51
|
Evaluation of ultraviolet photodissociation tandem mass spectrometry for the structural assignment of unsaturated fatty acid double bond positional isomers. Anal Bioanal Chem 2020; 412:2339-2351. [PMID: 32006064 DOI: 10.1007/s00216-020-02446-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/18/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Fatty acids are a major source of structural diversity within the lipidome due to variations in their acyl chain lengths, branching, and cyclization, as well as the number, position, and stereochemistry of double bonds within their mono- and poly-unsaturated species. Here, the utility of 193 nm UltraViolet PhotoDissociation tandem mass spectrometry (UVPD-MS/MS) has been evaluated for the detailed structural characterization of a series of unsaturated fatty acid lipid species. UVPD-MS/MS of unsaturated fatty acids is shown to yield pairs of unique diagnostic product ions resulting from cleavages adjacent to their C=C double bonds, enabling unambiguous localization of the site(s) of unsaturation within these lipids. The effect of several experimental variables on the observed fragmentation behaviour and UVPD-MS/MS efficiency, including the position and number of double bonds, the effect of conjugated versus non-conjugated double bonds, the number of laser pulses, and the influence of alkali metal cations (Li, Na, K) as the ionizing adducts, has been evaluated. Importantly, the abundance of the diagnostic ions is shown to enable relative quantitation of mixtures of fatty acid isomers across a range of molar ratios. Finally, the practical application of 193 nm UVPD-MS/MS is demonstrated via characterization of changes in the ratios of fatty acid double bond positional isomers in isogenic colorectal cancer cell lines. This study therefore demonstrates the practicality of UVPD-MS/MS for the structural characterization of fatty acid isomers in lipidome analysis workflows.
Collapse
|
52
|
Morris CB, Poland JC, May JC, McLean JA. Fundamentals of Ion Mobility-Mass Spectrometry for the Analysis of Biomolecules. Methods Mol Biol 2020; 2084:1-31. [PMID: 31729651 DOI: 10.1007/978-1-0716-0030-6_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ion mobility-mass spectrometry (IM-MS) combines complementary size- and mass-selective separations into a single analytical platform. This chapter provides context for both the instrumental arrangements and key application areas that are commonly encountered in bioanalytical settings. New advances in these high-throughput strategies are described with description of complementary informatics tools to effectively utilize these data-intensive measurements. Rapid separations such as these are especially important in systems, synthetic, and chemical biology in which many small molecules are transient and correspond to various biological classes for integrated omics measurements. This chapter highlights the fundamentals of IM-MS and its applications toward biomolecular separations and discusses methods currently being used in the fields of proteomics, lipidomics, and metabolomics.
Collapse
Affiliation(s)
- Caleb B Morris
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - James C Poland
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - Jody C May
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - John A McLean
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA. .,Vanderbilt-Ingram Cancer Center, Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
53
|
Fundamentals and applications of incorporating chromatographic separations with ion mobility-mass spectrometry. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115625] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
54
|
Schuhmann K, Moon H, Thomas H, Ackerman JM, Groessl M, Wagner N, Kellmann M, Henry I, Nadler A, Shevchenko A. Quantitative Fragmentation Model for Bottom-Up Shotgun Lipidomics. Anal Chem 2019; 91:12085-12093. [PMID: 31441640 PMCID: PMC6751524 DOI: 10.1021/acs.analchem.9b03270] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/23/2019] [Indexed: 01/01/2023]
Abstract
Quantitative bottom-up shotgun lipidomics relies on molecular species-specific "signature" fragments consistently detectable in tandem mass spectra of analytes and standards. Molecular species of glycerophospholipids are typically quantified using carboxylate fragments of their fatty acid moieties produced by higher-energy collisional dissociation of their molecular anions. However, employing standards whose fatty acids moieties are similar, yet not identical, to the target lipids could severely compromise their quantification. We developed a generic and portable fragmentation model implemented in the open-source LipidXte software that harmonizes the abundances of carboxylate anion fragments originating from fatty acid moieties having different sn-1/2 positions at the glycerol backbone, length of the hydrocarbon chain, and number and location of double bonds. The postacquisition adjustment enables unbiased absolute (molar) quantification of glycerophospholipid species independent of instrument settings, collision energy, and employed internal standards.
Collapse
Affiliation(s)
- Kai Schuhmann
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - HongKee Moon
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Henrik Thomas
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Jacobo Miranda Ackerman
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Michael Groessl
- Department
of Nephrology and Hypertension, Inselspital,
Bern University Hospital, Freiburgstr. 15, 3010 Bern, Switzerland
- Department
for BioMedical Research, University of Bern, Murtenstr. 35, 3010 Bern, Switzerland
| | - Nicolai Wagner
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Markus Kellmann
- Thermo
Fisher Scientific, Hanna-Kunath-Str.
11, 28199 Bremen, Germany
| | - Ian Henry
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - André Nadler
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Andrej Shevchenko
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| |
Collapse
|
55
|
Cetraro N, Cody RB, Yew JY. Carbon-carbon double bond position elucidation in fatty acids using ozone-coupled direct analysis in real time mass spectrometry. Analyst 2019; 144:5848-5855. [PMID: 31482871 DOI: 10.1039/c9an01059a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The carbon-carbon double bond positions of unsaturated fatty acids can have markedly different effects on biological function and also serve as biomarkers of disease pathology, dietary history, and species identity. As such, there is great interest in developing methods for the facile determination of double bond position for natural product chemistry, the pharmaceutical industry, and forensics. We paired ozonolysis with direct analysis in real time mass spectrometry (DART MS) to cleave and rapidly identify carbon-carbon double bond position in fatty acids, fatty alcohols, wax esters, and crude fatty acid extracts. In addition, ozone exposure time and DART ion source temperature were investigated to identify optimal conditions. Our results reveal that brief, offline exposure to ozone-generated aldehyde and carboxylate products that are indicative of carbon-carbon double bond position. The relative abundance of diagnostic fragments quantitatively reflects the ratios of isobaric fatty acid positional isomers in a mixture with a correlation coefficient of 0.99. Lastly, the unsaturation profile generated from unfractionated, fatty acid extracts can be used to differentiate insect species and populations. The ability to rapidly elucidate lipid double bond position by combining ozonolysis with DART MS will be useful for lipid structural elucidation, assessing isobaric purity, and potentially distinguishing between animals fed on different diets or belonging to different ecological populations.
Collapse
Affiliation(s)
- Nicolas Cetraro
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, 1993 East West Road, Honolulu, USA 96822.
| | - Robert B Cody
- JEOL USA, Inc., 11 Dearborn Rd, Peabody, MA, USA 01960
| | - Joanne Y Yew
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, 1993 East West Road, Honolulu, USA 96822.
| |
Collapse
|
56
|
Kuo TH, Chung HH, Chang HY, Lin CW, Wang MY, Shen TL, Hsu CC. Deep Lipidomics and Molecular Imaging of Unsaturated Lipid Isomers: A Universal Strategy Initiated by mCPBA Epoxidation. Anal Chem 2019; 91:11905-11915. [DOI: 10.1021/acs.analchem.9b02667] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | | | - Ming-Yang Wang
- National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | | | | |
Collapse
|
57
|
Tu J, Zhou Z, Li T, Zhu ZJ. The emerging role of ion mobility-mass spectrometry in lipidomics to facilitate lipid separation and identification. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
58
|
The mechanism of ozonolysis on the surface of C70 fullerene. The free energy surface theoretical study. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
59
|
Jeck V, Korf A, Vosse C, Hayen H. Localization of double-bond positions in lipids by tandem mass spectrometry succeeding high-performance liquid chromatography with post-column derivatization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 1:86-94. [PMID: 30102803 DOI: 10.1002/rcm.8262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/31/2018] [Accepted: 08/05/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Viola Jeck
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149, Münster, Germany
| | - Ansgar Korf
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149, Münster, Germany
| | - Christian Vosse
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149, Münster, Germany
| | - Heiko Hayen
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149, Münster, Germany
| |
Collapse
|
60
|
New Frontiers in Lipidomics Analyses using Structurally Selective Ion Mobility-Mass Spectrometry. Trends Analyt Chem 2019; 116:316-323. [PMID: 31983792 DOI: 10.1016/j.trac.2019.03.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The growth of lipidomics and the high isomeric complexity of the lipidome has revealed a need for analytical techniques capable of structurally characterizing lipids with a high degree of specificity. Lipids are morphologically diverse molecules that can exist as any one of a large number of isomeric species, and as such are often indistinguishable by mass spectrometry without a complementary separation method. Recent developments in the field of lipidomics aim to address these challenges by utilizing a combination of multiple analytical techniques which are selective to lipid primary structure. This review summarizes two emerging strategies for lipidomic analysis, namely, ion mobility-mass spectrometry and ion fragmentation via ozonolysis.
Collapse
|
61
|
Leaptrot KL, May JC, Dodds JN, McLean JA. Ion mobility conformational lipid atlas for high confidence lipidomics. Nat Commun 2019; 10:985. [PMID: 30816114 PMCID: PMC6395675 DOI: 10.1038/s41467-019-08897-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 02/06/2019] [Indexed: 02/05/2023] Open
Abstract
Lipids are highly structurally diverse molecules involved in a wide variety of biological processes. Here, we use high precision ion mobility-mass spectrometry to compile a structural database of 456 mass-resolved collision cross sections (CCS) of sphingolipid and glycerophospholipid species. Our CCS database comprises sphingomyelin, cerebroside, ceramide, phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, and phosphatidic acid classes. Primary differences observed are between lipid categories, with sphingolipids exhibiting 2–6% larger CCSs than glycerophospholipids of similar mass, likely a result of the sphingosine backbone’s restriction of the sn1 tail length, limiting gas-phase packing efficiency. Acyl tail length and degree of unsaturation are found to be the primary structural descriptors determining CCS magnitude, with degree of unsaturation being four times as influential per mass unit. The empirical CCS values and previously unmapped quantitative structural trends detailed in this work are expected to facilitate prediction of CCS in broadscale lipidomics research. The biological functions of lipids critically depend on their highly diverse molecular structures. Here, the authors determine the mass-resolved collision cross sections of 456 sphingolipid and glycerophospholipid species, providing a reference for future structural lipidomics studies.
Collapse
Affiliation(s)
- Katrina L Leaptrot
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jody C May
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, 37235, USA
| | - James N Dodds
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, 37235, USA
| | - John A McLean
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
62
|
Franklin ET, Betancourt SK, Randolph CE, McLuckey SA, Xia Y. In-depth structural characterization of phospholipids by pairing solution photochemical reaction with charge inversion ion/ion chemistry. Anal Bioanal Chem 2019; 411:4739-4749. [PMID: 30613841 DOI: 10.1007/s00216-018-1537-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/25/2018] [Accepted: 12/03/2018] [Indexed: 11/25/2022]
Abstract
Shotgun lipid analysis based on electrospray ionization-tandem mass spectrometry (ESI-MS/MS) is increasingly used in lipidomic studies. One challenge for the shotgun approach is the discrimination of lipid isomers and isobars. Gas-phase charge inversion via ion/ion reactions has been used as an effective method to identify multiple isomeric/isobaric components in a single MS peak by exploiting the distinctive functionality of different lipid classes. In doing so, fatty acyl chain information can be obtained without recourse to condensed-phase separations or derivatization. This method alone, however, cannot provide carbon-carbon double bond (C=C) location information from fatty acyl chains. Herein, we provide an enhanced method pairing photochemical derivatization of C=C via the Paternò-Büchi reaction with charge inversion ion/ion tandem mass spectrometry. This method was able to provide gas-phase separation of phosphatidylcholines and phosphatidylethanolamines, the fatty acyl compositions, and the C=C location within each fatty acyl chain. We have successfully applied this method to bovine liver lipid extracts and identified 40 molecular species of glycerophospholipids with detailed structural information including head group, fatty acyl composition, and C=C location. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Elissia T Franklin
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - Stella K Betancourt
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - Caitlin E Randolph
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA.
| | - Yu Xia
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA.
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
63
|
Esch P, Heiles S. Charging and Charge Switching of Unsaturated Lipids and Apolar Compounds Using Paternò-Büchi Reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1971-1980. [PMID: 30014261 DOI: 10.1007/s13361-018-2023-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
The ability to control the charge state and ionization efficiency of lipids and hydrocarbons by means of in-source Paternò-Büchi functionalization in nano-electrospray ionization mass spectrometry experiments is investigated. Ultraviolet light irradiation of acetylpyridine filled nano-electrospray emitter tips, containing unsaturated analytes, generates protonated lipid and hydrocarbon ions. Comparison of reaction yields and fragment ion abundances of functionalized unsaturated fatty acids indicate that acetylpyridine Paternò-Büchi functionalization allows to readily detect fatty acids and determine double bond positions, but fragmentation efficiency and reactivity depend on double bond position and varies between different acetylpyridine isomers. Results for methyl oleate and olefins suggest that fragment ion abundances of unsaturated compounds depend on interactions between acetylpyridine and nearby functional groups. Paternò-Büchi functionalization with acetylpyridine was used to detect and assign double bond positions of mono- and polyunsaturated fatty acid, cholesterol ester, triglyceride, and hydrocarbon standards with ion abundances that are up to 631 times higher than abundances of the same compounds prior Paternò-Büchi reaction. To demonstrate the scope and analytical robustness of the newly developed method, free fatty acids in mouse brain as well as male Schistosoma mansoni extracts and hydrocarbons in an olefin mixture are investigated. For this complex set of analytes, charging and charge switching using acetylpyridine Paternò-Büchi functionalization enable double bond position assignment and relative quantification in positive ion mode. Graphical Abstract.
Collapse
Affiliation(s)
- Patrick Esch
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, 35392, Giessen, Germany
| | - Sven Heiles
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, 35392, Giessen, Germany.
| |
Collapse
|
64
|
Navarro-Reig M, Bedia C, Tauler R, Jaumot J. Chemometric Strategies for Peak Detection and Profiling from Multidimensional Chromatography. Proteomics 2018; 18:e1700327. [DOI: 10.1002/pmic.201700327] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/16/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Meritxell Navarro-Reig
- Department of Environmental Chemistry; Institute of Environmental Assessment and Water Research (IDAEA) - Spanish National Research Council (CSIC); Jordi Girona 18-34, E08034 Barcelona Spain
| | - Carmen Bedia
- Department of Environmental Chemistry; Institute of Environmental Assessment and Water Research (IDAEA) - Spanish National Research Council (CSIC); Jordi Girona 18-34, E08034 Barcelona Spain
| | - Romà Tauler
- Department of Environmental Chemistry; Institute of Environmental Assessment and Water Research (IDAEA) - Spanish National Research Council (CSIC); Jordi Girona 18-34, E08034 Barcelona Spain
| | - Joaquim Jaumot
- Department of Environmental Chemistry; Institute of Environmental Assessment and Water Research (IDAEA) - Spanish National Research Council (CSIC); Jordi Girona 18-34, E08034 Barcelona Spain
| |
Collapse
|