51
|
Ma Y, Li X, Liu J, Li W, Liu Z. Convenient Construction of Orthogonal Dual Aptamer-Based Plasmonic Immunosandwich Assay for Probing Protein Disease Markers in Complex Samples and Living Animals. ACS Sens 2020; 5:1436-1444. [PMID: 32279504 DOI: 10.1021/acssensors.0c00359] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aptamers, because of their outstanding merits including simple synthesis and easy modification, have been widely used as antibody alternatives to construct novel immunosandwich assays. Dual aptamer-based sandwich assays exhibit multiple advantages over conventional immunosandwich assays and single aptamer-based sandwich assays. However, their construction is hampered by the limited knowledge of binding orthogonality of aptamers reported in the literature. Herein, we present a new strategy for conveniently constructing an orthogonal dual aptamer-based plasmonic immunosandwich assay (odA-PISA) for probing proteins in complex samples and living animals. An orthogonal aptamer pair was first efficiently selected from the aptamers reported in the literature by affinity capillary electrophoresis. Then, a target protein-capturing gold thin-layer-coated probe and silver nanoparticle-based Raman labeling nanotags were conveniently prepared with the selected aptamers and used to construct the assay. The double aptamers used ensured the specificity, whereas the plasmonic coupling effect between the target-capturing probe and the generated Raman nanotags significantly enhanced the Raman signal intensity, providing high sensitivity. As a proof of principle, alkaline phosphatase (ALP) was used as the target. The constructed odA-PISA exhibited high specificity and high sensitivity toward ALP, giving cross-reactivity ≤ 4.2% and the limit of detection of 3.8 pM (S/N = 4). The quantitative determination of ALP in human serum and probing ALP in tumor-bearing mice were achieved, showing the great application potential of the method. This strategy is widely applicable to other protein disease markers. Therefore, it opened a new access to the construction of sensitive dual aptamer-based sandwich assays for real-world applications, particularly disease diagnosis.
Collapse
Affiliation(s)
- Yanyan Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xinglin Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jia Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
52
|
Zhang Q, Zhou Q, Yang L, Wang X, Zheng Y, Bao L. Covalently bonded aptamer-functionalised magnetic mesoporous carbon for high-efficiency chloramphenicol detection. J Sep Sci 2020; 43:2610-2618. [PMID: 32243078 DOI: 10.1002/jssc.201901189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/17/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
Abstract
A novel aptamer-modified magnetic mesoporous carbon was prepared to develop a specific and sensitive magnetic solid-phase extraction method through combination with ultra-high performance liquid chromatography-tandem mass spectrometry for the analysis chloramphenicol in complex samples. More specifically, the chloramphenicol aptamer-modified Mg/Al layered double hydroxide magnetic mesoporous carbon was employed as a novel magnetic solid-phase extraction sorbent for analyte enrichment and sample clean-up. The extraction solvent, extraction time, desorption solvent, and desorption time were investigated. It was found that the mesoporous structure and aptamer-based affinity interactions resulted in acceptable selective recognition and a good chemical stability toward trace amounts of chloramphenicol. Upon combination with the ultra-high performance liquid chromatography-tandem mass spectrometry technique, a specific and sensitive recognition method was developed with a low limit of detection (0.94 pmol/L, S/N = 3) for chloramphenicol analysis. The developed method was successfully employed for the determination of chloramphenicol in complex serum, milk powders, fish and chicken samples, giving recoveries of 87.0-107% with relative standard deviations of 3.1-9.7%.
Collapse
Affiliation(s)
- Qianchun Zhang
- Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi, P. R. China
| | - Qingqing Zhou
- Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi, P. R. China
| | - Lu Yang
- Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi, P. R. China
| | - Xingyi Wang
- Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi, P. R. China
| | - Yuguo Zheng
- Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi, P. R. China
| | - Linchun Bao
- Clinical Laboratory, Qian Xi Nan People's Hospital, Xingyi, P. R. China
| |
Collapse
|
53
|
Ma X, Li M, Tong P, Zhao C, Li J, Xu G. A strategy for construction of highly sensitive glycosyl imprinted electrochemical sensor based on sandwich-like multiple signal enhancement and determination of neural cell adhesion molecule. Biosens Bioelectron 2020; 156:112150. [DOI: 10.1016/j.bios.2020.112150] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022]
|
54
|
Guo X, Li J, Arabi M, Wang X, Wang Y, Chen L. Molecular-Imprinting-Based Surface-Enhanced Raman Scattering Sensors. ACS Sens 2020; 5:601-619. [PMID: 32072805 DOI: 10.1021/acssensors.9b02039] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecularly imprinted polymers (MIPs) receive extensive interest, owing to their structure predictability, recognition specificity, and application universality as well as robustness, simplicity, and inexpensiveness. Surface-enhanced Raman scattering (SERS) is regarded as an ideal optical detection candidate for its unique features of fingerprint recognition, nondestructive property, high sensitivity, and rapidity. Accordingly, MIP based SERS (MIP-SERS) sensors have attracted significant research interest for versatile applications especially in the field of chemo- and bioanalysis, showing excellent identification and detection performances. Herein, we comprehensively review the recent advances in MIP-SERS sensors construction and applications, including sensing principles and signal enhancement mechanisms, focusing on novel construction strategies and representative applications. First, the basic structure of the MIP-SERS sensors is briefly outlined. Second, novel imprinting strategies are highlighted, mainly including multifunctional monomer imprinting, dummy template imprinting, living/controlled radical polymerization, and stimuli-responsive imprinting. Third, typical application of MIP-SERS sensors in chemo/bioanalysis is summarized from both small and macromolecular aspects. Lastly, the challenges and perspectives of the MIP-SERS sensors are proposed, orienting sensitivity improvement and application expanding.
Collapse
Affiliation(s)
- Xiaotong Guo
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
55
|
Lyu H, Sun H, Zhu Y, Wang J, Xie Z, Li J. A double-recognized aptamer-molecularly imprinted monolithic column for high-specificity recognition of ochratoxin A. Anal Chim Acta 2019; 1103:97-105. [PMID: 32081193 DOI: 10.1016/j.aca.2019.12.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 12/27/2022]
Abstract
In this study, a double-recognized aptamer-molecularly imprinted monolithic column (Apt-MIP monolithic column) was prepared by introducing both aptamer and MIP to reduce non-specific adsorption. Its preparation parameters such as the time of photo-initiation, the dosage of photo-initiator and the concentration of aptamer were investigated in detail. The recovery ratios of ochratoxin A (OTA) to ochratoxin B (OTB) on Apt-MIP monolithic column, Apt monolithic column and MIP monolithic column were 116.1, 40.8 and 69, respectively. Even if the concentration of OTB was 10 times that of OTA, the recovery of OTB was only about 2.9%. Applied to beer samples, the prepared Apt-MIP monolithic column drastically resisted background adsorption and the high-specificity recognition for OTA was obtained with the recoveries of 95.5-105.9%. This work provided a simple and effective method to selectively identify OTA from complex samples.
Collapse
Affiliation(s)
- Haixia Lyu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Haoran Sun
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yimen Zhu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jun Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zenghong Xie
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| | - Jinxia Li
- Lanzhou Uranium Enrichment Plant, Lanzhou, 730065, China
| |
Collapse
|
56
|
Li Y, Zhang Z, Liu B, Liu J. Incorporation of Boronic Acid into Aptamer-Based Molecularly Imprinted Hydrogels for Highly Specific Recognition of Adenosine. ACS APPLIED BIO MATERIALS 2019; 3:2568-2576. [DOI: 10.1021/acsabm.9b00936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yuqing Li
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Zijie Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Biwu Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
57
|
He H, Muhammad P, Guo Z, Peng Q, Lu H, Liu Z. Controllably prepared molecularly imprinted core-shell plasmonic nanostructure for plasmon-enhanced fluorescence assay. Biosens Bioelectron 2019; 146:111733. [DOI: 10.1016/j.bios.2019.111733] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
|
58
|
KONISHI A, TAKEGAMI S, KITADE T. A Molecularly Imprinted Polymer-modified Potentiometric Sensor for the Detection of Glutathione. ANAL SCI 2019; 35:1111-1115. [DOI: 10.2116/analsci.19p166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Atsuko KONISHI
- Department of Analytical Chemistry, Kyoto Pharmaceutical University
| | | | - Tatsuya KITADE
- Department of Analytical Chemistry, Kyoto Pharmaceutical University
| |
Collapse
|
59
|
Zhou L, Wang Y, Xing R, Chen J, Liu J, Li W, Liu Z. Orthogonal dual molecularly imprinted polymer-based plasmonic immunosandwich assay: A double characteristic recognition strategy for specific detection of glycoproteins. Biosens Bioelectron 2019; 145:111729. [PMID: 31581071 DOI: 10.1016/j.bios.2019.111729] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 12/27/2022]
Abstract
Sensitive and specific detection methods are critical to the detection of glycoproteins. Immunoassay has been a powerful tool for this purpose, in which antibodies or their mimics particularly molecularly imprinted polymers (MIPs) are used for specific recognition. Epitope and glycan are two structure features of a glycoprotein. However, immunoassays based on simultaneous recognition towards the two characteristics have been scarcely explored so far. Herein we present a new strategy called orthogonal dual molecularly imprinted polymer-based plasmonic immunosandwich assay (odMIP-PISA). It relies on double recognition towards a target glycoprotein by two different types of MIPs, using epitope-imprinted gold nanoparticles (AuNPs)-coated slide as capturing substrate to recognize the peptide epitope and glycans-imprinted Raman-active silver nanoparticles as labeling nanotags to recognize the glycans. Carcinoembryonic antigen (CEA), a routinely used marker for colon cancer, was used as a test glycoprotein. The orthogonal double recognition apparently improved the specificity, reducing the maximum cross-reactivity from 14.4% for epitope recognition and 15.2% for glycan recognition to 8.2% for double recognition. Meanwhile, the plasmonic nanostructure-based Raman detection provided ultrahigh sensitivity, yielding a limit of detection of 5.56 × 10-14 M (S/N = 10). Through measuring the CEA level in human serum, this method permitted differentiation of colon cancer patient from healthy individual. Compared with the traditional immunoassay, odMIP-PISA exhibited multiple advantages, including simplified procedure (6 steps), speed (30 min), reduced cost, and so on. Therefore, this new approach holds great promise in many applications particularly clinical diagnosis.
Collapse
Affiliation(s)
- Lingli Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yijia Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Rongrong Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jin Chen
- Department of Medical Oncology, Jiangsu Cancer Hospital, Nanjing, 210009, China
| | - Jia Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
60
|
Gu T, Gu M, Liu YL, Dong Y, Zhu LB, Li Z, Wang GL, Zhao WW. In situ chemical redox and functionalization of graphene oxide: toward new cathodic photoelectrochemical bioanalysis. Chem Commun (Camb) 2019; 55:10072-10075. [PMID: 31378796 DOI: 10.1039/c9cc03877a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This report outlines the first exploration of graphene oxide (GO) itself as a light harvesting material with an innovative in situ chemical redox and functionalization (CRF) strategy for versatile and high-throughput cathodic photoelectrochemical (PEC) bioanalysis.
Collapse
Affiliation(s)
- Tiantian Gu
- International Joint Research Center for Photoresponsive Molecules and Materials, Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Xing R, Wen Y, Dong Y, Wang Y, Zhang Q, Liu Z. Dual Molecularly Imprinted Polymer-Based Plasmonic Immunosandwich Assay for the Specific and Sensitive Detection of Protein Biomarkers. Anal Chem 2019; 91:9993-10000. [DOI: 10.1021/acs.analchem.9b01826] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rongrong Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yanrong Wen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yueru Dong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yijia Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qi Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|