51
|
Omar NAS, Fen YW, Irmawati R, Hashim HS, Ramdzan NSM, Fauzi NIM. A Review on Carbon Dots: Synthesis, Characterization and Its Application in Optical Sensor for Environmental Monitoring. NANOMATERIALS 2022; 12:nano12142365. [PMID: 35889589 PMCID: PMC9321155 DOI: 10.3390/nano12142365] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 01/17/2023]
Abstract
The development of carbon dots (CDs), either using green or chemical precursors, has inevitably led to their wide range application, from bioimaging to optoelectronic devices. The reported precursors and properties of these CDs have opened new opportunities for the future development of high-quality CDs and applications. Green precursors were classified into fruits, vegetables, flowers, leaves, seeds, stem, crop residues, fungi/bacteria species, and waste products, while the chemical precursors were classified into acid reagents and non-acid reagents. This paper quickly reviews ten years of the synthesis of CDs using green and chemical precursors. The application of CDs as sensing materials in optical sensor techniques for environmental monitoring, including the detection of heavy metal ions, phenol, pesticides, and nitroaromatic explosives, was also discussed in this review. This profound review will offer knowledge for the upcoming community of researchers interested in synthesizing high-quality CDs for various applications.
Collapse
Affiliation(s)
- Nur Alia Sheh Omar
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (R.I.); (H.S.H.); (N.S.M.R.)
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Yap Wing Fen
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (R.I.); (H.S.H.); (N.S.M.R.)
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Correspondence:
| | - Ramli Irmawati
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (R.I.); (H.S.H.); (N.S.M.R.)
| | - Hazwani Suhaila Hashim
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (R.I.); (H.S.H.); (N.S.M.R.)
| | - Nur Syahira Md Ramdzan
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (R.I.); (H.S.H.); (N.S.M.R.)
| | - Nurul Illya Muhamad Fauzi
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
52
|
Wang Y, Huo T, Du Y, Qian M, Lin C, Nie H, Li W, Hao T, Zhang X, Lin N, Huang R. Sensitive CTC analysis and dual-mode MRI/FL diagnosis based on a magnetic core-shell aptasensor. Biosens Bioelectron 2022; 215:114530. [PMID: 35839621 DOI: 10.1016/j.bios.2022.114530] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/18/2022] [Accepted: 06/29/2022] [Indexed: 12/23/2022]
Abstract
Synergizing the sensitive circulating tumor cell (CTC) capture, detection, release and the specific magnetic resonance/fluorescence (MR/FL) imaging for accurate cancer diagnosis is of great importance for cancer treatment. Herein, EcoR1-responsive complementary pairing of two ssDNA with a fluorescent P0 aptamer, which can specifically bind with the overexpressed MUC1 protein on cancer cells, was covalently modified to SiO2@C-coated magnetic nanoparticles for preparing a special nanoparticle-mediated FL turn-on aptasensor (FSC-D-P0). This aptasensor can selectively capture/enrich CTC and thus achieve sensitive CTC detection/imaging in even the blood due to its stable targeting, unique magnetic properties and the regulated interactions between the quencher and the fluorescent groups. Meanwhile, FSC-D-P0 can release the captured CTC for further downstream analysis upon the EcoR1 enzyme-triggered cleavage of the double-stranded DNA (dsDNA). Most importantly, this aptasensor can distinctly avoid false positivity of MRI via multiple targeting mechanisms. Thus, the sensitive CTC capture, detection, release and accurate MR/FL imaging were synergistically combined into a single platform with good biocompatibility, promising a robust pattern for clinical tumor diagnosis in vitro and in vivo.
Collapse
Affiliation(s)
- Yi Wang
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201600, China
| | - Taotao Huo
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Yilin Du
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Min Qian
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Chenteng Lin
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Huifang Nie
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Wenshuai Li
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Tingting Hao
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Xiaoyi Zhang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Ning Lin
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, 239001, China
| | - Rongqin Huang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
53
|
A fluorescence and phosphorescence dual-signal readout platform based on carbon dots/SiO2 for multi-channel detections of carbaryl, thiram and chlorpyrifos. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
54
|
Luo SZ, Yang JY, Jia BZ, Wang H, Chen ZJ, Wei XQ, Shen YD, Lei HT, Xu ZL, Luo L. Multicolorimetric and fluorometric dual-modal immunosensor for histamine via enzyme-enabled metallization of gold nanorods and inner filter effect of carbon dots. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
55
|
Ag-EDTA-Zr and Au-EDTA-Zr Nanocomposites for the Quantitative Determination of Some Organophosphate Pesticides in Water and Tomatoes. J AOAC Int 2022; 105:1023-1029. [DOI: 10.1093/jaoacint/qsac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/24/2021] [Accepted: 01/03/2022] [Indexed: 11/14/2022]
Abstract
Abstract
Background
Organophosphate pesticides (OP) pose risks to health and the environment, and monitoring them is an urgent task.
Objective
Development of a method for their determination in water and food.
Method
A simple photometric method for the determination of some OPs was demonstrated. Ag-EDTA-Zr and Au-EDTA-Zr nanoparticles were synthesized and were applied for the determination of some OPs (dimethoate, chlorpyrifos, and diazinon).
Results
It was demonstrated that silver nanoparticles provide more sensitivity in comparison to gold nanoparticles. As a result, Ag-EDTA-Zr nanoparticles were further applied for the determination of these pesticides in tomatoes.
Conclusions
The lowest detectable concentrations for dimethoate, diazinon, and chlorpyrifos in water reached 0.1 (SD 0.082), 0.4 (SD 0.075), and 0.4 mg/L (SD 0.088), respectively, whereas in tomato the lowest detectable concentrations for these pesticides were 0.5 (SD 0.789), 2 (SD 0.085), and 0.5 mg/L (SD 0.088). The sensitivity of detection in tomatoes is lower than in water; however, these concentrations are comparable with allowable concentrations of OP pesticides.
Highlights
A novel approach for quantitative detection of OPs was developed. Ag-EDTA-Zr and Au-EDTA-Zr nanocomposites interact with these pesticides, and, as a result, optical changes of these nanoparticles take place. These changes correlate with the concentration of pesticides.
Collapse
|
56
|
Liu D, Zhang X, Chiqin F, Nyamwasa I, Cao Y, Yin J, Zhang S, Feng H, Li K. Octopamine modulates insect mating and Oviposition. J Chem Ecol 2022; 48:628-640. [PMID: 35687218 DOI: 10.1007/s10886-022-01366-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 01/18/2023]
Abstract
The neuro-mechanisms that regulate insect reproduction are not fully understood. Biogenic amines, including octopamine, are neuromodulators that have been shown to modulate insect reproduction in various ways, e.g., promote or inhibit insect mating or oviposition. In this study, we examined the role of octopamine in regulating the reproduction behaviors of a devastating underground insect pest, the dark black chafer (Holotrichia parallela). We first measured the abundance of octopamine in different neural tissues of the adult chafer pre- and post-mating, demonstrating that octopamine decreased in the abdominal ganglia of females but increased in males post-mating. We then fed the adult H. parallela with a concentration gradient of octopamine to test the effects on insect reproductive behaviors. Compared with its antagonist mianserin, octopamine at the concentration of 2 µg/mL resulted in the highest increase in males' preference for sex pheromone and females' oviposition, whereas the mianserin-treatment increased the survival rate and prolonged the lifespan of H. parallela. In addition, we did not observe significant differences in egg hatchability between octopamine and mianserin-treated H. parallela. Our results demonstrated that octopamine promotes H. parallela mating and oviposition with a clear low dosage effect, illustrated how neural substrates modulate insect behaviors, and provided insights for applying octopamine in pest management.
Collapse
Affiliation(s)
- Dandan Liu
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Xinxin Zhang
- Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
| | - Fang Chiqin
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Innocent Nyamwasa
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Yazhong Cao
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Jiao Yin
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Shuai Zhang
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Honglin Feng
- Boyce Thompson Institute, 14853, Ithaca, NewYork, USA.
| | - Kebin Li
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China.
| |
Collapse
|
57
|
Garau A, Picci G, Bencini A, Caltagirone C, Conti L, Lippolis V, Paoli P, Romano GM, Rossi P, Scorciapino MA. Glyphosate sensing in aqueous solutions by fluorescent zinc(II) complexes of [9]aneN 3-based receptors. Dalton Trans 2022; 51:8733-8742. [PMID: 35612268 DOI: 10.1039/d2dt00738j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we describe the binding abilities of Zn(II) complexes of [12]aneN4- (L1) and [9]aneN3-based receptors (L2, L3) towards the herbicides N-(phosphonomethyl)glycine (glyphosate, H3PMG) and 2-amino-4-[hydroxy(methyl)phosphoryl]butanoic acid (glufosinate, H2GLU), and also aminomethylphosphonic acid (H2AMPA), the main metabolite of H3PMG, and phosphate. All ligands form stable Zn(II) complexes, whose coordination geometries allow a possible interaction of the metal center with exogenous anionic substrates. Potentiometric studies evidenced the marked coordination ability of the L2/Zn(II) system for the analytes considered, with a preferential binding affinity for H3PMG over the other substrates, in a wide range of pH values. 1H and 31P NMR experiments supported the effective coordination of such substrates by the Zn(II) complex of L2, while fluorescence titrations and a test strip experiment were performed to evaluate whether the H3PMG recognition processes could be detected by fluorescence signaling.
Collapse
Affiliation(s)
- Alessandra Garau
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Cagliari, Italy.
| | - Giacomo Picci
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Cagliari, Italy.
| | - Andrea Bencini
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Claudia Caltagirone
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Cagliari, Italy.
| | - Luca Conti
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Vito Lippolis
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Cagliari, Italy.
| | - Paola Paoli
- Dipartimento Ingegneria Industriale, Università degli Studi di Firenze, Via Santa Marta 3, Firenze 50139, Italy
| | - Giammarco Maria Romano
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Patrizia Rossi
- Dipartimento Ingegneria Industriale, Università degli Studi di Firenze, Via Santa Marta 3, Firenze 50139, Italy
| | - Mariano Andrea Scorciapino
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Cagliari, Italy.
| |
Collapse
|
58
|
Zheng D, Chen M, Chen Y, Gao W. In-situ preparation of hollow CdCoS2 heterojunction with enhanced photocurrent response for highly photoelectrochemical sensing of organophosphorus pesticides. Anal Chim Acta 2022; 1212:339913. [DOI: 10.1016/j.aca.2022.339913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 11/01/2022]
|
59
|
Hu J, Sun Y, Aryee AA, Qu L, Zhang K, Li Z. Mechanisms for carbon dots-based chemosensing, biosensing, and bioimaging: A review. Anal Chim Acta 2022; 1209:338885. [PMID: 35569838 DOI: 10.1016/j.aca.2021.338885] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 01/04/2023]
Abstract
Due to the favorable biocompatibility, photostability and fluorescence emissions, carbon dots (CDs) are being widely investigated as fluorescent probes. Current CD-based fluorescent probe designs depend largely on conventional fluorescence sensing mechanisms, for e.g. the inner filter effect, photoinduced electron transfer, and Förster resonance energy transfer. Although these mechanisms have been successful, it is still desirable to introduce new sensing mechanisms. In recent years, emerging mechanisms such as aggregation-induced emission, hydrogen-bond induced emission, and intramolecular charge transfer have been developed for CD-based probes. This review summarizes both conventional and emerging mechanisms, and discuss CDs in the context of chemosensing, biosensing, and bioimaging. We provide an outlook for several other mechanisms such as CN isomerization, the short-wavelength inner filter technique, excited-state intramolecular proton transfer, and twisted intramolecular charge transfer, which have been applied to organic fluorescent probes design but not as much in CD-based sensing systems. We envision that this review will provide insights that inspire further development of CD-based fluorescent probes as for biological applications.
Collapse
Affiliation(s)
- Jingyu Hu
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yuanqiang Sun
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Aaron Albert Aryee
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Lingbo Qu
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - Zhaohui Li
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
60
|
Li WK, Zhang J, Wang S, Ma ZQ, Feng JT, Pei HW, Liu YM. Simultaneous determination of three herbicide residues in wheat flour based on the hollow fiber supported carbon dots. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
61
|
Water-soluble non-conjugated polymer dots with strong green fluorescence for sensitive detection of organophosphate pesticides. Anal Chim Acta 2022; 1206:339792. [DOI: 10.1016/j.aca.2022.339792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/19/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
|
62
|
Yue J, Mei Q, Wang P, Miao P, Dong WF, Li L. A Yellow Fluorescence Probe for the Detection of Oxidized Glutathione and Biological Imaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17119-17127. [PMID: 35394762 DOI: 10.1021/acsami.2c01857] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is well-known that the ratio of reduced l-glutathione (GSH) to oxidized l-glutathione (GSSG) is a vital biomarker for monitoring overall cellular health, thus detecting the intracellular concentration of glutathione is of great significance. Recently, an increasing number of reports have published various methods for GSH detection, but studies on the detection of GSSG are still rare. Here, we report a kind of new yellow fluorescent carbon dots (CDs) for the detection of GSSG through a fluorescence "off-on" process. Because the surface is rich in amino groups, the CDs show a positive potential. When the concentration of GSSG was continuously increased, the CDs' fluorescence dropped sharply, while the fluorescence gradually recovered after the addition of sodium sulfide. The phenomenon of fluorescence quenching is linear with the concentration of the quencher (GSSG)(0-200 μM), and 0.18 μM is calculated as the detection limit. More interestingly, as a fluorescent probe, the CDs can be further used for fluorescence imaging in living cells and zebrafish.
Collapse
Affiliation(s)
- Juan Yue
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China
| | - Qian Mei
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China
| | - Panyong Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China
| | - Peng Miao
- Jihua Laboratory, Foshan 528200, China
| | - Wen-Fei Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China
| | - Li Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China
| |
Collapse
|
63
|
Liu B, Chen J, Peng Y, Xiao W, Peng Z, Qiu P. Graphitic-phase C 3N 4 nanosheets combined with MnO 2 nanosheets for sensitive fluorescence quenching detection of organophosphorus pesticides. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:441-449. [PMID: 35414329 DOI: 10.1080/03601234.2022.2063608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, we have developed a sensitive approach to measure organophosphorus pesticides (OPs) using graphitic-phase C3N4 nanosheets (g-C3N4) combined with a nanomaterial-based quencher, MnO2 nanosheets (MnO2 NS). Since MnO2 NS can quench the fluorescence of g-C3N4 via the inner-filter effect (IFE), enzymatic hydrolysate (thiocholine, TCh) can efficiently trigger the decomposition of MnO2 nanosheets in the presence of acetylcholinesterase (AChE) and acetylthiocholine (ATCh), resulting in the fluorescence recovery of g-C3N4. OPs, as inhibitors to AChE activity, can prevent the generation of TCh and decomposition of MnO2 nanosheets while exhibiting fluorescence quenching. Therefore, the AChE-ATCh-MnO2-g-C3N4 system can be utilized to quantitatively detect OPs based on g-C3N4 fluorescence. Under optimal conditions, the linear ranges for the determination of parathion-methyl (PM) and 2,2-dichlorovinyl dimethyl phosphate (DDVP) were found to be 0.1-2.1 ng/mL and 0.5-16 ng/mL, respectively, with limits of detection of 0.069 ng/mL and 0.20 ng/mL, respectively. The advantages of this assay are user-friendliness, ease of use, and cost effectiveness compared to other more sophisticated analytical instruments.
Collapse
Affiliation(s)
- Bicheng Liu
- Department of Chemistry, Nanchang University, Nanchang, China
| | - Jin Chen
- Department of Chemistry, Nanchang University, Nanchang, China
| | - Yiyang Peng
- Department of Chemistry, Nanchang University, Nanchang, China
| | - Wenyue Xiao
- Department of Chemistry, Nanchang University, Nanchang, China
| | - Zoujun Peng
- Department of Chemistry, Nanchang University, Nanchang, China
| | - Ping Qiu
- Department of Chemistry, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, China
| |
Collapse
|
64
|
Highly fluorescence Ta4C3 MXene quantum dots as fluorescent nanoprobe for heavy ion detection and stress monitoring of fluorescent hydrogels. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
65
|
Chen S, Li Z, Huang Z, Jia Q. Construction of a copper nanocluster/MnO 2 nanosheet-based fluorescent platform for butyrylcholinesterase activity detection and anti-Alzheimer's drug screening. J Mater Chem B 2022; 10:4783-4788. [PMID: 35343562 DOI: 10.1039/d2tb00318j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An abnormal level of butyrylcholinesterase (BChE) activity is highly connected with hepatic damage and Alzheimer's disease. Herein, a facile and efficient method was proposed for BChE detection by incorporating polyethyleneimine-capped copper nanoclusters (PEI-CuNCs) with manganese dioxide (MnO2) nanosheets. The emission of PEI-CuNCs can be significantly quenched by MnO2 nanosheets via the inner filter effect. With the addition of BChE, the hydrolysis of butyrylthiocholine iodide produces thiocholine which can reduce MnO2 nanosheets to Mn2+, thus resulting in the fluorescence recovery of PEI-CuNCs. Based on that, a fluorescence "turn-on" sensing platform for BChE activity determination was constructed with a detection limit of 2.26 U L-1. This sensing method is able to detect BChE in human serum samples and identify the serums of normal persons and cirrhotic patients effectively, indicating its great potential in the clinical diagnosis of liver diseases. Furthermore, the approach can also be used to screen BChE inhibitors, which are promising medications to alleviate the symptoms of Alzheimer's disease.
Collapse
Affiliation(s)
- Sihan Chen
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Zheng Li
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Zhenzhen Huang
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun 130012, China. .,Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
66
|
Dewangan L, Korram J, Karbhal I, Nagwanshi R, Ghosh KK, Pervez S, Satnami ML. Alkaline Phosphatase Immobilized CdTe/ZnS Quantum Dots for Dual-Purpose Fluorescent and Electrochemical Detection of Methyl Paraoxon. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c05065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lakshita Dewangan
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh-492010, India
| | - Jyoti Korram
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh-492010, India
| | - Indrapal Karbhal
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh-492010, India
| | - Rekha Nagwanshi
- Department of Chemistry, Gov’t. Madhav Science P. G. College, Ujjain, Madhya Pradesh-456010, India
| | - Kallol K. Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh-492010, India
| | - Shamsh Pervez
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh-492010, India
| | - Manmohan L. Satnami
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh-492010, India
| |
Collapse
|
67
|
Singh AK, Sri S, Garimella LBVS, Dhiman TK, Sen S, Solanki PR. Graphene Quantum Dot-Based Optical Sensing Platform for Aflatoxin B1 Detection via the Resonance Energy Transfer Phenomenon. ACS APPLIED BIO MATERIALS 2022; 5:1179-1186. [PMID: 35179346 DOI: 10.1021/acsabm.1c01224] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An optical sensing platform for the detection of an important mycotoxin, aflatoxin B1 (AFB1), in the absence of a bioactive environment is explored. In this work, a fluorescence-based sensing technique was designed by combining graphene quantum dots (GQDs) and AFB1 via fluorescence quenching, where AFB1 acts as the quencher of GQD fluorescence. GQDs were synthesized through a single-step hydrothermal reaction from the leaves of "curry tree" (Murraya Koenigii) at 200 °C. The fluorescent GQDs were quenched by AFB1 (quencher), which itself is detecting the analyte. Hence, this study reports the direct sensing of the mycotoxin AFB1 without the involvement of inhibitors or biological entities. The possible mode of quenching is the nonradiative resonance energy transfer between the GQDs and the AFB1 molecules. This innovative sensor could detect AFB1 in the range from 5 to 800 ng mL-1 with a detection limit of 0.158 ng mL-1. The interferent study was also carried out in the presence of different mycotoxins and carbohydrates (d-fructose, cellulose, and starch), which demonstrated the high selectivity and robustness of the sensor in the complex sample matrix. The recovery percentage of the spiked samples was also calculated to be up to 106.8%. Thus, this study reports the first GQD based optical sensor for AFB1.
Collapse
Affiliation(s)
- Avinash Kumar Singh
- Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi 110067, India.,School of Physical Sciences, JNU, New Delhi 110067, India
| | - Smriti Sri
- Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi 110067, India
| | | | - Tarun Kumar Dhiman
- Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi 110067, India
| | - Sobhan Sen
- School of Physical Sciences, JNU, New Delhi 110067, India
| | - Pratima R Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi 110067, India
| |
Collapse
|
68
|
Chen ZJ, Wu HL, Shen YD, Wang H, Zhang YF, Hammock B, Li ZF, Luo L, Lei HT, Xu ZL. Phosphate-triggered ratiometric fluoroimmunoassay based on nanobody-alkaline phosphatase fusion for sensitive detection of 1-naphthol for the exposure assessment of pesticide carbaryl. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127411. [PMID: 34629198 PMCID: PMC8877597 DOI: 10.1016/j.jhazmat.2021.127411] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 05/21/2023]
Abstract
The excessive use of carbaryl has resulted in the risk of its exposure. In this study, we isolated six nanobodies (Nbs) from a camelid phage display library against the biomarker of carbaryl, 1-naphthol (1-NAP). Owing to its characteristics of easy genetic modifications, we produced a nanobody-alkaline phosphatase (Nb-CC4-ALP) fusion protein with good stability. A dual-emission system based ratiometric fluoroimmunoassay (RFIA) for quick and highly sensitive determination of 1-NAP was developed. Silicon nanoparticles (SiNPs) was used as an internal reference and for aggregation-induced emission enhancement (AIEE) of gold nanoclusters (AuNCs), while AuNCs could be quenched by MnO2 via oxidation. In the presence of ALP, ascorbic acid phosphate (AAP) can be transformed into ascorbic acid (AA), the later can etch MnO2 to recover the fluorescence of the AuNCs. Based on optimal conditions, the proposed assay showed 220-fold sensitivity improvement in comparison with conventional monoclonal antibody-based ELISA. The recovery test of urine samples and the validation by standard HPLC-FLD demonstrated the proposed assay was an ideal tool for screening 1-NAP and provided technical support for the monitoring of carbaryl exposure.
Collapse
Affiliation(s)
- Zi-Jian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hui-Ling Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yi-Feng Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Bruce Hammock
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, United States
| | - Zhen-Feng Li
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, United States; Guangdong Hengrui Pharmaceutical Co., Ltd., Guangzhou 510799, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hong-Tao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
69
|
Wang X, Yang Y, Yin Y, Zeng N, Dong Y, Liu J, Wang L, Yang Z, Yang C. High-Throughput Aptamer Microarrays for Fluorescent Detection of Multiple Organophosphorus Pesticides in Food. Anal Chem 2022; 94:3173-3179. [PMID: 35133802 DOI: 10.1021/acs.analchem.1c04650] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel high-throughput aptamer microarray fluorescent method based on thioflavin T (ThT) was established for the sensitive detection of phoxim, parathion, fensulfothion, and isocarbophos. In this work, the aptamers in binding buffer tended to have the antiparallel G-quadruplex structure, which can bind ThT and release its potential fluorescence signal. However, when the organophosphorus pesticides (OPs) were present, partial aptamers preferred to bind them, forcing the displacement of ThT from the G-quadruplex and resulting in the significant decrease in fluorescence signal. Under optimal experimental conditions (12T spacer, 300 nM aptamer, and 80 μM ThT), the OP aptamer microarray has low limits of detection of 25.4 ng/mL for phoxim, 12.0 ng/mL for parathion, 7.7 ng/mL for fensulfothion, and 9.9 ng/mL for isocarbophos. The accuracy and reliability of the method is further verified by testing the recovery rate of OPs spiked in two different complicated sample matrices (pears and radishes). It is worth mentioning that not only the developed aptamer microarray technology has low sensitivity and a broad spectrum, but it also allows for high-throughput and rapid analysis of a variety OPs, which overcomes some of the shortcomings of other OP detection methods.
Collapse
Affiliation(s)
- Xu Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring East Road, Beijing 100029, China
| | - Yan Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring East Road, Beijing 100029, China
| | - Yingai Yin
- College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring East Road, Beijing 100029, China
| | - Ni Zeng
- College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring East Road, Beijing 100029, China
| | - Yiyang Dong
- College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring East Road, Beijing 100029, China
| | - Jiahui Liu
- College of Chemistry and Molecular Engineering, Peking University, No.5 Yiheyuan Road, Beijing 100080, China
| | - Lei Wang
- AECC Beijing Institute of Aeronautical Materials, No. 8 Hangcai Road, Beijing 100089, China
| | - Zheng Yang
- AECC Beijing Institute of Aeronautical Materials, No. 8 Hangcai Road, Beijing 100089, China
| | - Chunsheng Yang
- AECC Beijing Institute of Aeronautical Materials, No. 8 Hangcai Road, Beijing 100089, China
| |
Collapse
|
70
|
Luo L, Ou Y, Yang Y, Liu G, Liang Q, Ai X, Yang S, Nian Y, Su L, Wang J. Rational construction of a robust metal-organic framework nanozyme with dual-metal active sites for colorimetric detection of organophosphorus pesticides. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127253. [PMID: 34844365 DOI: 10.1016/j.jhazmat.2021.127253] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
While nanomaterials with enzyme-mimicking activities are emerging as promising candidates in the colorimetric detection of organophosphorus pesticides (OPs), the catalytic activities and recognition ability to analyte of most nanozymes are inherently deficient. In this work, we introduced manganese ions into a typical iron based MOF (Fe-MIL(53)) via a one-pot hydrothermal reaction strategy, which brought out a catalytically favorable bimetallic Mn/Fe-MIL(53) MOF nanozyme. The catalytic performance of Mn/Fe-MIL(53) is superior to that of pure Fe-MIL (53) and the mechanism for superior catalytic activity of material is revealed by active species scavenging experiments and X-ray photoelectron spectroscopy (XPS). Besides, the introduction of manganese endows the material with the characteristic of being specially destroyed by choline, which motivates the establishment of a simple, selective and sensitive colorimetric strategy for OPs detection. The proposed colorimetric strategy could quantify the methyl parathion and chlorpyrifos in the concentration range of 10-120 nM and 5-50 nM, respectively. The low detection limit of 2.8 nM for methyl parathion and 0.95 nM (3 S/N) for chlorpyrifos were achieved. Good recoveries were obtained when applied in the real sample detection. Our work paves the way to boost catalytic performance of MOF nanozymes, which will be useful in biosensing.
Collapse
Affiliation(s)
- Linpin Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ying Ou
- College of Life Science, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yang Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Guangqin Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qiuhong Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuelian Ai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Silong Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ying Nian
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lihong Su
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
71
|
Liu P, Zhao M, Zhu H, Zhang M, Li X, Wang M, Liu B, Pan J, Niu X. Dual-mode fluorescence and colorimetric detection of pesticides realized by integrating stimulus-responsive luminescence with oxidase-mimetic activity into cerium-based coordination polymer nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127077. [PMID: 34482084 DOI: 10.1016/j.jhazmat.2021.127077] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
The great threat of pesticide residues to the environment and human health has drawn widespread interest to explore approaches for pesticide monitoring. Compared to commonly developed single-signal pesticide assays, multi-mode detection with inherent self-validation and self-correction is expected to offer more reliable and anti-interference results. However, how to realize multi-mode analysis of pesticides still remains challenging. Herein, we propose a dual-mode fluorescence and colorimetric method for pesticide determination by integrating stimulus-responsive luminescence with oxidase-mimetic activity into cerium-based coordination polymer nanoparticles (CPNs(Ⅳ)). The CPNs(Ⅳ) exhibit good oxidase-like activity of catalyzing the colorless 3,3',5,5'-tetramethylbenzidine (TMB) oxidation to its blue oxide, offering a visible color signal; by employing acid phosphatase (ACP) to hydrolyze ascorbic acid 2-phosphate (AAP), the generated ascorbic acid (AA) can chemically reduce the CPNs(Ⅳ) to CPNs(Ⅲ), which exhibit a remarkable fluorescence signal but lose the oxidase-mimicking ability to trigger the TMB chromogenic reaction; when pesticides exist, the enzymatic activity of ACP is restrained and the hydrolysis of AAP to AA is blocked, leading to the recovery of the catalytic TMB chromogenic reaction but the suppression of the fluorescence signal of CPNs(Ⅲ). According to this principle, by taking malathion as a pesticide model, dual-mode 'off-on-off' fluorescence and 'on-off-on' colorimetric detection of the pesticide with good sensitivity was realized. Excellent interference-tolerance and reliability were verified by applying it to analyze the target in real sample matrices. With good performance and practicability, the proposed dual-mode approach shows great potential in the facile and reliable monitoring of pesticide residues.
Collapse
Affiliation(s)
- Peng Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Menghao Zhao
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hengjia Zhu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mingliang Zhang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mengzhu Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bangxiang Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianming Pan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiangheng Niu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; Key Laboratory of Functional Molecular Solids of Ministry of Education, Anhui Normal University, Wuhu 241002, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
72
|
da Costa FP, Cipolatti EP, Furigo Junior A, Oliveira Henriques R. Nanoflowers: A New Approach of Enzyme Immobilization. CHEM REC 2022; 22:e202100293. [PMID: 35103373 DOI: 10.1002/tcr.202100293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/17/2022] [Indexed: 01/15/2023]
Abstract
Enzymes are biocatalysts known for versatility, selectivity, and brand operating conditions compared to chemical catalysts. However, there are limitations to their large-scale application, such as the high costs of enzymes and their low stability under extreme reaction conditions. Immobilization techniques can efficiently solve these problems; nevertheless, most current methods lead to a significant loss of enzymatic activity and require several steps of activation and functionalization of the supports. In this context, a new form of immobilization has been studied: forming organic-inorganic hybrids between metal phosphates as inorganic parts and enzymes as organic parts. Compared to traditional immobilization methods, the advantages of these nanomaterials are high surface area, simplicity of synthesis, high stability, and catalytic activity. The current study presents an overview of organic-inorganic hybrid nanoflowers and their applications in enzymatic catalysis.
Collapse
Affiliation(s)
- Felipe Pereira da Costa
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina - UFSC, Florianópolis, SC 88010-970
| | - Eliane Pereira Cipolatti
- Department of Chemical Engineering, Federal Rural University of Rio de Janeiro - UFRRJ, Seropédica, RJ 23890-000, Brazil
| | - Agenor Furigo Junior
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina - UFSC, Florianópolis, SC 88010-970
| | - Rosana Oliveira Henriques
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina - UFSC, Florianópolis, SC 88010-970
| |
Collapse
|
73
|
John BK, Abraham T, Mathew B. A Review on Characterization Techniques for Carbon Quantum Dots and Their Applications in Agrochemical Residue Detection. J Fluoresc 2022; 32:449-471. [DOI: 10.1007/s10895-021-02852-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/22/2021] [Indexed: 01/20/2023]
|
74
|
Zhang X, Liao X, Hou Y, Jia B, Fu L, Jia M, Zhou L, Lu J, Kong W. Recent advances in synthesis and modification of carbon dots for optical sensing of pesticides. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126881. [PMID: 34449329 DOI: 10.1016/j.jhazmat.2021.126881] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Serious threat from pesticide residues to the ecosystem and human health has become a global concern. Developing reliable methods for monitoring pesticides is a world-wide research hotspot. Carbon dots (CDs) with excellent photostability, low toxicity, and good biocompatibility have been regarded as the potential substitutes in fabricating various optical sensors for pesticide detection. Based on the relevant high-quality publications, this paper first summarizes the current state-of-the-art of the synthetic and modification approaches of CDs. Then, a comprehensive overview is given on the recent advances of CDs-based optical sensors for pesticides over the past five years, with a particular focus on photoluminescent, electrochemiluminescent and colorimetric sensors regarding the sensing mechanisms and design principles by integrating with various recognition elements including antibodies, aptamers, enzymes, molecularly imprinted polymers, and some nanoparticles. Novel functions and extended applications of CDs as signal indicators, catalyst, co-reactants, and electrode surface modifiers, in constructing optical sensors are specially highlighted. Beyond an assessment of the performances of the real-world application of these proposed optical sensors, the existing inadequacies and current challenges, as well as future perspectives for pesticide monitoring are discussed in detail. It is hoped to provide powerful insights for the development of novel CDs-based sensing strategies with their wide application in different fields for pesticide supervision.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China
| | - Xiaofang Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yujiao Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Xinjiang Agricultural Vocational Technical College, Changji 831100, China
| | - Boyu Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Lizhu Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mingxuan Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China
| | - Lidong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jinghua Lu
- Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China
| | - Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
75
|
Rodrigues ACM, Barbieri MV, Chino M, Manco G, Febbraio F. A FRET Approach to Detect Paraoxon among Organophosphate Pesticides Using a Fluorescent Biosensor. SENSORS (BASEL, SWITZERLAND) 2022; 22:561. [PMID: 35062524 PMCID: PMC8778994 DOI: 10.3390/s22020561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/04/2022] [Accepted: 01/09/2022] [Indexed: 02/01/2023]
Abstract
The development of faster, sensitive and real-time methods for detecting organophosphate (OP) pesticides is of utmost priority in the in situ monitoring of these widespread compounds. Research on enzyme-based biosensors is increasing, and a promising candidate as a bioreceptor is the thermostable enzyme esterase-2 from Alicyclobacillus acidocaldarius (EST2), with a lipase-like Ser-His-Asp catalytic triad with a high affinity for OPs. This study aimed to evaluate the applicability of Förster resonance energy transfer (FRET) as a sensitive and reliable method to quantify OPs at environmentally relevant concentrations. For this purpose, the previously developed IAEDANS-labelled EST2-S35C mutant was used, in which tryptophan and IAEDANS fluorophores are the donor and the acceptor, respectively. Fluorometric measurements showed linearity with increased EST2-S35C concentrations. No significant interference was observed in the FRET measurements due to changes in the pH of the medium or the addition of other organic components (glucose, ascorbic acid or yeast extract). Fluorescence quenching due to the presence of paraoxon was observed at concentrations as low as 2 nM, which are considered harmful for the ecosystem. These results pave the way for further experiments encompassing more complex matrices.
Collapse
Affiliation(s)
- Andreia C. M. Rodrigues
- Institute of Biochemistry and Cell Biology, CNR, Via P. Castellino 111, 80131 Naples, Italy; (M.V.B.); (G.M.)
| | - Maria Vittoria Barbieri
- Institute of Biochemistry and Cell Biology, CNR, Via P. Castellino 111, 80131 Naples, Italy; (M.V.B.); (G.M.)
| | - Marco Chino
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy;
| | - Giuseppe Manco
- Institute of Biochemistry and Cell Biology, CNR, Via P. Castellino 111, 80131 Naples, Italy; (M.V.B.); (G.M.)
| | - Ferdinando Febbraio
- Institute of Biochemistry and Cell Biology, CNR, Via P. Castellino 111, 80131 Naples, Italy; (M.V.B.); (G.M.)
| |
Collapse
|
76
|
Zhang XP, Xu W, Wang JH, Shu Y. MnO 2/DNAzyme-mediated ratiometric fluorescence assay of acetylcholinesterase. Analyst 2022; 147:4008-4013. [DOI: 10.1039/d2an01180h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ratiometric fluorescent probe (MnO2/DNAzyme) is constructed. In the presence of AChE, the product thiocholine reduces MnO2 to Mn2+. The released H1 strands hybridizes with H2 strands to activate DNAzyme and cause cleavage of DNA-F signal probe.
Collapse
Affiliation(s)
- Xiao-Ping Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Wang Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
77
|
Wu J, Chen G, Jia Y, Ji C, Wang Y, Zhou Y, Leblanc RM, Peng Z. Carbon dot composites for bioapplications: a review. J Mater Chem B 2022; 10:843-869. [DOI: 10.1039/d1tb02446a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent advancements in the synthesis of carbon dot composites and their applications in biomedical fields (bioimaging, drug delivery and biosensing) have been carefully summarized. The current challenges and future trends of CD composites in this field have also been discussed.
Collapse
Affiliation(s)
- Jiajia Wu
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Gonglin Chen
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Yinnong Jia
- Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Chunyu Ji
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Yuting Wang
- Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA
| | - Roger M. Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA
| | - Zhili Peng
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
78
|
Bai F, Wang H, Lin L, Zhao L. A ratiometric fluorescence platform composed of MnO 2 nanosheets and nitrogen, chlorine co-doped carbon dots and its logic gate performance for glutathione determination. NEW J CHEM 2022. [DOI: 10.1039/d1nj05210a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Illustration of the principle of a dual-emission ratiometric fluorescence strategy for the selective detection of GSH based on an N, Cl-CD-assisted MnO2 nanosheet–OPD system.
Collapse
Affiliation(s)
- Fujuan Bai
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning Province, 110016, P. R. China
| | - Haiwei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning Province, 110016, P. R. China
| | - Longyi Lin
- Faculty of Life Science and Biopharmaceutics Life Science and Technology Base Class, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, P. R. China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning Province, 110016, P. R. China
| |
Collapse
|
79
|
Tong X, Cai G, Zhu Y, Tong C, Wang F, Guo Y, Shi S. Integrating smartphone-assisted ratiometric fluorescent sensors with in situ hydrogel extraction for visual detection of organophosphorus pesticides. NEW J CHEM 2022. [DOI: 10.1039/d1nj05614j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rapid, reliable and on-site detection of organophosphorus pesticides (OPs) on fruit or vegetable surfaces is necessary in real life.
Collapse
Affiliation(s)
- Xia Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine under Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Guihan Cai
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yongfeng Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Chaoying Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Fang Wang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine under Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, China
| | - Shuyun Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine under Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| |
Collapse
|
80
|
Gong C, Fan Y, Zhao H. Recent advances and perspectives of enzyme-based optical biosensing for organophosphorus pesticides detection. Talanta 2021; 240:123145. [PMID: 34968808 DOI: 10.1016/j.talanta.2021.123145] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/24/2021] [Accepted: 12/11/2021] [Indexed: 02/01/2023]
Abstract
The overuse or abuse of organophosphorus pesticides (OPs) can bring about severe contamination problems in foodstuff and the environment, which will seriously threaten human health and the ecosystem's cycle. Hence, it is in high demand to establish sensitive, portable, specific, and cost-effective methods for monitoring OPs to control food safety, protect the ecosystem, and prevent disease. The optical biosensor with enzyme as bio-recognition elements has been an effective alternative for OPs detection. Herein, we firstly introduce various enzymes, sensing mechanisms, advantages and disadvantages used as bio-recognition elements in optical sensing for OPs detection. Then, we review various optical biosensing strategies based on enzymes as recognition elements that were ingeniously designed and successfully utilized for OPs detection, with a particular emphasis on photoluminescence (PL), chemiluminescence (CL), electrochemiluminescence (ECL), and colorimetric (CM) biosensing strategies. We not only highlight the state-of-art developments and the construction strategies of the enzyme-based optical biosensing method but also summarize the existing deficiencies, current challenges, and the future perspectives of OPs detection.
Collapse
Affiliation(s)
- Changbao Gong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), China; School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yaofang Fan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), China; School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), China; School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
81
|
Sun Y, Wei J, Zou J, Cheng Z, Huang Z, Gu L, Zhong Z, Li S, Wang Y, Li P. Electrochemical detection of methyl-paraoxon based on bifunctional cerium oxide nanozyme with catalytic activity and signal amplification effect. J Pharm Anal 2021; 11:653-660. [PMID: 34765279 PMCID: PMC8572677 DOI: 10.1016/j.jpha.2020.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 11/29/2022] Open
Abstract
A new electrochemical sensor for organophosphate pesticide (methyl-paraoxon) detection based on bifunctional cerium oxide (CeO2) nanozyme is here reported for the first time. Methyl-paraoxon was degraded into p-nitrophenol by using CeO2 with phosphatase mimicking activity. The CeO2 nanozyme-modified electrode was then synthesized to detect p-nitrophenol. Cyclic voltammetry was applied to investigate the electrochemical behavior of the modified electrode, which indicates that the signal enhancement effect may attribute to the coating of CeO2 nanozyme. The current research also studied and discussed the main parameters affecting the analytical signal, including accumulation potential, accumulation time, and pH. Under the optimum conditions, the present method provided a wider linear range from 0.1 to 100 μmol/L for methyl-paraoxon with a detection limit of 0.06 μmol/L. To validate the proof of concept, the electrochemical sensor was then successfully applied for the determination of methyl-paraoxon in three herb samples, i.e., Coix lacryma-jobi, Adenophora stricta and Semen nelumbinis. Our findings may provide new insights into the application of bifunctional nanozyme in electrochemical detection of organophosphorus pesticide. A new electrochemical method for methyl-paraoxon detection by using bifunctional nanozyme was presented. The cerium oxide nanozyme modified glassy carbon electrode was prepared to improve the sensitivity. The developed method has been successfully applied in three herbal plant samples.
Collapse
Affiliation(s)
- Yuzhou Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China.,Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou, 510632, China
| | - Jian Zou
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou, 510632, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Zehua Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Zhongming Huang
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Liqiang Gu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Shengliang Li
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| |
Collapse
|
82
|
Song W, Zhang XP, Lin B, Shu Y, Wang JH. Sensitivity Dependence on the Crystal Forms of a Fluorescence Quencher for Silicon Quantum Dots and Its Use in Acetylcholinesterase Assay. Anal Chem 2021; 93:14900-14906. [PMID: 34714045 DOI: 10.1021/acs.analchem.1c04091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acetylcholinesterase (AChE) plays crucial roles in the nervous system, and thus the reliable assay of its activity is of great significance for the diagnosis of nervous diseases. In this work, we report a fluorescent sensing platform with silicon quantum dots (Si-QDs) as a fluorescence oscillator and nano iron oxyhydroxide (α-, β-, and γ-FeOOH) as a quencher for the assay of AChE. FeOOH with α-, β-, and γ-crystal forms quenches the fluorescence of Si-QDs at λex/λem = 350/438 nm, which is retrieved in the presence of AChE and its substrate acetylthiocholine (ATCh) to provide an off-on strategy with a high signal/noise ratio. It is interesting that the sensitivity of AChE sensing is closely related to the crystal forms of FeOOH, with the highest sensitivity by adopting α-FeOOH as the quencher. A linear calibration is achieved within 0.02-1.4 U/L along with a limit of detection of 0.016 U/L. The sensing strategy was demonstrated by the AChE assay in human blood, plasma, and hemocytes.
Collapse
Affiliation(s)
- Wei Song
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xiao-Ping Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Bo Lin
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
83
|
Sun F, Yang L, Li S, Wang Y, Wang L, Li P, Ye F, Fu Y. New Fluorescent Probes for the Sensitive Determination of Glyphosate in Food and Environmental Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12661-12673. [PMID: 34672544 DOI: 10.1021/acs.jafc.1c05246] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this paper, a dual-functional probe, 2-(benzothiazol)-4-(3-hydroxy-4-methylphenyl) imino phenol (BHMH), was synthesized and characterized for the simultaneous detection of Cu2+ and Fe3+ in dimethyl sulfoxide/4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (DMSO/HEPES) (1:4, v/v, pH = 6.0). The limits of detections (LODs) for Cu2+ and Fe3+ were 9.05 and 48 nM, respectively. Based on the competitive coordination, the complex BHMH-Cu2+/Fe3+ exhibited good sensitivity and selectivity for glyphosate. The LODs of BHMH-Cu2+ and BHMH-Fe3+ for glyphosate were 0.41 and 0.63 μM, respectively. The probe quantitatively detected glyphosate in tap water, Songhua River water, local water and soil, and food samples. The colorimetric on-site glyphosate sensing through the probe BHMH-Cu2+ was also studied based on smartphones. BHMH and BHMH-Cu2+/Fe3+ exhibited outstanding imaging capabilities for Cu2+, Fe3+, and glyphosate in living cells with low cytotoxicity, especially the first time for glyphosate.
Collapse
Affiliation(s)
- Fang Sun
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Liu Yang
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Shijie Li
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yubo Wang
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Ludi Wang
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Ping Li
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Fei Ye
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Ying Fu
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| |
Collapse
|
84
|
Wang J, Teng X, Wang Y, Si S, Ju J, Pan W, Wang J, Sun X, Wang W. Carbon dots based fluorescence methods for the detections of pesticides and veterinary drugs: Response mechanism, selectivity improvement and application. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116430] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
85
|
Liu J, Meng H, Zhang L, Li S, Chen J, Zhang Y, Li J, Qu L, Li Z. Dual-readout test strips platform for portable and highly sensitive detection of alkaline phosphatase in human serum samples. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
86
|
Ma J, Ma L, Cao L, Miao Y, Dong J, Shi YE, Wang Z. Point-of-care testing of butyrylcholinesterase activity through modulating the photothermal effect of cuprous oxide nanoparticles. Mikrochim Acta 2021; 188:392. [PMID: 34697648 DOI: 10.1007/s00604-021-05033-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022]
Abstract
Butyrylcholinesterase (BChE) is an important indicator for clinical diagnosis of liver dysfunction, organophosphate toxicity, and poststroke dementia. Point-of-care testing (POCT) of BChE activity is still a challenge, which is a critical requirement for the modern clinical diagnose. A portable photothermal BChE assay is proposed through modulating the photothermal effects of Cu2O nanoparticles. BChE can catalyze the decomposition of butyrylcholine, producing thiocholine, which further reduce and coordinate with CuO on surface of Cu2O nanoparticle. This leads to higher efficiency of formation of Cu9S8 nanoparticles, through the reaction between Cu2O nanoparticle and NaHS, together with the promotion of photothermal conversion efficiency from 3.1 to 59.0%, under the excitation of 1064 nm laser radiation. An excellent linear relationship between the temperature change and the logarithm of BChE concentration is obtained in the range 1.0 to 7.5 U/mL, with a limit of detection of 0.076 U/mL. In addition, the portable photothermal assay shows strong detection robustness, which endows the accurate detection of BChE in human serum, together with the screening and quantification of organophosphorus pesticides. Such a simple, sensitive, and robust assay shows great potential for the applications to clinical BChE detection and brings a new horizon for the development of temperature based POCT.
Collapse
Affiliation(s)
- Jinzhu Ma
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China
| | - Lili Ma
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China
| | - Lili Cao
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China
| | - Yuming Miao
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China
| | - Jiangxue Dong
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China
| | - Yu-E Shi
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China.
| | - Zhenguang Wang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
87
|
Ma Z, Li P, Jiao M, Shi YE, Zhai Y, Wang Z. Ratiometric sensing of butyrylcholinesterase activity based on the MnO 2 nanosheet-modulated fluorescence of sulfur quantum dots and o-phenylenediamine. Mikrochim Acta 2021; 188:294. [PMID: 34363549 DOI: 10.1007/s00604-021-04949-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
Butyrylcholinesterase (BChE) can modulate the expression level of cholinesterase, which emerges as an important clinical diagnose index. However, the currently reported assays for BChE are suffering from the problem of interferences. A ratiometric fluorescence assay was developed based on the MnO2 nanosheet (NS)-modulated fluorescence of sulfur quantum dots (S-dots) and o-phenylenediamine (OPD). MnO2 NS can not only quench the fluorescence of blue emissive S-dots, but also enhance the yellow emissive OPD by catalyzing its oxidation reactions. Upon introducing BChE and substrate into the system, their hydrolysate can reduce MnO2 into Mn2+, leading to the fluorescence recovery of S-dots and failure of OPD oxidation. BChE activity can be quantitatively detected by recording the change of fluorescence signals in the blue and yellow regions. A linear relationship is observed between the ratio of F435/F560 and the concentration of BChE in the range 30 to 500 U/L, and a limit of detection of 17.8 U/L has been calculated. The ratiometric fluorescence assay shows an excellent selectivity to acetylcholinesterase and tolerance to various other species. The method developed provides good detection performances in human serum medium and for screening of inhibitors.
Collapse
Affiliation(s)
- Zerui Ma
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China
| | - Pan Li
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China
| | - Meng Jiao
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Yu-E Shi
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China.
| | - Yongqing Zhai
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China
| | - Zhenguang Wang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
88
|
Li J, Weng Y, Shen C, Luo J, Yu D, Cao Z. Sensitive fluorescence and visual detection of organophosphorus pesticides with a Ru(bpy) 32+-ZIF-90-MnO 2 sensing platform. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2981-2988. [PMID: 34124741 DOI: 10.1039/d1ay00841b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Fluorescence sensing organophosphorus pesticides (OPs) is of great importance for both food safety and global environment; however, the reported fluorescent probes are usually directly exposed to the external environment, resulting in premature leakage or photobleaching and thus limiting their photostability and assay sensitivity. In this work, a fluorescent sensing platform consisting of a novel luminescent metal-organic framework (Ru(bpy)32+-ZIF-90) and manganese dioxide nanosheets (MnO2 NSs) was prepared for sensing OPs. Due to the protection and improvement in the fluorescence of Ru(bpy)32+ by ZIF-90, the Ru(bpy)32+-ZIF-90 probe displayed remarkable photostability and high stability in water. By virtue of the high stability of Ru(bpy)32+-ZIF-90, as well as the outstanding fluorescence quenching and notable recognition ability of the MnO2 NSs, this sensing platform provided excellent detection capability for parathion-methyl, with a wide concentration range of 0.050-60 ng mL-1 and a low detection limit of 0.037 ng mL-1. Additionally, the system exhibited a visual color change with the concentration of the OPs under sunlight. Moreover, satisfactory recoveries ranging from 93.3% to 103.6% were obtained for the real samples. The results indicated that the Ru(bpy)32+-ZIF-90-MnO2-based OP sensing platform is promising for applications in food safety and environmental monitoring.
Collapse
Affiliation(s)
- Jun Li
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, P. R. China.
| | - Yingwei Weng
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, P. R. China.
| | - Can Shen
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, P. R. China.
| | - Jiao Luo
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, P. R. China.
| | - Donghong Yu
- Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg, East, Denmark
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, P. R. China.
| |
Collapse
|
89
|
Wang FT, Wang LN, Xu J, Huang KJ, Wu X. Synthesis and modification of carbon dots for advanced biosensing application. Analyst 2021; 146:4418-4435. [PMID: 34195700 DOI: 10.1039/d1an00466b] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been an explosion of interest in the use of nanomaterials for biosensing applications, and carbonaceous nanomaterials in particular are at the forefront of this explosion. Carbon dots (CDs), a new type of carbon material, have attracted extensive attention due to their fascinating properties, such as small particle size, tunable optical properties, good conductivity, low cytotoxicity, and good biocompatibility. These properties have enabled them to be highly promising candidates for the fabrication of various high-performance biosensors. In this review, we summarize the top-down and bottom-up synthesis routes of CDs, highlight their modification strategies, and discuss their applications in the fields of photoluminescence biosensors, electrochemiluminescence biosensors, chemiluminescence biosensors, electrochemical biosensors and fluorescence biosensors. In addition, the challenges and future prospects of the application of CDs for biosensors are also proposed.
Collapse
Affiliation(s)
- Fu-Ting Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Li-Na Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Jing Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Ke-Jing Huang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Xu Wu
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
90
|
Chen J, Chen X, Wang P, Liu S, Chi Z. Aggregation-induced emission luminogen@manganese dioxide core-shell nanomaterial-based paper analytical device for equipment-free and visual detection of organophosphorus pesticide. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125306. [PMID: 33588332 DOI: 10.1016/j.jhazmat.2021.125306] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/18/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Organophosphorus pesticide (OP) residues have gathered considerable attention because of their significant threat to society development and healthy life. Developing a sensitive and practical OPs sensor is highly urgent, whereas remains a huge challenge. To this end, we fabricated a high-performance fluorescence paper analytical device (PAD) for apparatus-free and visual sensing of OPs based on aggregation-induced emission (AIE) luminogen's bright emission in aggregated state, unique response of MnO2 to thiol compounds, and difference of MnO2 and Mn2+ in quenching fluorescence. AIE nanoparticles PTDNPs-0.10 and MnO2 respectively acted as core and shell to prepare PTDNPs@MnO2, which possessed high stability and were dripped on cellulose paper's surface to fabricate AIE-PAD. The sensing mechanism is that OPs-treated acetylcholinesterase (AChE) prevents the formation of thiocholine, thereby minimizing the reduction of MnO2 into Mn2+ and changing the output signal. As a result, equipment-free and visual sensing of OPs was acquired with limit of detection of 1.60 ng/mL. This work justifies the feasibility of applying core-shell material to develop high-performance sensor and substituting complex/expensive solution-phase sensor with PAD, providing a new avenue to bring OPs analysis out of the lab and into the world.
Collapse
Affiliation(s)
- Jianling Chen
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaojie Chen
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Po Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Siwei Liu
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zhenguo Chi
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
91
|
Lu H, Xu S. CDs-MnO 2-TPPS Ternary System for Ratiometric Fluorescence Detection of Ascorbic Acid and Alkaline Phosphatase. ACS OMEGA 2021; 6:16565-16572. [PMID: 34235328 PMCID: PMC8246696 DOI: 10.1021/acsomega.1c01828] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/09/2021] [Indexed: 05/05/2023]
Abstract
Manganese dioxide (MnO2) nanosheet-based fluorescence sensors often use oxidase-like activity or wide absorption spectrum for detection of antioxidants. In those strategies, MnO2 nanosheets were reduced to Mn2+ by antioxidants. However, few strategies emphasize the role of Mn2+ obtained from MnO2 reduction in the design of the fluorescence sensor. Herein, we expanded the application of a MnO2 nanosheet-based fluorescence sensor by involving Mn2+ in the detection process using ascorbic acid (AA) as a model target. In this strategy, carbon dots (CDs), MnO2 nanosheets, and tetraphenylporphyrin tetrasulfonic acid (TPPS) comprise a ternary system for ratiometric fluorescence detection of AA. Initially, CDs were quenched by MnO2 nanosheets based on the inner filter effect, while TPPS maintained its fluorescence intensity. After the addition of AA, MnO2 nanosheets were reduced to Mn2+ so that the fluorescence intensity of CDs was recovered and TTPS was quenched by coordination with Mn2+. Overall, AA triggered an emission intensity increase at 440 nm for CDs and a decrease at 640 nm for TPPS. The ratio intensity of CDs to TPPS (F 440/F 640) showed a good linear relationship from 0.5 to 40 μM, with a low detection limit of 0.13 μM for AA detection. By means of the alkaline phosphatase (ALP)-triggered generation of AA, this strategy can be applied for the detection of ALP in the range of 0.1-100 mU/mL, with a detection limit of 0.04 mU/mL. Furthermore, this sensor was applied to detect AA and ALP in real, complex samples with ideal recovery. This novel platform extended the application of MnO2 nanosheet-based fluorescence sensors.
Collapse
Affiliation(s)
- Hongzhi Lu
- School of Chemistry
and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Shoufang Xu
- Laboratory of Functional Polymers, School
of Materials Science and Engineering, Linyi
University, Linyi 276005, China
| |
Collapse
|
92
|
Lu Y, Tan Y, Xiao Y, Li Z, Sheng E, Dai Z. A silver@gold nanoparticle tetrahedron biosensor for multiple pesticides detection based on surface-enhanced Raman scattering. Talanta 2021; 234:122585. [PMID: 34364414 DOI: 10.1016/j.talanta.2021.122585] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 01/09/2023]
Abstract
The detection of multiple pesticides in food and environment is of great importance for human health and safety. In this study, the DNA backbone structure and Ag@Au nanoparticles (NPs) to construct a nano-tetrahedron with the help of the surface-enhanced Raman scattering (SERS) effect by controlling the formation of SERS hotspots and subsequently realized the simultaneous detection of multiple pesticides. The DNA aptamers corresponding to the three pesticides of profenofos, acetamiprid and carbendazim were embedded into the three edges of the DNA tetrahedral skeleton, and the tetrahedral corners were connected to modify the Ag@Au NPs with different Raman signaling molecules. When aptamers recognize the related pesticides, the DNA backbone is deformed. Then Ag@Au NPs approach to each other with SERS hotspots formed and the intensity of the Raman signal increased, realizing the detection of the pesticide content. The biosensor constructed from the SERS substrate with higher sensitivity and lower detection limit (profenofos: 0.0021 ng mL-1; acetamiprid: 0.0046 ng mL-1; carbendazim: 0.0061 ng mL-1). The practicability of this proposed method was verified by adding the recovery rate detection and the accuracy of the method was examined by the analysis of the HPLC-MS method. The proposed SERS biosensor could distinguish and detect three pesticides in food and environmental samples with high sensitivity and low detection limit that can be used in practical applications.
Collapse
Affiliation(s)
- Yuxiao Lu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Yuting Tan
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yue Xiao
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Zhenxi Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Enze Sheng
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| | - Zhihui Dai
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China; Nanjing Normal University Center for Analysis and Testing, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
93
|
Darabi J, Ghiasvand A, Haddad PR. Biomass-derived carbon nanospheres decorated by manganese oxide nanosheets, intercalated into polypyrrole, as an inside-needle capillary adsorption trap sorbent for the analysis of linear alkylbenzenes. Talanta 2021; 233:122583. [PMID: 34215075 DOI: 10.1016/j.talanta.2021.122583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 11/27/2022]
Abstract
Carbon nanospheres (CNSs) were derived hydrothermally from biomass (orange peels) and decorated by manganese dioxide (MnO2) nanosheets. The MnO2/CNSs nanocomposite was intercalated into polypyrrole (PPy) during flow-through in-situ electropolymerization of pyrrole on the surface of the inner wall of a stainless-steel needle to prepare an inside-needle capillary adsorption trap (INCAT) device. The surface morphology, thermogravimetric behavior, sorption characteristics, and structure of the MnO2/CNSs@PPy nanocomposite were characterized using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), energy dispersive X-ray analysis (EDX), nitrogen physisorption by the Brunauer-Emmett-Teller (BET) method, dynamic light scattering (DLS) size distribution, and Fourier-transform infrared spectrometry (FT-IR). The INCAT device was coupled with GC-FID and applied for dynamic headspace analysis of linear alkyl benzenes (LABs) in wastewater samples. The effective experimental variables on the extraction efficiency was optimized using a central composite design (CCD) based on response surface methodology (RSM). Under the optimal conditions, the limits of detection (LODs) were in the range of 0.5-1.0 ng mL-1. The calibration plots were linear over the range of 0.01-10 μg mL-1. The relative standard deviations (RSDs%) for intra-day, inter-day, and inter-INCAT precision were calculated 5.3-8.3%, 9.4-13.5%, and 13.6-16.9%, respectively. The developed technique was employed successfully for the analysis of LABs in water and wastewater samples with average recovery values ranging from 92 to 109%. A single INCAT device was used more than 90 times without significant change in its extraction capability.
Collapse
Affiliation(s)
- Jila Darabi
- Department of Chemistry, Lorestan University, Khoramabad, Iran; Standard Research Institute of Iran, Kermanshah, Iran
| | - Alireza Ghiasvand
- Department of Chemistry, Lorestan University, Khoramabad, Iran; Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia.
| | - Paul R Haddad
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| |
Collapse
|
94
|
Li H, Lv W, Yang Q, Li Q, Li F. Inorganic Recognizer-Assisted Homogeneous Electrochemiluminescence Determination of Organophosphorus Pesticides via Target-Controlled Emitter Release. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6087-6095. [PMID: 34018740 DOI: 10.1021/acs.jafc.1c01006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Given the relevance of organophosphorus pesticides (OPs) with food safety, it is highly urgent to develop sensitive and reliable sensors for OPs. However, most of the OP sensors are developed based on colorimetric and fluorescent techniques, which are limited to severe interference of color and fluorescence from pigments and organic acids in agricultural crops. Herein, we develop an inorganic recognizer-based homogeneous electrochemiluminescence (ECL) sensor for the highly sensitive and credible determination of OPs based on manganese dioxide and tris(2,2'-bipyridine)ruthenium [Ru(bpy)3]2+. Through electrostatic interaction, manganese dioxide nanoflakes-[Ru(bpy)3]2+ nanocomposites (MnNFs-Ru) are formed and exhibit a weak ECL signal due to the confinement of [Ru(bpy)3]2+ in MnNFs-Ru. Interestingly, MnNFs-Ru are capable of recognizing thiols due to the analyte-initiated reduction of MnNFs into Mn2+ and release of [Ru(bpy)3]2+ from MnNFs-Ru into solution. Further, MnNFs-Ru are employed for the homogeneous ECL determination of OPs, where acetylcholinesterase (AChE) catalyzes the hydrolysis of acetylthiocholine (ATCh) into thiocholine, which in turn decomposes MnNFs of MnNFs-Ru into Mn2+, and OPs inhibit AChE activity. This study widens the application of inorganic recognizers from colorimetry/fluorescence to homogeneous ECL and effectively avoids the interference of color and fluorescence, opening up a new path to the development of high-performance OP sensors and supplying a promising tool for guaranteed OP-related food safety.
Collapse
Affiliation(s)
- Haiyin Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Wenxin Lv
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Qiaoting Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Qian Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| |
Collapse
|
95
|
Xu D, Li C, Zi Y, Jiang D, Qu F, Zhao XE. MOF@MnO 2nanocomposites prepared using in situmethod and recyclable cholesterol oxidase-inorganic hybrid nanoflowers for cholesterol determination. NANOTECHNOLOGY 2021; 32:315502. [PMID: 33836512 DOI: 10.1088/1361-6528/abf692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
In this work, through thein situgrowth of MnO2nanosheets on the surface of terbium metal-organic frameworks (Tb-MOFs), MOF@MnO2nanocomposites are prepared and the fluorescence of Tb-MOFs is quenched significantly by MnO2. Additionally, the hybrid nanoflowers are self-assembled by cholesterol oxidase (ChOx) and copper phosphate (Cu3(PO4)2·3H2O). Then a new strategy for cholesterol determination is developed based on MOF@MnO2nanocomposites and hybrid nanoflowers. Cholesterol is oxidized under the catalysis of hybrid nanoflowers to yield H2O2, which further reduces MnO2nanosheets into Mn2+. Hence, the fluorescence recovery of Tb-MOFs is positively correlated to the concentration of cholesterol in the range of 10 to 360μM. The limit of detection (LOD) of cholesterol is 1.57μM. On the other hand, the hierarchical and confined structure of ChOx-inorganic hybrid nanoflowers greatly improve the stability of the enzyme. The activity of hybrid nanoflowers remains at a high level for one week when stored at room temperature. Moreover, the hybrid nanoflowers can be collected by centrifugation and reused. The activity of hybrid nanoflowers can continue at a high level for five cycles of determination. Therefore, it can be concluded that the hybrid nanoflowers are more stable and more economic than free enzymes, and they show a similar sensitivity and specificity to cholesterol compared with free ChOx. Finally, this strategy has been further validated for the determination of cholesterol in serum samples with satisfactory recoveries.
Collapse
Affiliation(s)
- Dawei Xu
- Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| | - Cong Li
- Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| | - Yuqiu Zi
- Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| | - Dafeng Jiang
- Department of Physical and Chemical Testing, Shandong Center for Disease Control and Prevention, Jinan 250014, People's Republic of China
| | - Fei Qu
- Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| | - Xian-En Zhao
- Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| |
Collapse
|
96
|
Cai Y, Zhu H, Zhou W, Qiu Z, Chen C, Qileng A, Li K, Liu Y. Capsulation of AuNCs with AIE Effect into Metal–Organic Framework for the Marriage of a Fluorescence and Colorimetric Biosensor to Detect Organophosphorus Pesticides. Anal Chem 2021; 93:7275-7282. [DOI: 10.1021/acs.analchem.1c00616] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yue Cai
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People’s Republic of China
| | - Hongshuai Zhu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People’s Republic of China
- The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, People’s Republic of China
| | - Weichi Zhou
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, People’s Republic of China
| | - Ziyin Qiu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People’s Republic of China
| | - Congcong Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People’s Republic of China
| | - Aori Qileng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People’s Republic of China
- The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, People’s Republic of China
| | - Kangshun Li
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, People’s Republic of China
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People’s Republic of China
- The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, People’s Republic of China
| |
Collapse
|
97
|
Levine M. Fluorescence-Based Sensing of Pesticides Using Supramolecular Chemistry. Front Chem 2021; 9:616815. [PMID: 33937184 PMCID: PMC8085505 DOI: 10.3389/fchem.2021.616815] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/11/2021] [Indexed: 01/02/2023] Open
Abstract
The detection of pesticides in real-world environments is a high priority for a broad range of applications, including in areas of public health, environmental remediation, and agricultural sustainability. While many methods for pesticide detection currently exist, the use of supramolecular fluorescence-based methods has significant practical advantages. Herein, we will review the use of fluorescence-based pesticide detection methods, with a particular focus on supramolecular chemistry-based methods. Illustrative examples that show how such methods have achieved success in real-world environments are also included, as are areas highlighted for future research and development.
Collapse
Affiliation(s)
- Mindy Levine
- Ariel University, Department of Chemical Sciences, Ariel, Israel
| |
Collapse
|
98
|
Liu M, Qiu JG, Ma F, Zhang CY. Advances in single-molecule fluorescent nanosensors. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1716. [PMID: 33779063 DOI: 10.1002/wnan.1716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022]
Abstract
Single-molecule detection represents the ultimate sensitivity in measurement science with the characteristics of simplicity, rapidity, low sample consumption, and high signal-to-noise ratio and has attracted considerable attentions in biosensor development. In recent years, a variety of functional nanomaterials with unique chemical, optical, mechanical, and electronic features have been synthesized. The integration of single-molecule detection with functional nanomaterials enables the construction of novel single-molecule fluorescent nanosensors with excellent performance. Herein, we review the advance in single-molecule fluorescent nanosensors constructed by novel nanomaterials including quantum dots, gold nanoparticles, upconversion nanoparticles, fluorescent conjugated polymer nanoparticles, nanosheets, and magnetic nanoparticles in the past decade (2011-2020), and discuss the strategies, features, and applications of single-molecule fluorescent nanosensors in the detection of microRNAs, DNAs, enzymes, proteins, viruses, and live cells. Moreover, we highlight the future direction and challenges in this area. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > In Vitro Nanoparticle-Based Sensing Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Meng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| | - Jian-Ge Qiu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| |
Collapse
|
99
|
Zhang Q, Fu C, Guo X, Gao J, Zhang P, Ding C. Fluorescent Determination of Butyrylcholinesterase Activity and Its Application in Biological Imaging and Pesticide Residue Detection. ACS Sens 2021; 6:1138-1146. [PMID: 33503372 DOI: 10.1021/acssensors.0c02398] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Butyrylcholinesterase (BChE) is an essential human cholinesterase relevant to liver conditions and neurodegenerative diseases, which makes it a pivotal biomarker of health. It therefore remains challenging and highly desired to elaborate efficient chemical tools for BChE with simple operations and satisfactory working performance. In this work, a background-free detection strategy was built by virtue of the judicious coupling of a specific BChE-enzymatic reaction and in situ cyclization. High sensitivity with a low limit of detection (LOD) of 0.075 μg/mL could be readily achieved from the blank background and the as-produced emissive indicators, and the specific reaction site contributed to the high selectivity over other bio-species even acetylcholinesterase (AChE). In addition to the multifaceted spectral experiments to verify the sensing mechanism, this work assumed comprehensive studies on the application. The bio-investigation ranged from cells to an organism, declaring a noteworthy prospect in disease diagnosis, especially for Alzheimer's disease (AD), a common neurodegenerative disease with over-expressed BChE. Moreover, its excellent work for inhibition efficacy elucidation was also proved with the accuracy IC50 of tacrine for BChE (8.6 nM), giving rise to an expanded application for trace pesticide determination.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Caixia Fu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Xinjie Guo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Jian Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Peng Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| |
Collapse
|
100
|
Huang M, Feng S, Yang C, Wen F, He D, Jiang P. Construction of an MnO 2 nanosheet array 3D integrated electrode for sensitive enzyme-free glucose sensing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1247-1254. [PMID: 33615320 DOI: 10.1039/d0ay02163f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
MnO2 based electrochemical enzyme-free glucose sensors remain significantly limited by their low electronic conductivity and associated complex preparation. In this paper, an MnO2 nanosheet array supported on nickel foam (MnO2 NS/NF) was prepared using a simple hydrothermal synthesis and employed as a 3D integrated electrode for enzyme-free glucose detection. It was found that MnO2 NS/NF shows high performance with a wide linear range from 1 μM to 1.13 mM, a high sensitivity of 6.45 mA mM-1 cm-2, and a low detection limit of 0.5 μM (S/N = 3). Besides, MnO2 NS/NF shows high selectivity against common interferences and good reliability for glucose detection in human serum. This work demonstrates the promising role of MnO2 NS/NF as an efficient integrated electrode in enzyme-free glucose detection with high performance.
Collapse
Affiliation(s)
- M Huang
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | | | | | | | | | | |
Collapse
|