0.048 and 0.006 μmol/L, respectively. Median unbound tumor-to-plasma ratios were 2.86 and 0.33 in enhancing and nonenhancing tumor, respectively. No changes in PD biomarkers were observed in the treated tumor samples as compared to matched archival tumor tissue. CONCLUSIONS Ceritinib is highly bound to plasma proteins and tumor tissues. Unbound drug concentrations achieved in brain metastases and patients with recurrent glioblastoma were insufficient for target modulation.
Collapse
Affiliation(s)
- Shwetal Mehta
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona
| | - Roberto Fiorelli
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona
| | - Xun Bao
- Karmanos Cancer Institute, Cancer Biology Program, Wayne State University School of Medicine, Detroit, Michigan
| | | | - Alanna Derogatis
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona
| | - Seongho Kim
- Karmanos Cancer Institute, Cancer Biology Program, Wayne State University School of Medicine, Detroit, Michigan
| | - Wonsuk Yoo
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona
| | - Jing Li
- Karmanos Cancer Institute, Cancer Biology Program, Wayne State University School of Medicine, Detroit, Michigan
| | - Nader Sanai
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona.,Corresponding Author: Nader Sanai, Ivy Brain Tumor Center, Barrow Neurological Institute, 2910 North Third Avenue, Phoenix, AZ 85013. Phone: 602-406-8889; E-mail:
| |
Collapse
|
76
|
Murphy P, Glynn D, Dias S, Hodgson R, Claxton L, Beresford L, Cooper K, Tappenden P, Ennis K, Grosso A, Wright K, Cantrell A, Stevenson M, Palmer S. Modelling approaches for histology-independent cancer drugs to inform NICE appraisals: a systematic review and decision-framework. Health Technol Assess 2022; 25:1-228. [PMID: 34990339 DOI: 10.3310/hta25760] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The first histology-independent marketing authorisation in Europe was granted in 2019. This was the first time that a cancer treatment was approved based on a common biomarker rather than the location in the body at which the tumour originated. This research aims to explore the implications for National Institute for Health and Care Excellence appraisals. METHODS Targeted reviews were undertaken to determine the type of evidence that is likely to be available at the point of marketing authorisation and the analyses required to support National Institute for Health and Care Excellence appraisals. Several challenges were identified concerning the design and conduct of trials for histology-independent products, the greater levels of heterogeneity within the licensed population and the use of surrogate end points. We identified approaches to address these challenges by reviewing key statistical literature that focuses on the design and analysis of histology-independent trials and by undertaking a systematic review to evaluate the use of response end points as surrogate outcomes for survival end points. We developed a decision framework to help to inform approval and research policies for histology-independent products. The framework explored the uncertainties and risks associated with different approval policies, including the role of further data collection, pricing schemes and stratified decision-making. RESULTS We found that the potential for heterogeneity in treatment effects, across tumour types or other characteristics, is likely to be a central issue for National Institute for Health and Care Excellence appraisals. Bayesian hierarchical methods may serve as a useful vehicle to assess the level of heterogeneity across tumours and to estimate the pooled treatment effects for each tumour, which can inform whether or not the assumption of homogeneity is reasonable. Our review suggests that response end points may not be reliable surrogates for survival end points. However, a surrogate-based modelling approach, which captures all relevant uncertainty, may be preferable to the use of immature survival data. Several additional sources of heterogeneity were identified as presenting potential challenges to National Institute for Health and Care Excellence appraisal, including the cost of testing, baseline risk, quality of life and routine management costs. We concluded that a range of alternative approaches will be required to address different sources of heterogeneity to support National Institute for Health and Care Excellence appraisals. An exemplar case study was developed to illustrate the nature of the assessments that may be required. CONCLUSIONS Adequately designed and analysed basket studies that assess the homogeneity of outcomes and allow borrowing of information across baskets, where appropriate, are recommended. Where there is evidence of heterogeneity in treatment effects and estimates of cost-effectiveness, consideration should be given to optimised recommendations. Routine presentation of the scale of the consequences of heterogeneity and decision uncertainty may provide an important additional approach to the assessments specified in the current National Institute for Health and Care Excellence methods guide. FURTHER RESEARCH Further exploration of Bayesian hierarchical methods could help to inform decision-makers on whether or not there is sufficient evidence of homogeneity to support pooled analyses. Further research is also required to determine the appropriate basis for apportioning genomic testing costs where there are multiple targets and to address the challenges of uncontrolled Phase II studies, including the role and use of surrogate end points. FUNDING This project was funded by the National Institute for Health Research (NIHR) Evidence Synthesis programme and will be published in full in Health Technology Assessment; Vol. 25, No. 76. See the NIHR Journals Library website for further project information.
Collapse
Affiliation(s)
- Peter Murphy
- Centre for Reviews and Dissemination, University of York, York, UK
| | - David Glynn
- Centre for Health Economics, University of York, York, UK
| | - Sofia Dias
- Centre for Reviews and Dissemination, University of York, York, UK
| | - Robert Hodgson
- Centre for Reviews and Dissemination, University of York, York, UK
| | - Lindsay Claxton
- Centre for Reviews and Dissemination, University of York, York, UK
| | - Lucy Beresford
- Centre for Reviews and Dissemination, University of York, York, UK
| | - Katy Cooper
- School of Health and Related Research (ScHARR) Technology Assessment Group, University of Sheffield, Sheffield, UK
| | - Paul Tappenden
- School of Health and Related Research (ScHARR) Technology Assessment Group, University of Sheffield, Sheffield, UK
| | - Kate Ennis
- School of Health and Related Research (ScHARR) Technology Assessment Group, University of Sheffield, Sheffield, UK
| | | | - Kath Wright
- Centre for Reviews and Dissemination, University of York, York, UK
| | - Anna Cantrell
- School of Health and Related Research (ScHARR) Technology Assessment Group, University of Sheffield, Sheffield, UK
| | - Matt Stevenson
- School of Health and Related Research (ScHARR) Technology Assessment Group, University of Sheffield, Sheffield, UK
| | - Stephen Palmer
- Centre for Health Economics, University of York, York, UK
| |
Collapse
|
77
|
Goto Y, Arakawa S, Shirasawa M, Higashiyama R, Baba K, Masuda K, Shinno Y, Matsumoto Y, Okuma Y, Yoshida T, Horinouchi H, Yamamoto N, Ohe Y. Performance of Japanese patients in registrational studies. Jpn J Clin Oncol 2022; 52:53-64. [PMID: 34978326 DOI: 10.1093/jjco/hyab171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/18/2021] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION The accelerated development of lung cancer treatments has resulted in a single global study that is sufficient for a new agent and indication to be approved. Not all new treatments predominate globally, and differences in standards of care may influence the efficacy of treatments in the real world. METHODS The results from Japanese domestic trials and global trials that included a subset population of Japanese patients were evaluated for 18 genomic targeted agents and immune therapies approved after 2000. The results were collected from drug applications that were reviewed for treatment approval in Japan. RESULTS Japan is one of the first countries to approve and fully reimburse new agents around the world. Alectinib and nivolumab, which were first developed by Japanese pharmaceutical companies, were evaluated in an independent domestic trial, which resulted in their early approval. For most other indications, 1.1-15.8% of the patients who participated in pivotal registration studies were Japanese, and their treatment results were comparable to those of the overall population. Overall survival was less likely to be improved by four agents for which the post-protocol therapy might have been different in Japan than in other countries. CONCLUSIONS Overall, a positive result in a global trial was emulated in Japanese patients and led to the approval of a new standard treatment in Japan. Early approvals were attained by either participating in the global registrational study or conducting a domestic phase II study. The higher efficacy of new agents may be an issue in the future, as Japanese patients had early access to the new agent and may receive better treatment after the trial.
Collapse
Affiliation(s)
- Yasushi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Sayaka Arakawa
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Masayuki Shirasawa
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Ryoko Higashiyama
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Keisuke Baba
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Ken Masuda
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Yuki Shinno
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Yuji Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Yusuke Okuma
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Noboru Yamamoto
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| |
Collapse
|
78
|
Botticelli A, Pomati G, Marchetti P. Target therapy in cancer treatment. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
79
|
Pulmonary granulomatous inflammation after ceritinib treatment in advanced ALK-rearranged pulmonary adenocarcinoma. Invest New Drugs 2022; 40:1141-1145. [PMID: 35727390 PMCID: PMC9395502 DOI: 10.1007/s10637-022-01270-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023]
Abstract
Ceritinib is a new anaplastic lymphoma kinase (ALK) inhibitor that has shown greater potency in patients with advanced ALK-rearranged non-small cell lung cancer, including those who had disease progression in crizotinib treatment. Here we reported, after several months of ceritinib treatment, two patients with advanced ALK-rearranged pulmonary adenocarcinoma exhibited a spectrum of respiratory symptoms like cough and dyspnea, with significantly higher inflammatory indicators. Chest computed tomography (CT) showed multiple bilateral and peripheral lesions in lungs. The prior considerations taken into account were disease progression or infection. However, biopsies of the pulmonary nodules revealed features of granulomatous inflammation without definite cancer cells. We documented for the first time that ceritinib might be associated with pulmonary granulomatous inflammation, and clinicians should be alert to the possibility that the rare adverse event emerged during ceritinib treatment.
Collapse
|
80
|
Vogelbaum MA, Brown PD, Messersmith H, Brastianos PK, Burri S, Cahill D, Dunn IF, Gaspar LE, Gatson NTN, Gondi V, Jordan JT, Lassman AB, Maues J, Mohile N, Redjal N, Stevens G, Sulman E, van den Bent M, Wallace HJ, Weinberg JS, Zadeh G, Schiff D. Treatment for Brain Metastases: ASCO-SNO-ASTRO Guideline. J Clin Oncol 2021; 40:492-516. [PMID: 34932393 DOI: 10.1200/jco.21.02314] [Citation(s) in RCA: 399] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To provide guidance to clinicians regarding therapy for patients with brain metastases from solid tumors. METHODS ASCO convened an Expert Panel and conducted a systematic review of the literature. RESULTS Thirty-two randomized trials published in 2008 or later met eligibility criteria and form the primary evidentiary base. RECOMMENDATIONS Surgery is a reasonable option for patients with brain metastases. Patients with large tumors with mass effect are more likely to benefit than those with multiple brain metastases and/or uncontrolled systemic disease. Patients with symptomatic brain metastases should receive local therapy regardless of the systemic therapy used. For patients with asymptomatic brain metastases, local therapy should not be deferred unless deferral is specifically recommended in this guideline. The decision to defer local therapy should be based on a multidisciplinary discussion of the potential benefits and harms that the patient may experience. Several regimens were recommended for non-small-cell lung cancer, breast cancer, and melanoma. For patients with asymptomatic brain metastases and no systemic therapy options, stereotactic radiosurgery (SRS) alone should be offered to patients with one to four unresected brain metastases, excluding small-cell lung carcinoma. SRS alone to the surgical cavity should be offered to patients with one to two resected brain metastases. SRS, whole brain radiation therapy, or their combination are reasonable options for other patients. Memantine and hippocampal avoidance should be offered to patients who receive whole brain radiation therapy and have no hippocampal lesions and 4 months or more expected survival. Patients with asymptomatic brain metastases with either Karnofsky Performance Status ≤ 50 or Karnofsky Performance Status < 70 with no systemic therapy options do not derive benefit from radiation therapy.Additional information is available at www.asco.org/neurooncology-guidelines.
Collapse
Affiliation(s)
| | | | | | | | - Stuart Burri
- Levine Cancer Institute at Atrium Health, Charlotte, NC
| | - Dan Cahill
- Massachusetts General Hospital, Boston, MA
| | - Ian F Dunn
- Stephenson Cancer Center at the University of Oklahoma, Oklahoma City, OK
| | - Laurie E Gaspar
- University of Colorado School of Medicine, Aurora, CO.,University of Texas MD Anderson Cancer Center Northern Colorado, Greeley, CO
| | - Na Tosha N Gatson
- Banner MD Anderson Cancer Center, Phoenix, AZ.,Geisinger Neuroscience Institute. Danville, PA
| | - Vinai Gondi
- Northwestern Medicine Cancer Center Warrenville and Proton Center, Warrenville, IL
| | | | | | - Julia Maues
- Georgetown Breast Cancer Advocates, Washington, DC
| | - Nimish Mohile
- University of Rochester Medical Center, Rochester, NY
| | - Navid Redjal
- Capital Health Medical Center - Hopewell Campus, Princeton, NJ
| | | | | | - Martin van den Bent
- Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | | | | | | - David Schiff
- University of Virginia Medical Center, Charlottesville, VA
| |
Collapse
|
81
|
王 可, 李 娟, 孙 建, 李 力, 张 西, 张 建, 余 敏, 叶 贤, 张 明, 张 瑜, 姚 文, 黄 媚. [Recommendations from Experts in the Management of Adverse Reactions
to ALK Inhibitors (2021 Version)]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 24:815-828. [PMID: 34670356 PMCID: PMC8695243 DOI: 10.3779/j.issn.1009-3419.2021.102.32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Anaplastic lymphoma kinase (ALK) fusion gene, as a tumor driver gene, was crucial for the occurrence and development of non-small cell lung cancer (NSCLC). Recently, targeted ALK fusion gene has become the main treatment method for ALK-positive NSCLC. The first and second generation ALK inhibitors (ALKi), such as crizotinib, ceritinib, alectinib and ensartinib have been approved in China. However, there was no guidance for the management of ALKi adverse reactions. Therefore, this "Recommendations from experts in the management of adverse reactions to ALK inhibitors (2021 version)" has been summarized, led by Lung Cancer Professional Committee of Sichuan Cancer Society and Sichuan Medical Quality Control Center for Tumor Diseases, to provide practical and feasible strategies for clinical ALKi management specification of adverse reactions.
.
Collapse
Affiliation(s)
- 可 王
- 610041 成都,四川大学华西医院呼吸与危重症医学科Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - 娟 李
- 610041 成都,四川省肿瘤医院肿瘤内科Department of Oncology, Sichuan Cancer Hospital, Chengdu 610041, China
| | - 建国 孙
- 400037 重庆,陆军军医大学新桥医院肿瘤科Department of Oncology, Xinqiao Hospital, Army Military Medical University, Chongqing 400037, China
| | - 力 李
- 400042 重庆,陆军特色医学中心(大坪医院)呼吸与危重症医学科Department of Respiratory and Critical Care Medicine, Army Special Medical Center (Daping Hospital), Chongqing 400042, China
| | - 西 张
- 610000 成都,成都市第三人民医院肿瘤科Department of Oncology, Chengdu Third People's Hospital, Chengdu 610000, China
| | - 建勇 张
- 563000 遵义,呼吸与危重症医学科,遵义医科大学附属医院Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - 敏 余
- 610041 成都,四川大学华西医院胸部肿瘤科Department of Thoracic Oncology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - 贤伟 叶
- 550002 贵阳,贵州省人民医院呼吸与危重症医学科Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - 明 张
- 650118 昆明,云南省肿瘤医院放射治疗科Department of Radiation Therapy, Yunnan Cancer Hospital, Kunming 650118, China
| | - 瑜 张
- 550002 贵阳,贵州省人民医院肿瘤科Department of Oncology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - 文秀 姚
- 610041 成都,四川省肿瘤医院肿瘤内科Department of Oncology, Sichuan Cancer Hospital, Chengdu 610041, China
| | - 媚娟 黄
- 610041 成都,四川大学华西医院胸部肿瘤科Department of Thoracic Oncology, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
82
|
Angeles AK, Christopoulos P, Yuan Z, Bauer S, Janke F, Ogrodnik SJ, Reck M, Schlesner M, Meister M, Schneider MA, Dietz S, Stenzinger A, Thomas M, Sültmann H. Early identification of disease progression in ALK-rearranged lung cancer using circulating tumor DNA analysis. NPJ Precis Oncol 2021; 5:100. [PMID: 34876698 PMCID: PMC8651695 DOI: 10.1038/s41698-021-00239-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022] Open
Abstract
Targeted kinase inhibitors improve the prognosis of lung cancer patients with ALK alterations (ALK+). However, due to the emergence of acquired resistance and varied clinical trajectories, early detection of disease progression is warranted to guide patient management and therapy decisions. We utilized 343 longitudinal plasma DNA samples from 43 ALK+ NSCLC patients receiving ALK-directed therapies to determine molecular progression based on matched panel-based targeted next-generation sequencing (tNGS), and shallow whole-genome sequencing (sWGS). ALK-related alterations were detected in 22 out of 43 (51%) patients. Among 343 longitudinal plasma samples analyzed, 174 (51%) were ctDNA-positive. ALK variant and fusion kinetics generally reflected the disease course. Evidence for early molecular progression was observed in 19 patients (44%). Detection of ctDNA at therapy baseline indicated shorter times to progression compared to cases without mutations at baseline. In patients who succumbed to the disease, ctDNA levels were highly elevated towards the end of life. Our results demonstrate the potential utility of these NGS assays in the clinical management of ALK+ NSCLC.
Collapse
Affiliation(s)
- Arlou Kristina Angeles
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
| | - Petros Christopoulos
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Oncology, Thoraxklinik and National Center for Tumor Disease (NCT) at Heidelberg University Hospital, Heidelberg, Germany
| | - Zhao Yuan
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simone Bauer
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
| | - Florian Janke
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Simon John Ogrodnik
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
| | - Martin Reck
- Lung Clinic Grosshansdorf, Airway Research Center North, German Center for Lung Research, Grosshansdorf, Germany
| | - Matthias Schlesner
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Biomedical Informatics, Data Mining and Data Analytics, Faculty for Applied Informatics, Augsburg University, Augsburg, Germany
| | - Michael Meister
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Marc A Schneider
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Steffen Dietz
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- AstraZeneca GmbH, Wedel, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, Heidelberg University, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Michael Thomas
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Oncology, Thoraxklinik and National Center for Tumor Disease (NCT) at Heidelberg University Hospital, Heidelberg, Germany
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany.
| |
Collapse
|
83
|
Ma HC, Liu YH, Ding KL, Liu YF, Zhao WJ, Zhu YJ, Chang XS, Chen YD, Xiao ZZ, Yu YY, Zhou R, Zhang HB. Comparative efficacy and safety of first-line treatments for advanced non-small cell lung cancer with ALK-rearranged: a meta-analysis of clinical trials. BMC Cancer 2021; 21:1278. [PMID: 34836510 PMCID: PMC8620528 DOI: 10.1186/s12885-021-08977-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/30/2021] [Indexed: 11/28/2022] Open
Abstract
Background Whereas there are many pharmacological interventions prescribed for patients with advanced anaplastic lymphoma kinase (ALK)- rearranged non-small cell lung cancer (NSCLC), comparative data between novel generation ALK-tyrosine kinase inhibitors (TKIs) remain scant. Here, we indirectly compared the efficacy and safety of first-line systemic therapeutic options used for the treatment of ALK-rearranged NSCLC. Methods We included all phase 2 and 3 randomised controlled trials (RCTs) comparing any two or three treatment options. Eligible studies reported at least one of the following outcomes: progression free survival (PFS), overall survival (OS), objective response rate (ORR), or adverse events of grade 3 or higher (Grade ≥ 3 AEs). Subgroup analysis was conducted according to central nervous system (CNS) metastases. Results A total of 9 RCTs consisting of 2484 patients with 8 treatment options were included in the systematic review. Our analysis showed that alectinib (300 mg and 600 mg), brigatinib, lorlatinib and ensartinib yielded the most favorable PFS. Whereas there was no significant OS or ORR difference among the ALK-TKIs. According to Bayesian ranking profiles, lorlatinib, alectinib 600 mg and alectinib 300 mg had the best PFS (63.7%), OS (35.9%) and ORR (37%), respectively. On the other hand, ceritinib showed the highest rate of severe adverse events (60%). Conclusion Our analysis indicated that alectinib and lorlatinib might be associated with the best therapeutic efficacy in first-line treatment for major population of advanced NSCLC patients with ALK-rearrangement. However, since there is little comparative evidence on the treatment options, there is need for relative trials to fully determine the best treatment options as well as the rapidly evolving treatment landscape. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08977-0.
Collapse
Affiliation(s)
- Hao-Chuan Ma
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China.,The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Yi-Hong Liu
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Kai-Lin Ding
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China.,The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Yu-Feng Liu
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China.,The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Wen-Jie Zhao
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China.,The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Yan-Juan Zhu
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China.,The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.,Guangdong Provincial Key Laboratory, of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510120, China
| | - Xue-Song Chang
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China.,The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Ya-Dong Chen
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Zhen-Zhen Xiao
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Ya-Ya Yu
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Rui Zhou
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China.,The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Hai-Bo Zhang
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China. .,The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China. .,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China. .,Guangdong Provincial Key Laboratory, of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510120, China. .,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
84
|
Genetic landscape of patients with ALK-rearranged non-small-cell lung cancer (NSCLC) and response to ceritinib in ASCEND-1 study. Lung Cancer 2021; 163:7-13. [PMID: 34890832 DOI: 10.1016/j.lungcan.2021.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/14/2021] [Accepted: 11/13/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVES To better understand genetic determinants of response to ceritinib, an exploratory analysis was conducted using tumor biopsies from anaplastic lymphoma kinase (ALK)-rearranged (ALK+) non-small-cell lung cancer (NSCLC) patients treated with ceritinib at doses of ≥ 300 mg in the ASCEND-1 study. METHODS ASCEND-1 was an open-label, multicentre, phase 1, dose-escalation and expansion study of ceritinib (fasted) in ALK inhibitor (ALKi)-naïve or ALKi-pretreated patients with locally advanced or metastatic ALK + NSCLC. Biopsies were assayed by next-generation sequencing (NGS) using a Foundation Medicine panel targeting 295 genes. Somatic alterations were correlated with clinical outcome (cut-off 14-Apr-2014). A total of 285 ALK + NSCLC patients were treated with ceritinib at doses ≥ 300 mg. RESULTS NGS data were generated for 85 pts (ALKi-pretreated [n = 54]; ALKi-naïve [n = 31]), 57 were collected from patients before exposure to any ALKi. NGS did not detect ALK rearrangement in 14 of 85 patients; several of these ALK NGS negative cases harbored alternative drivers, e.g. EGFR mutation. Of the 71 biopsies with NGS confirmed ALK rearrangement, the most frequently detected rearrangements were EML4-ALK variant 1 (V1) and EML4-ALK V3 (36.6% [26/71] and 32.4% [23/71] respectively). Eight (six crizotinib-pretreated and two pretreated with crizotinib followed by alectinib) of the 21 ALKi-pretreated patients carried a point mutation of the ALK TKD, and had the biopsy collected between 1 and 14 days before ceritinib; with the exception of one patient with a G1202R point mutation, all patients derived clinical benefit from ceritinib treatment. Of the 14 ALKi-naïve patients, ceritinib was effective in almost all patients, including a patient carrying a concomitant ERBB4 and HGF amplification. CONCLUSIONS This exploratory analysis highlights the potential role of NGS in improving our understanding of response and resistance to ceritinib. It also illustrates that ceritinib is active against almost all ALK resistance mutations found in ALKi-pretreated patients. TRIAL REGISTRATION ClinicalTrials.gov, NCT01283516. Registered January 26, 2011, https://clinicaltrials.gov/ct2/show/NCT01283516.
Collapse
|
85
|
Fischer M, Moreno L, Ziegler DS, Marshall LV, Zwaan CM, Irwin MS, Casanova M, Sabado C, Wulff B, Stegert M, Wang L, Hurtado FK, Branle F, Geoerger B, Schulte JH. Ceritinib in paediatric patients with anaplastic lymphoma kinase-positive malignancies: an open-label, multicentre, phase 1, dose-escalation and dose-expansion study. Lancet Oncol 2021; 22:1764-1776. [PMID: 34780709 DOI: 10.1016/s1470-2045(21)00536-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Several paediatric malignancies, including anaplastic large cell lymphoma (ALCL), inflammatory myofibroblastic tumour (IMT), neuroblastoma, and rhabdomyosarcoma, harbour activation of anaplastic lymphoma kinase (ALK) through different mechanisms. Here, we report the safety, pharmacokinetics, and efficacy of ceritinib in paediatric patients with ALK-positive malignancies. METHODS This multicentre, open-label, phase 1 trial was done at 23 academic hospitals in ten countries. Children (aged ≥12 months to <18 years) diagnosed with locally advanced or metastatic ALK-positive malignancies that had progressed despite standard therapy, or for which no effective standard therapy were available, were eligible. ALK-positive malignancies were defined as those with ALK rearrangement, amplification, point mutation, or in the case of rhabdomyosarcoma, expression in the absence of any genetic alteration. Eligible patients had evaluable or measurable disease as defined by either Response Evaluation Criteria in Solid Tumours, version 1.1 for patients with non-haematological malignancies, International Neuroblastoma Response Criteria scan for patients with neuroblastoma, or International Working Group criteria for patients with lymphoma. Other eligibility criteria were Karnofsky performance status score of at least 60% for patients older than 12 years or Lansky score of at least 50% for patients aged 12 years or younger. This study included a dose-escalation part, followed by a dose-expansion part, in which all patients received treatment at the recommended dose for expansion (RDE) established in the dose-escalation part. Both parts of the study were done in fasted and fed states. In the dose-escalation part, patients were treated with once-daily ceritinib orally, with dose adjusted for body-surface area, rounded to the nearest multiple of the 50 mg dose strength. The starting dose in the fasted state was 300 mg/m2 daily and for the fed state was 320 mg/m2 daily. The primary objective of this study was to establish the maximum tolerated dose (ie, RDE) of ceritinib in the fasted and fed states. The RDE was established on the basis of the incidence of dose-limiting toxicities in patients who completed a minimum of 21 days of treatment with safety assessments and at least 75% drug exposure, or who discontinued treatment earlier because of dose-limiting toxicity. Overall response rate (defined as the proportion of patients with a best overall response of complete response or partial response) was a secondary endpoint. Activity and safety analyses were done in all patients who received at least one dose of ceritinib. This trial is registered with ClinicalTrials.gov (NCT01742286) and is completed. FINDINGS Between Aug 28, 2013, and Oct 17, 2017, 83 children with ALK-positive malignancies were enrolled to the dose-escalation (n=40) and dose-expansion (n=43) groups. The RDE of ceritinib was established as 510 mg/m2 (fasted) and 500 mg/m2 (fed). 55 patients (30 with neuroblastoma, ten with IMT, eight with ALCL, and seven with other tumour types) were treated with ceritinib at the RDE (13 patients at 510 mg/m2 fasted and 42 patients at 500 mg/m2 fed). The median follow-up was 33·3 months (IQR 24·8-39·3) for patients with neuroblastoma, 33·2 months (27·9-35·9) for those with IMT, 34·0 months (21·9-46·4) for those with ALCL, and 27·5 months (22·4-36·9) for patients with other tumour types. An overall response was recorded in six (20%; 95% CI 8-39) of 30 patients with neuroblastoma, seven (70%; 33-93) of ten patients with IMT, six (75%; 35-97) of eight patients with ALCL, and one (14%; <1-58) of seven patients with other tumours. The safety profile of ceritinib was consistent with that observed in adult patients. All patients had at least one adverse event. Grade 3 or 4 adverse events occurred in 67 (81%) of 83 patients and were mostly increases in aminotransferases (alanine aminotransferase increase in 38 [46%] patients and aspartate aminotransferase increase in 27 [33%] patients). At least one serious adverse event was reported in 40 (48%) of 83 patients and 31 (37%) of 83 patients had at least one grade 3 or 4 serious adverse event. 14 (17%) deaths occurred during the study, of which 12 were on-treatment deaths and two were after 30 days of the last dose. Of the 12 on-treatment deaths, ten were due to disease progression (neuroblastoma), one due to sepsis, and one due to intractable hypotension. INTERPRETATION Ceritinib 500 mg/m2 once daily with food is the recommended dose for paediatric patients with ALK-positive malignancies. Ceritinib showed promising preliminary antitumour activity in patients with ALK-positive refractory or recurrent IMT or ALCL, and in a subset of patients with relapsed or refractory neuroblastoma, with a manageable safety profile. Our data support the notion that ALK inhibitors should be considered in therapeutic strategies for paediatric patients with malignancies with genetic ALK alterations. FUNDING Novartis Pharmaceutical Corporation.
Collapse
Affiliation(s)
- Matthias Fischer
- Experimental Paediatric Oncology, University Children's Hospital of Cologne, and Centre for Molecular Medicine, Medical Faculty, University of Cologne, Cologne, Germany
| | - Lucas Moreno
- Paediatric Oncology Department, Hospital Infantil Universitario Nino Jesus, Madrid, Spain; Division of Paediatric Haematology and Oncology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - David S Ziegler
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia; School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Lynley V Marshall
- Paediatric and Adolescent Oncology Drug Development, Royal Marsden NHS Foundation Trust & The Institute of Cancer Research, London, UK
| | - C Michel Zwaan
- Department of Paediatric Oncology, Erasmus MC-Sophia Children's Hospital, and Princess Máxima Centre, Utrecht, Netherlands
| | - Meredith S Irwin
- Department of Paediatrics, Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michela Casanova
- Paediatric Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Constantino Sabado
- Division of Paediatric Haematology and Oncology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Beate Wulff
- Paediatric Haemato-Oncology, University Children's Hospital III Essen, Essen, Germany
| | - Mario Stegert
- Global Development Operations-Trial Management/Oncology, Novartis Pharma, Basel, Switzerland
| | - Luojun Wang
- Novartis Pharmaceuticals, East Hanover, NJ, USA
| | | | - Fabrice Branle
- Clinical Development and Analytics, Oncology Global Development, Novartis Pharma, Basel, Switzerland
| | - Birgit Geoerger
- Department of Paediatric and Adolescent Oncology, Gustave Roussy Cancer Centre, Université Paris-Saclay, INSERM U1015, Villejuif, France
| | - Johannes H Schulte
- Department of Paediatrics, Division of Oncology and Haematology, Charité-Universitätmedizin Berlin, Berlin, Germany; The German Cancer Consortium, partner site Berlin, Berlin, Germany; German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
86
|
Kumar A, Sardhara JC, Singh G, Kanjilal S, Maurya VP, Behari S. Malignant Meningitis Associated with Hydrocephalus. Neurol India 2021; 69:S443-S455. [PMID: 35103001 DOI: 10.4103/0028-3886.332278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Malignant meningitis (MM) is the diffuse involvement of the leptomeninges by infiltrating cancer cells, most frequently from lung and breast cancers. This review is aimed to discuss the current advances in the diagnosis and management of MM, along with management of MM-associated hydrocephalus. We reviewed the literature using PubMed and Google Scholar search engines, focusing on various recent randomized controlled trials and clinical trials on MM. Given the hallmark multifocal involvement, the clinical symptoms and signs are also random and asymmetric. There are three important pillars for establishing a diagnosis of MM: clinical examination, neuroimaging, and CSF cytological findings. Several factors should be considered in decision-making, including performance status, neurological findings (clinical, MRI, and CSF flow dynamic), and evaluation of the primary tumor (nature and systemic dissemination). Response Assessment in Neuro-Oncology (RANO) working group recommended the objective assessment of disease for evaluating the progression and response to therapy. Pillars of current management are mainly focal irradiation and intrathecal or systemic chemotherapy. Symptomatic hydrocephalus is managed with a ventriculoperitoneal shunt, lumboperitoneal shunt, or endoscopic third ventriculostomy as palliative procedures, providing significant improvement in performance scores in the limited survival time of patients with MM. Studies using novel therapeutic approaches, such as new biological or cytotoxic compounds, are ongoing. Despite the use of all the combinations, the overall prognosis remains grim; therefore, decision-making for treatment should predominantly be based on attaining an optimal quality of life.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Jayesh C Sardhara
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Guramritpal Singh
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Soumen Kanjilal
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Ved P Maurya
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Sanjay Behari
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
87
|
Tan DSW, Geater S, Yu CJ, Tsai CM, Hsia TC, Chen J, Lin MC, Lu Y, Sriuranpong V, Yang CT, Sen P, Branle F, Shi M, Wu YL. Ceritinib Efficacy and Safety in Treatment-Naive Asian Patients With Advanced ALK-Rearranged NSCLC: An ASCEND-4 Subgroup Analysis. JTO Clin Res Rep 2021; 2:100131. [PMID: 34589995 PMCID: PMC8474482 DOI: 10.1016/j.jtocrr.2020.100131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023] Open
Abstract
Introduction In the phase 3 ASCEND-4 study, ceritinib exhibited improved progression-free survival (PFS) by Blinded Independent Review Committee (BIRC) assessment versus the standard first-line chemotherapy in patients with advanced ALK-rearranged NSCLC. Here, we assessed the efficacy and safety of ceritinib in the subgroup of Asian patients from the ASCEND-4 trial. Methods Treatment-naive patients with stage IIIB or IV ALK-rearranged nonsquamous NSCLC were randomized in a one-to-one ratio to receive either oral ceritinib 750 mg/day (fasted) daily or intravenous chemotherapy ([cisplatin 75 mg/m2 or carboplatin area under the curve 5–6 plus pemetrexed 500 mg/m2] every three wk, followed by pemetrexed maintenance). The primary end point was PFS by BIRC assessment. Results Of 376 randomized patients, 158 (42.0%) were Asian (ceritinib arm: N = 76; chemotherapy arm: N = 82). The median time from randomization to the cutoff date (June 24, 2016) was 18.3 months (range = 13.5–34.2) in the Asian subgroup. The median PFS (by BIRC assessment) was 26.3 months (95% confidence interval [CI]: 8.6–not estimable) and 10.6 months (95% CI: 6.7–15.0), with an estimated 34% risk reduction in PFS (hazard ratio = 0.66, 95% CI: 0.41–1.05) in the ceritinib arm versus chemotherapy arm. The most common adverse events of any grade were diarrhea (85.5%), increased alanine aminotransferase and vomiting (73.7% each), and increased aspartate aminotransferase and nausea (69.7% each) in the ceritinib arm, and nausea (49.3%), vomiting (42.7%), and anemia (40.0%) in the chemotherapy arm. Conclusion Ceritinib was effective and safe in treatment-naive Asian patients with advanced ALK-rearranged NSCLC. The findings were largely consistent with that of the overall study population.
Collapse
Affiliation(s)
- Daniel S W Tan
- Department of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Sarayut Geater
- Department of Internal Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Ming Tsai
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Te-Chun Hsia
- Department of Respiratory Therapy and Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Meng-Chih Lin
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - You Lu
- Department of Thoracic Oncology, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Virote Sriuranpong
- Department of Medicine, Chulalongkorn University and the King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Cheng-Ta Yang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Paramita Sen
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | | | - Michael Shi
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
88
|
Wang B, Guo H, Xu H, Yu H, Chen Y, Zhao G. Research Progress and Challenges in the Treatment of Central Nervous System Metastasis of Non-Small Cell Lung Cancer. Cells 2021; 10:2620. [PMID: 34685600 PMCID: PMC8533870 DOI: 10.3390/cells10102620] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/06/2021] [Accepted: 09/25/2021] [Indexed: 12/26/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common malignant tumors and has high morbidity and mortality rates. Central nervous system (CNS) metastasis is one of the most frequent complications in patients with NSCLC and seriously affects the quality of life (QOL) and overall survival (OS) of patients, with a median OS of untreated patients of only 1-3 months. There are various treatment methods for NSCLC CNS metastasis, including surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy, which do not meet the requirements of patients in terms of improving OS and QOL. There are still many problems in the treatment of NSCLC CNS metastasis that need to be solved urgently. This review summarizes the research progress in the treatment of NSCLC CNS metastasis to provide a reference for clinical practice.
Collapse
Affiliation(s)
- Bin Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, China; (B.W.); (H.X.); (H.Y.)
| | - Hanfei Guo
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China;
| | - Haiyang Xu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, China; (B.W.); (H.X.); (H.Y.)
| | - Hongquan Yu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, China; (B.W.); (H.X.); (H.Y.)
| | - Yong Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, China; (B.W.); (H.X.); (H.Y.)
| | - Gang Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, China; (B.W.); (H.X.); (H.Y.)
| |
Collapse
|
89
|
Immunotherapy in EGFR-Mutant and ALK-Positive Lung Cancer: Implications for Oncogene-Driven Lung Cancer. ACTA ACUST UNITED AC 2021; 26:517-524. [PMID: 33298723 DOI: 10.1097/ppo.0000000000000491] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Non-small cell lung cancer (NSCLC) is a heterogeneous disease, commonly defined by genetic alterations in oncogenic drivers. Targeted therapies have transformed the management of oncogene-driven lung cancers, with targeted agents now approved in the United States for 7 distinct molecular alterations. Nonetheless, acquired resistance remains an ongoing challenge, underscoring the need for alternative therapeutic approaches. Immune checkpoint inhibitors targeting the programmed cell death 1 (PD-1) axis have emerged as important therapies in the management of advanced NSCLC, but the role of these agents in patients with oncogenic driver mutations remains unclear. Here, we focus on epidermal growth factor receptor-mutant and anaplastic lymphoma kinase-rearranged NSCLC as paradigms to explore the role of immune checkpoint inhibitors in oncogene-driven NSCLC. We provide an overview of the clinical data examining programmed death ligand 1 (PD-L1) inhibitor monotherapy, PD-(L)1 inhibitors, and tyrosine kinase inhibitor combinations, as well as combinations of PD-(L)1 inhibitors and chemotherapy.
Collapse
|
90
|
Abstract
Brain metastases affect a significant percentage of patients with advanced extracranial malignancies. Yet, the incidence of brain metastases remains poorly described, largely due to limitations of population-based registries, a lack of mandated reporting of brain metastases to federal agencies, and historical difficulties with delineation of metastatic involvement of individual organs using claims data. However, in 2016, the Surveillance Epidemiology and End Results (SEER) program released data relating to the presence vs absence of brain metastases at diagnosis of oncologic disease. In 2020, studies demonstrating the viability of utilizing claims data for identifying the presence of brain metastases, date of diagnosis of intracranial involvement, and initial treatment approach for brain metastases were published, facilitating epidemiologic investigations of brain metastases on a population-based level. Accordingly, in this review, we discuss the incidence, clinical presentation, prognosis, and management patterns of patients with brain metastases. Leptomeningeal disease is also discussed. Considerations regarding individual tumor types that commonly metastasize to the brain are provided.
Collapse
Affiliation(s)
- Nayan Lamba
- Harvard Radiation Oncology Program, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ayal A Aizer
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
91
|
Popat S, Liu G, Lu S, Song G, Ma X, Yang JCH. Brigatinib vs alectinib in crizotinib-resistant advanced anaplastic lymphoma kinase-positive non-small-cell lung cancer (ALTA-3). Future Oncol 2021; 17:4237-4247. [PMID: 34423676 DOI: 10.2217/fon-2021-0608] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Crizotinib is highly efficacious and more tolerable than chemotherapy for ALK+ non-small-cell lung cancer (NSCLC), but its progression-free survival benefit and intracranial efficacy have limitations. Head-to-head comparisons of next-generation ALK inhibitors in patients with ALK+ NSCLC progressing on crizotinib will contribute toward optimizing survival. This international, Phase III, randomized, open-label study (ALTA-3) will therefore assign patients with locally advanced or metastatic ALK+ NSCLC progressing on crizotinib to receive either brigatinib 180 mg qd (7-day lead-in at 90 mg qd) or alectinib 600 mg twice daily. The primary end point is progression-free survival as assessed by a blinded Independent Review Committee; the key secondary end point is overall survival. Clinical trial registration number: NCT03596866 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Sanjay Popat
- The Royal Marsden Hospital & The Institute of Cancer Research, 203 Fulham Road, Chelsea, London, SW3 6JJ, England
| | - Geoffrey Liu
- Ontario Cancer Institute, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Shun Lu
- Shanghai Chest Hospital, 241 Huaihai West Road, Shanghai, China
| | | | | | - James Chih-Hsin Yang
- Department of Medical Oncology, National Taiwan University Cancer Center, No. 57, Ln. 155, Sec. 3, Keelung Road, Da'an District, Taipei City, Taiwan
| |
Collapse
|
92
|
Schokrpur S, Hilburn V, Giustini N, Bazhenova L. An overview of alectinib hydrochloride as a treatment option for ALK positive non-small cell lung cancer. Expert Opin Pharmacother 2021; 22:1815-1824. [PMID: 34225542 DOI: 10.1080/14656566.2021.1948014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Alectinib is a second-generation inhibitor of anaplastic lymphoma kinase (ALK) and RET. Phase III clinical trials have established its superiority to crizotinib in the first-line ALK inhibitor-naïve setting. Studies also support its use over chemotherapy in the post-crizotinib setting. It is currently one of several FDA- and EMA-approved ALK inhibitors, and it is listed as a preferred initial therapy for treatment-naïve ALK-positive non-small cell lung cancer (NSCLC).Areas covered: Herein, the authors provide the reader with details of the chemical structure, pharmacologic properties, resistance mutations, phase I, II, and III clinical trials, and safety profile of alectinib. Furthermore, the authors provide the reader with the expert opinion and future perspectives on the drug.Expert opinion: Alectinib compares favorably to other second-generation ALK inhibitors with regards to safety, tolerability, and efficacy. Based on currently available data, it is an appropriate first-line option. Ongoing studies will better resolve the ideal sequencing of ALK inhibitors in the treatment of ALK-positive NSCLC.
Collapse
Affiliation(s)
- Shiruyeh Schokrpur
- Division of Hematology, Oncology University of California San Diego Moores Cancer Center, San Diego, California, USA
| | - Van Hilburn
- Division of Pharmacy, University of California San Diego, San Diego, California, USA
| | - Nicholas Giustini
- Division of Hematology, Oncology University of California San Diego Moores Cancer Center, San Diego, California, USA
| | - Lyudmila Bazhenova
- Division of Hematology, Oncology University of California San Diego Moores Cancer Center, San Diego, California, USA
| |
Collapse
|
93
|
Hou D, Zheng X, Song W, Liu X, Wang S, Zhou L, Tao X, Lv L, Sun Q, Jin Y, Zhang Z, Ding L, Wu N, Zhao S. Association of anaplastic lymphoma kinase variants and alterations with ensartinib response duration in non-small cell lung cancer. Thorac Cancer 2021; 12:2388-2399. [PMID: 34288491 PMCID: PMC8410530 DOI: 10.1111/1759-7714.14083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 01/18/2023] Open
Abstract
Background Here, we aimed to assess the association of ALK variants and alterations with ensartinib response duration in NSCLC, and explore the potential value of computed tomography (CT) radiomic features in predicting progression‐free survival (PFS). Methods We enrolled 88 patients with identified ALK variant NSCLC in a multicenter phase 2 trial, and assessed the impact of ALK variants and secondary ALK alterations on the clinical outcome (response duration) of patients receiving ensartinib. We also established a multifactorial model of clinicopathological and quantitative CT radiomic features to predict PFS and risk stratification. Kaplan–Meier analysis was conducted to identify risk factors for tumor progression. Results Univariate analysis indicated a statistical difference (p = 0.035) in PFS among ALK variants in three classifications (V1, V3, and other variants). Secondary ALK alterations were adversely associated with PFS both in univariate (p = 0.008) and multivariate (p = 0.04) analyses and could identify patients at high risk for early progression in the Kaplan–Meier analysis (p = 0.002). Additionally, response duration to crizotinib <1 year and liver metastasis were adversely associated with PFS. The combined model, composed of clinicopathological signature and CT radiomic signature, showed good prediction ability with the area under the receiver operating characteristic curve being 0.85, and 0.89 in the training and validation dataset respectively. Conclusions Our study showed that secondary ALK alterations were adversely associated with ensartinib efficacy, and that ALK variants might not correlate with PFS. The quantitative radiomic signature provided added prognostic prediction value to the clinicopathological features.
Collapse
Affiliation(s)
- Donghui Hou
- Department of Diagnostic RadiologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaomin Zheng
- Department of EndocrinologyChui Yang Liu Hospital affiliated to Tsinghua UniversityBeijingChina
| | - Wei Song
- Department of RadiologyPeking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
| | - Xiaoqing Liu
- Department of Pulmonary OncologyThe Fifth Medical Centre, Chinese PLA General HospitalBeijingChina
| | | | - Lina Zhou
- Department of Diagnostic RadiologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiuli Tao
- PET‐CT Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Lv Lv
- PET‐CT Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qi Sun
- Department of RadiologyHarbin Medical University Cancer HospitalHarbinChina
| | - Yujing Jin
- PET‐CT Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zewei Zhang
- PET‐CT Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | | | - Ning Wu
- Department of Diagnostic RadiologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- PET‐CT Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shijun Zhao
- Department of Diagnostic RadiologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
94
|
Tian Y, Tian T, Yu P, Ren L, Gong Y, Yao W, Zhang X, Yin J, He L, Chen L, Wang K, Huang M, Li J. [Safety and Preliminary Efficacy of Ceritinib 450 mg with Food in Chinese ALK-positive Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 23:655-661. [PMID: 32838488 PMCID: PMC7467981 DOI: 10.3779/j.issn.1009-3419.2020.102.33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
背景与目的 间变性淋巴瘤激酶(anaplastic lymphoma kinase, ALK)染色体易位为非小细胞肺癌(non-small cell lung cancer, NSCLC)常见的驱动基因。塞瑞替尼为第二代的ALK抑制剂, 可为ALK阳性转移性NSCLC患者带来生存获益, 但国内尚无塞瑞替尼用药安全性及疗效的研究报道。因此本研究拟通过真实世界研究来探讨塞瑞替尼450 mg随餐服用治疗中国ALK阳性NSCLC患者的安全性及近期疗效。 方法 回顾性分析2018年10月-2019年12月期间就诊于四川省8家医疗机构口服塞瑞替尼450 mg/d随餐治疗的ALK阳性NSCLC患者, 收集患者基本信息、治疗期间不良事件(adverse effects, AEs)及疗效数据等资料, 评价其安全性及初步疗效。 结果 研究共纳入109例患者, 随访至2020年1月23日, 中位服药时间为5.87个月(范围:0.4个月-15.7个月), 总体不良事件发生率为89.9%, 3级-4级不良事件发生率为22.9%。最常见AEs(主要为1级-2级)为腹泻(60.6%)、丙氨酸氨基转移酶(alanine aminotransferase, ALT)升高(38.5%)及门冬氨酸氨基转移酶(aspartate aminotransferase, AST)升高(37.6%)。至随访截止, 共45例患者停药, 总体客观缓解率(objective response rate, ORR)为37.6%(95%CI: 28.5%-47.4%), 疾病控制率(disease control rate, DCR)为86.2%(95%CI: 78.3%-92.1%)。 结论 真实世界中, 塞瑞替尼450 mg随餐服用的给药方式在中国ALK阳性NSCLC患者中具有良好的安全性及疾病控制率, 但需要更大样本量的前瞻性研究来进一步验证。
Collapse
Affiliation(s)
- Yuke Tian
- Department of Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Tian Tian
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Yu
- Department of Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Li Ren
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Youling Gong
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenxiu Yao
- Department of Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Xi Zhang
- Third People's Hospital of Chengdu, Chengdu 610041, China
| | - Jun Yin
- Third People's Hospital of Chengdu, Chengdu 610041, China
| | - Lang He
- Fifth People's Hospital of Chengdu, Chengdu 610041, China
| | - Li Chen
- Hospital of Traditional Medicine of Leshan, Leshan 614000, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meijuan Huang
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Juan Li
- Department of Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| |
Collapse
|
95
|
Xia P, Zhang L, Li P, Liu E, Li W, Zhang J, Li H, Su X, Jiang G. Molecular characteristics and clinical outcomes of complex ALK rearrangements identified by next-generation sequencing in non-small cell lung cancers. J Transl Med 2021; 19:308. [PMID: 34271921 PMCID: PMC8283930 DOI: 10.1186/s12967-021-02982-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/11/2021] [Indexed: 11/30/2022] Open
Abstract
Background Complex kinase rearrangement, a mutational process involving one or two chromosomes with clustered rearrangement breakpoints, interferes with the accurate detection of kinase fusions by DNA-based next-generation sequencing (NGS). We investigated the characteristics of complex ALK rearrangements in non-small cell lung cancers using multiple molecular tests. Methods Samples of non-small cell lung cancer patients were analyzed by targeted-capture DNA-based NGS with probes tilling the selected intronic regions of fusion partner genes, RNA-based NGS, RT-PCR, immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). Results In a large cohort of 6576 non-small cell lung cancer patients, 343 (5.2%) cases harboring ALK rearrangements were identified. Fourteen cases with complex ALK rearrangements were identified by DNA-based NGS and classified into three types by integrating various genomic features, including intergenic (n = 3), intragenic (n = 5) and “bridge joint” rearrangements (n = 6). All thirteen cases with sufficient samples actually expressed canonical EML4-ALK fusion transcripts confirmed by RNA-based NGS. Besides, positive ALK IHC was detected in 13 of 13 cases, and 9 of 11 cases were positive in FISH testing. Patients with complex ALK rearrangements who received ALK inhibitors treatment (n = 6), showed no difference in progression-free survival (PFS) compared with patients with canonical ALK fusions n = 36, P = 0.9291). Conclusions This study firstly reveals the molecular characteristics and clinical outcomes of complex ALK rearrangements in NSCLC, sensitive to ALK inhibitors treatment, and highlights the importance of utilizing probes tilling the selected intronic regions of fusion partner genes in DNA-based NGS for accurate fusion detection. RNA and protein level assay may be critical in validating the function of complex ALK rearrangements in clinical practice for optimal treatment decision. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02982-4.
Collapse
Affiliation(s)
- Peiyi Xia
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jian She Dong Road 1, Zhengzhou, 450052, Henan, China
| | - Lan Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jian She Dong Road 1, Zhengzhou, 450052, Henan, China
| | - Pan Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jian She Dong Road 1, Zhengzhou, 450052, Henan, China
| | - Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jian She Dong Road 1, Zhengzhou, 450052, Henan, China
| | - Wencai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jian She Dong Road 1, Zhengzhou, 450052, Henan, China
| | - Jianying Zhang
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Hui Li
- Clinical Research Division, Berry Oncology Corporation, Fuzhou, 350200, China
| | - Xiaoxing Su
- Clinical Research Division, Berry Oncology Corporation, Fuzhou, 350200, China
| | - Guozhong Jiang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jian She Dong Road 1, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
96
|
Chen DT, Chan W, Thompson ZJ, Thapa R, Beg AA, Saltos AN, Chiappori AA, Gray JE, Haura EB, Rose TA, Creelan B. Utilization of target lesion heterogeneity for treatment efficacy assessment in late stage lung cancer. PLoS One 2021; 16:e0252041. [PMID: 34197475 PMCID: PMC8248740 DOI: 10.1371/journal.pone.0252041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
RATIONALE Recent studies have discovered several unique tumor response subgroups outside of response classification by Response Evaluation Criteria for Solid Tumors (RECIST), such as mixed response and oligometastasis. These subtypes have a distinctive property, lesion heterogeneity defined as diversity of tumor growth profiles in RECIST target lesions. Furthermore, many cancer clinical trials have been activated to evaluate various treatment options for heterogeneity-related subgroups (e.g., 29 trials so far listed in clinicaltrials.gov for cancer patients with oligometastasis). Some of the trials have shown survival benefit by tailored treatment strategies. This evidence presents the unmet need to incorporate lesion heterogeneity to improve RECIST response classification. METHOD An approach for Lesion Heterogeneity Classification (LeHeC) was developed using a contemporary statistical approach to assess target lesion variation, characterize patient treatment response, and translate informative evidence to improving treatment strategy. A mixed effect linear model was used to determine lesion heterogeneity. Further analysis was conducted to classify various types of lesion variation and incorporate with RECIST to enhance response classification. A study cohort of 110 target lesions from 36 lung cancer patients was used for evaluation. RESULTS Due to small sample size issue, the result was exploratory in nature. By analyzing RECIST target lesion data, the LeHeC approach detected a high prevalence (n = 21; 58%) of lesion heterogeneity. Subgroup classification revealed several informative distinct subsets in a descending order of lesion heterogeneity: mix of progression and regression (n = 7), mix of progression and stability (n = 9), mix of regression and stability (n = 5), and non-heterogeneity (n = 15). Evaluation for association of lesion heterogeneity and RECIST best response classification showed lesion heterogeneity commonly occurred in each response group (stable disease: 16/27; 59%; partial response: 3/5; 60%; progression disease: 2/4; 50%). Survival analysis showed a differential trend of overall survival between heterogeneity and non-heterogeneity in RECIST response groups. CONCLUSION This is the first study to evaluate lesion heterogeneity, an underappreciated metric, for RECIST application in oncology clinical trials. Results indicated lesion heterogeneity is not an uncommon event. The LeHeC approach could enhance RECIST response classification by utilizing granular lesion level discovery of heterogeneity.
Collapse
Affiliation(s)
- Dung-Tsa Chen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- * E-mail:
| | - Wenyaw Chan
- Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Zachary J. Thompson
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Ram Thapa
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Amer A. Beg
- Department of Immunotherapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Andreas N. Saltos
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Alberto A. Chiappori
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Jhanelle E. Gray
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Eric B. Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Trevor A. Rose
- Department of Radiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Ben Creelan
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| |
Collapse
|
97
|
Ceddia S, Codacci-Pisanelli G. Treatment of brain metastases in ALK-positive non-small cell lung cancer. Crit Rev Oncol Hematol 2021; 165:103400. [PMID: 34147645 DOI: 10.1016/j.critrevonc.2021.103400] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 11/17/2022] Open
Abstract
Brain metastases are quite frequent in patients with ALK-translocated non-small cell lung cancer (NSCLC): they are often not amenable to surgical resection and are generally treated with radiotherapy (RT). This however causes severe late toxic side effects that may become invalidating considering the relatively long survival provided by recent medical treatment with target therapies. Several clinical trials have demonstrated that ALK-inhibitors (crizotinib, alectinib, brigatinib) show excellent activity also against brain metastases. It is therefore reasonable, in asymptomatic patients, to start treatment with specific inhibitors: RT will be used at the time of tumor progression or when symptoms appear. This sequence provides the best quality of life for patients.
Collapse
Affiliation(s)
- Serena Ceddia
- Department of Medical and Surgical Sciences and Biotechnology, University of Rome "la Sapienza", Corso della Repubblica, 79, 04100, Latina, Italy.
| | - Giovanni Codacci-Pisanelli
- Department of Medical and Surgical Sciences and Biotechnology, University of Rome "la Sapienza", Corso della Repubblica, 79, 04100, Latina, Italy.
| |
Collapse
|
98
|
Real-world treatment outcomes with brigatinib in patients with pretreated ALK+ metastatic non-small cell lung cancer. Lung Cancer 2021; 157:9-16. [PMID: 34051652 DOI: 10.1016/j.lungcan.2021.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/08/2021] [Accepted: 05/12/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND The next-generation ALK inhibitor brigatinib is approved for use in patients with ALK inhibitor-naïve ALK-positive advanced NSCLC and in patients previously treated with crizotinib. A phase II trial showed that brigatinib is active in patients with ALK-positive metastatic NSCLC (mNSCLC) who had progressed on prior crizotinib (response rate 56 %, median PFS 16.7 months, median OS 34.1 months). We report final data from the UVEA-Brig study of brigatinib in ALK inhibitor-pretreated ALK-positive mNSCLC in clinical practice. METHODS UVEA-Brig was a retrospective chart review of patients treated with brigatinib in Italy, Norway, Spain and the UK in an expanded access program. Adults with ALK-positive mNSCLC, including those with brain lesions, resistant to or intolerant of ≥1 prior ALK inhibitor and ECOG performance status ≤3 were eligible. Patients received brigatinib 180 mg once daily with a 7-day lead-in at 90 mg. The objectives were to describe patient characteristics, clinical disease presentation, treatment regimens used and clinical outcomes. RESULTS Data for 104 patients (male: 43 %; median age: 53 [29-80] years; ECOG performance status 0/1/2/3: 41/41/10/5 %; brain/CNS metastases: 63 %) were analyzed. Patients had received a median of 2 (1-6) lines of systemic therapy prior to brigatinib (37.5 % received ≥3) and a median of 1 (1-5) lines of prior ALK inhibitor-containing therapy (crizotinib 83.6 %; ceritinib 50.0 %; alectinib 6.7 %; lorlatinib 4.8 %). At the time of analysis, 77 patients had discontinued brigatinib. Overall, the response rate was 39.8 %, median PFS was 11.3 (95 % CI:8.6-12.9) months and median OS was 23.3 (95 % CI: 16.0-NR) months. Four patients discontinued brigatinib treatment due to adverse events. 53 patients received systemic therapy after brigatinib, 42 with an ALK inhibitor (lorlatinib, n = 34). CONCLUSIONS These real-world data indicate the activity and tolerability of brigatinib in patients with ALK-positive mNSCLC who were more heavily pretreated than patients included in clinical trials.
Collapse
|
99
|
Kim ES, Barlesi F, Mok T, Ahn MJ, Shen J, Zhang P, Ou SHI. ALTA-2: Phase II study of brigatinib in patients with ALK-positive, advanced non-small-cell lung cancer who progressed on alectinib or ceritinib. Future Oncol 2021; 17:1709-1719. [DOI: 10.2217/fon-2020-1119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKIs) have improved outcomes in ALK-rearranged (ALK+) non-small-cell lung cancer (NSCLC). However, almost all patients eventually develop progressive disease on first-line ALK TKIs (e.g., crizotinib, alectinib and ceritinib). Brigatinib, a second-generation ALK TKI, may show efficacy in alectinib- and ceritinib-refractory ALK+ NSCLC. We describe the rationale and design of ALTA-2, a Phase II study of brigatinib in patients with locally advanced/metastatic ALK+ NSCLC and documented progressive disease on alectinib or ceritinib. The primary end point is confirmed objective response rate per independent review committee using response evaluation criteria in solid tumors version 1.1. Secondary end points include duration of response, progression-free survival, overall survival, safety and health-related quality of life.
Collapse
Affiliation(s)
- Edward S Kim
- Levine Cancer Institute, Atrium Health, Charlotte, NC 28210, USA
| | - Fabrice Barlesi
- Multidisciplinary Oncology & Therapeutic Innovations Department, Aix-Marseille University, CNRS, INSERM, CRCM, Marseille, 13007, France
- Gustave Roussy Cancer Campus, Villejuif, 94805, France
| | - Tony Mok
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Myung-Ju Ahn
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710, South Korea
| | - Junwu Shen
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA 02139, USA
| | - Pingkuan Zhang
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA 02139, USA
| | - Sai-Hong Ignatius Ou
- Chao Family Comprehensive Cancer Center, University of California Irvine School of Medicine, Orange, CA 92868, USA
| |
Collapse
|
100
|
Jablonska PA, Bosch-Barrera J, Serrano D, Valiente M, Calvo A, Aristu J. Challenges and Novel Opportunities of Radiation Therapy for Brain Metastases in Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:cancers13092141. [PMID: 33946751 PMCID: PMC8124815 DOI: 10.3390/cancers13092141] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/18/2021] [Accepted: 04/26/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Lung cancer is the most common primary malignancy that tends to metastasize to the brain. Owing to improved survival of lung cancer patients, the prevalence of brain metastases is a matter of growing concern. Brain radiotherapy remains the mainstay in the management of metastatic CNS disease. However, new targeted therapies such as the tyrosine kinase or immune checkpoint inhibitors have demonstrated intracranial activity and promising tumor response rates. Here, we review the current and emerging therapeutical strategies for brain metastases from non-small cell lung cancer, both brain-directed and systemic, as well as the uncertainties that may arise from their combination. Abstract Approximately 20% patients with non-small cell lung cancer (NSCLC) present with CNS spread at the time of diagnosis and 25–50% are found to have brain metastases (BMs) during the course of the disease. The improvement in the diagnostic tools and screening, as well as the use of new systemic therapies have contributed to a more precise diagnosis and prolonged survival of lung cancer patients with more time for BMs development. In the past, most of the systemic therapies failed intracranially because of the inability to effectively cross the blood brain barrier. Some of the new targeted therapies, especially the group of tyrosine kinase inhibitors (TKIs) have shown durable CNS response. However, the use of ionizing radiation remains vital in the management of metastatic brain disease. Although a decrease in CNS-related deaths has been achieved over the past decade, many challenges arise from the need of multiple and repeated brain radiation treatments, which carry along not insignificant risks and toxicity. The combination of stereotactic radiotherapy and systemic treatments in terms of effectiveness and adverse effects, such as radionecrosis, remains a subject of ongoing investigation. This review discusses the challenges of the use of radiation therapy in NSCLC BMs in view of different systemic treatments such as chemotherapy, TKIs and immunotherapy. It also outlines the future perspectives and strategies for personalized BMs management.
Collapse
Affiliation(s)
- Paola Anna Jablonska
- Brain Metastases and CNS Oncology Radiation Medicine Program, Princess Margaret Cancer Center, Toronto, ON M5G 2M9, Canada
- Department of Radiation Oncology, Clinica Universidad de Navarra, 31008 Pamplona, Spain
- Correspondence: ; Tel.: +1-416-946-2000
| | - Joaquim Bosch-Barrera
- Department of Medical Oncology, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital, 17007 Girona, Spain;
- Girona Biomedical Research Institute (IDIBGI), Salt, 17190 Girona, Spain
- Department of Medical Sciences, Medical School, University of Girona, 17071 Girona, Spain
| | - Diego Serrano
- IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (D.S.); (A.C.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | | | - Alfonso Calvo
- IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (D.S.); (A.C.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- CIBERONC, ISCIII, 28029 Madrid, Spain
| | - Javier Aristu
- Department of Radiation Oncology and Protontherapy Unit, Clinica Universidad de Navarra, 28027 Madrid, Spain;
| |
Collapse
|