51
|
Maldonado-Gomez MX, Lee H, Barile D, Lu M, Hutkins RW. Adherence inhibition of enteric pathogens to epithelial cells by bovine colostrum fractions. Int Dairy J 2015. [DOI: 10.1016/j.idairyj.2014.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
52
|
Holscher HD, Davis SR, Tappenden KA. Human milk oligosaccharides influence maturation of human intestinal Caco-2Bbe and HT-29 cell lines. J Nutr 2014; 144:586-91. [PMID: 24572036 DOI: 10.3945/jn.113.189704] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Stimulation of gastrointestinal tract maturation is 1 of the many benefits of human milk. Human milk oligosaccharides (HMOs) are abundant in human milk and are reported to promote enterocyte differentiation in vitro. The objective of this study was to assess the impact of 3 predominant HMOs on multiple aspects of enterocyte maturation in vitro. Ranging from crypt-like to differentiated enterocytes, we used the well-characterized intestinal cell lines HT-29 and Caco-2Bbe to model early and late stages of differentiation, respectively. With this model of the crypt-villus axis made up of preconfluent HT-29, preconfluent Caco-2Bbe, and postconfluent Caco-2Bbe cultures, we characterized the impact of lacto-N-neotetraose (LNnT), 2'-fucosyllactose (2'FL), and 6'-sialyllactose on epithelial cell kinetics and function. All 3 HMOs dose-dependently inhibited cell proliferation in undifferentiated HT-29 and Caco-2Bbe cultures (P < 0.05). In contrast to previous reports, only treatment with 2'FL at concentrations similar to human milk increased alkaline phosphatase activity by 31% (P = 0.044) in HT-29 cultures and increased sucrase activity by 54% (P = 0.005) in well-differentiated Caco-2Bbe cultures. LNnT at concentrations similar to that reported for human milk increased transepithelial resistance by 21% (P = 0.002) in well-differentiated Caco-2Bbe cells. In summary, all 3 HMOs reduced cell proliferation in an epithelial cell model of the crypt-villus axis. However, effects on differentiation, digestive function, and epithelial barrier function differed between the HMOs tested. These results suggest differential roles for specific HMOs in maturation of the gastrointestinal tract.
Collapse
|
53
|
Visioli F, Strata A. Milk, dairy products, and their functional effects in humans: a narrative review of recent evidence. Adv Nutr 2014; 5:131-43. [PMID: 24618755 PMCID: PMC3951796 DOI: 10.3945/an.113.005025] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Milk is a widely consumed beverage that is essential to the diet of several millions of people worldwide because it provides important macro- and micronutrients. Milk is recognized as being useful during childhood and adolescence because of its composition; however, its relatively high saturated fat proportion raises issues of potential detrimental effects, namely on the cardiovascular system. This review evaluates the most recent literature on dairy and human health, framed within epidemiologic, experimental, and biochemical evidence. As an example, the effects of milk (notably skimmed milk) on body weight appear to be well documented, and the conclusions of the vast majority of published studies indicate that dairy consumption does not increase cardiovascular risk or the incidence of some cancers. Even though the available evidence is not conclusive, some studies suggest that milk and its derivatives might actually be beneficial to some population segments. Although future studies will help elucidate the role of milk and dairy products in human health, their use within a balanced diet should be considered in the absence of clear contraindications.
Collapse
Affiliation(s)
- Francesco Visioli
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, Madrid, Spain
| | | |
Collapse
|
54
|
Marx C, Bridge R, Wolf AK, Rich W, Kim JH, Bode L. Human milk oligosaccharide composition differs between donor milk and mother's own milk in the NICU. J Hum Lact 2014; 30:54-61. [PMID: 24282194 DOI: 10.1177/0890334413513923] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Human milk oligosaccharides (HMO) represent the third most abundant component of human breast milk. More than a hundred structurally distinct HMO have been identified, and the HMO composition varies between mothers as well as over the course of lactation. Some newborn infants receive donor milk (DM) when their mother's own milk (MOM) volume is inadequate or unavailable. OBJECTIVE This study aimed to compare HMO content between DM and MOM. METHODS We used high performance liquid chromatography analysis of fluorescently labeled HMO to analyze the variation in HMO amount and composition of 31 different batches of DM (each pooled from 3 individual donors) provided by the Mothers' Milk Bank in San Jose, California, and compared it to 26 different MOM samples donated by mothers with infants in our neonatal intensive care unit (NICU). RESULTS Total HMO amount as well as concentrations of lacto-N-tetraose, lacto-N-neotetraose, lacto-N-fucopentaose 1, and disialyllacto-N-tetraose were significantly lower in DM than in MOM, whereas the concentrations of 3'-sialyllactose and 3-fucosyllactose were significantly higher in DM. CONCLUSION Our data show that infants in our NICU who receive DM are likely to ingest HMO at different total amounts and relative composition from what they would receive with their MOM. Recent in vitro and animal studies have started to link individual HMO to infant health and disease. Future studies are needed to assess the importance of a mother-infant match with regard to HMO composition.
Collapse
Affiliation(s)
- Carolin Marx
- 1Division of Neonatology, Department of Pediatrics, University of California, San Diego, San Diego, CA, USA
| | | | | | | | | | | |
Collapse
|
55
|
Select human milk oligosaccharides directly modulate peripheral blood mononuclear cells isolated from 10-d-old pigs. Br J Nutr 2013; 111:819-28. [PMID: 24131853 DOI: 10.1017/s0007114513003267] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Infant formulas lack the complex mixture of oligosaccharides found in human milk. These human milk oligosaccharides (HMO) may be pivotal to the development of the neonatal immune system. Few comprehensive analyses of the effects of HMO on immune cells from neonates have been undertaken. Herein, the direct effects of HMO on immune cells were analysed ex vivo. Peripheral blood mononuclear cells (PBMC) isolated from 10-d-old sow-reared (SR) or colostrum-deprived formula-fed (FF) pigs were stimulated for 72 h with single HMO, mixtures of single HMO or a complex mixture of HMO isolated from human milk (iHMO). T-cell phenotype, cytokine production and proliferation were measured by flow cytometry, immunoassay and [³H]thymidine incorporation, respectively. Stimulation with HMO had direct effects on PBMC. For instance, cells stimulated with iHMO produced more IL-10 than unstimulated cells, and cells stimulated with fucosylated HMO tended to proliferate less than unstimulated cells. Additionally, co-stimulation with HMO mixtures or single HMO altered PBMC responses to phytohaemagglutinin (PHA) or lipopolysaccharide (LPS) stimulation. Compared with PBMC stimulated with PHA alone, cells co-stimulated with iHMO and PHA proliferated more and had fewer detectable CD4⁺CD8⁺ T cells. Compared with PBMC stimulated by LPS alone, cells co-stimulated with a mixture of sialylated HMO and LPS proliferated more and tended to have fewer detectable CD4⁺ T cells. Differences in the baseline responses of PBMC isolated from the SR or FF pigs were observed. In summary, HMO directly affected PBMC populations and functions. Additionally, ex vivo measurements of PBMC phenotype, cytokine production and proliferation were influenced by the neonate's diet.
Collapse
|
56
|
Hill DR, Rho HK, Kessler SP, Amin R, Homer CR, McDonald C, Cowman MK, de la Motte CA. Human milk hyaluronan enhances innate defense of the intestinal epithelium. J Biol Chem 2013; 288:29090-104. [PMID: 23950179 PMCID: PMC3790008 DOI: 10.1074/jbc.m113.468629] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 08/06/2013] [Indexed: 12/18/2022] Open
Abstract
Breast-feeding is associated with enhanced protection from gastrointestinal disease in infants, mediated in part by an array of bioactive glycan components in milk that act through molecular mechanisms to inhibit enteric pathogen infection. Human milk contains hyaluronan (HA), a glycosaminoglycan polymer found in virtually all mammalian tissues. We have shown that synthetic HA of a specific size range promotes expression of antimicrobial peptides in intestinal epithelium. We hypothesize that hyaluronan from human milk also enhances innate antimicrobial defense. Here we define the concentration of HA in human milk during the first 6 months postpartum. Importantly, HA isolated from milk has a biological function. Treatment of HT-29 colonic epithelial cells with human milk HA at physiologic concentrations results in time- and dose-dependent induction of the antimicrobial peptide human β-defensin 2 and is abrogated by digestion of milk HA with a specific hyaluronidase. Milk HA induction of human β-defensin 2 expression is also reduced in the presence of a CD44-blocking antibody and is associated with a specific increase in ERK1/2 phosphorylation, suggesting a role for the HA receptor CD44. Furthermore, oral administration of human milk-derived HA to adult, wild-type mice results in induction of the murine Hβ D2 ortholog in intestinal mucosa and is dependent upon both TLR4 and CD44 in vivo. Finally, treatment of cultured colonic epithelial cells with human milk HA enhances resistance to infection by the enteric pathogen Salmonella typhimurium. Together, our observations suggest that maternally provided HA stimulates protective antimicrobial defense in the newborn.
Collapse
Affiliation(s)
- David R. Hill
- From the Department of Molecular Medicine and
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Hyunjin K. Rho
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Sean P. Kessler
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Ripal Amin
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Craig R. Homer
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Christine McDonald
- From the Department of Molecular Medicine and
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Mary K. Cowman
- the Department of Chemical and Biological Sciences, Polytechnic Institute of New York University, Brooklyn, New York, 11201
| | - Carol A. de la Motte
- From the Department of Molecular Medicine and
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| |
Collapse
|
57
|
Fucosylated but not sialylated milk oligosaccharides diminish colon motor contractions. PLoS One 2013; 8:e76236. [PMID: 24098451 PMCID: PMC3788724 DOI: 10.1371/journal.pone.0076236] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/24/2013] [Indexed: 02/07/2023] Open
Abstract
Human milk oligosaccharides (HMO) are being studied by different groups exploring a broad range of potential beneficial effects to the breastfed infant. Many of these effects have been attributed to a growth promotion effect on certain gut organisms such as bifidobacteria. Additionally, evidence indicates that HMO are able to directly promote positive changes in gut epithelium and immune responses under certain conditions. This study utilizes a standardized ex vivo murine colon preparation to examine the effects of sialylated, fucosylated and other HMO on gut motor contractions. Only the fucosylated molecules, 2’FL and 3’FL, decreased contractility in a concentration dependent fashion. On the basis of IC50 determinations 3’FL was greater than 2 times more effective than 2’FL. The HMO 3’SL and 6’SL, lacto-N-neotetraose (LNnT), and galactooligosaccharides (GOS) elicited no effects. Lactose was used as a negative control. Fucosylation seems to underlie this functional regulation of gut contractility by oligosaccharides, and L-fucose, while it was also capable of reducing contractility, was substantially less effective than 3’FL and 2’FL. These results suggest that specific HMO are unlikely to be having these effects via bifidogenesis, but though direct action on neuronally dependent gut migrating motor complexes is likely and fucosylation is important in providing this function, we cannot conclusively shown that this is not indirectly mediated. Furthermore they support the possibility that fucosylated sugars and fucose might be useful as therapeutic or preventative adjuncts in disorders of gut motility, and possibly also have beneficial central nervous system effects.
Collapse
|
58
|
Bode L. Human milk oligosaccharides and their beneficial effects. HANDBOOK OF DIETARY AND NUTRITIONAL ASPECTS OF HUMAN BREAST MILK 2013. [DOI: 10.3920/978-90-8686-764-6_30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- L. Bode
- Division of Neonatology and Division of Gastroenterology and Nutrition, Department of Pediatrics, University of California, 200 W. Arbor Dr., Mail Code 8450, San Diego, CA 92103, USA
| |
Collapse
|
59
|
Transcriptional response of HT-29 intestinal epithelial cells to human and bovine milk oligosaccharides. Br J Nutr 2013; 110:2127-37. [DOI: 10.1017/s0007114513001591] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human milk oligosaccharides (HMO) have been shown to interact directly with immune cells. However, large quantities of HMO are required for intervention or clinical studies, but these are unavailable in most cases. In this respect, bovine milk is potentially an excellent source of commercially viable analogues of these unique molecules. In the present study, we compared the transcriptional response of colonic epithelial cells (HT-29) to the entire pool of HMO and bovine colostrum oligosaccharides (BCO) to determine whether the oligosaccharides from bovine milk had effects on gene expression that were similar to those of their human counterparts. Gene set enrichment analysis of the transcriptional data revealed that there were a number of similar biological processes that may be influenced by both treatments including a response to stimulus, signalling, locomotion, and multicellular, developmental and immune system processes. For a more detailed insight into the effects of milk oligosaccharides, the effect on the expression of immune system-associated glycogenes was chosen as a case study when performing validation studies. Glycogenes in the current context are genes that are directly or indirectly regulated in the presence of glycans and/or glycoconjugates. RT-PCR analysis revealed that HMO and BCO influenced the expression of cytokines (IL-1β, IL-8, colony-stimulating factor 2 (granulocyte–macrophage) (GM-CSF2), IL-17C and platelet factor 4 (PF4)), chemokines (chemokine (C–X–C motif) ligand 1 (CXCL1), chemokine (C–X–C motif) ligand 3 (CXCL3), chemokine (C–C motif) ligand 20 (CCL20), chemokine (C–X–C motif) ligand 2 (CXCL2), chemokine (C–X–C motif) ligand 6 (CXCL6), chemokine (C–C motif) ligand 5 (CCL5), chemokine (C–X3–C motif) ligand 1 (CX3CL1) and CXCL2) and cell surface receptors (interferon γ receptor 1 (IFNGR1), intercellular adhesion molecule-1 (ICAM-1), intercellular adhesion molecule-2 (ICAM-2) and IL-10 receptor α (IL10RA)). The present study suggests that milk oligosaccharides contribute to the development and maturation of the intestinal immune response and that bovine milk may be an attractive commercially viable source of oligosaccharides for such applications.
Collapse
|
60
|
Human milk oligosaccharides inhibit rotavirus infectivity in vitro and in acutely infected piglets. Br J Nutr 2013; 110:1233-42. [PMID: 23442265 DOI: 10.1017/s0007114513000391] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Human milk (HM) is rich in oligosaccharides (HMO) that exert prebiotic and anti-infective activities. HM feeding reduces the incidence of rotavirus (RV) infection in infants. Herein, the anti-RV activity of oligosaccharides was tested in an established in vitro system for assessing cellular binding and viral infectivity/replication, and also tested in a newly developed, acute RV infection, in situ piglet model. For the in vitro work, crude HMO isolated from pooled HM, neutral HMO (lacto-N-neotetraose, LNnT; 2'-fucosyllactose) and acidic HMO (aHMO, '-sialyllactose, 3'-SL; -sialyllactose, -SL) were tested against the porcine OSU strain and human RV Wa strain. The RV Wa strain was not inhibited by any oligosaccharides. However, the RV OSU strain infectivity was dose-dependently inhibited by sialic acid (SA)-containing HMO. 3'-SL and 6'-SL concordantly inhibited (125)I-radiolabelled RV cellular binding and infectivity/replication. For the in situ study, a midline laparotomy was performed on 21-d-old formula-fed piglets and six 10 cm loops of ileum were isolated in situ. Briefly, 2 mg/ml of LNnT, aHMO mixture (40% 6'-SL/10 % 3'-SL/50 % SA) or media with or without the RV OSU strain (1 x 10(7) focus-forming units)were injected into the loops and maintained for 6 h. The loops treated with HMO treatments þ RV had lower RV replication, as assessed by non-structural protein-4 (NSP4) mRNA expression, than RV-treated loops alone. In conclusion, SA-containing HMO inhibited RV infectivity in vitro; however, both neutral HMO and SA with aHMO decreased NSP4 replication during acute RV infection in situ.
Collapse
|
61
|
Abstract
Human milk oligosaccharides (HMO) are complex glycans that are highly abundant in human milk, but not in infant formula. Accumulating data, mostly from in vitro and animal studies, indicate that HMO benefit the breast-fed infant in multiple ways and in different target organs. In vitro incubation studies suggest that HMO can resist the low pH in the infant's stomach and enzymatic degradation in the small intestine and reach the colon in the same composition as in the mother's milk. The oligosaccharide composition in faeces of breast-fed infants is, however, very different from that in the mother's milk, raising questions on when, where and how HMO are metabolised between ingestion and excretion. To answer some of these questions, we established a pulse-chase model in neonatal rats and analysed HMO profiles to track their composition over time in five consecutive equal-length intestinal segments as well as in serum and urine. The relative abundance of individual HMO changed significantly within the first 2 h after feeding and already in the segments of the small intestine prior to reaching the colon. Only 3′-sialyllactose, the major oligosaccharide in rat milk, and hardly any other HMO appeared in the serum and the urine of HMO-fed rats, indicating a selective absorption of rat milk-specific oligosaccharides. The present results challenge the paradigm that HMO reach the colon and other target organs in the same composition as originally secreted with the mother's milk. The present results also raise questions on whether rats and other animals represent suitable models to study the effects of HMO.
Collapse
|
62
|
Yu Y, Mishra S, Song X, Lasanajak Y, Bradley KC, Tappert MM, Air GM, Steinhauer DA, Halder S, Cotmore S, Tattersall P, Agbandje-McKenna M, Cummings RD, Smith DF. Functional glycomic analysis of human milk glycans reveals the presence of virus receptors and embryonic stem cell biomarkers. J Biol Chem 2012; 287:44784-99. [PMID: 23115247 DOI: 10.1074/jbc.m112.425819] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human milk contains a large diversity of free glycans beyond lactose, but their functions are not well understood. To explore their functional recognition, here we describe a shotgun glycan microarray prepared from isolated human milk glycans (HMGs), and our studies on their recognition by viruses, antibodies, and glycan-binding proteins (GBPs), including lectins. The total neutral and sialylated HMGs were derivatized with a bifunctional fluorescent tag, separated by multidimensional HPLC, and archived in a tagged glycan library, which was then used to print a shotgun glycan microarray (SGM). This SGM was first interrogated with well defined GBPs and antibodies. These data demonstrated both the utility of the array and provided preliminary structural information (metadata) about this complex glycome. Anti-TRA-1 antibodies that recognize human pluripotent stem cells specifically recognized several HMGs that were then further structurally defined as novel epitopes for these antibodies. Human influenza viruses and Parvovirus Minute Viruses of Mice also specifically recognized several HMGs. For glycan sequencing, we used a novel approach termed metadata-assisted glycan sequencing (MAGS), in which we combine information from analyses of glycans by mass spectrometry with glycan interactions with defined GBPs and antibodies before and after exoglycosidase treatments on the microarray. Together, these results provide novel insights into diverse recognition functions of HMGs and show the utility of the SGM approach and MAGS as resources for defining novel glycan recognition by GBPs, antibodies, and pathogens.
Collapse
Affiliation(s)
- Ying Yu
- Department of Biochemistry and the Glycomics Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Bode L, Kuhn L, Kim HY, Hsiao L, Nissan C, Sinkala M, Kankasa C, Mwiya M, Thea DM, Aldrovandi GM. Human milk oligosaccharide concentration and risk of postnatal transmission of HIV through breastfeeding. Am J Clin Nutr 2012; 96:831-9. [PMID: 22894939 PMCID: PMC3441110 DOI: 10.3945/ajcn.112.039503] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The inefficiency of HIV breast-milk transmission may be caused by the presence of immunologically active factors, including human milk oligosaccharides (HMOs). OBJECTIVE We investigated whether HMO concentrations are associated with a reduced risk of postnatal HIV transmission. DESIGN A nested case-control study was conducted within a larger cohort study of HIV-infected women and their infants followed from birth to 24 mo in Lusaka, Zambia. Breast-milk samples collected at 1 mo from 81 HIV-infected women who transmitted via breastfeeding, a random sample of 86 HIV-infected women who did not transmit despite breastfeeding, and 36 uninfected breastfeeding women were selected. Total and specific HMO concentrations were measured by HPLC and compared between groups with adjustment for confounders by using logistic regression. RESULTS HIV-infected women with total HMOs above the median (1.87 g/L) were less likely to transmit via breastfeeding (OR: 0.45; 95% CI: 0.21, 0.97; P = 0.04) after adjustment for CD4 count and breast-milk HIV RNA concentrations; a trend toward higher concentrations of lacto-N-neotetraose being associated with reduced transmission (OR: 0.49; 95% CI: 0.23, 1.04; P = 0.06) was also observed. The proportion of 3'-sialyllactose (3'-SL) per total HMOs was higher among transmitting than among nontransmitting women (P = 0.003) and correlated with higher plasma and breast-milk HIV RNA and lower CD4 counts. Neither Secretor nor Lewis status distinguished between transmitting and nontransmitting women. CONCLUSIONS Higher concentrations of non-3'-SL HMOs were associated with protection against postnatal HIV transmission independent of other known risk factors. Further study of these novel, potentially anti-HIV components of breast milk is warranted.
Collapse
Affiliation(s)
- Lars Bode
- Division of Neonatology and the Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, University of California, San Diego, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Non-digestible fraction of beans (Phaseolus vulgarisL.) modulates signalling pathway genes at an early stage of colon cancer in Sprague–Dawley rats. Br J Nutr 2012; 108 Suppl 1:S145-54. [DOI: 10.1017/s0007114512000785] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Colorectal cancer is one of the most common causes of morbidity and mortality in Western countries, the second cause of cancer mortality in the USA and a major public health problem in Mexico. A diet rich in legumes is directly related to the prevention of colon cancer, showing an inverse relationship with the development of colorectal adenomas in human subjects. The present study shows the results of molecular changes involved in theTp53pathway at an early stage in the distal colon tissue of azoxymethane (AOM)-induced colon cancer in rats evaluated by PCR array after exposure to diets containing the non-digestible fraction (NDF) of cooked bean (cultivar Bayo Madero). Significant differences were detected in seventy-two genes of theTp53-mediated signalling pathway involved in apoptosis, cell-cycle regulation and arrest, inhibition of proliferation and inflammation, and DNA repair.Tp53,Gadd45a,Cdkn1aandBaxwere highly expressed (9·3-, 18·3-, 5·5- and 3·5-fold, respectively) in the NDF+AOM group, whereasCdc25c,Ccne2,E2f1andBcl2were significantly suppressed ( − 9·2-, − 2·6-, − 18·4- and − 3·5-fold, respectively), among other genes, compared with the AOM group, suggesting that chemoprevention of aberrant crypt foci results from a combination of cell-cycle arrest in G1/S and G2/M phases and cell death by apoptotic induction. We demonstrate that the NDF from common bean modulates gene expression profiles in the colon tissue of AOM-induced rats, contributing to the chemoprotective effect of common bean on early-stage colon cancer.
Collapse
|
65
|
Säwén E, Hinterholzinger F, Landersjö C, Widmalm G. Conformational flexibility of the pentasaccharide LNF-2 deduced from NMR spectroscopy and molecular dynamics simulations. Org Biomol Chem 2012; 10:4577-85. [PMID: 22572908 DOI: 10.1039/c2ob25189b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human milk oligosaccharides (HMOs) are important as prebiotics since they stimulate the growth of beneficial bacteria in the intestine and act as receptor analogues that can inhibit the binding of pathogens. The conformation and dynamics of the HMO Lacto-N-fucopentaose 2 (LNF-2), α-L-Fucp-(1 → 4)[β-D-Galp-(1 → 3)]-β-D-GlcpNAc-(1 → 3)-β-D-Galp-(1 → 4)-D-Glcp, having a Lewis A epitope, has been investigated employing NMR spectroscopy and molecular dynamics (MD) computer simulations. 1D (1)H,(1)H-NOESY experiments were used to obtain proton-proton cross-relaxation rates from which effective distances were deduced and 2D J-HMBC and 1D long-range experiments were utilized to measure trans-glycosidic (3)J(CH) coupling constants. The MD simulations using the PARM22/SU01 force field for carbohydrates were carried out for 600 ns with explicit water as solvent which resulted in excellent sampling for flexible glycosidic torsion angles. In addition, in vacuo MD simulations were performed using an MM3-2000 force field, but the agreement was less satisfactory based on an analysis of heteronuclear trans-glycosidic coupling constants. LNF-2 has a conformationally well-defined region consisting of the terminal branched part of the pentasaccharide, i.e., the Lewis A epitope, and a flexible β-D-GlcpNAc-(1 → 3)-β-D-Galp-linkage towards the lactose unit, which is situated at the reducing end. For this β-(1 → 3)-linkage a negative ψ torsion angle is favored, when experimental NMR data is combined with the MD simulation in the analysis. In addition, flexibility on a similar time scale, i.e., on the order of the global overall molecular reorientation, may also be present for the ϕ torsion angle of the β-D-Galp-(1 → 4)-D-Glcp-linkage as suggested by the simulation. It was further observed from a temperature variation study that some (1)H NMR chemical shifts of LNF-2 were highly sensitive and this study indicates that Δδ/ΔT may be an additional tool for revealing conformational dynamics of oligosaccharides.
Collapse
Affiliation(s)
- Elin Säwén
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
66
|
Donovan SM, Wang M, Li M, Friedberg I, Schwartz SL, Chapkin RS. Host-microbe interactions in the neonatal intestine: role of human milk oligosaccharides. Adv Nutr 2012; 3:450S-5S. [PMID: 22585924 PMCID: PMC3649482 DOI: 10.3945/an.112.001859] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The infant intestinal microbiota is shaped by genetics and environment, including the route of delivery and early dietary intake. Data from germ-free rodents and piglets support a critical role for the microbiota in regulating gastrointestinal and immune development. Human milk oligosaccharides (HMO) both directly and indirectly influence intestinal development by regulating cell proliferation, acting as prebiotics for beneficial bacteria and modulating immune development. We have shown that the gut microbiota, the microbial metatranscriptome, and metabolome differ between porcine milk-fed and formula-fed (FF) piglets. Our goal is to define how early nutrition, specifically HMO, shapes host-microbe interactions in breast-fed (BF) and FF human infants. We an established noninvasive method that uses stool samples containing intact sloughed epithelial cells to quantify intestinal gene expression profiles in human infants. We hypothesized that a systems biology approach, combining i) HMO composition of the mother's milk with the infant's gut gene expression and fecal bacterial composition, ii) gene expression, and iii short-chain fatty acid profiles would identify important mechanistic pathways affecting intestinal development of BF and FF infants in the first few months of life. HMO composition was analyzed by HLPC Chip/time-of-flight MS and 3 HMO clusters were identified using principle component analysis. Initial findings indicated that both host epithelial cell mRNA expression and the microbial phylogenetic profiles provided strong feature sets that distinctly classified the BF and FF infants. Ongoing analyses are designed to integrate the host transcriptome, bacterial phylogenetic profiles, and functional metagenomic data using multivariate statistical analyses.
Collapse
Affiliation(s)
- Sharon M. Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL; Departments of,To whom correspondence should be addressed. E-mail:
| | - Mei Wang
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL; Departments of
| | - Min Li
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL; Departments of
| | - Iddo Friedberg
- Microbiology and,Computer Science and Software Engineering, Miami University, Oxford, OH
| | - Scott L. Schwartz
- Program in Integrative Nutrition and Complex Diseases, Center for Environmental and Rural Health and,Department of Statistics, Texas A&M University, College Station, TX
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases, Center for Environmental and Rural Health and
| |
Collapse
|
67
|
Blank D, Dotz V, Geyer R, Kunz C. Human milk oligosaccharides and Lewis blood group: individual high-throughput sample profiling to enhance conclusions from functional studies. Adv Nutr 2012; 3:440S-9S. [PMID: 22585923 PMCID: PMC3649481 DOI: 10.3945/an.111.001446] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Human milk oligosaccharides (HMO) are discussed to play a crucial role in an infant's development. Lewis blood group epitopes, in particular, seem to remarkably contribute to the beneficial effects of HMO. In this regard, large-scale functional human studies could provide evidence of the variety of results from in vitro investigations, although increasing the amount and complexity of sample and data handling. Therefore, reliable screening approaches are needed. To predict the oligosaccharide pattern in milk, the routine serological Lewis blood group typing of blood samples can be applied due to the close relationship between the biosynthesis of HMO and the Lewis antigens on erythrocytes. However, the actual HMO profile of the individual samples does not necessarily correspond to the serological determinations. This review demonstrates the capabilities of merging the traditional serological Lewis blood group typing with the additional information provided by the comprehensive elucidation of individual HMO patterns by means of state-of-the-art analytics. Deduced from the association of the suggested HMO biosynthesis with the Lewis blood group, the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry profiles of oligosaccharides in individual milk samples exemplify the advantages and the limitations of sample assignment to distinct groups.
Collapse
Affiliation(s)
- Dennis Blank
- Institute of Biochemistry, Faculty of Medicine and
| | - Viktoria Dotz
- Institute of Nutritional Science, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Rudolf Geyer
- Institute of Biochemistry, Faculty of Medicine and
| | - Clemens Kunz
- Institute of Nutritional Science, Justus-Liebig-University of Giessen, Giessen, Germany,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
68
|
Abstract
Since the discovery of human milk oligosaccharides (HMO) >60 y ago, research has faced major challenges including (i) the development of methods to identify and characterize these components, (ii) the need to use HMO fractions for functional studies because single HMO were not available, (iii) the uncertainty of the purity of HMO fractions that were often "contaminated" by remainders of lactose, proteins, or glycoproteins, and (iv) the low availability of large quantities of a single HMO for animal and human studies. In the past 10 years, there has been tremendous progress in all of these areas, particularly in the development of methods for detailed structural analysis in extremely low milk volumes. The greatest success, however, is that biotechnological means are available today to produce large amounts even of a single HMO in a purity that allows human studies to be performed in the future. In this review, we summarize the current knowledge about the metabolic aspects of HMO in infants starting with the first studies by Lundblad and co-workers in the early 1980s. After discussing newer observations in recent years, the review closes with a perspective on some important questions regarding metabolic and functional aspects of HMO.
Collapse
Affiliation(s)
- Silvia Rudloff
- Department of Pediatrics,Institute of Nutritional Science, Justus-Liebig-University Giessen, Giessen, Germany
| | - Clemens Kunz
- Institute of Nutritional Science, Justus-Liebig-University Giessen, Giessen, Germany,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
69
|
Bode L, Jantscher-Krenn E. Structure-function relationships of human milk oligosaccharides. Adv Nutr 2012; 3:383S-91S. [PMID: 22585916 PMCID: PMC3649474 DOI: 10.3945/an.111.001404] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human milk contains more than a hundred structurally distinct oligosaccharides. In this review, we provide examples of how the structural characteristics of these human milk oligosaccharides (HMO) determine functionality. Specific α1-2-fucosylated HMO have been shown to serve as antiadhesive antimicrobials to protect the breast-fed infant against infections with Campylobacter jejuni, one of the most common causes of bacterial diarrhea. In contrast, α1-2-fucosylation may abolish the beneficial effects of HMO against Entamoeba histolytica, a protozoan parasite that causes colitis, acute dysentery, or chronic diarrhea. In a different context, HMO need to be both fucosylated and sialylated to reduce selectin-mediated leukocyte rolling, adhesion, and activation, which may protect breast-fed infants from excessive immune responses. In addition, our most recent data show that a single HMO that carries not 1 but 2 sialic acids protects neonatal rats from necrotizing enterocolitis, one of the most common and often fatal intestinal disorders in preterm infants. Oligosaccharides currently added to infant formula are structurally different from the oligosaccharides naturally occurring in human milk. Thus, it appears unlikely that they can mimic some of the structure-specific effects of HMO. Recent advances in glycan synthesis and isolation have increased the availability of certain HMO tri- and tetrasaccharides for in vitro and in vivo preclinical studies. In the end, intervention studies are needed to confirm that the structure-specific effects observed at the laboratory bench translate into benefits for the human infant. Ultimately, breastfeeding remains the number one choice to nourish and nurture our infants.
Collapse
Affiliation(s)
- Lars Bode
- Division of Neonatology and Division of Gastroenterology and Nutrition, Department of Pediatrics, University of California, San Diego, CA, USA.
| | | |
Collapse
|
70
|
Abstract
This review focuses on important observations regarding infant health around 1900 when breastfeeding was not considered a matter of importance. The discovery of lactobacilli and bifidobacteria and their relevance for health and disease was an important milestone leading to a decrease in infant mortality in the first year of life. At the same time, pediatricians realized that the fecal composition of breast-fed and bottle-fed infants differed. Observations indicated that this difference is linked to milk composition, particularly due to the milk carbohydrate fraction. Circa 1930, a human milk carbohydrate fraction called gynolactose was identified. This was the starting point of research on human milk oligosaccharides (HMO). In the following years, the first HMO were identified and their functions investigated. Studies after 1950 focused on the identification of various HMO as the bifidus factor in human milk. In the following 30 years, a tremendous amount of research was done with regard to the characterization of individual HMO and HMO patterns in milk. In this short introduction to the history of HMO research, which ends circa 1980, some outstanding scientists in pediatrics and chemistry and their pioneering contributions to research in the field of HMO are presented.
Collapse
Affiliation(s)
- Clemens Kunz
- Institute of Nutritional Science, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
71
|
Abstract
Human milk oligosaccharides (HMOs) are a family of structurally diverse unconjugated glycans that are highly abundant in and unique to human milk. Originally, HMOs were discovered as a prebiotic "bifidus factor" that serves as a metabolic substrate for desired bacteria and shapes an intestinal microbiota composition with health benefits for the breast-fed neonate. Today, HMOs are known to be more than just "food for bugs". An accumulating body of evidence suggests that HMOs are antiadhesive antimicrobials that serve as soluble decoy receptors, prevent pathogen attachment to infant mucosal surfaces and lower the risk for viral, bacterial and protozoan parasite infections. In addition, HMOs may modulate epithelial and immune cell responses, reduce excessive mucosal leukocyte infiltration and activation, lower the risk for necrotizing enterocolitis and provide the infant with sialic acid as a potentially essential nutrient for brain development and cognition. Most data, however, stem from in vitro, ex vivo or animal studies and occasionally from association studies in mother-infant cohorts. Powered, randomized and controlled intervention studies will be needed to confirm relevance for human neonates. The first part of this review introduces the pioneers in HMO research, outlines HMO structural diversity and describes what is known about HMO biosynthesis in the mother's mammary gland and their metabolism in the breast-fed infant. The second part highlights the postulated beneficial effects of HMO for the breast-fed neonate, compares HMOs with oligosaccharides in the milk of other mammals and in infant formula and summarizes the current roadblocks and future opportunities for HMO research.
Collapse
Affiliation(s)
- Lars Bode
- Division of Neonatology and Division of Gastroenterology and Nutrition, Department of Pediatrics, University of California, San Diego, CA, USA.
| |
Collapse
|
72
|
Li M, Bauer LL, Chen X, Wang M, Kuhlenschmidt TB, Kuhlenschmidt MS, Fahey GC, Donovan SM. Microbial composition and in vitro fermentation patterns of human milk oligosaccharides and prebiotics differ between formula-fed and sow-reared piglets. J Nutr 2012; 142:681-9. [PMID: 22399522 PMCID: PMC3301989 DOI: 10.3945/jn.111.154427] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The microbial composition and in vitro fermentation characteristics of human milk oligosaccharides (HMO), lacto-N-neotetraose (LNnT), a 2:1 mixture of polydextrose (PDX) and galactooligosaccharides (GOS), and short-chain fructooligosaccharides (scFOS) by pooled ascending colonic microbiota from 9- and 17-d-old formula-fed (FF) and sow-reared (SR) piglets were assessed. pH change and gas, SCFA, and lactate production were determined after 0, 2, 4, 8, and 12 h of incubation. In most donor groups, the pH change was greater for scFOS fermentation and lower for PDX/GOS than for other substrates. LNnT fermentation produced larger amounts of gas, total SCFA, acetate, and butyrate than did the other substrates, whereas HMO and scFOS produced higher amounts of propionate and lactate, respectively. In general, pH change, total SCFA, acetate, and propionate production were greater in pooled inoculum from FF and 9-d-old piglets, whereas SR-derived inoculum produced higher amounts of butyrate and lactate after 4 h fermentation. Gut microbiota were assessed by 16S ribosomal RNA V3 gene denaturing gradient gel electrophoresis analysis and real-time qPCR. Microbial structures differed among the 4 groups before fermentation, with higher counts of Bifidobacterium in SR piglets and higher counts of Clostridium cluster IV, XIVa, and Bacteroides vulgatus in FF piglets. Lactobacillus counts were higher in 9-d-old piglets than in 17-d-old piglets, regardless of diet. Bifidobacterium, Bacteroides, and clostridial species increased after 8 and 12 h fermentation on most substrates. In summary, piglet diet and age affect gut microbiota, leading to different fermentation patterns. HMO have potential prebiotic effects due to their effects on SCFA production and microbial modulation.
Collapse
Affiliation(s)
- Min Li
- Department of Food Science and Human Nutrition
| | | | - Xin Chen
- Department of Food Science and Human Nutrition
| | - Mei Wang
- Division of Nutritional Sciences, and
| | | | - Mark S. Kuhlenschmidt
- Division of Nutritional Sciences, and,Department of Pathobiology, University of Illinois, Urbana, IL
| | - George C. Fahey
- Department of Animal Sciences,Division of Nutritional Sciences, and
| | - Sharon M. Donovan
- Department of Food Science and Human Nutrition,Division of Nutritional Sciences, and
| |
Collapse
|
73
|
Pejchal J, Novotný J, Mařák V, Österreicher J, Tichý A, Vávrová J, Šinkorová Z, Zárybnická L, Novotná E, Chládek J, Babicová A, Kubelková K, Kuča K. Activation of p38 MAPK and expression of TGF-β1 in rat colon enterocytes after whole body γ-irradiation. Int J Radiat Biol 2012; 88:348-58. [DOI: 10.3109/09553002.2012.654044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
74
|
Hester SN, Donovan SM. Individual and Combined Effects of Nucleotides and Human Milk Oligosaccharides on Proliferation, Apoptosis and Necrosis in a Human Fetal Intestinal Cell Line. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/fns.2012.311205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
75
|
Abstract
Recent observations indicate that human milk oligosaccharides (HMO) are involved in a variety of physiological processes in infants. Their metabolic fate, however, is virtually unknown. We investigated metabolic aspects in infants after endogenous 13C-labelling of HMO. An oral bolus of natural and 13C-labelled galactose (Gal; 23 g Gal+4 g 13C-Gal) was given to ten lactating women. Aliquots of milk at each nursing as well as breath samples from the mothers and urine from their infants were collected over 36 h. The 13C-enrichment of HMO and their renal excretion was determined by isotope ratio-MS; characterisation was achieved by fast atom bombardment-MS. After the Gal bolus was given, an immediate 13C-enrichment in milk and in infants' urine was observed which lasted 36 h. Mass spectrometric analysis of 13C-enriched urinary fractions confirmed the excretion of a variety of neutral and acidic HMO without metabolic modification of their structures. Components with glucose split off at the reducing end were also detectable. Quantitative data regarding the infants' intake of lacto-N-tetraose and its monofucosylated derivative lacto-N-fucopentaose II ranged from 50 to 160 mg with each suckling, respectively; renal excretion of both components varied between 1 and 3 mg/d. Since the intake of individual HMO by the infants was in the range of several hundred mg per suckling, i.e. several g/d, and some of these components were excreted in mg amounts as intact HMO with the infants' urine, not only local but also systemic effects might be expected.
Collapse
|
76
|
Blank D, Gebhardt S, Maass K, Lochnit G, Dotz V, Blank J, Geyer R, Kunz C. High-throughput mass finger printing and Lewis blood group assignment of human milk oligosaccharides. Anal Bioanal Chem 2011; 401:2495-510. [PMID: 21898157 DOI: 10.1007/s00216-011-5349-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/17/2011] [Accepted: 08/17/2011] [Indexed: 12/20/2022]
Abstract
The structural diversity of human milk oligosaccharides (HMOs) strongly depends on the Lewis (Le) blood group status of the donor which allows a classification of these glycans into three different groups. Starting from 50 μL of human milk, a new high-throughput, standardized, and widely automated mass spectrometric approach has been established which can be used for correlation of HMO structures with the respective Lewis blood groups on the basis of mass profiles of the entire mixture of glycans together with selected fragment ion spectra. For this purpose, the relative abundance of diagnostically relevant compositional species, such as Hex(2)Fuc(2) and Hex(3)HexNAc(1)Fuc(2), as well as the relative intensities of characteristic fragment ions obtained thereof are of key importance. For each Lewis blood group, i.e., Le(a-b+), Le(a+b-), and Le(a-b-), specific mass profile and fragment ion patterns could be thus verified. The described statistically proven classification of the derived glycan patterns may be a valuable tool for analysis and comparison of large sets of milk samples in metabolic studies. Furthermore, the outlined protocol may be used for rapid screening in clinical studies and quality control of milk samples donated to milk banks.
Collapse
Affiliation(s)
- Dennis Blank
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Kuntz S, Kunz C, Rudloff S. Carbonyl compounds methylglyoxal and glyoxal affect interleukin-8 secretion in intestinal cells by superoxide anion generation and activation of MAPK p38. Mol Nutr Food Res 2011; 54:1458-67. [PMID: 20397192 DOI: 10.1002/mnfr.200900408] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The carbonyl compounds methylglyoxal (MG) and glyoxal (GL) are reactive intermediates of glucose degradation pathways and capable of inducing cellular damage. Although immune-stimulating activity has been investigated in endothelial cells, little is known about the signaling pathways of cytokine induction of these compounds in the intestine. Hence, we investigated the impact of mitogen-activated protein kinases (MAPK) and nuclear factor kappa B (NF-κB) on IL-8 production by human intestinal cells (Caco-2 and HT-29) after stimulation by MG and GL. Both compounds induced a dose-dependent enhancement of IL-8 secretion in human intestinal cells. MAPK p38 and extracellular signal-regulated kinase (ERK) were phosphorylated in these cells after having been stimulated by MG and GL. Furthermore, inhibitors of MAPK p38 (SB 203580 and 239063), ERK1/2 (PD 98059) and NF-κB activation (SM-7368 and SC-514) reduced IL-8 secretion. The most important mechanism by which MG and GL induced IL-8 secretion was the generation of superoxide anions which was confirmed by the inhibition of the cytosolic NADPH oxidase with diphenyl iodonium (DPI) or by application of superoxide dismutase (SOD). Our data suggest that multiple pathways were simultaneously activated; however, superoxide dependent MAPK p38 activation seems to be the most dominant pathway for IL-8 secretion in intestinal cells.
Collapse
Affiliation(s)
- Sabine Kuntz
- Institute of Nutritional Science, Justus-Liebig-University Giessen, Giessen, Germany.
| | | | | |
Collapse
|
78
|
Chichlowski M, German JB, Lebrilla CB, Mills DA. The influence of milk oligosaccharides on microbiota of infants: opportunities for formulas. Annu Rev Food Sci Technol 2011; 2:331-51. [PMID: 22129386 PMCID: PMC7568403 DOI: 10.1146/annurev-food-022510-133743] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In addition to a nutritive role, human milk also guides the development of a protective intestinal microbiota in the infant. Human milk possesses an overabundance of complex oligosaccharides that are indigestible by the infant yet are consumed by microbial populations in the developing intestine. These oligosaccharides are believed to facilitate enrichment of a healthy infant gastrointestinal microbiota, often associated with bifidobacteria. Advances in glycomics have enabled precise determination of milk glycan structures as well as identification of the specific glycans consumed by various gut microbes. Furthermore, genomic analysis of bifidobacteria from infants has revealed specific genetic loci related to milk oligosaccharide import and processing, suggesting coevolution between the human host, milk glycans, and the microbes they enrich. This review discusses the current understanding of how human milk oligosaccharides interact with the infant microbiota and examines the opportunities for translating this knowledge to improve the functionality of infant formulas.
Collapse
Affiliation(s)
- Maciej Chichlowski
- Foods for Health Institute, University of California, Davis, California 95616
- Department of Viticulture and Enology, University of California, Davis, California 95616
- Functional Glycobiology Program, University of California, Davis, California 95616
- Robert Mondavi Institute for Wine and Food Science, University of California, Davis, California 95616
| | - J. Bruce German
- Foods for Health Institute, University of California, Davis, California 95616
- Department of Food Science and Technology, University of California, Davis, California 95616
- Functional Glycobiology Program, University of California, Davis, California 95616
- Robert Mondavi Institute for Wine and Food Science, University of California, Davis, California 95616
| | - Carlito B. Lebrilla
- Foods for Health Institute, University of California, Davis, California 95616
- Department of Chemistry, University of California, Davis, California 95616
- Department of Biochemistry and Molecular Medicine, University of California, Davis, California 95616
- Functional Glycobiology Program, University of California, Davis, California 95616
| | - David A. Mills
- Foods for Health Institute, University of California, Davis, California 95616
- Department of Viticulture and Enology, University of California, Davis, California 95616
- Functional Glycobiology Program, University of California, Davis, California 95616
- Robert Mondavi Institute for Wine and Food Science, University of California, Davis, California 95616
| |
Collapse
|
79
|
Yuan L, Yu Y, Sanders MA, Majumdar APN, Basson MD. Schlafen 3 induction by cyclic strain regulates intestinal epithelial differentiation. Am J Physiol Gastrointest Liver Physiol 2010; 298:G994-G1003. [PMID: 20299602 PMCID: PMC4865113 DOI: 10.1152/ajpgi.00517.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The intestinal epithelium is subjected to repetitive deformation during normal gut function by peristalsis and villous motility. In vitro, cyclic strain promotes intestinal epithelial proliferation and induces an absorptive phenotype characterized by increased dipeptidyl dipeptidase (DPPIV) expression. Schlafen 3 is a novel gene recently associated with cellular differentiation. We sought to evaluate whether Schlafen 3 mediates the effects of strain on the differentiation of intestinal epithelial cell (IEC)-6 in the absence or presence of cyclic strain. Strain increased Schlafen 3 mRNA and protein. In cells transfected with a control-nontargeting siRNA, strain increased DPPIV-specific activity. However, Schlafen 3 reduction by siRNA decreased basal DPPIV and prevented any stimulation of DPPIV activity by strain. Schlafen 3 reduction also prevented DPPIV induction by sodium butyrate (1 mM) or transforming growth factor (TGF)-beta (0.1 ng/ml), two unrelated differentiating stimuli. However, Schlafen-3 reduction by siRNA did not prevent the mitogenic effect of strain or that of EGF. Blocking Src and phosphatidyl inositol (PI3)-kinase prevented strain induction of Schlafen 3, but Schlafen 3 induction required activation of p38 but not ERK. These results suggest that cyclic strain induces an absorptive phenotype characterized by increased DPPIV activity via Src-, p38-, and PI3-kinase-dependent induction of Schlafen 3 in rat IEC-6 cells on collagen, whereas Schlafen 3 may also be a key factor in the induction of intestinal epithelial differentiation by other stimuli such as sodium butyrate or TGF-beta. The induction of Schlafen 3 or its human homologs may modulate intestinal epithelial differentiation and preserve the gut mucosa during normal gut function.
Collapse
Affiliation(s)
- Lisi Yuan
- 1Department of Surgery, Michigan State University, Lansing; ,2Research Service, John. D. Dingell VA Medical Center, and ,Departments of 3Anatomy and Cell Biology and
| | - Yingjie Yu
- 2Research Service, John. D. Dingell VA Medical Center, and ,4Internal Medicine, Wayne State University, Detroit, Michigan
| | | | - Adhip P. N. Majumdar
- 2Research Service, John. D. Dingell VA Medical Center, and ,4Internal Medicine, Wayne State University, Detroit, Michigan
| | - Marc D. Basson
- 1Department of Surgery, Michigan State University, Lansing; ,2Research Service, John. D. Dingell VA Medical Center, and ,Departments of 3Anatomy and Cell Biology and
| |
Collapse
|
80
|
Chapkin RS, Zhao C, Ivanov I, Davidson LA, Goldsby JS, Lupton JR, Mathai RA, Monaco MH, Rai D, Russell WM, Donovan SM, Dougherty ER. Noninvasive stool-based detection of infant gastrointestinal development using gene expression profiles from exfoliated epithelial cells. Am J Physiol Gastrointest Liver Physiol 2010; 298:G582-9. [PMID: 20203060 PMCID: PMC2867429 DOI: 10.1152/ajpgi.00004.2010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 02/25/2010] [Indexed: 01/31/2023]
Abstract
We have developed a novel molecular methodology that utilizes stool samples containing intact sloughed epithelial cells to quantify intestinal gene expression profiles in the developing human neonate. Since nutrition exerts a major role in regulating neonatal intestinal development and function, our goal was to identify gene sets (combinations) that are differentially regulated in response to infant feeding. For this purpose, fecal mRNA was isolated from exclusively breast-fed (n = 12) and formula-fed (n = 10) infants at 3 mo of age. Linear discriminant analysis was successfully used to identify the single genes and the two- to three-gene combinations that best distinguish the feeding groups. In addition, putative "master" regulatory genes were identified using coefficient of determination analysis. These results support our premise that mRNA isolated from stool has value in terms of characterizing the epigenetic mechanisms underlying the developmentally regulated transcriptional activation/repression of genes known to modulate gastrointestinal function. As larger data sets become available, this methodology can be extended to validation and, ultimately, identification of the main nutritional components that modulate intestinal maturation and function.
Collapse
|
81
|
Vergara-Castañeda HA, Guevara-González RG, Ramos-Gómez M, Reynoso-Camacho R, Guzmán-Maldonado H, Feregrino-Pérez AA, Oomah BD, Loarca-Piña G. Non-digestible fraction of cooked bean (Phaseolus vulgaris L.) cultivar Bayo Madero suppresses colonic aberrant crypt foci in azoxymethane-induced rats. Food Funct 2010; 1:294-300. [DOI: 10.1039/c0fo00130a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
82
|
Asakuma S, Yokoyama T, Kimura K, Watanabe Y, Nakamura T, Fukuda K, Urashima T. Effect of Human Milk Oligosaccharides on Messenger Ribonucleic Acid Expression of Toll-like Receptor 2 and 4, and of MD2 in the Intestinal Cell Line HT-29. J Appl Glycosci (1999) 2010. [DOI: 10.5458/jag.57.177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
83
|
Champ M, Hoebler C. Functional food for pregnant, lactating women and in perinatal nutrition: a role for dietary fibres? Curr Opin Clin Nutr Metab Care 2009; 12:565-74. [PMID: 19741518 DOI: 10.1097/mco.0b013e328331b4aa] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE OF REVIEW If the benefits of dietary fibre in healthy adults have extensively been studied, little information is available on the specific needs of pregnant, lactating women or foetus. As far as infants are concerned, milk oligosaccharides are supposed to be the optimal 'dietary fibre'. The supplementation of infant formula with prebiotic oligosaccharides is still discussed. However, recent studies provide a large amount of information, allowing a new discussion on this topic. RECENT FINDINGS Most recent findings are linked to the involvement of dietary fibre in occurrence or prevention of obesity. The multiple mechanisms appear more clearly than earlier. This finding will soon allow appropriate counselling for young mothers at risk of obesity and/or postpartum retention weight, gestational diabetes and preeclampsia. Another area which benefits from recent research is the use of prebiotics in formula. SUMMARY Pregnancy is a critical period during which many physiologic changes occurred and is associated with several gut disorders and metabolic diseases. Dietary fibre may be helpful in the prevention and management of these diseases. Lactation and pregnancy are two phases during which food consumption of the mother can interact with the physiology of the baby. Moreover, the use of formula supplemented in oligosaccharides is able to compensate for the lack of some of the complex molecules naturally present in human milk.
Collapse
Affiliation(s)
- Martine Champ
- INRA, UMR 1280, Physiologie des Adaptations Nutritionnelles, CRNH, CHU, Nantes, France.
| | | |
Collapse
|
84
|
|