51
|
Carvajal F, Duran C, Aquea F. Effect of alerce (Fitzroya cupressoides) cell culture extract on wound healing repair in a human keratinocyte cell line. J Cosmet Dermatol 2019; 19:1254-1259. [PMID: 31486569 DOI: 10.1111/jocd.13137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/14/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Fitzroya cupressoides, commonly known as alerce, is an endemic conifer unique to southern South America. Alerce wood is renowned for its durability and resistance to biological degradation due to the presence of a particular class of secondary metabolite. Alerce extracts have been used in traditional medicine for different skin lesion treatments. AIMS To develop a cell culture system to produce alerce extract and evaluate its cytotoxicity and effects on in vitro wound healing. METHODS Cell cultures and aqueous extracts were prepared from alerce needles. Cytotoxicity was evaluated in keratinocytes (HaCaT line) and melanocites (C32 line) using the XTT assay. Wound healing was assayed with the scratch test in HaCaT cells, using mitomycin C to evaluate the role of cell division in the wound closure. RESULTS Alerce cell culture extract has a significant effect on wound healing at different concentrations. No positive effects on the viability of normal and cancerous skin cells were observed. These results suggest that alerce extracts stimulate cell division in human skin epidermal cells in the context of wound repair. CONCLUSIONS Bioactive compounds extracted from alerce cell cultures show promise as ingredients in dermocosmetic formulations, but further clinical studies are required to support these findings at the tissue level.
Collapse
Affiliation(s)
| | | | - Felipe Aquea
- Rubisco Biotechnology, Santiago, Chile.,Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.,Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| |
Collapse
|
52
|
Fallah Huseini H, Abdolghaffari AH, Ahwazi M, Jasemi E, Yaghoobi M, Ziaee M. Topical Application of Teucrium polium Can Improve Wound Healing in Diabetic Rats. INT J LOW EXTR WOUND 2019; 19:132-138. [DOI: 10.1177/1534734619868629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetic foot ulcer is one of the major complications among diabetic patients. Several studies have shown that the extract of Teucrium polium (T. polium) is effective in the treatment of diabetic and non-diabetic wounds, as well as burn wounds. The aim of current study was to assess the wound healing activity of T. polium extract ointment in diabetic rats. Sixty-four male Wistar rats were induced diabetes with alloxan injection (125 mg/kg) and surgical wound induced. The rats were divided into 8 groups of eight rats each: control group, eucerin group, phenytoin group, 2%, 3%, 4%, 5% and 10% T. polium groups. The ointment was dressed on the wound twice a day. The process of wound healing was screened by macroscopy and digitalization on days 14 and 21 and until complete wound healing. There was no infection in the wounds of rats in any groups. The process of wounds healing of the 2%, 3%, 4%, 5%, and 10% T. polium ointments, with phenytoin ointment and base ointment (eucerin) on day 14 and 21, showed that the significant difference between the treatment groups with 4% (P = 0.003), 5% (P = 0.001), 10% (P = 0.001) T. polium ointment and phenytoin ointment group (P = 0.001) compared to eucerin group. The results of this study showed that T. polium extract ointment with a 10% ointment accelerates the wound healing process in diabetic rats and is comparable to the phenytoin group.
Collapse
Affiliation(s)
- Hasan Fallah Huseini
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | | | - Maryam Ahwazi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Eghbal Jasemi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Maryam Yaghoobi
- Clinical Research Unit, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Epidemiology, Faculty of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Ziaee
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
53
|
Taguchi N, Yuriguchi M, Ando T, Kitai R, Aoki H, Kunisada T. Flavonoids with Two OH Groups in the B-Ring Promote Pigmented Hair Regeneration. Biol Pharm Bull 2019; 42:1446-1449. [DOI: 10.1248/bpb.b19-00295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Nobuhiko Taguchi
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine
- General Research & Development Institute, Hoyu Co., Ltd
| | - Minoru Yuriguchi
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine
| | - Takuya Ando
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine
| | - Ryosuke Kitai
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine
| | - Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine
| | - Takahiro Kunisada
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine
| |
Collapse
|
54
|
|
55
|
Shao Y, Dang M, Lin Y, Xue F. Evaluation of wound healing activity of plumbagin in diabetic rats. Life Sci 2019; 231:116422. [DOI: 10.1016/j.lfs.2019.04.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/08/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
|
56
|
Kendir G, Süntar I, Çeribaşı AO, Köroğlu A. Activity evaluation on Ribes species, traditionally used to speed up healing of wounds: With special focus on Ribes nigrum. JOURNAL OF ETHNOPHARMACOLOGY 2019; 237:141-148. [PMID: 30902746 DOI: 10.1016/j.jep.2019.03.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 02/02/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ribes species are usually evergreen shrubs, represented by eight species in Turkey. Although they are known for their fruits with commercial importance, their leaves have been used as folk remedy in various areas in Turkey by rural population owing to their wound healing potential. AIM OF THE STUDY In the present study we aimed to assess the wound healing activity of the leaves of Ribes species growing in Turkey, namely, Ribes alpinum L., R. anatolica Behçet, R. petraeum Wulfen, R. multiflorum Kit. ex Romer & Schultes, R. nigrum L., R. orientale Desf., R. rubrum L., R. uva-crispa L. MATERIALS AND METHODS Wounds were surgically induced on the dorsal parts of the rats and mice. Prepared herbal ointments were topically applied onto the wounds once daily. The effects of the extracts were evaluated by measuring the breaking strength and percentage of reduction in wounded area by comparing the results with the registered reference ointment, FITO Krem®. Histopathological and antioxidant assays were also conducted. Since, R. nigrum was determined to be the most active species, we further investigated the wound healing potential of the subextracts of the methanol extract of R. nigrum leaves. RESULTS R. nigrum and R. multiflorum extracts significantly increased wound breaking strength. Significant reduction in the areas was determined for the wounded tissues treated with the ointments of R. nigrum and R. multiflorum extracts. Oxidative Stress Index was found to be lowest for R. orientale, R. nigrum and R. multiflorum. Among the subextracts of R. nigrum, ethyl acetate subextract was found to have promising effect. CONCLUSIONS Methanol extracts of leaves of R. nigrum and R. multiflorum demonstrated significant wound healing effect. We can suggest that ethyl acetate subextract of R. nigrum may be a potential candidate to be used for the development of a wound healing agent.
Collapse
Affiliation(s)
- Gülsen Kendir
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Istinye University, 34010, Zeytinburnu, Istanbul, Turkey
| | - Ipek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Etiler, Ankara, Turkey.
| | - Ali Osman Çeribaşı
- Department of Pathology, Faculty of Veterinary Medicine, Fırat University, 23119, Elazig, Turkey
| | - Ayşegül Köroğlu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, 06100, Tandogan, Ankara, Turkey; Afyonkarahisar Health Sciences University, Faculty of Pharmacy, Department of Pharmaceutical Botany, 03200, Afyon, Turkey
| |
Collapse
|
57
|
Oguntibeju OO. Medicinal plants and their effects on diabetic wound healing. Vet World 2019; 12:653-663. [PMID: 31327900 PMCID: PMC6584855 DOI: 10.14202/vetworld.2019.653-663] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/13/2019] [Indexed: 12/24/2022] Open
Abstract
Wounds have a serious negative impact on the health-care economy of a country, especially on the economy of developing countries where resources are poor and funding is very limited. It is presumed that about 80% of people living in developing countries use traditional medicines which are majorly prepared from medicinal plants to meet their primary health-care needs. Due to the large reservoir of medicinal plants and adequate traditional knowledge on wound healing, many people in Africa and other developing countries use medicinal plants in the treatment of diabetic wounds and related complications. Wound healing in the external and internal biological organs involves a series of complex overlapping processes which demand excellent communication between cells. It is an orderly and highly controlled process characterized by hemostasis, inflammation, proliferation, and remodeling. Diabetes is a global health problem predicted to rise to over 642 million by 2040. The propelling factor responsible for the increase in morbidity and mortality of diabetes is linked to vascular complications as well as the failure of the wound healing processes in diabetic state. Different approaches have been adopted in the treatment of diabetic wounds, and medicinal plants are certainly one of those approaches that have drawn global attention. In this review paper, the effects of medical plants on wound healing in diabetic state as well as factors affecting wound healing and the mechanism of action of medicinal plants are examined.
Collapse
Affiliation(s)
- Oluwafemi O. Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, 7535, South Africa
| |
Collapse
|
58
|
Wound healing properties, antimicrobial and antioxidant activities of Salvia kronenburgii Rech. f. and Salvia euphratica Montbret, Aucher & Rech. f. var. euphratica on excision and incision wound models in diabetic rats. Biomed Pharmacother 2019; 111:1260-1276. [DOI: 10.1016/j.biopha.2019.01.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/05/2019] [Accepted: 01/09/2019] [Indexed: 01/27/2023] Open
|
59
|
Lodhi S, Vadnere GP, Patil KD, Patil TP. Protective effects of luteolin on injury induced inflammation through reduction of tissue uric acid and pro-inflammatory cytokines in rats. J Tradit Complement Med 2019; 10:60-69. [PMID: 31956559 PMCID: PMC6957812 DOI: 10.1016/j.jtcme.2019.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 02/17/2019] [Accepted: 02/24/2019] [Indexed: 01/01/2023] Open
Abstract
Background and aim Luteolin belongs to flavone group of flavonoids, present in many plants with potent antioxidant, anti-inflammatory and anti-proliferative effects. The objective of present study was to investigate protective effect of luteolin on injury induced inflammation via Monosodium urate (MSU) crystals induced and Acetaminophen (AMP) induced liver injury in rats. Experimental procedure Protective effect of luteolin was observed by measurement of rat paw edema, lysosomal enzymes, antioxidants status and cytokine level. Measurement of uric acid level and neutrophil infiltration were done in AMP induced liver injury in rats. Luteolin was tested at 30 and 50 mg/kg doses and compare with colchicine. Results and conclusion Luteolin significantly decreases paw edema in dose dependent manner compare to control group in MSU crystal-induced rats. Luteolin (50 mg/kg) was showed significant decrease in serum level of oxidative and lysosomal enzymes, proinflammatory cytokines i.e. tumor necrosis factor (TNF)-α (39.28 ± 3.17), interleukin (IL)-1β (12.07 ± 1.24), and IL-6 (24.72 ± 2.52) in MSU crystal-induced rats. In AMP induced liver injury, tissue uric acid level and myeloperoxidase were decreased significantly after treatment with luteolin as well as N-acetylcysteine. Serum level of liver enzymes was significantly reduced after treatment with luteolin. Histological observation of ankle joints and liver was support to protective effect of luteolin at both doses. In conclusion, luteolin showed anti-inflammatory effect through restoration of cytokine level, lysosomal enzymes level and antioxidants status. The reduction of liver tissue uric acid content may be one of the mechanisms for protective effect of luteolin. It can contribute to reduce injury induced inflammation.
Collapse
Affiliation(s)
- Santram Lodhi
- Department of Pharmacognosy, Smt. Sharadchandrika Suresh Patil College of Pharmacy, Chopda, Jalgaon 425107, M. S, India
| | - Gautam P Vadnere
- Department of Pharmacognosy, Smt. Sharadchandrika Suresh Patil College of Pharmacy, Chopda, Jalgaon 425107, M. S, India
| | - Kiran D Patil
- Department of Pharmacology, Smt. Sharadchandrika Suresh Patil College of Pharmacy, Chopda, Jalgaon 425107, M. S, India
| | - Tushar P Patil
- Department of Pharmacology, Smt. Sharadchandrika Suresh Patil College of Pharmacy, Chopda, Jalgaon 425107, M. S, India
| |
Collapse
|
60
|
Biofabrication and characterization of flavonoid-loaded Ag, Au, Au-Ag bimetallic nanoparticles using seed extract of the plant Madhuca longifolia for the enhancement in wound healing bio-efficacy. Prog Biomater 2019; 8:51-63. [PMID: 30790231 PMCID: PMC6424993 DOI: 10.1007/s40204-019-0110-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/12/2019] [Indexed: 12/11/2022] Open
Abstract
Abstract The present communication warrants the presence of significant wound healing bio-efficacy of aq. alc. extract of the seed (49.78%) of the plant Madhuca longifolia. A family of seven flavonoid fractions have been ascertained in the seed aq. alc. extract of the target plant using LCMS-8030 analysis. In vivo wound healing parameters (wound area, wound closure, epithelization period, skin breaking strength and hydroxyproline content) have been examined in Swiss albino mice models. Statistically significant (p < 0.001) enhancement in the wound healing bio-efficacy has been effectively induced using flavonoid-loaded gold: (Mlf@AuNps), silver: (Mlf@AgNps), and Au–Ag bimetallic: (Mlf@Au–AgNps) nanoparticles. Among the biofabricated nano-biomaterials, Mlf@AgNps exhibited an exceptional enhancement in the wound healing bio-efficacy (80.33%) attaining almost to the level of reference drug Placentrex (84.02%). All the fabricated nano-biomaterials were thoroughly characterized using UV–Vis, XRD, FE-SEM, TEM, EDX, and DLS. The promising enhancement in the wound healing potential of the nano-biomaterial (Mlf@AgNps) has been explained based on the cumulative effects of biological and nanotech parameters. The bio-fabricated (Mlf@AgNps) nano-biomaterials using the plant M. longifolia have lustrous prospects for the development of complimentary herbal nanomedicine for scaling-up the wound healing bio-efficacy. Graphical abstract ![]()
Collapse
|
61
|
Patel S, Srivastava S, Singh MR, Singh D. Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother 2019; 112:108615. [PMID: 30784919 DOI: 10.1016/j.biopha.2019.108615] [Citation(s) in RCA: 468] [Impact Index Per Article: 93.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 12/15/2022] Open
Abstract
Wound management in diabetic patient is of an extreme clinical and social concern. The delayed and impaired healing makes it more critical for research focus. The research on impaired healing process is proceeding hastily evident by new therapeutic approaches other than conventional such as single growth factor, dual growth factor, skin substitutes, cytokine stimulators, cytokine inhibitors, matrix metalloproteinase inhibitors, gene and stem cell therapy, extracellular matrix and angiogenesis stimulators. Although numerous studies are available that support delayed wound healing in diabetes but detailed mechanistic insight including factors involved and their role still needs to be revealed. This review mainly focuses on the molecular cascades of cytokines (with growth factors) and erstwhile factors responsible for delayed wound healing, molecular targets and recent advancements in complete healing and its cure. Present article briefed recent pioneering information on possible molecular targets and treatment strategies including clinical trials to clinicians and researchers working in similar area.
Collapse
Affiliation(s)
- Satish Patel
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, 492010, Raipur, C.G., India
| | - Shikha Srivastava
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, 492010, Raipur, C.G., India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, 492010, Raipur, C.G., India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, 492010, Raipur, C.G., India.
| |
Collapse
|
62
|
The Wound Healing Potential of Aspilia africana (Pers.) C. D. Adams (Asteraceae). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7957860. [PMID: 30800171 PMCID: PMC6360599 DOI: 10.1155/2019/7957860] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/23/2018] [Indexed: 01/31/2023]
Abstract
Wounds remain one of the major causes of death worldwide. Over the years medicinal plants and natural compounds have played an integral role in wound treatment. Aspilia africana (Pers.) C. D. Adams which is classified among substances with low toxicity has been used for generations in African traditional medicine to treat wounds, including stopping bleeding even from severed arteries. This review examined the potential of the extracts and phytochemicals from A. africana, a common herbaceous flowering plant which is native to Africa in wound healing. In vitro and in vivo studies have provided strong pharmacological evidences for wound healing effects of A. africana-derived extracts and phytochemicals. Singly or in synergy, the different bioactive phytochemicals including alkaloids, saponins, tannins, flavonoids, phenols, terpenoids, β-caryophyllene, germacrene D, α-pinene, carene, phytol, and linolenic acid in A. africana have been observed to exhibit a very strong anti-inflammatory, antimicrobial, and antioxidant activities which are important processes in wound healing. Indeed, A. africana wound healing ability is furthermore due to the fact that it can effectively reduce wound bleeding, hasten wound contraction, increase the concentration of basic fibroblast growth factor (BFGF) and platelet derived growth factor, and stimulate the haematological parameters, including white and red blood cells, all of which are vital components for the wound healing process. Therefore, these facts may justify why A. africana is used to treat wounds in ethnomedicine.
Collapse
|
63
|
Wound Healing Effect of Kaempferol in Diabetic and Nondiabetic Rats. J Surg Res 2019; 233:284-296. [DOI: 10.1016/j.jss.2018.08.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 06/06/2018] [Accepted: 08/02/2018] [Indexed: 01/10/2023]
|
64
|
Al-Rawaf HA, Gabr SA, Alghadir AH. Circulating Hypoxia Responsive microRNAs (HRMs) and Wound Healing Potentials of Green Tea in Diabetic and Nondiabetic Rat Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:9019253. [PMID: 30713578 PMCID: PMC6332961 DOI: 10.1155/2019/9019253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022]
Abstract
Green tea (Camellia sinensis) has many biological activities and may promote diabetic wound healing by regulation of circulating hypoxia responsive microRNAs (HRMs) which triggers the wound repairing process in diabetic and nondiabetic wounds. Thus, in this study, the potential effects of green tea extract (GTE) on the expression of miRNAs; miR-424, miR-199a, miR-210, miR-21, and fibrogenitic markers; hydroxyproline (HPX), fibronectin (FN), and nitric oxide (NO) were evaluated in wounds of diabetic and nondiabetic rats. The animals were topically treated with vaseline, 0.6% GTE, and 5%w/w povidone iodine (standard control). HPX, FN, and NO levels and microRNAs, miR-424, miR-210, miR-199a, and miR-21, were estimated in wound tissues using colorimetric, immunoassay, and molecular PCR analysis. In vitro analysis was performed to estimate active constituents and their antioxidant activities in methanolic green teat extract (GTE). Wounds treated with green tea, a dose of 0.6, healed significantly earlier than those treated with standard vehicle and vaseline treated diabetic wounds. Higher expressions of HRMs, miR-199a, and miR-21, and lower expression of HRMs, miR-424 and miR-210, were significantly reported in tissues following treatment with green tea extract compared to standard control vehicle. The tissues also contained more collagen expressed as measures of HPX, FN, and NO and more angiogenesis, compared to wounds treated with standard control vehicle. Diabetic and nondiabetic wounds treated with green tea (0.6%) for three weeks had lesser scar width and greater re-epithelialization in shorter periods when compared to standard control vehicle. Expression of HRMs, miR-199a, miR-21, and HRMs and miR-424 and miR-210 correlated positively with HPX, fibronectin, NO, better scar formation, and tensile strength and negatively with diabetes. In addition to antidiabetic and antioxidant activities of green tea components, GTE showed angiogenesis promoting activity in diabetic wound healing. In conclusion, Camellia sinensis extracts in a dose of 0.6% significantly promote more collagen and fibronectin deposition with higher expression of NO, promoting angiogenesis process via molecular controlling of circulating hypoxia responsive microRNAs: miR-424, miR-210, miR-199a, and miR-21 in diabetic and nondiabetic wounds. Our results support a functional role of circulating hypoxia responsive microRNAs: miR-424, miR-210, miR-199a, and miR-21 as potential therapeutic targets in angiogenesis and vascular remodeling in diabetic wound healing.
Collapse
Affiliation(s)
- Hadeel A. Al-Rawaf
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sami A. Gabr
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad H. Alghadir
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
65
|
Saint Aroman M, Guillot P, Dahan S, Coustou D, Mortazawi K, Zourabichvili O, Aardewijn T. Efficacy of a repair cream containing Rhealba oat plantlets extract l-ALA-l-GLU dipeptide, and hyaluronic acid in wound healing following dermatological acts: a meta-analysis of >2,000 patients in eight countries corroborated by a dermatopediatric clinical case. Clin Cosmet Investig Dermatol 2018; 11:579-589. [PMID: 30519069 PMCID: PMC6239097 DOI: 10.2147/ccid.s177614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background The frequency of dermatological acts is increasing. These procedures often cause injuries and traumatic alterations in specific skin layers, slowing down wound healing. Patients and methods An open observational study lasting 1 month was conducted on 2,363 patients who had undergone various dermatological procedures. This study was conducted in eight European countries and an Asian country during which the tolerance and efficacy of a cosmetic cream based on Rhealba oat plantlets’ extract, l-ALA–l-GLU dipeptide, and hyaluronic acid were assessed on patients’ wounds. Results Efficacy was observed 5′ after the first application, which leads to an immediate relief, confirmed by the overall efficacy judged by the doctors as good or very good in 96.8% of the cases. In Germany, the efficacy of the same cream was assessed on children suffering from first- or second-degree burns. In this dermatopediatric case, the aim was to support the regeneration process and prevent scarring by using a topical cream rather than a silicon bandage or corticosteroids. A positive effect on skin regeneration and prevention of scaring could already be observed after 4 weeks of application without any undesired complication. Conclusion This clinical focus complements the previous meta-analysis by demonstrating that the tested cream containing Rhealba oat plantlets’ extracts, l-ALA–l-GLU dipeptide, and hyaluronic acid could also be used with a great efficacy in children after thermal burns to prevent scaring.
Collapse
Affiliation(s)
| | - P Guillot
- Wallerstein Medico-Surgical Center, Dermatology Department, Arès, France
| | - S Dahan
- Saint-Jean du Languedoc Clinic, Dermatology Department, Toulouse, France
| | - D Coustou
- Saint-Jean du Languedoc Clinic, Dermatology Department, Toulouse, France
| | - K Mortazawi
- Clinic for Pediatric Surgery, Hospital Karlsruhe GmbH, Karlsruhe, Germany
| | | | - T Aardewijn
- Pierre Fabre Dermo-Cosmétique, A-DERMA, Lavaur, France,
| |
Collapse
|
66
|
Gulumian M, Yahaya ES, Steenkamp V. African Herbal Remedies with Antioxidant Activity: A Potential Resource Base for Wound Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:4089541. [PMID: 30595712 PMCID: PMC6282146 DOI: 10.1155/2018/4089541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/23/2018] [Accepted: 11/07/2018] [Indexed: 12/21/2022]
Abstract
The use of traditional herbal remedies as alternative medicine plays an important role in Africa since it forms part of primary health care for treatment of various medical conditions, including wounds. Although physiological levels of free radicals are essential to the healing process, they are known to partly contribute to wound chronicity when in excess. Consequently, antioxidant therapy has been shown to facilitate healing of such wounds. Also, a growing body of evidence suggests that, at least, part of the therapeutic value of herbals may be explained by their antioxidant activity. This paper reviews African herbal remedies with antioxidant activity with the aim of indicating potential resources for wound treatment. Firstly, herbals with identified antioxidant compounds and, secondly, herbals with proven antioxidant activity, but where the compound(s) responsible for the activity has not yet been identified, are listed. In the latter case it has been attempted to ascribe the activity to a compound known to be present in the plant family and/or species, where related activity has previously been documented for another genus of the species. Also, the tests employed to assess antioxidant activity and the potential caveats thereof during assessment are briefly commented on.
Collapse
Affiliation(s)
- Mary Gulumian
- National Institute for Occupational Health, Johannesburg, South Africa
- Haematology and Molecular Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Ewura Seidu Yahaya
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Pharmacology, University of Cape Coast, Cape Coast, Ghana
| | - Vanessa Steenkamp
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
67
|
Bayrami Z, Hajiaghaee R, Khalighi-Sigaroodi F, Rahimi R, Farzaei MH, Hodjat M, Baeeri M, Rahimifard M, Navaei-Nigjeh M, Abdollahi M. Bio-guided fractionation and isolation of active component from Tragopogon graminifolius based on its wound healing property. JOURNAL OF ETHNOPHARMACOLOGY 2018; 226:48-55. [PMID: 30096362 DOI: 10.1016/j.jep.2018.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 06/13/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tragopogon graminifolius (T. graminifolius) from Asteraceae family has been used as a remedy in Persian traditional medicine for the treatment of various disorders such as wound healing. AIM OF THE STUDY The purpose of this study is to investigate the compounds of T. graminifolius, which are responsible for its wound healing activity. MATERIALS AND METHODS The experiment was performed in three phases; each phase consisted of fractionation of extracts followed by scratch assay. The results of the scratch assay were expressed using scratch closure index (SCI), representing the contraction of scratch. RESULTS In phase I, Ethyl acetate fraction (E) showed the maximum SCI (61.7 ± 3.5) that was selected for more fractionation in the next phase. In phase II, 12 fractions were obtained and labeled as fractions E- A to L, respectively. Based on the SCI of fractions, EF (SCI=68.9 ± 0.6) was the most active fraction in phase II and selected for further fractionation in phase III. In phase III, 8 fractions were resulted by fractionation of EF and labeled as EF- 1-8. Fraction EF5 with the highest SCI (30.8 ± 3.0) was the most effective fraction and Luteolin was the main component. Luteolin significantly improved viability of fibroblast cells and increased cell population that was accompanied by decreased cell apoptosis. Luteolin-induced cell number increase in the S and G2M phases of the cell cycle, further confirms the proliferative effect of this compound. CONCLUSION The results showed that the total extract and fractions of T. graminifolius stimulate proliferation and migration of skin fibroblast cells and Luteolin is one of the active compounds responsible for these effects.
Collapse
Affiliation(s)
- Zahra Bayrami
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Hajiaghaee
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| | | | - Roja Rahimi
- Department of Persian Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahshid Hodjat
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Navaei-Nigjeh
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
68
|
Setzer WN. The Phytochemistry of Cherokee Aromatic Medicinal Plants. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E121. [PMID: 30424560 PMCID: PMC6313439 DOI: 10.3390/medicines5040121] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022]
Abstract
Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines.
Collapse
Affiliation(s)
- William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA.
| |
Collapse
|
69
|
Khan MF, Tang H, Lyles JT, Pineau R, Mashwani ZUR, Quave CL. Antibacterial Properties of Medicinal Plants From Pakistan Against Multidrug-Resistant ESKAPE Pathogens. Front Pharmacol 2018; 9:815. [PMID: 30116190 PMCID: PMC6082950 DOI: 10.3389/fphar.2018.00815] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/09/2018] [Indexed: 01/24/2023] Open
Abstract
Local people in the Sudhnoti district of Pakistan share a rich practice of traditional medicine for the treatment of a variety of ailments. We selected nine plants from the Sudhnoti ethnopharmacological tradition used for the treatment of infectious and inflammatory disease. Our aim was to evaluate the in vitro anti-infective potential of extracts from these species against multidrug-resistant (MDR) ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter species) pathogens. Plant specimens were collected in the Sudhnoti district of Pakistan and vouchers deposited in Pakistan and the USA. Dried bulk specimens were ground into a fine powder and extracted by aqueous decoction and maceration in ethanol. Extracts were assessed for growth inhibitory activity against ESKAPE pathogens and biofilm and quorum sensing activity was assessed in Staphylococcus aureus. Cytotoxicity to human cells was assessed via a lactate dehydrogenase assay of treated human keratinocytes (HaCaTs). Four ethanolic extracts (Zanthoxylum armatum, Adiantum capillus-venaris, Artemisia absinthium, and Martynia annua) inhibited the growth of MDR strains of ESKAPE pathogens (IC50: 256 μg mL-1). All extracts, with the exception of Pyrus pashia and M. annua, exhibited significant quorum quenching in a reporter strain for S. aureus agr I. The ethanolic extract of Z. armatum fruits (Extract 1290) inhibited quorum sensing (IC50 32-256 μg mL-1) in S. aureus reporter strains for agr I-III. The quorum quenching activity of extract 1290 was validated by detection of δ-toxin in the bacterial supernatant, with concentrations of 64-256 μg mL-1 sufficient to yield a significant drop in δ-toxin production. None of the extracts inhibited S. aureus biofilm formation at sub-inhibitory concentrations for growth. All extracts were well tolerated by human keratinocytes (LD50 ≥ 256 μg mL-1). Chemical analysis of extract 1290 by liquid chromatography-Fourier transform mass spectrometry (LC-FTMS) revealed the presence of 29 compounds, including eight with putative structural matches. In conclusion, five out of the nine selected anti-infective medicinal plants exhibited growth inhibitory activity against at least one MDR ESKAPE pathogen at concentrations not harmful to human keratinocytes. Furthermore, Z. armatum was identified as a source of quorum quenching natural products and further bioassay-guided fractionation of this species is merited.
Collapse
Affiliation(s)
- Muhammad Faraz Khan
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan.,Center for the Study of Human Health, Emory University College of Arts and Sciences, Atlanta, GA, United States.,Department of Botany, Faculty of Basic and Applied Sciences, University of the Poonch, Rawalakot, Pakistan
| | - Huaqiao Tang
- Center for the Study of Human Health, Emory University College of Arts and Sciences, Atlanta, GA, United States
| | - James T Lyles
- Center for the Study of Human Health, Emory University College of Arts and Sciences, Atlanta, GA, United States
| | - Rozenn Pineau
- Center for the Study of Human Health, Emory University College of Arts and Sciences, Atlanta, GA, United States
| | - Zia-Ur-Rahman Mashwani
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Cassandra L Quave
- Center for the Study of Human Health, Emory University College of Arts and Sciences, Atlanta, GA, United States.,Department of Dermatology, Emory University School of Medicine, Atlanta, GA, United States.,Antibiotic Resistance Center, Emory University, Atlanta, GA, United States
| |
Collapse
|
70
|
Yazici G, Erdogan Z, Bulut H, Ay A, Kalkan N, Atasayar S, Erden Yuksekkaya S. The Use of Complementary and Alternative Medicines Among Surgical Patients: A Survey Study. J Perianesth Nurs 2018; 34:322-329. [PMID: 30033002 DOI: 10.1016/j.jopan.2018.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE The use of complementary and alternative medicine (CAM) has increased around the world. This study evaluates CAM use in surgery patients. DESIGN Cross-sectional and descriptive study. METHODS This study was conducted in a university hospital in Turkey between January 1 and June 30, 2016, on volunteer inpatients who were scheduled for surgery because of various complaints. FINDINGS In this study, 65.9% of the patients used CAMs, 87.4% of the patients used herbal methods, and 63.7% of the patients used cognitive-behavioral methods. CONCLUSIONS Health care providers, and nursing staff, in particular, should have adequate knowledge of societal approaches to CAMs, as well as the possible benefits and harms CAM may cause.
Collapse
|
71
|
Parmar KM, Shende PR, Katare N, Dhobi M, Prasad SK. Wound healing potential of Solanum xanthocarpum in streptozotocin-induced diabetic rats. ACTA ACUST UNITED AC 2018; 70:1389-1400. [PMID: 29984407 DOI: 10.1111/jphp.12975] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/15/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The objective of the present study was to evaluate wound healing potential of Solanum xanthocarpum extract in streptozotocin-induced diabetic rats. METHODS Alcoholic extract of the aerial parts (ESX) was subjected to phytochemical estimations and its standardization with chlorogenic acid using HPLC. ESX was then evaluated for wound healing potential in, streptozotocin-induced diabetic rats using excision and incision wound models on topical and oral treatment Various biochemical evaluations, such as collagen, hexosamine, hyaluronic acid, protein, DNA along with antioxidant parameters, proinflammatory cytokines, VEGF and histopathological examination were also evaluated. KEY FINDINGS Extract of S. xanthocarpum depicted the presence of mainly alkaloids, polyphenols, steroids, while content of chlorogenic acid was found to be 8.44% w/w. The maximum effective nature of ESX in healing was observed at 10% gel (topical) and 200 mg/kg (orally) in diabetic rats, where highest healing power was observed when treated both orally and topically. Biochemical evaluations showed significant increase in the levels of collagen, hexosamine, hyaluronic acid, protein, DNA followed by significant decline in the levels of blood glucose, lipid peroxidation, nitric oxide and expression of proinflammatory cytokines, supported by histopathology. CONCLUSIONS The potential healing effect in diabetic rats may be attributed to the presence of chlorogenic acid in combination with other phytoconstituents.
Collapse
Affiliation(s)
- Komal M Parmar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Priyanka R Shende
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Nitin Katare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Mahaveer Dhobi
- Department of Pharmacognosy and Phytochemistry, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Satyendra K Prasad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| |
Collapse
|
72
|
Mellado C, Figueroa T, Báez R, Castillo R, Melendrez M, Schulz B, Fernández K. Development of Graphene Oxide Composite Aerogel with Proanthocyanidins with Hemostatic Properties As a Delivery System. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7717-7729. [PMID: 29461041 DOI: 10.1021/acsami.7b16084] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The graphene aerogels' potential for use as both a hemostatic agent and dermal delivery system has scarcely been investigated. In this study, we used a sol-gel process for generating dry and stable composite aerogels based on graphene oxide (GO) and poly(vinyl alcohol) (PVA). Furthermore, we incorporated natural extract of País grape seed (SD) and skin (SK), rich in proanthocyanidins (PAs or condensed tannins). The effect of the incorporation of the grape extracts was investigated in relation to the aerogels' structure, coagulation performance and the release of the extracts. The results demonstrated that they have a porous structure and low density, capable of absorbing water and blood. The incorporation of 12% (w/w) of PA extracts into the aerogel increased the negative zeta potential of the material by 33% (-18.3 ± 1.3 mV), and the coagulation time was reduced by 37% and 28% during the first 30 and 60 s of contact between the aerogel and whole blood, respectively. The release of extracts from the GO-PVA-SD and GO-PVA-SK aerogels was prolonged to 3 h with 20%, probably due to the existence of strong binding between PAs andGO-PVA, both characterized by the presence of aromatic and hydroxyl groups that can form noncovalent bonds but are strong and stable enough to avoid a greater release into the medium. This study provides a new GO-based aerogel, which has a great potential use in the field of dermal delivery, wound healing and/or the treatment of trauma bleeding.
Collapse
Affiliation(s)
- Constanza Mellado
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering , University of Concepción , Barrio Universitario s/n , P.O. Box 160-C, Concepción 4030000 , Chile
| | - Toribio Figueroa
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering , University of Concepción , Barrio Universitario s/n , P.O. Box 160-C, Concepción 4030000 , Chile
| | - Ricardo Báez
- Department of Physics, Faculty of Physical and Mathematical Sciences , University of Concepción , Concepción , Chile
| | - Rosario Castillo
- Department of Instrumental Analysis, Faculty of Pharmacy , University of Concepción , Concepción , Chile
| | - Manuel Melendrez
- Department of Material, Faculty of Engineering , University of Concepción , Concepción , Chile
| | - Berta Schulz
- Department of Pharmacy, Faculty of Pharmacy , University of Concepción , Concepción , Chile
| | - Katherina Fernández
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering , University of Concepción , Barrio Universitario s/n , P.O. Box 160-C, Concepción 4030000 , Chile
| |
Collapse
|
73
|
Asfour MH, Elmotasem H, Mostafa DM, Salama AA. Chitosan based Pickering emulsion as a promising approach for topical application of rutin in a solubilized form intended for wound healing: In vitro and in vivo study. Int J Pharm 2017; 534:325-338. [DOI: 10.1016/j.ijpharm.2017.10.044] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 02/02/2023]
|
74
|
Ahmad M, Sultana M, Raina R, Pankaj NK, Verma PK, Prawez S. Hypoglycemic, Hypolipidemic, and Wound Healing Potential of Quercetin in Streptozotocin-Induced Diabetic Rats. Pharmacogn Mag 2017; 13:S633-S639. [PMID: 29142425 PMCID: PMC5669108 DOI: 10.4103/pm.pm_108_17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/13/2017] [Indexed: 12/30/2022] Open
Abstract
Background: Among the dietary polyphenolic, quercetin is the most common compound available in vegetables and fruits. The phytochemicals are used to treat diabetic wounds and diabetes, and specifically dietary polyphenols are being extensively studied for their anti-inflammatory and antioxidant abilities. Objective: The objective of the study was to assess the hypoglycemic, hypolipidemic, and wound healing potential of quercetin in streptozotocin (STZ)-induced diabetic Wistar rats. Materials and Methods: Induction of diabetes was done by intraperitoneally administration of STZ at the dose of 55 mg/kg in Wistar rats. An excision wound was created in diabetic rats that were treated with quercetin (100 mg/kg) orally and quercetin ointment topically to evaluate the antidiabetic and wound healing potential of quercetin. Results: Repeated oral administration of quercetin along with topical application of quercetin ointment in diabetic rats normalized the altered blood glucose, hydroxyproline, and glucosamine levels. Topical application of quercetin ointment alone on the excised wound was sufficient enough to heal the wound area in diabetic rats. Conclusions: The result of the present study indicates that quercetin produces hypoglycemic effect in STZ-induced diabetic rats and normalized plasma lipids and protein profiles. Besides, this quercetin also has an excellent wound healing property when applied topically on the wound area in diabetic rats. SUMMARY Quercetin has hypoglycaemic and hypolipidemic potential in streptozotocin induced diabetes in wistar rats Dermal application along with oral administrations of quercetin has more effective in wound healing in diabetic animals Histopathological studies of pancreas, skin and liver shows significant reduction in archaeological alterations on quercetin administrations in diabetic rats.
Abbreviation used: STZ: Streptozotocin; CMC: Carboxy methyl cellulose; HDL: High density lipoproteins; LDL: low density lipoproteins.
Collapse
Affiliation(s)
- Mahrukh Ahmad
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, Jammu, Jammu and Kashmir, India
| | - Mudasir Sultana
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, Jammu, Jammu and Kashmir, India
| | - Rajinder Raina
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, Jammu, Jammu and Kashmir, India
| | - Nrip Kishore Pankaj
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, Jammu, Jammu and Kashmir, India
| | - Pawan Kumar Verma
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, Jammu, Jammu and Kashmir, India
| | - Shahid Prawez
- Division of Veterinary Pharmacology and Toxicology, Banaras Hindu University, Banaras, Uttar Pradesh, India
| |
Collapse
|
75
|
Park JH, Choi SH, Park SJ, Lee YJ, Park JH, Song PH, Cho CM, Ku SK, Song CH. Promoting Wound Healing Using Low Molecular Weight Fucoidan in a Full-Thickness Dermal Excision Rat Model. Mar Drugs 2017; 15:E112. [PMID: 28387729 PMCID: PMC5408258 DOI: 10.3390/md15040112] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/01/2017] [Accepted: 04/05/2017] [Indexed: 12/31/2022] Open
Abstract
Low molecular weight fucoidan (LMF) has been reported to possess anti-inflammatory and antioxidant activities. Thus, we examined the effects of LMF extracted from Undaria pinnatifida on dermal wounds. Five round dermal wounds were created on the dorsal back of rats, and they were then treated topically with distilled water (DW), Madecasol Care™ (MC) or LMF at 200, 100 and 50 mg/mL, twice a day for a week. There were dose-dependent increases in wound contraction in the groups receiving LMF but not in the MC group, compared with the DW. Histopathological examination revealed that LMF treatment accelerated wound healing, which was supported by increases in granular tissue formation on day four post-treatment but a decrease on day seven, accompanied by an evident reduction in inflammatory cells. In the LMF-treated wounds, collagen distribution and angiogenesis were increased in the granular tissue on days four and seven post-treatment. Immunoreactive cells for transforming growth factor-β1, vascular endothelial growth factor receptor-2 or matrix metalloproteinases 9 were also increased, probably due to tissue remodeling. Furthermore, LMF treatment reduced lipid peroxidation and increased antioxidant activities. These suggested that LMF promotes dermal wound healing via complex and coordinated antioxidant, anti-inflammatory and growth factor-dependent activities.
Collapse
Affiliation(s)
- Jun-Hyeong Park
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Seong-Hun Choi
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Soo-Jin Park
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Young Joon Lee
- Department of Preventive Medicine, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Jong Hyun Park
- Department of Pathology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Phil Hyun Song
- Department of Urology, College of Medicine, Yeungnam University, Daegu 42415, Korea.
| | - Chang-Mo Cho
- Faculty of Physical Education, College of Physical Education, Keimyung University, Daegu 42601, Korea.
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Chang-Hyun Song
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| |
Collapse
|
76
|
Rahman N, Rahman H, Haris M, Mahmood R. Wound healing potentials of Thevetia peruviana: Antioxidants and inflammatory markers criteria. J Tradit Complement Med 2017; 7:519-525. [PMID: 29034202 PMCID: PMC5634754 DOI: 10.1016/j.jtcme.2017.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/17/2016] [Accepted: 01/11/2017] [Indexed: 11/26/2022] Open
Abstract
Thevetia peruviana is a medicinal plant used in the treatment of external wounds, infected area, ring worms, tumours etc. in traditional system of medicine. The aim of the study was to evaluate the wound healing potentials of T. peruviana leaves hexane (LH) and fruit rind (FW) water extracts and to prove the folkloric claims. The antimicrobial, antioxidant and anti-inflammatory potentials could be important strategies in defining potent wound healing drug. Based on these approaches the current study was designed using incision, excision and dead space wound models with the biochemical, antioxidant enzymes and inflammatory marker analysis. The fruit rind water extract showed highest WBS of 1133 ± 111.4 g. The extracts in excision model retrieved the excised wound i.e. complete healing of wound at day 14. The hydroxyproline content of FW and LH treated dry granuloma tissue was increased to 65.73 ± 3.2 mg/g and 53.66 ± 0.38 mg/g, accompanied by elevations of hexosamine and hexauronic acid with upregulation of GSH, catalase, SOD, peroxidase and the down regulation of the inflammatory marker (NO) and oxidative stress marker (LPO) in wet granulation tissue was documented. Conclusively, both the extracts showed enhanced WBS, rate of wound contraction, skin collagen tissue development, and early epithelisation. Therapeutic wound healing effect was further proven by reduced free radicals and inflammatory makers associated with enhanced antioxidants and connective tissue with histological evidence of more collagen formation. The present research could establish T. peruviana as potential source of effective wound healing drugs.
Collapse
Affiliation(s)
- Nazneen Rahman
- Department of Biotechnology and Bioinformatics, Kuvempu University, Jnanasahyadri, Shankaraghatta, 577 451, Shimoga Dist., Karnataka, India
| | - Haseebur Rahman
- Department of Biotechnology and Bioinformatics, Kuvempu University, Jnanasahyadri, Shankaraghatta, 577 451, Shimoga Dist., Karnataka, India
| | - Mir Haris
- Department of Biotechnology and Bioinformatics, Kuvempu University, Jnanasahyadri, Shankaraghatta, 577 451, Shimoga Dist., Karnataka, India
| | - Riaz Mahmood
- Department of Biotechnology and Bioinformatics, Kuvempu University, Jnanasahyadri, Shankaraghatta, 577 451, Shimoga Dist., Karnataka, India
| |
Collapse
|
77
|
Farahpour MR, Hesaraki S, Faraji D, Zeinalpour R, Aghaei M. Hydroethanolic Allium sativum extract accelerates excision wound healing: evidence for roles of mast-cell infiltration and intracytoplasmic carbohydrate ratio. BRAZ J PHARM SCI 2017. [DOI: 10.1590/s2175-97902017000115079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
78
|
de Albuquerque RDDG, Perini JA, Machado DE, Angeli-Gamba T, Esteves RDS, Santos MG, Oliveira AP, Rocha L. Wound Healing Activity and Chemical Standardization of Eugenia pruniformis Cambess. Pharmacogn Mag 2016; 12:288-294. [PMID: 27867271 PMCID: PMC5096275 DOI: 10.4103/0973-1296.192206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Eugenia pruniformis is an endemic species from Brazil. Eugenia genus has flavonoids as one of the remarkable chemical classes which are related to the improvement of the healing process. Aims: To evaluate of wound healing activity of E. pruniformis leaves and to identify and quantify its main flavonoids compounds. Materials And Methods: Wound excision model in rats was used to verify the hydroethanolic and ethyl acetate extracts potential. The animals were divided in four groups of six and the samples were evaluated until the 15° day of treatment. Hydroxyproline dosage and histological staining with hematoxilin-eosin and Sirius Red were used to observe the tissue organization and quantify the collagen deposition, respectively. Chemical compounds of the ethyl acetate extract were identified by chromatographic techniques and mass spectrometry analysis and total flavonoids content was determined by spectrophotometric method. The antioxidant activity was determined by oxygen radical absorbing capacity (ORAC) and 2,2-diphenyl-1-picrylhydrazylhydrate radical photometric (DPPH) assays. Results: The treated group with the ethyl acetate extract showed collagen deposition increase, higher levels of hidroxyproline, better tissue reorganization and complete remodeling of epidermis. Quercetin, kaempferol and hyperoside were identified as main compounds and flavonoids content value was 43% (w/w). The ORAC value of the ethyl acetate extract was 0.81± 0.05 mmol TE/g whereas the concentration to produce 50% reduction of the DPPH was 7.05± 0.09 μg/mL. Conclusion: The data indicate a wound healing and antioxidant activities of E. pruniformis. This study is the first report of flavonoids and wound healing activity of E. pruniformis. KEY MESSAGES Eugenia pruniformis extract accelerates wound healing in skin rat model, probably due to its involvement with the collagen deposition increase, higher levels of hidroxyproline, dermal remodelling and potent antioxidant activity. Chemical standardization of the active wound healing extract was done. The total flavonoid content was 43% (w/w) and quercetin, kaempferol and hyperoside were identified as main compounds. SUMMARY Wound excision model in rats showed the potential wound healing activity of E. pruniformis by collagen deposition increase, higher levels of hidroxyproline, better tissue reorganization and complete remodeling of epidermis. Flavonoids are the main compounds of the endemic E. pruniformis and quercetin, kaempferol and hyperoside were identified in ethyl acetate extract by TLC, HPLC-PDA and HRESI-MS analysis. The ethyl acetate extract of E. pruniformis showed a potent antioxidant activity by ORAC and DPPH assays
Abbreviation used: NC: Negative control, PC: Positive control, CH: Crude hydroethanolic extract, EA: Ethyl acetate extract, TE: Trolox equivalent, mg: Milligram, mM: Millimolar, mL: Milliliter, HPLC-PDA: High performance liquid chromatography with a photodiode array detector, HRESI-MS: High-resolution electrospray ionization mass spectrometry analysis, TLC: Thin layer chromatography, ORAC: Oxygen radical absorbance capacity, w/v: Weight per volume
Collapse
Affiliation(s)
- Ricardo Diego Duarte Galhardo de Albuquerque
- Programa de Pós Graduação em Biotecnologia Vegetal, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil; Laboratório de Tecnologia de Produtos Naturais, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - Jamila Alessandra Perini
- Laboratório de Pesquisas em Ciências Farmacêuticas, Unidade de Farmácia, Centro Universitário Estadual da Zona Oeste do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Daniel Escorsim Machado
- Laboratório de Pesquisas em Ciências Farmacêuticas, Unidade de Farmácia, Centro Universitário Estadual da Zona Oeste do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Thaís Angeli-Gamba
- Laboratório de Pesquisas em Ciências Farmacêuticas, Unidade de Farmácia, Centro Universitário Estadual da Zona Oeste do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Ricardo Dos Santos Esteves
- Laboratório de Tecnologia de Produtos Naturais, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - Marcelo Guerra Santos
- Departamento de Ciências, Faculdade de Formação de Professores, Universidade do Estado do Rio de Janeiro, São Gonçalo, RJ, Brasil
| | - Adriana Passos Oliveira
- Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Leandro Rocha
- Programa de Pós Graduação em Biotecnologia Vegetal, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil; Laboratório de Tecnologia de Produtos Naturais, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brasil
| |
Collapse
|
79
|
Antioxidant and Wound Healing Activity of Polyherbal Fractions of Clinacanthus nutans and Elephantopus scaber. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4685246. [PMID: 27528881 PMCID: PMC4977412 DOI: 10.1155/2016/4685246] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/14/2016] [Accepted: 06/22/2016] [Indexed: 12/01/2022]
Abstract
Elephantopus scaber and Clinacanthus nutans are traditionally used as wound healing herb. The objective of the present study is to develop a new polyherbal formulation, by comparison, the herbal combination of Elephantopus scaber and Clinacanthus nutans as an in vitro antioxidant activity with their individual herbal activity followed by fractionation of polyherbal formulation for in vivo wound healing activities and identification of bioactive compounds from their active fractions. Antioxidant activity was performed in vitro by DPPH scavenging antioxidant activity followed by in vivo wound healing activities using excision wound model, incision wound model, and burn wound model. Toxicity of the fractions of the polyherbal formulation was performed by a dermal toxicity test. The result showed that Elephantopus scaber crude extract on the basis of EC50 performs a much faster action (15.67 μg/mL) but with less % inhibition (87.66%) as compared to the combination of the new polyherbal formulation of crude extract (30 μg/mL). The polyherbal formulation has the highest % inhibition (89.49%) at the same dose as compared to Elephantopus scaber (87.66%). In comparison among all crude and fractions of new polyherbal formulation, it was found that the ethyl acetate fraction of polyherbal formulation has the fastest activity (EC50 14.83 μg/mL) with % inhibition (89.28%). Furthermore, during evaluation of wound contraction on excision and incision wound model, ethyl acetate fraction possesses the highest activity with (P < 0.001) and (P < 0.0001), respectively. During burn wound model, aqueous fraction (P < 0.001) possesses the highest activity followed by an ethyl acetate fraction (P < 0.0001). LC-MS analysis discovered the presence of several flavonoid-based compounds that work synergistically with sesquiterpene lactone and other bioactive compounds. In conclusion, flavonoid increases the antioxidant activity that surges the rate of wound contraction and works synergistically with other bioactive compounds.
Collapse
|
80
|
Fabrication of Apigenin loaded gellan gum-chitosan hydrogels (GGCH-HGs) for effective diabetic wound healing. Int J Biol Macromol 2016; 91:1110-9. [PMID: 27344952 DOI: 10.1016/j.ijbiomac.2016.06.075] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/13/2016] [Accepted: 06/23/2016] [Indexed: 01/06/2023]
Abstract
The Apigenin (APN) was isolated from ethanolic extract of M. alba leaves and screened by in-vivo wound models (Diabetic and Dead space) in rats. Apigenin loaded hydrogel (HGs) was prepared using gellan gum-chitosan (GGCH) with PEG as a cross linker and characterized for various parameter like AFM, swelling property, entrapment efficiency and drug release. Further performance of hydrogel was evaluated by wound healing activity tested against wound contraction, collagen content, dried granuloma weights and antioxidant activity. The percent entrapment efficiency of optimized hydrogel found to be 87.15±1.20. APN loaded GGCH-HGs were able to release 96.11% APN in 24h. The level of superoxide dismutase (SOD) and catalase were found increased significantly in granuloma tissue of APN treated group. APN GGCH-HGs found higher wound healing effect in diabetic as well as normal wound tissues with significant antioxidant activity. Results proven the utility of prepared hydrogel (APN loaded GGCH-HGs) seems to be highly suitable for wound healing due to its unique properties of biocompatibility, biodegradability, moist nature and antioxidant effectiveness.
Collapse
|
81
|
Choi S, Youn J, Kim K, Joo DH, Shin S, Lee J, Lee HK, An IS, Kwon S, Youn HJ, Ahn KJ, An S, Cha HJ. Apigenin inhibits UVA-induced cytotoxicity in vitro and prevents signs of skin aging in vivo. Int J Mol Med 2016; 38:627-34. [PMID: 27279007 DOI: 10.3892/ijmm.2016.2626] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 05/25/2016] [Indexed: 11/06/2022] Open
Abstract
Apigenin (4',5,7-trihydroxyflavone) is a flavone that has been reported to have anti-inflammatory, antioxidant and anti-carcinogenic properties. In this study, we investigated the protective effects of apigenin on skin and found that, in experiments using cells, apigenin restored the viability of normal human dermal fibroblasts (nHDFs), which had been decreased by exposure to ultraviolet (UV) radiation in the UVA range. Using a senescence-associated (SA)-β-gal assay, we also demonstrate that apigenin protects against the UVA-induced senescence of nHDFs. Furthermore, we found that apigenin decreased the expression of the collagenase, matrix metalloproteinase (MMP)-1, in UVA-irradiated nHDFs. UVA, which has been previously identified as a photoaging-inducing factor, has been shown to induce MMP-1 expression. The elevated expression of MMP-1 impairs the collagen matrix, leading to the loss of elasticity and skin dryness. Therefore, we examined the clinical efficacy of apigenin on aged skin, using an apigenin‑containing cream for clinical application. Specifically, we measured dermal density, skin elasticity and the length of fine wrinkles in subjects treated with apigenin cream or the control cream without apigenin. Additionally, we investigated the effects of the apigenin-containing cream on skin texture, moisture and transepidermal water loss (TEWL). From these experiments, we found that the apigenin‑containing cream increased dermal density and elasticity, and reduced fine wrinkle length. It also improved skin evenness, moisture content and TEWL. These results clearly demonstrate the biological effects of apigenin, demonstrating both its cellular and clinical efficacy, and suggest that this compound holds promise as an anti-aging cosmetic ingredient.
Collapse
Affiliation(s)
- Sungjin Choi
- Korea Institute for Skin and Clinical Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Jeungyeun Youn
- Korea Institute for Skin and Clinical Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Karam Kim
- Korea Institute for Skin and Clinical Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Da Hye Joo
- Korea Institute for Skin and Clinical Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Shanghun Shin
- Korea Institute for Skin and Clinical Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Jeongju Lee
- Korea Institute for Skin and Clinical Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Hyun Kyung Lee
- Korea Institute for Skin and Clinical Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - In-Sook An
- GeneCellPharm Incorporated, Venture Center II, Cheongju-si, Chungcheongbuk-do 361-951, Republic of Korea
| | - Seungbin Kwon
- GeneCellPharm Incorporated, Venture Center II, Cheongju-si, Chungcheongbuk-do 361-951, Republic of Korea
| | - Hae Jeong Youn
- Department of Dermatology, Konkuk University School of Medicine, Seoul 143-701, Republic of Korea
| | - Kyu Joong Ahn
- Department of Dermatology, Konkuk University School of Medicine, Seoul 143-701, Republic of Korea
| | - Sungkwan An
- Korea Institute for Skin and Clinical Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Hwa Jun Cha
- Korea Institute for Skin and Clinical Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| |
Collapse
|
82
|
Sudsai T, Wattanapiromsakul C, Tewtrakul S. Wound healing property of isolated compounds from Boesenbergia kingii rhizomes. JOURNAL OF ETHNOPHARMACOLOGY 2016; 184:42-48. [PMID: 26945979 DOI: 10.1016/j.jep.2016.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/01/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Boesenbergia kingii have been traditionally used in the treatment of inflammatory bowel disease, ulcerative colitis, aphthous ulcer, stomach discomfort, dysentery and abscess. Previously, we reported the B. kingii extract exert potential wound healing properties. Therefore the search of responsible constituents for wound healing property from these rhizomes is still relevant. AIM OF STUDY This study was aimed to investigate for wound healing property of compounds from this plant in order to support its traditional uses. MATERIAL AND METHODS Wound healing activities were tested using in vitro assays including cell proliferation and migration assays, collagen production and H2O2-induced oxidative stress in mouse fibroblast L929 cells. The DPPH assay was also used to determine antioxidant activity. RESULTS Fourteen compounds from the chloroform fraction possessed potent anti-oxidant and wound healing activities. Compound 11 exhibited the most potent anti-DPPH effect (IC50=21.0µM) and also active against 0.5mMH2O2-induced oxidative stress by increasing cell survival ability up to 60.3% at 10µM. In addition, compounds 3, 8 and 14 at 10µM significantly enhanced L929 viability with 119.2%, 122.7% and 113.7%, respectively. Compounds 2, 7, 8 and 14 markedly enhanced L929 migration on day 2 up to 60-76% at 10µM, whereas 7 and 14 strongly stimulated collagen production at 75.0 and 96.7µg/ml compared to the control group (57.5µg/ml), respectively. CONCLUSION B. kingii is responsible for wound healing property via antioxidative effect, stimulation of fibroblast proliferation and migration as well as enhancement of collagen production.
Collapse
Affiliation(s)
- Teeratad Sudsai
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90112, Thailand; Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand; College of Oriental Medicine, Rangsit University, Pathumthani 12000, Thailand
| | - Chatchai Wattanapiromsakul
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90112, Thailand
| | - Supinya Tewtrakul
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90112, Thailand; Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand.
| |
Collapse
|
83
|
Pharmacological Investigation of the Wound Healing Activity of Cestrum nocturnum (L.) Ointment in Wistar Albino Rats. JOURNAL OF PHARMACEUTICS 2016; 2016:9249040. [PMID: 27018126 PMCID: PMC4785265 DOI: 10.1155/2016/9249040] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 11/18/2022]
Abstract
Objectives. The present study was aimed at investigating the wound healing effect of ethanolic extract of Cestrum nocturnum (L.) leaves (EECN) using excision and incision wound model. Methods. Wistar albino rats were divided into five groups each consisting of six animals; group I (left untreated) considered as control, group II (ointment base treated) considered as negative control, group III treated with 5% (w/w) povidone iodine ointment (Intadine USP), which served as standard, group IV treated with EECN 2% (w/w) ointment, and group V treated with EECN 5% (w/w) ointment were considered as test groups. All the treatments were given once daily. The wound healing effect was assessed by percentage wound contraction, epithelialization period, and histoarchitecture studies in excision wound model while breaking strength and hydroxyproline content in the incision wound model. Result. Different concentration of EECN (2% and 5% w/w) ointment promoted the wound healing activity significantly in both the models studied. The high rate of wound contraction (P < 0.001), decrease in the period for epithelialization (P < 0.01), high skin breaking strength (P < 0.001), and elevated hydroxyproline content were observed in animal treated with EECN ointments when compared to the control and negative control group of animals. Histopathological studies of the EECN ointments treated groups also revealed the effectiveness in improved wound healing. Conclusions. Ethanolic extract of Cestrum nocturnum (EECN) leaves possesses a concentration dependent wound healing effect.
Collapse
|
84
|
Pawar RS, Toppo FA, Mandloi AS, Shaikh S. Exploring the role of curcumin containing ethanolic extract obtained from Curcuma longa (rhizomes) against retardation of wound healing process by aspirin. Indian J Pharmacol 2016; 47:160-6. [PMID: 25878374 PMCID: PMC4386123 DOI: 10.4103/0253-7613.153422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/21/2014] [Accepted: 02/26/2015] [Indexed: 12/01/2022] Open
Abstract
Aim: The aim of the study was to assess the curcumin containing ethanolic extract (EtOH) obtained from Curcuma longa (Cl) against retardation of wound healing by aspirin. Materials and Methods: Wound healing process was retarded by administering the dose of 150 mg/kg body weight of aspirin orally for 9 days to observe the effect of EtOH obtained from Cl using excision and incision wound model in rats. The various parameters such as % wound contraction, epithelialization period, hydroxyproline, tensile strength were observed at variant time intervals and histopathological study was also performed. Results: Curcumin containing 5% and 10% ethanolic extract ointment have shown significant (P < 0.01) wound healing activity against an aspirin (administered 150 mg/kg body weight orally for 9 days) retarded wound healing process. Topical application of ointment showed significant (P < 0.01) difference as compared to the control group. Histopathological studies also showed healing of the epidermis, increased collagen, fibroblasts and blood vessels. Conclusion: Ethanolic extract of Cl ointment (EtOHCl) containing 10% curcumin displayed remarkable healing process against wound retardation by aspirin.
Collapse
Affiliation(s)
- Rajesh Singh Pawar
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, VNS Group of Institutions, Bhopal, Madhya Pradesh, India
| | - Fedelic Ashish Toppo
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, VNS Group of Institutions, Bhopal, Madhya Pradesh, India
| | - Avinash Singh Mandloi
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, VNS Group of Institutions, Bhopal, Madhya Pradesh, India
| | - Shabnam Shaikh
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, VNS Group of Institutions, Bhopal, Madhya Pradesh, India
| |
Collapse
|
85
|
Comparative Studies on Phenolic Composition, Antioxidant, Wound Healing and Cytotoxic Activities of Selected Achillea L. Species Growing in Turkey. Molecules 2015; 20:17976-8000. [PMID: 26437391 PMCID: PMC6332372 DOI: 10.3390/molecules201017976] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 09/20/2015] [Accepted: 09/21/2015] [Indexed: 12/22/2022] Open
Abstract
Turkey is one of the most important centers of diversity for the genus Achillea L. in the world. Keeping in mind the immense medicinal importance of phenols, in this study, three species growing in Turkey, A. coarctata Poir. (AC), A. kotschyi Boiss. subsp. kotschyi (AK) and A. lycaonica Boiss. & Heldr. (AL) were evaluated for their phenolic compositions, total phenolic contents (TPC), antioxidant properties, wound healing potencies on NIH-3T3 fibroblasts and cytotoxic effects on MCF-7 human breast cancer cells. Comprehensive LC-MS/MS analysis revealed that AK was distinctively rich in chlorogenic acid, hyperoside, apigenin, hesperidin, rutin, kaempferol and luteolin (2890.6, 987.3, 797.0, 422.5, 188.1, 159.4 and 121.2 µg analyte/g extract, respectively). The findings exhibited a strong correlation between TPC and both free radical scavenging activity and total antioxidant capacity (TAC). Among studied species, the highest TPC (148.00 mg GAE/g extract) and TAC (2.080 UAE), the strongest radical scavenging (EC50 = 32.63 μg/mL), the most prominent wound healing and most abundant cytotoxic activities were observed with AK. The results suggested that AK is a valuable source of flavonoids and chlorogenic acid with important antioxidant, wound healing and cytotoxic activities. These findings warrant further studies to assess the potential of AK as a bioactive source that could be exploited in pharmaceutical, cosmetics and food industries.
Collapse
|
86
|
Zhang Y, Wang J, Cheng X, Yi B, Zhang X, Li Q. Apigenin induces dermal collagen synthesis via smad2/3 signaling pathway. Eur J Histochem 2015; 59:2467. [PMID: 26150153 PMCID: PMC4503966 DOI: 10.4081/ejh.2015.2467] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 12/20/2022] Open
Abstract
Decrease in fibroblast-produced collagen has been proven to be the pivotal cause of skin aging, but there is no satisfactory drug which directly increases dermal thickness and collage density. Here we found that a flavonoid natural product, apigenin, could significantly increase collagen synthesis. NIH/3T3 and primary human dermal fibroblasts (HDFs) were incubated with various concentrations of apigenin, with dimethyl sulfoxide (DMSO) serving as the negative control. Real-time reverse-transcription polymerase chain reaction (PCR), Western Blot, and Toluidine blue staining demonstrated that apigenin stimulated type-I and type-III collagen synthesis of fibroblasts on the mRNA and protein levels. Meanwhile, apigenin did not induce expression of alpha smooth muscle actin (α-SMA) in vitro and in vivo, a fibrotic marker in living tissues. Then the production of collagen was confirmed by Masson’s trichrome stain, Picrosirius red stain and immunohistochemistry in mouse models. We also clarified that this compound induced collagen synthesis by activating smad2/3 signaling pathway. Taken together, without obvious influence on fibroblasts’ apoptosis and viability, apigenin could promote the type-I and type-III collagen synthesis of dermal fibroblasts in vitro and in vivo, thus suggesting that apigenin may serve as a potential agent for esthetic and reconstructive skin rejuvenation.
Collapse
Affiliation(s)
- Y Zhang
- Shanghai Jiao Tong University.
| | | | | | | | | | | |
Collapse
|
87
|
Cho M, Yoon H, Park M, Kim YH, Lim Y. Flavonoids promoting HaCaT migration: I. Hologram quantitative structure-activity relationships. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:560-569. [PMID: 24252338 DOI: 10.1016/j.phymed.2013.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/11/2013] [Indexed: 06/02/2023]
Abstract
Cell migration plays an important role in multicellular development and preservation. Because wound healing requires cell migration, compounds promoting cell migration can be used for wound repair therapy. Several plant-derived polyphenols are known to promote cell migration, which improves wound healing. Previous studies of flavonoids on cell lines have focused on their inhibitory effects and not on wound healing. In addition, studies of flavonoids on wound healing have been performed using mixtures. In this study, individual flavonoids were used for cellular migration measurements. Relationships between the cell migration effects of flavonoids and their structural properties have never been reported. Here, we investigated the migration of keratinocytes caused by 100 flavonoids and examined their relationships using hologram quantitative structure-activity relationships. The structural conditions responsible for efficient cell migration on keratinocyte cell lines determined from the current study will facilitate the design of flavonoids with improved activity.
Collapse
Affiliation(s)
- Moonjae Cho
- Department of Biochemistry, School of Medicine, Jeju National University, Jeju 690-756, Republic of Korea
| | - Hyuk Yoon
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Republic of Korea
| | - Mijoo Park
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Republic of Korea
| | - Young Hwa Kim
- National Institute of Animal Science, Rural Development Administration, Cheonan 330-801, Republic of Korea
| | - Yoongho Lim
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|