51
|
Liu Z, He X, Li A, Qu Z, Xu F. A two-dimensional mathematical model for analyzing the effects of capture probe properties on the performance of lateral flow assays. Analyst 2019; 144:5394-5403. [DOI: 10.1039/c9an00669a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lateral flow assays (LFAs) are promising candidates in biomedical diagnosis fields due to their rapid, low-cost, and portable features.
Collapse
Affiliation(s)
- Zhi Liu
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education
- School of Energy and Power Engineering
- Xi'an Jiaotong University
- Xi'an 710049
- P.R. China
| | - Xiaocong He
- Bioinspired Engineering and Biomechanics Center (BEBC)
- Xi'an Jiaotong University
- Xi'an 710049
- P.R. China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research and Department of Periodontology
- College of Stomatology
- Xi'an Jiaotong University
- Xi'an 710004
- P.R. China
| | - Zhiguo Qu
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education
- School of Energy and Power Engineering
- Xi'an Jiaotong University
- Xi'an 710049
- P.R. China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC)
- Xi'an Jiaotong University
- Xi'an 710049
- P.R. China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
| |
Collapse
|
52
|
Paper-Based Microfluidics for Point-of-Care Medical Diagnostics. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
53
|
Song Y, Lin B, Tian T, Xu X, Wang W, Ruan Q, Guo J, Zhu Z, Yang C. Recent Progress in Microfluidics-Based Biosensing. Anal Chem 2018; 91:388-404. [DOI: 10.1021/acs.analchem.8b05007] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yanling Song
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Bingqian Lin
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tian Tian
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xing Xu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wei Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qingyu Ruan
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jingjing Guo
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
54
|
Yuan H, Chao Y, Li S, Tang MYH, Huang Y, Che Y, Wong AST, Zhang T, Shum HC. Picoinjection-Enabled Multitarget Loop-Mediated Isothermal Amplification for Detection of Foodborne Pathogens. Anal Chem 2018; 90:13173-13177. [PMID: 30354065 DOI: 10.1021/acs.analchem.8b03673] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, we develop a method to detect multiple DNAs of foodborne pathogens by encapsulating emulsion droplets for loop-mediated isothermal amplification (LAMP). In contrast to the traditional bulk-phase LAMP, which involves a labor-intensive mixing process, with our method, different primers are automatically mixed with DNA samples and LAMP buffers after picoinjection. By directly observing and analyzing the fluorescence intensity of the resultant droplets, one can detect DNA from different pathogens, with a detection limit 500 times lower than that obtained by bulk-phase LAMP. We further demonstrate the ability to quantify bacteria concentration by detecting bacterial DNA in practical samples, showing great potential in monitoring water resources and their contamination by pathogenic bacteria.
Collapse
Affiliation(s)
- Hao Yuan
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI) , Shenzhen , Guangdong 518057 , China.,Department of Mechanical Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| | - Youchuang Chao
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI) , Shenzhen , Guangdong 518057 , China.,Department of Mechanical Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| | - ShanShan Li
- School of Biological Sciences , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| | - Matthew Y H Tang
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI) , Shenzhen , Guangdong 518057 , China.,Department of Mechanical Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| | - Yue Huang
- Centre for Environmental Engineering Research, Department of Civil Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| | - You Che
- Centre for Environmental Engineering Research, Department of Civil Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| | - Alice S T Wong
- School of Biological Sciences , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| | - Tong Zhang
- Centre for Environmental Engineering Research, Department of Civil Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| | - Ho Cheung Shum
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI) , Shenzhen , Guangdong 518057 , China.,Department of Mechanical Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| |
Collapse
|
55
|
Post-assay growth of gold nanoparticles as a tool for highly sensitive lateral flow immunoassay. Application to the detection of potato virus X. Mikrochim Acta 2018; 185:506. [PMID: 30328535 DOI: 10.1007/s00604-018-3052-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/07/2018] [Indexed: 01/01/2023]
Abstract
This article demonstrates a new kind of a highly sensitive lateral flow immunoassay (LFIA). It is based on the enlargement of the size of gold nanoparticles (GNPs) directly on the test strip after a conventional LFIA. Particle size enlargement is accomplished through the catalytic reduction of HAuCl4 in the presence of H2O2 and through the accumulation of additional gold on the surface of the GNPs. To attain maximal enhancement of the coloration of the zone in the test strip and to achieve a minimal background, the concentration of precursors, the pH value, and the incubation time were optimized. GNPs on the test strip are enlarged from 20 to 350 nm after a 1-min treatment at room temperature. The economically important and widespread phytopathogen potato virus X (PVX) was used as the target analyte. The use of the GNP enlargement method results in a 240-fold reduction in the limit of the detection of PVX, which can be as low as 17 pg·mL-1. The total duration of the assay, including virus extraction from the potato leaves, lateral flow, and the enhancement process, is only 12 min. The diagnostic efficiency of the technique was confirmed by its application to the analysis of potato leave samples. No false positives or false negatives were found. The technique does not depend on specific features of the target analyte, and it is conceivably applicable to numerous GNP-based LFIAs for important analytes. Graphical abstract An enlargement solution (containing HAuCl4 and H2O2) was dripped on the strip after common lateral flow immunoassay. Gold nanoparticles on the strip (20 nm) catalyze gold reduction and the formation of larger particles (up to 350 nm), resulting in a 240-fold lower detection limit within 1 min.
Collapse
|
56
|
Luo K, Kim HY, Oh MH, Kim YR. Paper-based lateral flow strip assay for the detection of foodborne pathogens: principles, applications, technological challenges and opportunities. Crit Rev Food Sci Nutr 2018; 60:157-170. [PMID: 30311773 DOI: 10.1080/10408398.2018.1516623] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As a representative colorimetic biosnesor, paper-based LFSA have emerged as a promising and robust tool that can easily and instansly detect the presence of target biological components in food sample. Recently, LFSAs have gained a considerable attention as an alternative method for rapid diagnosis of foodborne pathogens to the conventional culture-based assays such as plate counting and PCR. One major drawback of the current LFSAs for the detection of pathogenic bacteria is the low sensitivity, limiting its practical applications in POCT. Not like many other protein-based biomarkers that are present in nM or pM range, the number of pathogenic bacteria that cause disease can be as low as few CFU/ml. Here, we review current advances in LFSAs for the detection of pathogenic bacteria in terms of chromatic agents and analyte types. Furthermore, recent approaches for signal enhancement and modifications of the LFSA architecture for multiplex detection of pathogenic bacteria are included in this review, together with the advantages and limitations of each techniques. Finally, the technological challenges and future prospect of LFSA-based POCT for the detection of pathogenic bacteria are discussed.
Collapse
Affiliation(s)
- Ke Luo
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104 Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104 Korea
| | - Mi-Hwa Oh
- National Institute of Animal Science, Rural Development Administration, Wanju 55365 Korea
| | - Young-Rok Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104 Korea
| |
Collapse
|
57
|
Fu LM, Wang YN. Detection methods and applications of microfluidic paper-based analytical devices. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.018] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
58
|
|
59
|
Ye H, Xia X. Enhancing the sensitivity of colorimetric lateral flow assay (CLFA) through signal amplification techniques. J Mater Chem B 2018; 6:7102-7111. [PMID: 32254626 DOI: 10.1039/c8tb01603h] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Colorimetric lateral flow assay (CLFA) is one of a handful of diagnostic technologies that can be truly taken out of the laboratory for point-of-care testing without the need for any equipment and skilled personnel. Despite its simplicity and practicality, it remains a grand challenge to substantially enhance the detection sensitivity of CLFA without adding complexity. Such a limitation in sensitivity inhibits many critical applications such as early detection of significant cancers and severe infectious diseases. With the rapid development of materials science and nanotechnology, signal amplification techniques that hold great potential to break through the existing detection limit barrier of CLFA have been developed in recent years. This article specifically highlights these emerging techniques for CLFA development. The rationale behind and advantages and limitations of each technique are discussed. Perspectives on future research directions in this niche and important field are provided.
Collapse
Affiliation(s)
- Haihang Ye
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA.
| | | |
Collapse
|
60
|
|
61
|
Fratzl M, Chang BS, Oyola-Reynoso S, Blaire G, Delshadi S, Devillers T, Ward T, Dempsey NM, Bloch JF, Thuo MM. Magnetic Two-Way Valves for Paper-Based Capillary-Driven Microfluidic Devices. ACS OMEGA 2018; 3:2049-2057. [PMID: 31458514 PMCID: PMC6641529 DOI: 10.1021/acsomega.7b01839] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/01/2018] [Indexed: 05/14/2023]
Abstract
This article presents a magnetically actuated two-way, three-position (+, 0, -), paper-based microfluidic valve that includes a neutral position (0)-the first of its kind. The system is highly robust, customizable, and fully automated. The advent of a neutral position and the ability to precisely control switching frequencies establish a new platform for highly controlled fluid flows in paper-based wicking microfluidic devices. The potential utility of these valves is demonstrated in automated, programmed, patterning of dyed liquids in a wicking device akin to a colorimetric assay but with a programmed fluid/reagent delivery. These valves are fabricated using facile methods and thus remain cost-effective for adoption into affordable point-of-care/bioanalytical devices.
Collapse
Affiliation(s)
- Mario Fratzl
- Univ.
Grenoble Alpes, CNRS, Grenoble INP, Institute of Engineering,
G2Elab, 38000 Grenoble, France
- Univ.
Grenoble Alpes, CNRS, Grenoble INP, Institute of Engineering, Institut
Néel, 38000 Grenoble, France
| | - Boyce S. Chang
- Department
of Materials Science and Engineering and Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Stephanie Oyola-Reynoso
- Department
of Materials Science and Engineering and Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Guillaume Blaire
- Univ.
Grenoble Alpes, CNRS, Grenoble INP, Institute of Engineering,
G2Elab, 38000 Grenoble, France
| | - Sarah Delshadi
- Univ.
Grenoble Alpes, CNRS, Grenoble INP, Institute of Engineering,
G2Elab, 38000 Grenoble, France
- Univ.
Grenoble Alpes, CNRS, Inserm, IAB, 38000
Grenoble, France Site Santé—Allée
des Alpes, 38700 La Tronche, France
| | - Thibaut Devillers
- Univ.
Grenoble Alpes, CNRS, Grenoble INP, Institute of Engineering, Institut
Néel, 38000 Grenoble, France
| | - Thomas Ward
- Department
of Materials Science and Engineering and Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Nora M. Dempsey
- Univ.
Grenoble Alpes, CNRS, Grenoble INP, Institute of Engineering, Institut
Néel, 38000 Grenoble, France
| | - Jean-Francis Bloch
- Univ. Grenoble
Alpes, CNRS, Grenoble INP, Institute of Engineering, 3SR, F-38000 Grenoble, France
- E-mail: (J.-F.B.)
| | - Martin M. Thuo
- Department
of Materials Science and Engineering and Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, United States
- E-mail: (M.M.T.)
| |
Collapse
|
62
|
Shin JH, Hong J, Go H, Park J, Kong M, Ryu S, Kim KP, Roh E, Park JK. Multiplexed Detection of Foodborne Pathogens from Contaminated Lettuces Using a Handheld Multistep Lateral Flow Assay Device. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:290-297. [PMID: 29198101 DOI: 10.1021/acs.jafc.7b03582] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This paper presents a handheld device that is capable of simplifying multistep assays to perform sensitive detection of foodborne pathogens. The device is capable of multiplexed detection of Escherichia coli (E. coli) O157:H7, Salmonella Typhimurium (S. Typhimurium), Staphylococcus aureus, and Bacillus cereus. The limit of detection for each bacterium was characterized, and then, the detection of bacteria from contaminated fresh lettuces was demonstrated for two representative foodborne pathogens. We employed a sample pretreatment protocol to recover and concentrate target bacteria from contaminated lettuces, which can detect 1.87 × 104 CFU of E. coli O157:H7 and 1.47 × 104 CFU of S. Typhimurium/1 g of lettuce without an enrichment process. Lastly, we demonstrated that the limit of detection can be reduced to 1 CFU of E. coli O157:H7 and 1 CFU of S. Typhimurium/1 g of lettuce by including a 6 h enrichment of contaminated lettuces in growth media before pretreatment.
Collapse
Affiliation(s)
- Joong Ho Shin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Jisoo Hong
- Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration , Wanju-gun 55365, Republic of Korea
| | - Hyeyun Go
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Juhwan Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Minsuk Kong
- Department of Agricultural Biotechnology, Seoul National University , Seoul 08826, Republic of Korea
| | - Sangryeol Ryu
- Department of Agricultural Biotechnology, Seoul National University , Seoul 08826, Republic of Korea
| | - Kwang-Pyo Kim
- Department of Food Science and Technology, Chonbuk National University , Jeonju 54896, Republic of Korea
| | - Eunjung Roh
- Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration , Wanju-gun 55365, Republic of Korea
| | - Je-Kyun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| |
Collapse
|
63
|
ISHII M, PREECHAKASEDKIT P, YAMADA K, CHAILAPAKUL O, SUZUKI K, CITTERIO D. Wax-Assisted One-Step Enzyme-Linked Immunosorbent Assay on Lateral Flow Test Devices. ANAL SCI 2018; 34:51-56. [DOI: 10.2116/analsci.34.51] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | | | | | - Orawon CHAILAPAKUL
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University
| | - Koji SUZUKI
- Department of Applied Chemistry, Keio University
| | | |
Collapse
|
64
|
Banerjee R, Jaiswal A. Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst 2018; 143:1970-1996. [DOI: 10.1039/c8an00307f] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in lateral flow immunoassay-based devices as a point-of-care analytical tool for the detection of infectious diseases are reviewed.
Collapse
Affiliation(s)
- Ruptanu Banerjee
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi-175005
- India
| | - Amit Jaiswal
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi-175005
- India
| |
Collapse
|
65
|
Laser carved micro-crack channels in paper-based dilution devices. Talanta 2017; 175:289-296. [DOI: 10.1016/j.talanta.2017.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/23/2017] [Accepted: 07/01/2017] [Indexed: 12/12/2022]
|
66
|
Li Y, Yang L, Fu J, Yan M, Chen D, Zhang L. The novel loop-mediated isothermal amplification based confirmation methodology on the bacteria in Viable but Non-Culturable (VBNC) state. Microb Pathog 2017; 111:280-284. [DOI: 10.1016/j.micpath.2017.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/03/2017] [Accepted: 09/05/2017] [Indexed: 01/28/2023]
|
67
|
Selective turn-on fluorescence detection of Vibrio parahaemolyticus in food based on charge-transfer between CdSe/ZnS quantum dots and gold nanoparticles. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.05.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
68
|
Cheung SF, Yee MF, Le NK, Gomes EA, Afrasiabi Z, Kamei DT. A Combined Aqueous Two-Phase System and Spot-Test Platform for the Rapid Detection of Escherichia coli O157:H7 in Milk. SLAS Technol 2017; 23:57-63. [DOI: 10.1177/2472630317731892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Foodborne illnesses are a public health concern in the United States and worldwide. Recent outbreaks of Escherichia coli O157:H7 have brought to light the need for improved ways to detect foodborne pathogens and minimize serious outbreaks. Unfortunately, current methods for the detection of foodborne pathogens are time intensive and complex. In this study, we designed a spot immunoassay that uses a UCON-potassium phosphate salt aqueous two-phase system (ATPS) for the preconcentration of O157:H7. This platform was tested with samples of O157:H7 spiked in phosphate-buffered saline and milk. The ATPS was found to improve the detection limit of the spot test, yielding detection at 106 cfu/mL within 30 min. This is the first known application of ATPSs to spot immunoassays. Moreover, detection was successfully achieved without upstream processing or dilution of the sample prior to testing, thereby further simplifying the detection process. This technology’s ease of use, sensitivity, and short time to result highlight its potential to advance the spot test as a viable diagnostic tool for foodborne pathogens.
Collapse
Affiliation(s)
- Sherine F. Cheung
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Matthew F. Yee
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Nguyen K. Le
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Elizabeth A. Gomes
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Zahra Afrasiabi
- Department of Life and Physical Sciences, Lincoln University, Jefferson City, MO, USA
- Math and Sciences, Soka University of America, Aliso Viejo, CA, USA
| | - Daniel T. Kamei
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| |
Collapse
|
69
|
Magro L, Escadafal C, Garneret P, Jacquelin B, Kwasiborski A, Manuguerra JC, Monti F, Sakuntabhai A, Vanhomwegen J, Lafaye P, Tabeling P. Paper microfluidics for nucleic acid amplification testing (NAAT) of infectious diseases. LAB ON A CHIP 2017. [PMID: 28632278 DOI: 10.1039/c7lc00013h] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The diagnosis of infectious diseases is entering a new and interesting phase. Technologies based on paper microfluidics, coupled to developments in isothermal amplification of Nucleic Acids (NAs) raise opportunities for bringing the methods of molecular biology in the field, in a low setting environment. A lot of work has been performed in the domain over the last few years and the landscape of contributions is rich and diverse. Most often, the level of sample preparation differs, along with the sample nature, the amplification and detection methods, and the design of the device, among other features. In this review, we attempt to offer a structured description of the state of the art. The domain is not mature and there exist bottlenecks that hamper the realization of Nucleic Acid Amplification Tests (NAATs) complying with the constraints of the field in low and middle income countries. In this domain however, the pace of progress is impressively fast. This review is written for a broad Lab on a Chip audience.
Collapse
Affiliation(s)
- Laura Magro
- MMN, Gulliver Laboratory, UMR CNRS 7083, ESPCI Paris, PSL Research University, Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Gong MM, Sinton D. Turning the Page: Advancing Paper-Based Microfluidics for Broad Diagnostic Application. Chem Rev 2017. [PMID: 28627178 DOI: 10.1021/acs.chemrev.7b00024] [Citation(s) in RCA: 334] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Infectious diseases are a major global health issue. Diagnosis is a critical first step in effectively managing their spread. Paper-based microfluidic diagnostics first emerged in 2007 as a low-cost alternative to conventional laboratory testing, with the goal of improving accessibility to medical diagnostics in developing countries. In this review, we examine the advances in paper-based microfluidic diagnostics for medical diagnosis in the context of global health from 2007 to 2016. The theory of fluid transport in paper is first presented. The next section examines the strategies that have been employed to control fluid and analyte transport in paper-based assays. Tasks such as mixing, timing, and sequential fluid delivery have been achieved in paper and have enabled analytical capabilities comparable to those of conventional laboratory methods. The following section examines paper-based sample processing and analysis. The most impactful advancement here has been the translation of nucleic acid analysis to a paper-based format. Smartphone-based analysis is another exciting development with potential for wide dissemination. The last core section of the review highlights emerging health applications, such as male fertility testing and wearable diagnostics. We conclude the review with the future outlook, remaining challenges, and emerging opportunities.
Collapse
Affiliation(s)
- Max M Gong
- Department of Mechanical and Industrial Engineering, University of Toronto , 5 King's College Road, Toronto, Ontario, Canada M5S 3G8.,Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison , 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto , 5 King's College Road, Toronto, Ontario, Canada M5S 3G8
| |
Collapse
|
71
|
Wang N, Wei X, Zheng AQ, Yang T, Chen ML, Wang JH. Dual Functional Core-Shell Fluorescent Ag 2S@Carbon Nanostructure for Selective Assay of E. coli O157:H7 and Bactericidal Treatment. ACS Sens 2017; 2:371-378. [PMID: 28723213 DOI: 10.1021/acssensors.6b00688] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A dual functional fluorescent core-shell Ag2S@Carbon nanostructure is prepared by a hydrothermally assisted multi-amino synthesis approach with folic acid (FA), polyethylenimine (PEI), and mannoses (Mans) as carbon and nitrogen sources (FA-PEI-Mans-Ag2S nanocomposite shortly as Ag2S@C). The nanostructure exhibits strong fluorescent emission at λex/λem = 340/450 nm with a quantum yield of 12.57 ± 0.52%. Ag2S@C is bound to E. coli O157:H7 via strong interaction with the Mans moiety in Ag2S@C with FimH proteins on the fimbriae tip in E. coli O157:H7. Fluorescence emission from Ag2S@C/E. coli conjugate is closely related to the content of E. coli O157:H7. Thus, a novel procedure for fluorescence assay of E. coli O157:H7 is developed, offering a detection limit of 330 cfu mL-1. Meanwhile, the Ag2S@C nanostructure exhibits excellent antibacterial performance against E. coli O157:H7. A 99.9% sterilization rate can be readily achieved for E. coli O157:H7 at a concentration of 106-107 cfu mL-1 with 3.3 or 10 μg mL-1 of Ag2S@C with an interaction time of 5 or 0.5 min, respectively.
Collapse
Affiliation(s)
- Ning Wang
- Research Center for Analytical
Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China, 110819
| | - Xing Wei
- Research Center for Analytical
Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China, 110819
| | - An-Qi Zheng
- Research Center for Analytical
Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China, 110819
| | - Ting Yang
- Research Center for Analytical
Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China, 110819
| | - Ming-Li Chen
- Research Center for Analytical
Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China, 110819
| | - Jian-Hua Wang
- Research Center for Analytical
Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China, 110819
| |
Collapse
|
72
|
Fu E, Downs C. Progress in the development and integration of fluid flow control tools in paper microfluidics. LAB ON A CHIP 2017; 17:614-628. [PMID: 28119982 DOI: 10.1039/c6lc01451h] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Paper microfluidics is a rapidly growing subfield of microfluidics in which paper-like porous materials are used to create analytical devices. There is a need for higher performance field-use tests for many application domains including human disease diagnosis, environmental monitoring, and veterinary medicine. A key factor in creating high performance paper-based devices is the ability to manipulate fluid flow within the devices. This critical review is focused on the progress that has been made in (i) the development of fluid flow control tools and (ii) the integration of those tools into paper microfluidic devices. Further, we strive to be comprehensive in our presentation and provide historical context through discussion and performance comparisons, when possible, of both relevant earlier work and recent work. Finally, we discuss the major areas of focus for fluid flow methods development to advance the potential of paper microfluidics for high-performance field applications.
Collapse
Affiliation(s)
- Elain Fu
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, USA.
| | - Corey Downs
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, USA.
| |
Collapse
|
73
|
Zhao Y, Chen X, Lin S, Du D, Lin Y. Integrated immunochromatographic strip with glucometer readout for rapid quantification of phosphorylated proteins. Anal Chim Acta 2017; 964:1-6. [PMID: 28351626 DOI: 10.1016/j.aca.2017.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 01/09/2023]
Abstract
A new technology to quantify phospho-p5315 by converting its content to the amount of glucose which is detectable by a glucometer was developed. An immunochromatographic test strip (ITS) was used as a disposable platform, where primary antibody (Ab1)-modified Fe3O4 magnetic nanoparticles (Fe3O4-Ab1) were settled on the test zone to capture both the target phospho-p5315 and the detection antibody (Ab2)-glucose encapsulating liposome (GEL) conjugate. The measurement was based on the release and subsequent detection of glucose from Ab2-GEL using a glucose meter (GM). The amount of glucose is proportional to the phospho-p5315 concentration from 0.1 to 50 ng mL-1, the limit of detection is 50 pg mL-1 (3S/N). The high sensitivity was a result of the huge number of glucose encapsulated in the liposome. Taking the advantage of low cost, widespread availability and portability of the test trip, together with the personal GM, the presented approach can be easily used to detect other disease biomarkers in medical diagnostics and environmental monitoring.
Collapse
Affiliation(s)
- Yuting Zhao
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Xiao Chen
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Sophie Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Dan Du
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA.
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
74
|
Park M, Jung H, Jeong Y, Jeong KH. Plasmonic Schirmer Strip for Human Tear-Based Gouty Arthritis Diagnosis Using Surface-Enhanced Raman Scattering. ACS NANO 2017; 11:438-443. [PMID: 27973769 DOI: 10.1021/acsnano.6b06196] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Biomarkers in tear fluid have attracted much interest in daily healthcare sensing and monitoring. Recently, surface-enhanced Raman scattering (SERS) has enabled highly sensitive label-free detection of small molecules. However, a highly stable straightforward tear assay with superior sensitivity is still under development in tear collection and analysis. Here we report a plasmonic Schirmer strip for on-demand, rapid, and simple identification of biomarkers in human tears. The diagnostic strip features gold nanoislands directly and evenly formed on the top surface of cellulose fibers, which maintain a hygroscopic nature for an efficient collection of tear production as well as provide plasmonic enhancement in SERS signals for identification of tear molecules. The uric acid in human tears was quantitatively detected at physiological levels (25-150 μM) by using SERS. The experimental results also clearly reveal a strong linear correlation between uric acid level in both human tears and blood for gouty arthritis diagnosis. This functional paper strip enables noninvasive diagnosis of disease-related biomarkers and healthcare monitoring using human tears.
Collapse
Affiliation(s)
- Moonseong Park
- Department of Bio and Brain Engineering and KAIST Institute for Optical Science and Technology, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyukjin Jung
- Department of Bio and Brain Engineering and KAIST Institute for Optical Science and Technology, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yong Jeong
- Department of Bio and Brain Engineering and KAIST Institute for Optical Science and Technology, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ki-Hun Jeong
- Department of Bio and Brain Engineering and KAIST Institute for Optical Science and Technology, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
75
|
Syedmoradi L, Daneshpour M, Alvandipour M, Gomez FA, Hajghassem H, Omidfar K. Point of care testing: The impact of nanotechnology. Biosens Bioelectron 2017; 87:373-387. [DOI: 10.1016/j.bios.2016.08.084] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 08/15/2016] [Accepted: 08/25/2016] [Indexed: 11/29/2022]
|
76
|
Affiliation(s)
- Xiuli Fu
- School
of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong 264005, China
| | - Lingxin Chen
- School
of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong 264005, China
- Key
Laboratory of Coastal Environmental Processes and Ecological Remediation,
Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Jaebum Choo
- Department
of Bionanotechnology, Hanyang University, Ansan, Gyeonggi 426-791, South Korea
| |
Collapse
|
77
|
Recent Progresses in Nanobiosensing for Food Safety Analysis. SENSORS 2016; 16:s16071118. [PMID: 27447636 PMCID: PMC4970161 DOI: 10.3390/s16071118] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/21/2022]
Abstract
With increasing adulteration, food safety analysis has become an important research field. Nanomaterials-based biosensing holds great potential in designing highly sensitive and selective detection strategies necessary for food safety analysis. This review summarizes various function types of nanomaterials, the methods of functionalization of nanomaterials, and recent (2014-present) progress in the design and development of nanobiosensing for the detection of food contaminants including pathogens, toxins, pesticides, antibiotics, metal contaminants, and other analytes, which are sub-classified according to various recognition methods of each analyte. The existing shortcomings and future perspectives of the rapidly growing field of nanobiosensing addressing food safety issues are also discussed briefly.
Collapse
|