51
|
Gao Z, Yan F, Shi L, Han Y, Qiu S, Zhang J, Wang F, Wu S, Tian W. Acylhydrazone-based supramolecular assemblies undergoing a converse sol-to-gel transition on trans → cis photoisomerization. Chem Sci 2022; 13:7892-7899. [PMID: 35865886 PMCID: PMC9258502 DOI: 10.1039/d2sc01657e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
Photoisomeric supramolecular assemblies have drawn enormous attention in recent years. Although it is a general rule that photoisomerization from a less to a more distorted isomer causes the destruction of assemblies, this photoisomerization process inducing a converse transition from irregular aggregates to regular assemblies is still a great challenge. Here, we report a converse sol-to-gel transition derived from the planar to nonplanar photoisomer conversion, which is in sharp contrast to the conventional light-induced gel collapse. A well-designed acylhydrazone-linked monomer is exploited as a photoisomer to realize the above-mentioned phase transition. In the monomer, imine is responsible for trans-cis interconversion and amide generates intermolecular hydrogen bonds enabling the photoisomerization-driven self-assembly. The counterintuitive feature of the sol-to-gel transition is ascribed to the partial trans → cis photoisomerization of acylhydrazone causing changes in stacking mode of monomers. Furthermore, the reversible phase transition is applied in the valves formed in situ in microfluidic devices, providing fascinating potential for miniature materials.
Collapse
Affiliation(s)
- Zhao Gao
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Fei Yan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Lulu Shi
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Yifei Han
- Department of Polymer Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Shuai Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Juan Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Feng Wang
- Department of Polymer Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Si Wu
- Department of Polymer Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| |
Collapse
|
52
|
Kunfi A, Ábrahám Á, Gyulai G, Kiss É, London G. Light‐Induced and Thermal Isomerization of Azobenzenes on Immobilized Gold Nanoparticle Aggregates. Chempluschem 2022; 87:e202200153. [DOI: 10.1002/cplu.202200153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/24/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Attila Kunfi
- Research Centre for Natural Sciences: Termeszettudomanyi Kutatokozpont Institute of Organic Chemistry HUNGARY
| | - Ágnes Ábrahám
- Eötvös Loránd Tudományegyetem: Eotvos Lorand Tudomanyegyetem Laboratory of Interfaces and Nanostructures HUNGARY
| | - Gergő Gyulai
- Eötvös Loránd Tudományegyetem: Eotvos Lorand Tudomanyegyetem Laboratory of Interfaces and Nanostructures HUNGARY
| | - Éva Kiss
- Eötvös Loránd Tudományegyetem: Eotvos Lorand Tudomanyegyetem Laboratory of Interfaces and Nanostructures HUNGARY
| | - Gabor London
- Research Centre for Natural Sciences Institute of Organic Chemistry Magyar tudósok körűtja 2. 1117 Budapest HUNGARY
| |
Collapse
|
53
|
Keyvan Rad J, Balzade Z, Mahdavian AR. Spiropyran-based advanced photoswitchable materials: A fascinating pathway to the future stimuli-responsive devices. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
54
|
Wu K, Tessarolo J, Baksi A, Clever GH. Guest‐modulated Circularly Polarized Luminescence by Ligand‐to‐Ligand Chirality Transfer in Heteroleptic Pd(II) Coordination Cages. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kai Wu
- TU Dortmund: Technische Universitat Dortmund Chemistry and Chemical Biology GERMANY
| | - Jacopo Tessarolo
- TU Dortmund: Technische Universitat Dortmund Chemistry and Chemical Biology GERMANY
| | - Ananya Baksi
- TU Dortmund: Technische Universitat Dortmund Chemistry and Chemical Biology GERMANY
| | - Guido H. Clever
- TU Dortmund University Faculty for Chemistry and Chemical Biology Otto-Hahn-Str. 6 44227 Dortmund GERMANY
| |
Collapse
|
55
|
Hagan JT, Gonzalez A, Shi Y, Han GGD, Dwyer JR. Photoswitchable Binary Nanopore Conductance and Selective Electronic Detection of Single Biomolecules under Wavelength and Voltage Polarity Control. ACS NANO 2022; 16:5537-5544. [PMID: 35286058 DOI: 10.1021/acsnano.1c10039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We fabricated photoregulated thin-film nanopores by covalently linking azobenzene photoswitches to silicon nitride pores with ∼10 nm diameters. The photoresponsive coatings could be repeatedly optically switched with deterministic ∼6 nm changes to the effective nanopore diameter and of ∼3× to the nanopore ionic conductance. The sensitivity to anionic DNA and a neutral complex carbohydrate biopolymer (maltodextrin) could be photoswitched "on" and "off" with an analyte selectivity set by applied voltage polarity. Photocontrol of nanopore state and mass transport characteristics is important for their use as ionic circuit elements (e.g., resistors and binary bits) and as chemically tuned filters. It expands single-molecule sensing capabilities in personalized medicine, genomics, glycomics, and, augmented by voltage polarity selectivity, especially in multiplexed biopolymer information storage schemes. We demonstrate repeatedly photocontrolled stable nanopore size, polarity, conductance, and sensing selectivity, by illumination wavelength and voltage polarity, with broad utility including single-molecule sensing of biologically and technologically important polymers.
Collapse
Affiliation(s)
- James T Hagan
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Alejandra Gonzalez
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Yuran Shi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Grace G D Han
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Jason R Dwyer
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
56
|
Xue Y, Jiang S, Zhong H, Chen Z, Wang F. Photo‐Induced Polymer Cyclization via Supramolecular Confinement of Cyanostilbenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuncong Xue
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering Hefei National Laboratory for Physical Science at the Microscale University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Sixun Jiang
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering Hefei National Laboratory for Physical Science at the Microscale University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Hua Zhong
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering Hefei National Laboratory for Physical Science at the Microscale University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Ze Chen
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering Hefei National Laboratory for Physical Science at the Microscale University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering Hefei National Laboratory for Physical Science at the Microscale University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
57
|
Li M, Liu S, Bao H, Li Q, Deng YH, Sun TY, Wang L. Photoinduced Metal-Free Borylation of Aryl Halides Catalysed by in situ Formed Donor-Acceptor Complex. Chem Sci 2022; 13:4909-4914. [PMID: 35655877 PMCID: PMC9067585 DOI: 10.1039/d2sc00552b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/03/2022] [Indexed: 11/21/2022] Open
Abstract
Organoboron compounds are very important building blocks which can be applied in medicinal, biological and industrial fields. However, direct borylation in a metal free manner has been very rarely reported. Herein, we described the successful direct borylation of haloarenes under mild, operationally simple, catalyst-free conditions, promoted by irradiation with visible light. Mechanistic experiments and computational investigations indicate the formation of an excited donor–acceptor complex with a −3.12 V reduction potential, which is a highly active reductant and can facilitate single-electron-transfer (SET) with aryl halides to produce aryl radical intermediates. A two-step one-pot method was developed for site selective aromatic C–H bond borylation. The protocol's good functional group tolerance enables the functionalization of a variety of biologically relevant compounds, representing a new application of aryl radicals merged with photochemistry. We reported a facile metal-free conversion of aryl halides to the corresponding boronic esters catalysed by an in situ formed donor–acceptor complex. A two-step one-pot method was also developed for site selective aromatic C–H bond borylation.![]()
Collapse
Affiliation(s)
- Manhong Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University No. 66, Gongchang Road Shenzhen 518107 P. R. China
| | - Siqi Liu
- Shenzhen Bay Laboratory Shenzhen 518132 P. R. China
| | - Haoshi Bao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University No. 66, Gongchang Road Shenzhen 518107 P. R. China
| | - Qini Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University No. 66, Gongchang Road Shenzhen 518107 P. R. China
| | - Yi-Hui Deng
- Shenzhen Bay Laboratory Shenzhen 518132 P. R. China
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory Shenzhen 518132 P. R. China
| | - Leifeng Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University No. 66, Gongchang Road Shenzhen 518107 P. R. China
| |
Collapse
|
58
|
Stähler C, Grunenberg L, Terban MW, Browne WR, Doellerer D, Kathan M, Etter M, Lotsch BV, Feringa BL, Krause S. Light-Driven Molecular Motors Embedded in Covalent Organic Frameworks. Chem Sci 2022; 13:8253-8264. [PMID: 35919721 PMCID: PMC9297439 DOI: 10.1039/d2sc02282f] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/31/2022] [Indexed: 11/21/2022] Open
Abstract
The incorporation of molecular machines into the backbone of porous framework structures will facilitate nano actuation, enhanced molecular transport, and other out-of-equilibrium host-guest phenomena in well-defined 3D solid materials. In...
Collapse
Affiliation(s)
- Cosima Stähler
- Stratingh Institute for Chemistry, Rijksuniversiteit Groningen Nijenborgh 4 9747 AG Groningen Netherlands
| | - Lars Grunenberg
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany
- Department of Chemistry, Ludwig-Maximilians-Universität (LMU) Butenandtstr. 5-13 81377 Munich Germany
| | - Maxwell W Terban
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany
| | - Wesley R Browne
- Stratingh Institute for Chemistry, Rijksuniversiteit Groningen Nijenborgh 4 9747 AG Groningen Netherlands
| | - Daniel Doellerer
- Stratingh Institute for Chemistry, Rijksuniversiteit Groningen Nijenborgh 4 9747 AG Groningen Netherlands
| | - Michael Kathan
- Stratingh Institute for Chemistry, Rijksuniversiteit Groningen Nijenborgh 4 9747 AG Groningen Netherlands
| | - Martin Etter
- Deutsches Elektronen-Synchrotron (DESY) Notkestr. 85 22607 Hamburg Germany
| | - Bettina V Lotsch
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany
- Department of Chemistry, Ludwig-Maximilians-Universität (LMU) Butenandtstr. 5-13 81377 Munich Germany
- E-conversion Lichtenbergstrasse 4a 85748 Garching Germany
| | - Ben L Feringa
- Stratingh Institute for Chemistry, Rijksuniversiteit Groningen Nijenborgh 4 9747 AG Groningen Netherlands
| | - Simon Krause
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany
| |
Collapse
|
59
|
Hatcher LE, Coulson BA. Exploring the influence of polymorphism and chromophore co-ligands on linkage isomer photoswitching in [Pd(bpy4dca)(NO 2) 2]. CrystEngComm 2022. [DOI: 10.1039/d2ce00213b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The polymorphic Pd(II)-nitrite complex [Pd(bpy4dca)(NO2)2] (1) (bpy4dca = 2,2’-bipyridine-4,4’-dicarboxylic acid methyl ester) is shown to undergo photoinduced nitro → nitrito linkage isomer switching in two crystal forms, to varying excited...
Collapse
|
60
|
Yuasa M, Sumida R, Tanaka Y, Yoshizawa M. Selective Encapsulation and Unusual Stabilization of cis-Isomers by a Spherical Polyaromatic Cavity. Chemistry 2021; 28:e202104101. [PMID: 34962322 DOI: 10.1002/chem.202104101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 11/11/2022]
Abstract
To explore new cavity functions, we herein employed cis-trans stereoisomers with a N=N, C=C, or C=N unit as guest indicators for a polyaromatic capsule. Thanks to the rigid, spherical cavity with a diameter of ~1 nm, azobenzene and stilbene derivatives are quantitatively encapsulated by the capsule with 100% cis -selectivity in water. The isomerization of the cis -azo compound is suppressed against heat and light in the cavity, due to the confinement effect. Furthermore, C,N -diphenyl imine derivatives are quantitatively encapsulated by the capsule in water and adopt an otherwise unstable cis -form. The polyaromatic cavity suppresses the hydrolysis of the imines in water, even at elevated temperature, due to the shielding effect. Accordingly, the properties of the cis-trans isomers could be largely altered through supramolecular manipulation.
Collapse
Affiliation(s)
- Mana Yuasa
- Tokyo Institute of Technology: Tokyo Kogyo Daigaku, Institute of Innovative Research, JAPAN
| | - Ryuki Sumida
- Tokyo Institute of Technology: Tokyo Kogyo Daigaku, Institute of Innovative Research, JAPAN
| | - Yuya Tanaka
- Tokyo Institute of Technology: Tokyo Kogyo Daigaku, Institute of Innovative Research, JAPAN
| | - Michito Yoshizawa
- Tokyo Institute of Technology, Laboratory for Chemistry and Life Science, Institute of Innovative Research, 4259-R28, Nagatsuta, Midori-ku, 226-8503, Yokohama, JAPAN
| |
Collapse
|
61
|
Xie K, Ruan Z, Lyu B, Chen X, Zhang X, Huang G, Chen Y, Ni Z, Tong M. Guest‐Driven Light‐Induced Spin Change in an Azobenzene Loaded Metal–Organic Framework. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kai‐Ping Xie
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ze‐Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Bang‐Heng Lyu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xiao‐Xian Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xue‐Wen Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Guo‐Zhang Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yan‐Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Zhao‐Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ming‐Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
62
|
Maor I, Koifman N, Kesselman E, Matsanov P, Shumilin I, Harries D, Weitz IS. Molecular self-assembly under nanoconfinement: indigo carmine scroll structures entrapped within polymeric capsules. NANOSCALE 2021; 13:20462-20470. [PMID: 34787624 DOI: 10.1039/d1nr06494k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular self-assembly forms structures of well-defined organization that allow control over material properties, affording many advanced technological applications. Although the self-assembly of molecules is seemingly spontaneous, the structure into which they assemble can be altered by carefully modulating the driving forces. Here we study the self-assembly within the constraints of nanoconfined closed spherical volumes of polymeric nanocapsules, whereby a mixture of polyester-polyether block copolymer and methacrylic acid methyl methacrylate copolymer forms the entrapping capsule shell of nanometric dimensions. We follow the organization of the organic dye indigo carmine that serves as a model building unit due to its tendency to self-assemble into flat lamellar molecular sheets. Analysis of the structures formed inside the nanoconfined space using cryogenic-transmission electron microscopy (cryo-TEM) and cryogenic-electron tomography (cryo-ET) reveal that confinement drives the self-assembly to produce tubular scroll-like structures of the dye. Combined continuum theory and molecular modeling allow us to estimate the material properties of the confined nanosheets, including their elasticity and brittleness. Finally, we comment on the formation mechanism and forces that govern self-assembly under nanoconfinement.
Collapse
Affiliation(s)
- Inbal Maor
- Department of Biotechnology Engineering, ORT Braude College of Engineering, Karmiel 2161002, Israel.
| | - Na'ama Koifman
- The Technion Center for Electron Microscopy of Soft Matter, The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Ellina Kesselman
- The Technion Center for Electron Microscopy of Soft Matter, The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Pnina Matsanov
- Department of Biotechnology Engineering, ORT Braude College of Engineering, Karmiel 2161002, Israel.
| | - Ilan Shumilin
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, and The Fritz Haber Research Center, The Hebrew University, Jerusalem 9190401, Israel
| | - Daniel Harries
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, and The Fritz Haber Research Center, The Hebrew University, Jerusalem 9190401, Israel
| | - Iris Sonia Weitz
- Department of Biotechnology Engineering, ORT Braude College of Engineering, Karmiel 2161002, Israel.
| |
Collapse
|
63
|
Bruekers JP, Bakker R, White PB, Tinnemans P, Elemans JA, Nolte RJ. Stabilization of thermally unstable photoisomers of pyridinium-functionalized hemithioindigo switches by host-guest complexation. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
64
|
Sun D, Wu Y, Han X, Liu S. Achieving Enhanced Photochromic Properties of Diarylethene through Host-Guest Interaction in Aqueous Solution. Chemistry 2021; 27:16153-16160. [PMID: 34533250 DOI: 10.1002/chem.202102731] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/09/2022]
Abstract
Diarylethene (DTE) has been widely used in fluorescence probes, molecular logic gates, optical data-storage devices owing to the excellent photochromic property, while constructing high-performance photochromic DTE in aqueous media remains a big challenge. Herein we present several host-guest systems formed between cucurbit[n]uril (CB[n], n=7, 8, 10) and two water-soluble DTE derivatives 1 and 2. It was found that host-guest interactions not only affect the photophysical properties of photochromic guests, but also make great differences on the photoreaction process. Different host-guest binding behaviors also lead to different effects on the photochromic properties of guests. In the presence of CB[n], both 1 and 2 showed enhanced emission and higher fluorescence quenching ratio at photostationary state. Besides, CB[10]⋅1 exhibited faster response rate in cyclization reaction and better photofatigue resistance than free 1 in aqueous solution, while the supramolecular assembly of (CB[8])n ⋅(2)n showed slower response rate in both directions of the reversible photoreaction. Besides, the photofatigue resistance of 2 can be greatly improved through binding with CB[7]. Our results suggest that host-guest interactions could be an efficient way to improve photochromic properties of DTE in aqueous solution.
Collapse
Affiliation(s)
- Dongdong Sun
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Yong Wu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Xie Han
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China.,Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Simin Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China.,Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| |
Collapse
|
65
|
Xue Y, Jiang S, Zhong H, Chen Z, Wang F. Photo-Induced Polymer Cyclization via Supramolecular Confinement of Cyanostilbenes. Angew Chem Int Ed Engl 2021; 61:e202110766. [PMID: 34714571 DOI: 10.1002/anie.202110766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/13/2021] [Indexed: 12/25/2022]
Abstract
Efficient synthesis of cyclic polymers has received much attention in polymer chemistry field. Although photochemical cycloaddition of terminal π-bonded units provides a plausible way toward cyclic polymerization, it remains challenging to avoid side reactions by manipulating the reaction selectivity. Herein supramolecular confinement has been developed as a promising strategy to address this issue, by introducing highly directional hydrogen bonds to the photo-reactive cyanostilbenes. The cyanostilbenes units on both ends of a telechelic macromonomer are orientationally aligned with high local concentrations, yielding [2+2] photo-cycloaddition products upon 430 nm light irradiation. It leads to the formation of cyclic polymers in the self-assembled state, in stark contrast to Z-E isomerization of cyanostilbenes in the monomeric state. Overall, supramolecular confinement effect exemplified in the current study provides new avenues toward cyclic topological polymers with high synthetic efficiency.
Collapse
Affiliation(s)
- Yuncong Xue
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Sixun Jiang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hua Zhong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ze Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
66
|
Xie KP, Ruan ZY, Lyu BH, Chen XX, Zhang XW, Huang GZ, Chen YC, Ni ZP, Tong ML. Guest-Driven Light-Induced Spin Change in an Azobenzene Loaded Metal-Organic Framework. Angew Chem Int Ed Engl 2021; 60:27144-27150. [PMID: 34676638 DOI: 10.1002/anie.202113294] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 12/30/2022]
Abstract
Stimuli-responsive materials that can be reversibly switched by light are of immense interest. Among them, photo-responsive spin crossover (SCO) complexes have great promises to combine the photoactive inputs with multifaceted outputs into switchable materials and devices. However, the reversible control the spin-state change by photochromic guests is still challenging. Herein, we report an unprecedented guest-driven light-induced spin change (GD-LISC) in a Hofmann-type metal-organic framework (MOF), [Fe(bpn){Ag(CN)2 }2 ]⋅azobenzene. (1, bpn=1,4-bis(4-pyridyl)naphthalene). The reversible trans-cis photoisomerization of azobenzene guest upon UV/Vis irradiation in the solid-state results in the remarkable magnetic changes in a wide temperature range of 10-180 K. This finding not only establishes a new switching mechanism for SCO complexes, but also paves the way toward the development of new generation of photo-responsive magnetic materials.
Collapse
Affiliation(s)
- Kai-Ping Xie
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Bang-Heng Lyu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xiao-Xian Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xue-Wen Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Guo-Zhang Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zhao-Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
67
|
He J, Zhao H, Wu H, Yang Y, Wang Z, He Z, Jiang G. Achieving enhanced solid-state photochromism and mechanochromism by introducing a rigid steric hindrance group. Phys Chem Chem Phys 2021; 23:17939-17944. [PMID: 34382052 DOI: 10.1039/d1cp02983e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
For photochromic molecules, effective isomerization usually requires conformational freedom, which is usually unavailable under solvent-free conditions. In this work, we report a new method, which can realize the reversible switching of spiropyran molecules by introducing a rigid aromatic ring group and this method can provide the required free volume to transform from a closed-ring to an open-ring form. This new molecule can quickly change color in the solid state under ultraviolet light, and can be erased after being heated at 60 °C for about 5 minutes. Furthermore, this new compound presents mechanochromicity when a mechanical force is applied. What is more, it can be used for at least 30 cycles of print-erase operations without apparent fatigue. This new molecule exhibits improved photochromic and anti-fatigue properties in the solid state, which can promote its application in both ultraviolet printing and anti-counterfeiting materials.
Collapse
Affiliation(s)
- Junzhao He
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | | | | | | | | | | | | |
Collapse
|
68
|
Titov E, Sharma A, Lomadze N, Saalfrank P, Santer S, Bekir M. Photoisomerization of an Azobenzene‐Containing Surfactant Within a Micelle. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Evgenii Titov
- Theoretical Chemistry Institute of Chemistry University of Potsdam Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
| | - Anjali Sharma
- Experimental Physics Institute of Physics and Astronomy University of Potsdam Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
| | - Nino Lomadze
- Experimental Physics Institute of Physics and Astronomy University of Potsdam Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
| | - Peter Saalfrank
- Theoretical Chemistry Institute of Chemistry University of Potsdam Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
| | - Svetlana Santer
- Experimental Physics Institute of Physics and Astronomy University of Potsdam Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
| | - Marek Bekir
- Experimental Physics Institute of Physics and Astronomy University of Potsdam Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
| |
Collapse
|
69
|
Liu Y, Zhang Q, Crespi S, Chen S, Zhang X, Xu T, Ma C, Zhou S, Shi Z, Tian H, Feringa BL, Qu D. Motorized Macrocycle: A Photo‐responsive Host with Switchable and Stereoselective Guest Recognition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yue Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
- Centre for Systems Chemistry Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Stefano Crespi
- Centre for Systems Chemistry Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Shaoyu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
- Centre for Systems Chemistry Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Xiu‐Kang Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Tian‐Yi Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Chang‐Shun Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Shang‐Wu Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zhao‐Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Ben L. Feringa
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
- Centre for Systems Chemistry Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Da‐Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
70
|
Liu Y, Zhang Q, Crespi S, Chen S, Zhang X, Xu T, Ma C, Zhou S, Shi Z, Tian H, Feringa BL, Qu D. Motorized Macrocycle: A Photo-responsive Host with Switchable and Stereoselective Guest Recognition. Angew Chem Int Ed Engl 2021; 60:16129-16138. [PMID: 33955650 PMCID: PMC8361693 DOI: 10.1002/anie.202104285] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/04/2021] [Indexed: 12/14/2022]
Abstract
Designing photo-responsive host-guest systems can provide versatile supramolecular tools for constructing smart systems and materials. We designed photo-responsive macrocyclic hosts, modulated by light-driven molecular rotary motors enabling switchable chiral guest recognition. The intramolecular cyclization of the two arms of a first-generation molecular motor with flexible oligoethylene glycol chains of different lengths resulted in crown-ether-like macrocycles with intrinsic motor function. The octaethylene glycol linkage enables the successful unidirectional rotation of molecular motors, simultaneously allowing the 1:1 host-guest interaction with ammonium salt guests. The binding affinity and stereoselectivity of the motorized macrocycle can be reversibly modulated, owing to the multi-state light-driven switching of geometry and helicity of the molecular motors. This approach provides an attractive strategy to construct stimuli-responsive host-guest systems and dynamic materials.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Stefano Crespi
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Shaoyu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Xiu‐Kang Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Tian‐Yi Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Chang‐Shun Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Shang‐Wu Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Zhao‐Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Ben L. Feringa
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Da‐Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| |
Collapse
|
71
|
Dery S, Alshanski I, Mervinetsky E, Feferman D, Yitzchaik S, Hurevich M, Gross E. The influence of surface proximity on photoswitching activity of stilbene-functionalized N-heterocyclic carbene monolayers. Chem Commun (Camb) 2021; 57:6233-6236. [PMID: 34095904 DOI: 10.1039/d1cc02491d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Self-assembly of photo-responsive molecules is a robust technology for reversibly tuning the properties of functional materials. Herein, we probed the crucial role of surface-adsorbate interactions on the adsorption geometry of stilbene-functionalized N-heterocyclic carbenes (stilbene-NHCs) monolayers and its impact on surface potential. Stilbene-NHCs on Au film accumulated in a vertical orientation that enabled high photoisomerization efficiency and reversible changes in surface potential. Strong metal-adsorbate interactions led to flat-lying adsorption geometry of stilbene-NHCs on Pt film, which quenched the photo-isomerization influence on surface potential. It is identified that photo-induced response can be optimized by positioning the photo-active group in proximity to weakly-interacting surfaces.
Collapse
Affiliation(s)
- Shahar Dery
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel.
| | - Israel Alshanski
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel.
| | - Evgeniy Mervinetsky
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel.
| | - Daniel Feferman
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel.
| | - Shlomo Yitzchaik
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel.
| | - Mattan Hurevich
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel.
| | - Elad Gross
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel.
| |
Collapse
|
72
|
Küng R, Pausch T, Rasch D, Göstl R, Schmidt BM. Mechanochemische Freisetzung nichtkovalent gebundener Gäste aus einem mit Polymerketten dekorierten supramolekularen Käfig. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Robin Küng
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Deutschland
| | - Tobias Pausch
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Deutschland
| | - Dustin Rasch
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstraße 50 52056 Aachen Deutschland
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringerweg 1 52074 Aachen Deutschland
| | - Robert Göstl
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstraße 50 52056 Aachen Deutschland
| | - Bernd M. Schmidt
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Deutschland
| |
Collapse
|
73
|
Küng R, Pausch T, Rasch D, Göstl R, Schmidt BM. Mechanochemical Release of Non-Covalently Bound Guests from a Polymer-Decorated Supramolecular Cage. Angew Chem Int Ed Engl 2021; 60:13626-13630. [PMID: 33729649 PMCID: PMC8251918 DOI: 10.1002/anie.202102383] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Indexed: 12/21/2022]
Abstract
Supramolecular coordination cages show a wide range of useful properties including, but not limited to, complex molecular machine-like operations, confined space catalysis, and rich host-guest chemistries. Here we report the uptake and release of non-covalently encapsulated, pharmaceutically-active cargo from an octahedral Pd cage bearing polymer chains on each vertex. Six poly(ethylene glycol)-decorated bipyridine ligands are used to assemble an octahedral PdII6 (TPT)4 cage. The supramolecular container encapsulates progesterone and ibuprofen within its hydrophobic nanocavity and is activated by shear force produced by ultrasonication in aqueous solution entailing complete cargo release upon rupture, as shown by NMR and GPC analyses.
Collapse
Affiliation(s)
- Robin Küng
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstrasse 140225DüsseldorfGermany
| | - Tobias Pausch
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstrasse 140225DüsseldorfGermany
| | - Dustin Rasch
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstrasse 5052056AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
| | - Robert Göstl
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstrasse 5052056AachenGermany
| | - Bernd M. Schmidt
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstrasse 140225DüsseldorfGermany
| |
Collapse
|
74
|
Jiao Y, Đorđević L, Mao H, Young RM, Jaynes T, Chen H, Qiu Y, Cai K, Zhang L, Chen XY, Feng Y, Wasielewski MR, Stupp SI, Stoddart JF. A Donor-Acceptor [2]Catenane for Visible Light Photocatalysis. J Am Chem Soc 2021; 143:8000-8010. [PMID: 34028258 DOI: 10.1021/jacs.1c01493] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Colored charge-transfer complexes can be formed by the association between electron-rich donor and electron-deficient acceptor molecules, bringing about the narrowing of HOMO-LUMO energy gaps so that they become capable of harnessing visible light. In an effort to facilitate the use of these widespread, but nonetheless weak, interactions for visible light photocatalysis, it is important to render the interactions strong and robust. Herein, we employ a well-known donor-acceptor [2]catenane-formed by the mechanical interlocking of cyclobis(paraquat-p-phenylene) and 1,5-dinaphtho[38]crown-10-in which the charge-transfer interactions between two 4,4'-bipyridinium and two 1,5-dioxynaphthalene units are enhanced by mechanical bonding, leading to increased absorption of visible light, even at low concentrations in solution. As a result, since this [2]catenane can generate persistent bipyridinium radical cations under continuous visible-light irradiation without the need for additional photosensitizers, it can display good catalytic activity in both photo-reductions and -oxidations, as demonstrated by hydrogen production-in the presence of platinum nanoparticles-and aerobic oxidation of organic sulfides, such as l-methionine, respectively. This research, which highlights the usefulness of nanoconfinement present in mechanically interlocked molecules for the reinforcement of weak interactions, can not only expand the potential of charge-transfer interactions in solar energy conversion and synthetic photocatalysis but also open up new possibilities for the development of active artificial molecular shuttles, switches, and machines.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Luka Đorđević
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Center for Bio-inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Haochuan Mao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ryan M Young
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Tyler Jaynes
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Center for Bio-inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Hongliang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yunyan Qiu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kang Cai
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xiao-Yang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yuanning Feng
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Center for Bio-inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Medicine, Northwestern University, 676 North St. Clair Street, Chicago, Illinois 60611, United States.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
75
|
Abeysekera AM, Averkiev BB, Sinha AS, Le Magueres P, Aakeröy CB. Establishing Halogen-Bond Preferences in Molecules with Multiple Acceptor Sites. Chempluschem 2021; 86:1049-1057. [PMID: 34008343 DOI: 10.1002/cplu.202100102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/03/2021] [Indexed: 02/01/2023]
Abstract
The interplay between hydrogen bonds (HBs) and halogen bonds (XBs), has been addressed by co-crystallizing two halogen bond donors, 1,4-diiodotetrafluorbenzene(DITFB) and 1,3,5-trifluoro-2,4,6-triiodobenzene(TITFB) with four series of targets; N-(pyridin-2-yl)benzamide (Bz-X), N-(pyridin-2-yl)picolinamides (2Pyr-X), N-(pyridin-2-yl)nicotinamides (3Pyr-X), N-(pyridin-2-yl)isonicotinamides (4Pyr-X); X=H/Cl/Br/I. The structural outcomes were compared with interactions in the targets themselves. 13 co-crystals were analysed by single-crystal X-ray diffraction (SCXRD). In all three co-crystals from the 2Pyr series, the intramolecular HB remained intact while the XB donors engaged with the N(pyr) or O=C sites. In the ten co-crystals from the other three series, the intermolecular HBs present in the individual targets were disrupted in 9/10 cases. Overall, the acceptor sites selected by the halogen-bond donors in these targets were distributed as follows; N(pyr)=81 %, O=C (15 %) or π (4 %).
Collapse
Affiliation(s)
- Amila M Abeysekera
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Dr North, Manhattan, KS 66506-0401, USA
| | - Boris B Averkiev
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Dr North, Manhattan, KS 66506-0401, USA
| | - Abhijeet S Sinha
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Dr North, Manhattan, KS 66506-0401, USA
| | - Pierre Le Magueres
- Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX 77381, USA
| | - Christer B Aakeröy
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Dr North, Manhattan, KS 66506-0401, USA
| |
Collapse
|
76
|
Nánási D, Kunfi A, Ábrahám Á, Mayer PJ, Mihály J, Samu GF, Kiss É, Mohai M, London G. Construction and Properties of Donor-Acceptor Stenhouse Adducts on Gold Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3057-3066. [PMID: 33645991 PMCID: PMC8031373 DOI: 10.1021/acs.langmuir.0c03275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/27/2021] [Indexed: 05/15/2023]
Abstract
The construction of a donor-acceptor Stenhouse adduct molecular layer on a gold surface is presented. To avoid the incompatibility of the thiol surface-binding group with the donor-acceptor polyene structure of the switch, an interfacial reaction approach was followed. Poly(dopamine)-supported gold nanoparticles on quartz slides were chosen as substrates, which was expected to facilitate both the interfacial reaction and the switching process by providing favorable steric conditions due to the curved particle surface. The reaction between the surface-bound donor half and the CF3-isoxazolone-based acceptor half was proved to be successful by X-ray photoelectron spectroscopy (XPS). However, UV-vis measurements suggested that a closed, cyclopentenone-containing structure of the switch formed on the surface irreversibly. Analysis of the wetting behavior of the surface revealed spontaneous water spreading that could be associated with conformational changes of the closed isomer.
Collapse
Affiliation(s)
- Dalma
Edit Nánási
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, Research Centre for
Natural Sciences, Magyar tudósok körútja 2, 1117 Budapest, Hungary
| | - Attila Kunfi
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, Research Centre for
Natural Sciences, Magyar tudósok körútja 2, 1117 Budapest, Hungary
| | - Ágnes Ábrahám
- Laboratory
of Interfaces and Nanostructures, Eötvös
Loránd University, Pázmány Péter stny. 1/A, 1117 Budapest, Hungary
| | - Péter J. Mayer
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, Research Centre for
Natural Sciences, Magyar tudósok körútja 2, 1117 Budapest, Hungary
- Institute
of Chemistry, University of Szeged, Rerrich tér 1, 6720 Szeged, Hungary
| | - Judith Mihály
- Biological
Nanochemistry Research Group, Institute
of Materials and Environmental Chemistry, Research Centre for Natural
Sciences, Magyar tudósok
körútja 2, 1117 Budapest, Hungary
| | - Gergely F. Samu
- Department
of Physical Chemistry and Materials Science, Interdisciplinary Excellence
Centre, University of Szeged, Rerrich Square 1, H-6720 Szeged, Hungary
| | - Éva Kiss
- Laboratory
of Interfaces and Nanostructures, Eötvös
Loránd University, Pázmány Péter stny. 1/A, 1117 Budapest, Hungary
| | - Miklós Mohai
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural
Sciences, Magyar tudósok
körútja 2, 1117 Budapest, Hungary
| | - Gábor London
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, Research Centre for
Natural Sciences, Magyar tudósok körútja 2, 1117 Budapest, Hungary
| |
Collapse
|
77
|
Yan JF, Men RX, Chen XX, Lin CX, Nockemann P, Yuan YF. D–π–A type ferrocene-substituted azobenzene photochromic switches: synthesis, structures, and electrochemical and photoisomerization studies. NEW J CHEM 2021. [DOI: 10.1039/d1nj03894j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of D–π–A type azobenzenes with a ferrocenyl/ferrocenylethynyl electron donor at the para/meta-position have been synthesized and characterized by electrochemistry and UV-vis spectroscopy.
Collapse
Affiliation(s)
- Jian-Feng Yan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Department of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Rui-Xi Men
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Department of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiao-Xiao Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Department of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Cai-Xia Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Department of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Peter Nockemann
- School of Chemistry and Chemical Engineering, Queen's University of Belfast, The QUILL Research Centre, Belfast BT9 5AQ, UK
| | - Yao-Feng Yuan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Department of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
78
|
Hu YX, Jia PP, Zhang CW, Xu XD, Niu Y, Zhao X, Xu Q, Xu L, Yang HB. A supramolecular dual-donor artificial light-harvesting system with efficient visible light-harvesting capacity. Org Chem Front 2021. [DOI: 10.1039/d1qo00771h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A supramolecular dual-donor artificial light-harvesting system with efficient visible light-harvesting capacity was constructed through the hierarchical self-assembly approach.
Collapse
Affiliation(s)
- Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Pei-Pei Jia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Chang-Wei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Xing-Dong Xu
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Yanfei Niu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Xiaoli Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Qian Xu
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
79
|
Dichiarante V, Pigliacelli C, Metrangolo P, Baldelli Bombelli F. Confined space design by nanoparticle self-assembly. Chem Sci 2020; 12:1632-1646. [PMID: 34163923 PMCID: PMC8179300 DOI: 10.1039/d0sc05697a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022] Open
Abstract
Nanoparticle (NP) self-assembly has led to the fabrication of an array of functional nanoscale systems, having diverse architectures and functionalities. In this perspective, we discuss the design and application of NP suprastructures (SPs) characterized by nanoconfined compartments in their self-assembled framework, providing an overview about SP synthetic strategies reported to date and the role of their confined nanocavities in applications in several high-end fields. We also set to give our contribution towards the formation of more advanced nanocompartmentalized SPs able to work in dynamic manners, discussing the opportunities of further advances in NP self-assembly and SP research.
Collapse
Affiliation(s)
- Valentina Dichiarante
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano Via Luigi Mancinelli 7 20131 Milan Italy
| | - Claudia Pigliacelli
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano Via Luigi Mancinelli 7 20131 Milan Italy
| | - Pierangelo Metrangolo
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano Via Luigi Mancinelli 7 20131 Milan Italy
| | - Francesca Baldelli Bombelli
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano Via Luigi Mancinelli 7 20131 Milan Italy
| |
Collapse
|