51
|
Obena RP, Tseng MC, Primadona I, Hsiao J, Li IC, Capangpangan RY, Lu HF, Li WS, Chao I, Lin CC, Chen YJ. UV-activated multilayer nanomatrix provides one-step tunable carbohydrate structural characterization in MALDI-MS. Chem Sci 2015; 6:4790-4800. [PMID: 28717486 PMCID: PMC5502396 DOI: 10.1039/c5sc00546a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/27/2015] [Indexed: 11/21/2022] Open
Abstract
The structure-specific fragmentation of gas-phase ions in tandem mass spectrometry among other techniques provides an efficient analytical method for confirming unknown analytes or for elucidating chemical structures. Using concentration-dependent UV-absorbing matrix-functionalized magnetic nanoparticles and matrix-assisted laser desorption-ionization mass spectrometry (MALDI MS), we developed a single-step pseudo-MS/MS approach for tunable ionization and fragmentation to facilitate structure determination. Without chemical derivatization, we have demonstrated that this approach successfully distinguished isomeric sets of di-, tri- and tetrasaccharides. Low concentration of nanomatrix provided an enhanced signal for accurate mass determination of the intact molecular ions of analytes present in the sample. In contrast, high concentration of nanomatrix induced extensive and unique fragmentation, including high-energy facile bond breakage (A- and X-type cross-ring cleavages), which facilitated the linkage and sequence characterization of oligosaccharides without conventional tandem mass spectrometric instrumentation. The practicality of this approach for complex sample analysis was evaluated by an oligosaccharide mixture, wherein molecular ions are unambiguously observed and signature product ions are distinguishable enough for molecular identification and isomer differentiation by this simple tunable approach. By probing the roles of the multilayer nanomatrix components: matrix (energy absorption), silane-coating (energy pooling and dissipation) and core Fe3O4 (fragmentation), a plausible energy transfer mechanism was proposed based on a computational study and photoelectron experiments. The differentiation of tri- and tetra-oligosaccharide shown in this study not only demonstrated the first step toward glycan characterization by nanoparticle-assisted MALDI-MS, but also shed some insight on the nanoparticle-mediated energy transfer dynamics behind our approach.
Collapse
Affiliation(s)
- Rofeamor P Obena
- Institute of Chemistry , Academia Sinica , Taipei , Taiwan
- Institute of Chemistry , University of the Philippines-Diliman , Quezon City , Philippines
| | - Mei-Chun Tseng
- Institute of Chemistry , Academia Sinica , Taipei , Taiwan
| | - Indah Primadona
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan .
- Molecular Science and Technology Program , Taiwan International Graduate Program , Institute of Chemistry , Academia Sinica , Taiwan
| | - Jun Hsiao
- Institute of Chemistry , Academia Sinica , Taipei , Taiwan
| | - I-Che Li
- Department of Chemistry , National Taiwan University , Taipei , Taiwan
| | - Rey Y Capangpangan
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan .
- Molecular Science and Technology Program , Taiwan International Graduate Program , Institute of Chemistry , Academia Sinica , Taiwan
| | - Hsiu-Fong Lu
- Institute of Chemistry , Academia Sinica , Taipei , Taiwan
| | - Wan-Sheung Li
- Institute of Chemistry , Academia Sinica , Taipei , Taiwan
| | - Ito Chao
- Institute of Chemistry , Academia Sinica , Taipei , Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan .
| | - Yu-Ju Chen
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan .
- Department of Chemistry , National Taiwan University , Taipei , Taiwan
| |
Collapse
|
52
|
Singh A, Kett WC, Severin IC, Agyekum I, Duan J, Amster IJ, Proudfoot AEI, Coombe DR, Woods RJ. The Interaction of Heparin Tetrasaccharides with Chemokine CCL5 Is Modulated by Sulfation Pattern and pH. J Biol Chem 2015; 290:15421-15436. [PMID: 25907556 DOI: 10.1074/jbc.m115.655845] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Indexed: 12/28/2022] Open
Abstract
Interactions between chemokines such as CCL5 and glycosaminoglycans (GAGs) are essential for creating haptotactic gradients to guide the migration of leukocytes into inflammatory sites, and the GAGs that interact with CCL5 with the highest affinity are heparan sulfates/heparin. The interaction between CCL5 and its receptor on monocytes, CCR1, is mediated through residues Arg-17 and -47 in CCL5, which overlap with the GAG-binding (44)RKNR(47) "BBXB" motifs. Here we report that heparin and tetrasaccharide fragments of heparin are able to inhibit CCL5-CCR1 binding, with IC50 values showing strong dependence on the pattern and extent of sulfation. Modeling of the CCL5-tetrasaccharide complexes suggested that interactions between specific sulfate and carboxylate groups of heparin and residues Arg-17 and -47 of the protein are essential for strong inhibition; tetrasaccharides lacking the specific sulfation pattern were found to preferentially bind CCL5 in positions less favorable for inhibition of the interaction with CCR1. Simulations of a 12-mer heparin fragment bound to CCL5 indicated that the oligosaccharide preferred to interact simultaneously with both (44)RKNR(47) motifs in the CCL5 homodimer and engaged residues Arg-47 and -17 from both chains. Direct engagement of these residues by the longer heparin oligosaccharide provides a rationalization for its effectiveness as an inhibitor of CCL5-CCR1 interaction. In this mode, histidine (His-23) may contribute to CCL5-GAG interactions when the pH drops just below neutral, as occurs during inflammation. Additionally, an examination of the contribution of pH to modulating CCL5-heparin interactions suggested a need for careful interpretation of experimental results when experiments are performed under non-physiological conditions.
Collapse
Affiliation(s)
- Arunima Singh
- Complex Carbohydrate Research Center and, University of Georgia, Athens, Georgia 30602
| | - Warren C Kett
- Molecular Immunology, School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, Perth 6102, Australia
| | - India C Severin
- Merck Serono Geneva Research Centre, 9 chemin des Mines, 1202 Geneva, Switzerland
| | - Isaac Agyekum
- Department of Chemistry, University of Georgia, Athens, Georgia 30602
| | - Jiana Duan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602
| | - I Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, Georgia 30602
| | - Amanda E I Proudfoot
- Merck Serono Geneva Research Centre, 9 chemin des Mines, 1202 Geneva, Switzerland
| | - Deirdre R Coombe
- Molecular Immunology, School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, Perth 6102, Australia.
| | - Robert J Woods
- Complex Carbohydrate Research Center and, University of Georgia, Athens, Georgia 30602.
| |
Collapse
|
53
|
Chiu Y, Huang R, Orlando R, Sharp JS. GAG-ID: Heparan Sulfate (HS) and Heparin Glycosaminoglycan High-Throughput Identification Software. Mol Cell Proteomics 2015; 14:1720-30. [PMID: 25887393 DOI: 10.1074/mcp.m114.045856] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Indexed: 12/20/2022] Open
Abstract
Heparin and heparan sulfate are very large linear polysaccharides that undergo a complex variety of modifications and are known to play important roles in human development, cell-cell communication and disease. Sequencing of highly sulfated glycosaminoglycan oligosaccharides like heparin and heparan sulfate by liquid chromatography-tandem mass spectrometry (LC-MS/MS) remains challenging because of the presence of multiple isomeric sequences in a complex mixture of oligosaccharides, the difficulties in separation of these isomers, and the facile loss of sulfates in MS/MS. We have previously introduced a method for structural sequencing of heparin/heparan sulfate oligosaccharides involving chemical derivatizations that replace labile sulfates with stable acetyl groups. This chemical derivatization scheme allows the use of reversed phase LC for high-resolution separation and MS/MS for sequencing of isomeric heparan sulfate oligosaccharides. However, because of the large number of analytes present in complex mixtures of heparin/HS oligosaccharides, the resulting LC-MS/MS data sets are large and cannot be annotated with existing glycomics software because of the specifically designed chemical derivatization strategy. We have developed a tool, called GAG-ID, to automate the interpretation of derivatized heparin/heparan sulfate LC-MS/MS data based on a modified multivariate hypergeometric distribution to weight the annotation of more intense peaks. The software is tested on a LC-MS/MS data set collected from a mixture of 21 synthesized heparan sulfate tetrasaccharides. By testing the discrimination of scoring with this system, we show that stratifying peaks into different intensity classes benefits the discrimination of scoring, and GAG-ID is able to properly assign all 21 synthetic tetrasaccharides in a defined mixture from a single LC-MS/MS run.
Collapse
Affiliation(s)
- Yulun Chiu
- From the ‡Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, 30602; §Institute of Bioinformatics, University of Georgia, Athens, Georgia, 30602
| | - Rongrong Huang
- From the ‡Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, 30602
| | - Ron Orlando
- From the ‡Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, 30602
| | - Joshua S Sharp
- From the ‡Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, 30602;
| |
Collapse
|
54
|
Kailemia MJ, Patel AB, Johnson DT, Li L, Linhardt RJ, Amster IJ. Differentiating chondroitin sulfate glycosaminoglycans using collision-induced dissociation; uronic acid cross-ring diagnostic fragments in a single stage of tandem mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:275-85. [PMID: 26307707 PMCID: PMC4552082 DOI: 10.1255/ejms.1366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The stereochemistry of the hexuronic acid residues of the structure of glycosaminoglycans (GAGs) is a key feature that affects their interactions with proteins and other biological functions. Electron based tandem mass spectrometry methods, in particular electron detachment dissociation (EDD), have been able to distinguish glucuronic acid (GlcA) from iduronic acid (IdoA) residues in some heparan sulfate tetrasaccharides by producing epimer-specific fragments. Similarly, the relative abundance of glycosidic fragment ions produced by collision-induced dissociation (CID) or EDD has been shown to correlate with the type of hexuronic acid present in chondroitin sulfate GAGs. The present work examines the effect of charge state and degree of sodium cationization on the CID fragmentation products that can be used to distinguish GlcA and IdoA containing chondroitin sulfate A and dermatan sulfate chains. The cross-ring fragments (2,4)A(n) and (0,2)X(n) formed within the hexuronic acid residues are highly preferential for chains containing GlcA, distinguishing it from IdoA. The diagnostic capability of the fragments requires the selection of a molecular ion and fragment ions with specific ionization characteristics, namely charge state and number of ionizable protons. The ions with the appropriate characteristics display diagnostic properties for all the chondroitin sulfate and dermatan sulfate chains (degree of polymerization of 4-10) studied.
Collapse
Affiliation(s)
| | - Anish B Patel
- De partment of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Dane T Johnson
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Lingyun Li
- Department of Chemistry and Chemical Biology, Chemical and Biological Engineering, and Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Chemical and Biological Engineering, and Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - I Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
55
|
Structural analysis of isomeric chondroitin sulfate oligosaccharides using regioselective 6-O-desulfation method and tandem mass spectrometry. Anal Chim Acta 2014; 843:27-37. [DOI: 10.1016/j.aca.2014.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 07/17/2014] [Accepted: 07/20/2014] [Indexed: 01/24/2023]
|
56
|
Liang Q, Macher T, Xu Y, Bao Y, Cassady CJ. MALDI MS In-Source Decay of Glycans Using a Glutathione-Capped Iron Oxide Nanoparticle Matrix. Anal Chem 2014; 86:8496-503. [DOI: 10.1021/ac502422a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qiaoli Liang
- Department
of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Thomas Macher
- Department
of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Yaolin Xu
- Department
of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Yuping Bao
- Department
of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Carolyn J. Cassady
- Department
of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
57
|
Huang Y, Pu Y, Yu X, Costello CE, Lin C. Mechanistic study on electron capture dissociation of the oligosaccharide-Mg²⁺ complex. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1451-60. [PMID: 24845360 PMCID: PMC4108535 DOI: 10.1007/s13361-014-0921-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 05/04/2023]
Abstract
Electron capture dissociation (ECD) has shown great potential in structural characterization of glycans. However, our current understanding of the glycan ECD process is inadequate for accurate interpretation of the complex glycan ECD spectra. Here, we present the first comprehensive theoretical investigation on the ECD fragmentation behavior of metal-adducted glycans, using the cellobiose-Mg²⁺ complex as the model system. Molecular dynamics simulation was carried out to determine the typical glycan-Mg²⁺ binding patterns and the lowest-energy conformer identified was used as the initial geometry for density functional theory-based theoretical modeling. It was found that the electron is preferentially captured by Mg²⁺ and the resultant Mg⁺• can abstract a hydroxyl group from the glycan moiety to form a carbon radical. Subsequent radical migration and α-cleavage(s) result in the formation of a variety of product ions. The proposed hydroxyl abstraction mechanism correlates well with the major features in the ECD spectrum of the Mg²⁺-adducted cellohexaose. The mechanism presented here also predicts the presence of secondary, radical-induced fragmentation pathways. These secondary fragment ions could be misinterpreted, leading to erroneous structural determination. The present study highlights an urgent need for continuing investigation of the glycan ECD mechanism, which is imperative for successful development of bioinformatics tools that can take advantage of the rich structural information provided by ECD of metal-adducted glycans.
Collapse
Affiliation(s)
- Yiqun Huang
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Yi Pu
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118
- Department of Chemistry, Boston University, Boston, MA 02215
| | - Xiang Yu
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Catherine E. Costello
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
- Department of Chemistry, Boston University, Boston, MA 02215
| | - Cheng Lin
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
58
|
Hu H, Huang Y, Mao Y, Yu X, Xu Y, Liu J, Zong C, Boons GJ, Lin C, Xia Y, Zaia J. A computational framework for heparan sulfate sequencing using high-resolution tandem mass spectra. Mol Cell Proteomics 2014; 13:2490-502. [PMID: 24925905 DOI: 10.1074/mcp.m114.039560] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Heparan sulfate (HS) is a linear polysaccharide expressed on cell surfaces, in extracellular matrices and cellular granules in metazoan cells. Through non-covalent binding to growth factors, morphogens, chemokines, and other protein families, HS is involved in all multicellular physiological activities. Its biological activities depend on the fine structures of its protein-binding domains, the determination of which remains a daunting task. Methods have advanced to the point that mass spectra with information-rich product ions may be produced on purified HS saccharides. However, the interpretation of these complex product ion patterns has emerged as the bottleneck to the dissemination of these HS sequencing methods. To solve this problem, we designed HS-SEQ, the first comprehensive algorithm for HS de novo sequencing using high-resolution tandem mass spectra. We tested HS-SEQ using negative electron transfer dissociation (NETD) tandem mass spectra generated from a set of pure synthetic saccharide standards with diverse sulfation patterns. The results showed that HS-SEQ rapidly and accurately determined the correct HS structures from large candidate pools.
Collapse
Affiliation(s)
- Han Hu
- From the ‡Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA; §Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Yu Huang
- §Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Yang Mao
- §Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Xiang Yu
- §Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Yongmei Xu
- ¶ Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Jian Liu
- ¶ Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Chengli Zong
- **Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Geert-Jan Boons
- **Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Cheng Lin
- §Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Yu Xia
- ‖Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada; From the ‡Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - Joseph Zaia
- §Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA;
| |
Collapse
|
59
|
Witt L, Pirkl A, Draude F, Peter-Katalinić J, Dreisewerd K, Mormann M. Water ice is a soft matrix for the structural characterization of glycosaminoglycans by infrared matrix-assisted laser desorption/ionization. Anal Chem 2014; 86:6439-46. [PMID: 24862464 DOI: 10.1021/ac5008706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Glycosaminoglycans (GAGs) are a class of heterogeneous, often highly sulfated glycans that form linear chains consisting of up to 100 monosaccharide building blocks and more. GAGs are ubiquitous constituents of connective tissue, cartilage, and the extracellular matrix, where they have key functions in many important biological processes. For their characterization by mass spectrometry (MS) and tandem MS, the high molecular weight polymers are usually enzymatically digested to oligomers with a low degree of polymerization (dp), typically disaccharides. However, owing to their lability elimination of sulfate groups upon desorption/ionization is often encountered leading to a loss of information on the analyte. Here, we demonstrate that, in particular, water ice constitutes an extremely mild matrix for the analysis of highly sulfated GAG disaccharides by infrared matrix-assisted laser desorption/ionization (IR-MALDI) mass spectrometry. Depending on the degree of sulfation, next to the singly charged ionic species doubly- and even triply charged ions are formed. An unambiguous assignment of the sulfation sites becomes possible by subjecting sodium adducts of the GAGs to low-energy collision-induced dissociation tandem MS. These ionic species exhibit a remarkable stability of the sulfate substituents, allowing the formation of fragment ions retaining their sulfation that arise from either cross-ring cleavages or rupture of the glycosidic bonds, thereby allowing an unambiguous assignment of the sulfation sites.
Collapse
Affiliation(s)
- Lukas Witt
- Institute for Hygiene, University of Münster , 48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
60
|
Volpi N, Galeotti F, Yang B, Linhardt RJ. Analysis of glycosaminoglycan-derived, precolumn, 2-aminoacridone–labeled disaccharides with LC-fluorescence and LC-MS detection. Nat Protoc 2014; 9:541-58. [DOI: 10.1038/nprot.2014.026] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
61
|
Kailemia MJ, Park M, Kaplan DA, Venot A, Boons GJ, Li L, Linhardt RJ, Amster IJ. High-field asymmetric-waveform ion mobility spectrometry and electron detachment dissociation of isobaric mixtures of glycosaminoglycans. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:258-68. [PMID: 24254578 PMCID: PMC3946938 DOI: 10.1007/s13361-013-0771-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/09/2013] [Accepted: 10/09/2013] [Indexed: 05/20/2023]
Abstract
High-field asymmetric waveform ion mobility spectrometry (FAIMS) is shown to be capable of resolving isomeric and isobaric glycosaminoglycan negative ions and to have great utility for the analysis of this class of molecules when combined with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and tandem mass spectrometry. Electron detachment dissociation (EDD) and other ion activation methods for tandem mass spectrometry can be used to determine the sites of labile sulfate modifications and for assigning the stereochemistry of hexuronic acid residues of glycosaminoglycans (GAGs). However, mixtures with overlapping mass-to-charge values present a challenge, as their precursor species cannot be resolved by a mass analyzer prior to ion activation. FAIMS is shown to resolve two types of mass-to-charge overlaps. A mixture of chondroitin sulfate A (CSA) oligomers with 4-10 saccharides units produces ions of a single mass-to-charge by electrospray ionization, as the charge state increases in direct proportion to the degree of polymerization for these sulfated carbohydrates. FAIMS is shown to resolve the overlapping charge. A more challenging type of mass-to-charge overlap occurs for mixtures of diastereomers. FAIMS is shown to separate two sets of epimeric GAG tetramers. For the epimer pairs, the complexity of the separation is reduced when the reducing end is alkylated, suggesting that anomers are also resolved by FAIMS. The resolved components were activated by EDD and the fragment ions were analyzed by FTICR-MS. The resulting tandem mass spectra were able to distinguish the two epimers from each other.
Collapse
Affiliation(s)
| | | | | | - Andre Venot
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Lingyun Li
- Department of Chemistry and Chemical Biology, Chemical and Biological Engineering, and Biology, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Chemical and Biological Engineering, and Biology, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - I. Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, GA 30602
- Address for correspondence: Department of Chemistry, University of Georgia, Athens, GA 30602, Phone: (706) 542-2001, Fax: (706) 542-9454,
| |
Collapse
|
62
|
Kailemia MJ, Ruhaak LR, Lebrilla CB, Amster IJ. Oligosaccharide analysis by mass spectrometry: a review of recent developments. Anal Chem 2014; 86:196-212. [PMID: 24313268 PMCID: PMC3924431 DOI: 10.1021/ac403969n] [Citation(s) in RCA: 279] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - L. Renee Ruhaak
- Department of Chemistry, University of California at Davis, Davis, CA 95616
| | | | | |
Collapse
|
63
|
Huang Y, Yu X, Mao Y, Costello CE, Zaia J, Lin C. De novo sequencing of heparan sulfate oligosaccharides by electron-activated dissociation. Anal Chem 2013; 85:11979-86. [PMID: 24224699 PMCID: PMC3912864 DOI: 10.1021/ac402931j] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Structural characterization of highly sulfated glycosaminoglycans (GAGs) by collisionally activated dissociation (CAD) is challenging because of the extensive sulfate losses mediated by free protons. While removal of the free protons may be achieved through the use of derivatization, metal cation adducts, and/or electrospray supercharging reagents, these steps add complexity to the experimental workflow. It is therefore desirable to develop an analytical approach for GAG sequencing that does not require derivatization or addition of reagents to the electrospray solution. Electron detachment dissociation (EDD) can produce extensive and informative fragmentation for GAGs without the need to remove free protons from the precursor ions. However, EDD is an inefficient process, often requiring consumption of large sample quantities (typically several micrograms), particularly for highly sulfated GAG ions. Here, we report that with improved instrumentation, optimization of the ionization and ion transfer parameters, and enhanced EDD efficiency, it is possible to generate highly informative EDD spectra of highly sulfated GAGs on the liquid chromatography (LC) timescale, with consumption of only a few nanograms of sample. We further show that negative electron transfer dissociation (NETD) is an even more effective fragmentation technique for GAG sequencing, producing fewer sulfate losses while consuming smaller amount of samples. Finally, a simple algorithm was developed for de novo HS sequencing based on their high-resolution tandem mass spectra. These results demonstrate the potential of EDD and NETD as sensitive analytical tools for detailed, high-throughput, de novo structural analyses of highly sulfated GAGs.
Collapse
Affiliation(s)
| | | | - Yang Mao
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine 670 Albany Street, Suite 504, Boston, Massachusetts 02118, United States
| | - Catherine E. Costello
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine 670 Albany Street, Suite 504, Boston, Massachusetts 02118, United States
| | - Joseph Zaia
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine 670 Albany Street, Suite 504, Boston, Massachusetts 02118, United States
| | - Cheng Lin
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine 670 Albany Street, Suite 504, Boston, Massachusetts 02118, United States
| |
Collapse
|
64
|
Zhou W, Håkansson K. Electron capture dissociation of divalent metal-adducted sulfated N-glycans released from bovine thyroid stimulating hormone. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1798-806. [PMID: 23982932 PMCID: PMC3867818 DOI: 10.1007/s13361-013-0700-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 07/03/2013] [Accepted: 07/06/2013] [Indexed: 05/04/2023]
Abstract
Sulfated N-glycans released from bovine thyroid stimulating hormone (bTSH) were ionized with the divalent metal cations Ca(2+), Mg(2+), and Co by electrospray ionization (ESI). These metal-adducted species were subjected to infrared multiphoton dissociation (IRMPD) and electron capture dissociation (ECD) and the corresponding fragmentation patterns were compared. IRMPD generated extensive glycosidic and cross-ring cleavages, but most product ions suffered from sulfonate loss. Internal fragments were also observed, which complicated the spectra. ECD provided complementary structural information compared with IRMPD, and all observed product ions retained the sulfonate group, allowing sulfonate localization. To our knowledge, this work represents the first application of ECD towards metal-adducted sulfated N-glycans released from a glycoprotein. Due to the ability of IRMPD and ECD to provide complementary structural information, the combination of the two strategies is a promising and valuable tool for glycan structural characterization. The influence of different metal ions was also examined. Calcium adducts appeared to be the most promising species because of high sensitivity and ability to provide extensive structural information.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Kristina Håkansson
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
65
|
Gesslbauer B, Theuer M, Schweiger D, Adage T, Kungl AJ. New targets for glycosaminoglycans and glycosaminoglycans as novel targets. Expert Rev Proteomics 2013; 10:77-95. [PMID: 23414361 DOI: 10.1586/epr.12.75] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Biological functions of a variety of proteins are mediated via their interaction with glycosaminoglycans (GAGs). The structural diversity within the wide GAG landscape provides individual interaction sites for a multitude of proteins involved in several pathophysiological processes. This 'GAG angle' of such proteins as well as their specific GAG ligands give rise to novel therapeutic concepts for drug development. Current glycomic technologies to elucidate the glycan structure-function relationships, methods to investigate the selectivity and specificity of glycan-protein interactions and existing therapeutic approaches to interfere with GAG-protein interactions are discussed.
Collapse
Affiliation(s)
- Bernd Gesslbauer
- ProtAffin Biotechnologie AG, Reininghausstrasse 13a, 8020 Graz, Austria
| | | | | | | | | |
Collapse
|
66
|
Shi X, Shao C, Mao Y, Huang Y, Wu ZL, Zaia J. LC-MS and LC-MS/MS studies of incorporation of 34SO3 into glycosaminoglycan chains by sulfotransferases. Glycobiology 2013; 23:969-79. [PMID: 23696150 PMCID: PMC3695753 DOI: 10.1093/glycob/cwt033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/29/2013] [Accepted: 04/29/2013] [Indexed: 12/15/2022] Open
Abstract
The specificities of glycosaminoglycan (GAG) modification enzymes, particularly sulfotransferases, and the locations and concentrations of these enzymes in the Golgi apparatus give rise to the mature GAG polysaccharides that bind protein ligands. We studied the substrate specificities of sulfotransferases with a stable isotopically labeled donor substrate, 3'-phosphoadenosine-5'-phosphosulfate. The sulfate incorporated by in vitro sulfation using recombinant sulfotransferases was easily distinguished from those previously present on the GAG chains using mass spectrometry. The enrichment of the [M + 2] isotopic peak caused by (34)S incorporation, and the [M + 2]/[M + 1] ratio, provided reliable and sensitive measures of the degree of in vitro sulfation. It was found that both CHST3 and CHST15 have higher activities at the non-reducing end (NRE) units of chondroitin sulfate, particularly those terminating with a GalNAc monosaccharide. In contrast, both NDST1 and HS6ST1 showed lower activities at the NRE of heparan sulfate (HS) chains than at the interior of the chain. Contrary to the traditional view of HS biosynthesis processes, NDST1 also showed activity on O-sulfated GlcNAc residues.
Collapse
Affiliation(s)
- Xiaofeng Shi
- Department of Biochemistry and Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany St., Rm. 509, Boston, MA 02118, USA
| | - Chun Shao
- Department of Biochemistry and Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany St., Rm. 509, Boston, MA 02118, USA
| | - Yang Mao
- Department of Biochemistry and Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany St., Rm. 509, Boston, MA 02118, USA
| | - Yu Huang
- Department of Biochemistry and Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany St., Rm. 509, Boston, MA 02118, USA
| | - Zhengliang L Wu
- R&D Systems, Inc., 614 McKinley Place N.E., Minneapolis, MN 55413, USA
| | - Joseph Zaia
- Department of Biochemistry and Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany St., Rm. 509, Boston, MA 02118, USA
| |
Collapse
|
67
|
Huang R, Liu J, Sharp JS. An approach for separation and complete structural sequencing of heparin/heparan sulfate-like oligosaccharides. Anal Chem 2013; 85:5787-95. [PMID: 23659663 PMCID: PMC3725598 DOI: 10.1021/ac400439a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
As members of the glycosaminoglycan (GAG) family, heparin and heparan sulfate (HS) are responsible for mediation of a wide range of essential biological actions, most of which are mediated by specific patterns of modifications of regions of these polysaccharides. To fully understand the regulation of HS modification and the biological function of HS through its interactions with protein ligands, it is essential to know the specific HS sequences present. However, the sequencing of mixtures of HS oligosaccharides presents major challenges due to the lability of the sulfate modifications, as well as difficulties in separating isomeric HS chains. Here, we apply a sequential chemical derivatization strategy involving permethylation, desulfation, and trideuteroperacetylation to label original sulfation sites with stable and hydrophobic trideuteroacetyl groups. The derivatization chemistry differentiates between all possible heparin/HS sequences solely by glycosidic bond cleavages, without the need to generate cross-ring cleavages. This derivatization strategy combined with LC-MS/MS analysis has been used to separate and sequence five synthetic HS-like oligosaccharides of sizes up to dodecasaccharide, as well as a highly sulfated Arixtra-like heptamer. This strategy offers a unique capability for the sequencing of microgram quantities of HS oligosaccharide mixtures by LC-MS/MS.
Collapse
Affiliation(s)
- Rongrong Huang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
68
|
Flangea C, Petrescu AJ, Seidler DG, Munteanu CVA, Zamfir AD. Identification of an unusually sulfated tetrasaccharide chondroitin/dermatan motif in mouse brain by combining chip-nanoelectrospray multistage MS2-MS4and high resolution MS. Electrophoresis 2013; 34:1581-92. [DOI: 10.1002/elps.201200704] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 01/31/2013] [Accepted: 02/04/2013] [Indexed: 01/06/2023]
Affiliation(s)
| | | | - Daniela G. Seidler
- Institute for Physiological Chemistry and Pathobiochemistry; University of Münster; Münster; Germany
| | | | | |
Collapse
|
69
|
Zhou X, Li L, Linhardt RJ, Liu J. Neutralizing the anticoagulant activity of ultra-low-molecular-weight heparins using N-acetylglucosamine 6-sulfatase. FEBS J 2013; 280:2523-32. [PMID: 23374371 PMCID: PMC3864854 DOI: 10.1111/febs.12169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 12/18/2022]
Abstract
Heparin has been the most commonly used anticoagulant drug for nearly a century. The drug heparin is generally categorized into three forms according to its molecular weight: unfractionated (UF, average molecular weight 13 000), low molecular weight (average molecular weight 5000) and ultra-low-molecular-weight heparin (ULMWH, average molecular weight 2000). An overdose of heparin may lead to very dangerous bleeding in patients. Protamine sulfate may be administered as an antidote to reverse heparin's anticoagulant effect. However, there is no effective antidote for ULMWH. In the current study, we examine the use of human N-acetylglucosamine 6-sulfatase (NG6S), expressed in Chinese hamster ovary cells, as a reversal agent for ULMWH. NG6S removes a single 6-O-sulfo group at the non-reducing end of the ULMWH Arixtra(®) (fondaparinux), effectively removing its ability to bind to antithrombin and preventing its inhibition of coagulation factor Xa. These results pave the way to developing human NG6S as an antidote for neutralizing the anticoagulant activity of ULMWHs.
Collapse
Affiliation(s)
- Xianxuan Zhou
- College of Biotechnology and Food Engineering, Hefei University of Technology, Heifei, Anhui 230009, China
| | - Lingyun Li
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
70
|
Kailemia MJ, Li L, Xu Y, Liu J, Linhardt RJ, Amster IJ. Structurally informative tandem mass spectrometry of highly sulfated natural and chemoenzymatically synthesized heparin and heparan sulfate glycosaminoglycans. Mol Cell Proteomics 2013; 12:979-90. [PMID: 23429520 PMCID: PMC3617343 DOI: 10.1074/mcp.m112.026880] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/19/2013] [Indexed: 01/20/2023] Open
Abstract
The highly sulfated glycosaminoglycan oligosaccharides derived from heparin and heparan sulfate have been a highly intractable class of molecules to analyze by tandem mass spectrometry. Under the many methods of ion activation, this class of molecules generally exhibits SO3 loss as the most significant fragmentation pathway, interfering with the assignment of the location of sulfo groups in glycosaminoglycan chains. We report here a method that stabilizes sulfo groups and facilitates the complete structural analysis of densely sulfated (two or more sulfo groups per disaccharide repeat unit) heparin and heparan sulfate oligomers. This is achieved by complete removal of all ionizable protons, either by charging during electrospray ionization or by Na(+)/H(+) exchange. The addition of millimolar levels of NaOH to the sample solution facilitates the production of precursor ions that meet this criterion. This approach is found to work for a variety of heparin sulfate oligosaccharides derived from natural sources or produced by chemoenzymatic synthesis, with up to 12 saccharide subunits and up to 11 sulfo groups.
Collapse
Affiliation(s)
- Muchena J. Kailemia
- From the ‡Department of Chemistry, University of Georgia, Athens, Georgia 30602
| | - Lingyun Li
- the §Department of Chemistry and Chemical Biology, Chemical and Biological Engineering, and Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, and
| | - Yongmei Xu
- the ¶Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jian Liu
- the ¶Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Robert J. Linhardt
- the §Department of Chemistry and Chemical Biology, Chemical and Biological Engineering, and Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, and
| | - I. Jonathan Amster
- From the ‡Department of Chemistry, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
71
|
Abstract
The fact that sulfated glycosaminoglycans (GAGs) are necessary for the functioning of all animal physiological systems drives the need to understand their biology. This understanding is limited, however, by the heterogeneous nature of GAG chains and their dynamic spatial and temporal expression patterns. GAGs have a regulated structure overlaid by heterogeneity but lack the detail necessary to build structure/function relationships. In order to provide this information, we need glycomics platforms that are sensitive, robust, high throughput, and information rich. This review summarizes progress on mass-spectrometry-based GAG glycomics methods. The areas covered include disaccharide analysis, oligosaccharide profiling, and tandem mass spectrometric sequencing.
Collapse
Affiliation(s)
- Joseph Zaia
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University, Boston, Massachusetts 02118, USA.
| |
Collapse
|
72
|
Leach FE, Arungundram S, Al-Mafraji K, Venot A, Boons GJ, Amster IJ. ELECTRON DETACHMENT DISSOCIATION OF SYNTHETIC HEPARAN SULFATE GLYCOSAMINOGLYCAN TETRASACCHARIDES VARYING IN DEGREE OF SULFATION AND HEXURONIC ACID STEREOCHEMISTRY. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2012; 330-332:152-159. [PMID: 23230388 PMCID: PMC3517180 DOI: 10.1016/j.ijms.2012.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Glycosaminoglycan (GAG) carbohydrates provide a challenging analytical target for structural determination due to their polydisperse nature, non-template biosynthesis, and labile sulfate modifications. The resultant structures, although heterogeneous, contain domains which indicate a sulfation pattern or code that correlates to specific function. Mass spectrometry, in particular electron detachment dissociation Fourier transform ion cyclotron resonance (EDD FT-ICR MS), provides a highly sensitive platform for GAG structural analysis by providing cross-ring cleavages for sulfation location and product ions specific to hexuronic acid stereochemistry. To investigate the effect of sulfation pattern and variations in stereochemistry on EDD spectra, a series of synthetic heparan sulfate (HS) tetrasaccharides are examined. Whereas previous studies have focused on lowly sulfated compounds (0.5-1 sulfate groups per disaccharide), the current work extends the application of EDD to more highly sulfated tetrasaccharides (1-2 sulfate groups per disaccharide) and presents the first EDD of a tetrasaccharide containing a sulfated hexuronic acid. For these more highly sulfated HS oligomers, alternative strategies are shown to be effective for extracting full structural details. These strategies inlcude sodium cation replacement of protons, for determining the sites of sulfation, and desulfation of the oligosaccharides for the generation of product ions for assigning uronic acid stereochemistry.
Collapse
Affiliation(s)
| | - Sailaja Arungundram
- University of Georgia, Department of Chemistry, Athens, GA 30602
- University of Georgia, Complex Carbohydrate Research Center, Athens, GA
| | - Kanar Al-Mafraji
- University of Georgia, Department of Chemistry, Athens, GA 30602
- University of Georgia, Complex Carbohydrate Research Center, Athens, GA
| | - Andre Venot
- University of Georgia, Complex Carbohydrate Research Center, Athens, GA
| | - Geert-Jan Boons
- University of Georgia, Department of Chemistry, Athens, GA 30602
- University of Georgia, Complex Carbohydrate Research Center, Athens, GA
| | | |
Collapse
|
73
|
Li L, Zhang F, Zaia J, Linhardt RJ. Top-down approach for the direct characterization of low molecular weight heparins using LC-FT-MS. Anal Chem 2012; 84:8822-9. [PMID: 22985071 DOI: 10.1021/ac302232c] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Low molecular heparins (LMWHs) are structurally complex, heterogeneous, polydisperse, and highly negatively charged mixtures of polysaccharides. The direct characterization of LMWH is a major challenge for currently available analytical technologies. Electrospray ionization (ESI) liquid chromatography-mass spectrometry (LC-MS) is a powerful tool for the characterization complex biological samples in the fields of proteomics, metabolomics, and glycomics. LC-MS has been applied to the analysis of heparin oligosaccharides, separated by size exclusion, reversed phase ion-pairing chromatography, and chip-based amide hydrophilic interaction chromatography (HILIC). However, there have been limited applications of ESI-LC-MS for the direct characterization of intact LMWHs (top-down analysis) due to their structural complexity, low ionization efficiency, and sulfate loss. Here we present a simple and reliable HILIC-Fourier transform (FT)-ESI-MS platform to characterize and compare two currently marketed LMWH products using the top-down approach requiring no special sample preparation steps. This HILIC system relies on cross-linked diol rather than amide chemistry, affording highly resolved chromatographic separations using a relatively high percentage of acetonitrile in the mobile phase, resulting in stable and high efficiency ionization. Bioinformatics software (GlycReSoft 1.0) was used to automatically assign structures within 5-ppm mass accuracy.
Collapse
Affiliation(s)
- Lingyun Li
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, United States
| | | | | | | |
Collapse
|