51
|
Zuo QM, Wu MY, Han LB, Yang SD. Chiral α-Aminophosphonates as Ligands in Copper-Catalyzed Asymmetric Oxidative Coupling of 2-Naphthols. Org Lett 2024; 26:5274-5279. [PMID: 38885640 DOI: 10.1021/acs.orglett.4c01582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Chiral α-aminophosphonates with adjacent carbon and phosphonate stereogenic centers have been employed as ligands in the copper-catalyzed oxidative coupling of 2-naphthols, resulting in the production of chiral BINOLs in favorable yields and moderate to good enantiomeric excess. This represents the first application of chiral P-based ligands to enable such a transformation. The synthesis of these chiral α-aminophosphonate ligands offers a significant advantage over approaches that typically necessitate elaborate synthetic processes for chiral ligand production.
Collapse
Affiliation(s)
- Qian-Ming Zuo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu 730000, China
| | - Ming-Ying Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu 730000, China
| | - Li-Biao Han
- Research Center of Advanced Catalytic Materials and Functional Molecular Synthesis, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
- ZhejiangYangfan New Materials Company, Ltd., Shangyu, Zhejiang 312369, China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu 730000, China
| |
Collapse
|
52
|
Hou J, Hao W, Chen Y, Wang Z, Yao W. Phosphine-Catalyzed Stereospecific and Enantioselective Desymmetrizative [3+2] Cycloaddition of MBH Carbonates and N-(2- tert-Butylphenyl)maleimides. J Org Chem 2024; 89:9068-9077. [PMID: 38822804 DOI: 10.1021/acs.joc.4c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
Herein, we report an l-valine-derived amide phosphine-catalyzed [3+2] cyclization of MBH carbonates and N-(2-tert-butylphenyl)maleimides via asymmetric desymmetrization. Bicyclic N-aryl succinimide derivatives bearing three continuous chiral centers with a remote C-N atropisomeric chirality were constructed stereospecifically and enantioselectively. A wide variety of MBH carbonates could be employed in this process to deliver highly optically pure succinimide derivatives in moderate to excellent yields.
Collapse
Affiliation(s)
- Jie Hou
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Wei Hao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Ying Chen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Zhen Wang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Weijun Yao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
53
|
Ge FB, Lu CJ, Chen X, Yao W, An M, Jiang YK, Xu LP, Liu RR. Enantioselective Nickel-Catalyzed Denitrogenative Transannulation En Route to N-N Atropisomers. Angew Chem Int Ed Engl 2024; 63:e202400441. [PMID: 38587149 DOI: 10.1002/anie.202400441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/09/2024]
Abstract
Nickel-catalyzed transannulation reactions triggered by the extrusion of small gaseous molecules have emerged as a powerful strategy for the efficient construction of heterocyclic compounds. However, their use in asymmetric synthesis remains challenging because of the difficulty in controlling stereo- and regioselectivity. Herein, we report the first nickel-catalyzed asymmetric synthesis of N-N atropisomers by the denitrogenative transannulation of benzotriazones with alkynes. A broad range of N-N atropisomers was obtained with excellent regio- and enantioselectivity under mild conditions. Moreover, density functional theory (DFT) calculations provided insights into the nickel-catalyzed reaction mechanism and enantioselectivity control.
Collapse
Affiliation(s)
- Fang-Bei Ge
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Chuan-Jun Lu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Xiao Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Wang Yao
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Mei An
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Yu-Kun Jiang
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Li-Ping Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| |
Collapse
|
54
|
Sun Y, Yang T, Wang Q, Shi L, Song MP, Niu JL. Atroposelective N-N Axes Synthesis via Electrochemical Cobalt Catalysis. Org Lett 2024; 26:5063-5068. [PMID: 38864356 DOI: 10.1021/acs.orglett.4c01025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Here, we disclosed an unprecedented cobalt electrocatalyzed atroposelective C-H activation and annulation for the efficient construction of diversely functionalized N-N axes in an undivided cell. A broad range of allene substrates and benzamides bearing different functionalities are compatible with generating axially chiral products with good yields and excellent enantioselectivities (up to 92% yield and 99% ee). A series of synthetic applications and control experiments were also performed, which further expanded the practicality of this strategy.
Collapse
Affiliation(s)
- Yingjie Sun
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Taixin Yang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Qiuling Wang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Linlin Shi
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Mao-Ping Song
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Jun-Long Niu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
55
|
Zafar A, Iqbal MA, Iram G, Shoukat US, Jamil F, Saleem M, Yousif M, Abidin ZU, Asad M. Advances in organocatalyzed synthesis of organic compounds. RSC Adv 2024; 14:20365-20389. [PMID: 38919284 PMCID: PMC11197984 DOI: 10.1039/d4ra03046j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
The recent advancements in utilizing organocatalysts for the synthesis of organic compounds have been described in this review by focusing on their simplicity, effectiveness, reproducibility, and high selectivity which lead to excellent product yields. The organocatalytic methods for various derivatives, such as indoles, pyrazolones, anthrone-functionalized benzylic amines, maleimide, polyester, phthalimides, dihydropyrimidin, heteroaryls, N-aryl benzimidazoles, stilbenoids, quinazolines, quinolines, and oxazolidinones have been specifically focused. The review provides more understanding by delving into potential reaction mechanisms. We anticipate that this collection of data and findings on successful synthesis of diverse compound derivatives will serve as valuable resources and stimulating current and future research efforts in organocatalysis and industrial chemistry.
Collapse
Affiliation(s)
- Ayesha Zafar
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
- Organometallic and Coordination Chemistry Laboratory, Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Ghazala Iram
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Umar Sohail Shoukat
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Faisal Jamil
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Muhammad Saleem
- Department of Basic and Applied Chemistry, Faculty of Sciences and Technology, University of Central Punjab Lahore Pakistan
| | - Muhammad Yousif
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Zain Ul Abidin
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Mohammad Asad
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
56
|
Jin L, Li Y, Mao Y, He XB, Lu Z, Zhang Q, Shi BF. Chiral dinitrogen ligand enabled asymmetric Pd/norbornene cooperative catalysis toward the assembly of C-N axially chiral scaffolds. Nat Commun 2024; 15:4908. [PMID: 38851721 PMCID: PMC11162495 DOI: 10.1038/s41467-024-48582-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024] Open
Abstract
C - N axially chiral compounds have recently attracted significant interest among synthetic chemistry community due to their widespread application in pharmaceuticals, advanced materials and organic synthesis. Although the emerging asymmetric Catellani reaction offers great opportunity for their modular and efficient preparation, the only operative chiral NBE strategy to date requires using half stoichiometric amount of chiral NBE and 2,6-disubstituted bromoarenes as electrophiles. We herein report an efficient assembly of C-N axially chiral scaffolds through a distinct chiral ligand strategy. The crucial chiral source, a biimidazoline (BiIM) chiral dinitrogen ligand, is used in relatively low loading and permits the use of less bulky bromoarenes. The method also features the use of feedstock plain NBE, high reactivity, good enantioselectivity, ease of operation and scale-up. Applications in the preparation of chiral optoelectronic material candidates featuring two C-N chiral axes and a chiral ligand for asymmetric C-H activation have also been demonstrated.
Collapse
Affiliation(s)
- Liang Jin
- Department of Chemistry, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Ya Li
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Yihui Mao
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Xiao-Bao He
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Qi Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, China.
| |
Collapse
|
57
|
Li X, Kong L, Yin S, Zhou H, Lin A, Yao H, Gao S. Palladium-Catalyzed Atroposelective Suzuki-Miyaura Coupling to Construct Axially Chiral Tetra-Substituted α-Boryl Styrenes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309706. [PMID: 38602437 PMCID: PMC11199998 DOI: 10.1002/advs.202309706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Indexed: 04/12/2024]
Abstract
Palladium-catalyzed Suzuki-Miyaura (SM) coupling is a valuable method for forming C─C bonds, including those between aryl moieties. However, achieving atroposelective synthesis of axially chiral styrenes via SM coupling remains challenging. In this study, a palladium-catalyzed atroposelective Suzuki-Miyaura coupling between gem-diborylalkenes and aryl halides is presented. Using the monophosphine ligand Me-BI-DIME (L2), a range of axially chiral tetra-substituted acyclic styrenes with high yields and excellent enantioselectivities are successfully synthesized. Control experiments reveal that the gem-diboryl group significantly influences the product enantioselectivities and the coupling prefers to occur at sites with lower steric hindrance. Additionally, the alkenyl boronate group in the products proves versatile, allowing for various transformations while maintaining high optical purities.
Collapse
Affiliation(s)
- Xiaorui Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Lingyu Kong
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Shuxin Yin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Hengrui Zhou
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Shang Gao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| |
Collapse
|
58
|
Wang SH, Wei SQ, Zhang Y, Zhang XM, Zhang SY, Dai KL, Tu YQ, Lu K, Ding TM. Atroposelective synthesis of biaxial bridged eight-membered terphenyls via a Co/SPDO-catalyzed aerobic oxidative coupling/desymmetrization of phenols. Nat Commun 2024; 15:4591. [PMID: 38816373 PMCID: PMC11139896 DOI: 10.1038/s41467-024-48858-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
Bridged chiral biaryls are axially chiral compounds with a medium-sized ring connecting the two arenes. Compared with plentiful methods for the enantioselective synthesis of biaryl compounds, synthetic approaches for this subclass of bridged atropisomers are limited. Here we show an atroposelective synthesis of 1,3-diaxial bridged eight-membered terphenyl atropisomers through an Co/SPDO (spirocyclic pyrrolidine oxazoline)-catalyzed aerobic oxidative coupling/desymmetrization reaction of prochiral phenols. This catalytic desymmetric process is enabled by combination of an earth-abundant Co(OAc)2 and a unique SPDO ligand in the presence of DABCO (1,4-diaza[2.2.2]bicyclooctane). An array of diaxial bridged terphenyls embedded in an azocane can be accessed in high yields (up to 99%) with excellent enantio- (>99% ee) and diastereoselectivities (>20:1 dr).
Collapse
Affiliation(s)
- Shuang-Hu Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shi-Qiang Wei
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ye Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Shu-Yu Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kun-Long Dai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong-Qiang Tu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China.
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Ka Lu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Tong-Mei Ding
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
59
|
Liu J, Wei X, Wang Y, Qu J, Wang B. Asymmetric synthesis of atropisomeric arylpyrazoles via direct arylation of 5-aminopyrazoles with naphthoquinones. Org Biomol Chem 2024; 22:4254-4263. [PMID: 38738921 DOI: 10.1039/d4ob00514g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Construction of axially chiral arylpyrazoles represents an attractive challenge due to the relatively low rotational barrier of biaryl structures containing five-membered heterocycles. This work describes the catalytic asymmetric construction of axially chiral arylpyrazoles using 5-aminopyrazoles and naphthoquinone derivatives. The chiral axis could be formed through a central-to-axial chirality relay step of the chiral phosphoric acid-catalyzed arylation reaction, which features excellent yields and enantioselectivities with a broad substrate scope under mild reaction conditions.
Collapse
Affiliation(s)
- Jiamin Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Xingfu Wei
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Yue Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| |
Collapse
|
60
|
Guan CY, Zou S, Luo C, Li ZY, Huang M, Huang L, Xiao X, Wei D, Wang MC, Mei GJ. Catalytic asymmetric synthesis of planar-chiral dianthranilides via (Dynamic) kinetic resolution. Nat Commun 2024; 15:4580. [PMID: 38811566 PMCID: PMC11136957 DOI: 10.1038/s41467-024-48947-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
Chirality constitutes an inherent attribute of nature. The catalytic asymmetric synthesis of molecules with central, axial, and helical chirality is a topic of intense interest and is becoming a mature field of research. However, due to the difficulty in synthesis and the lack of a prototype, less attention has been given to planar chirality arising from the destruction of symmetry on a single planar ring. Herein, we report the catalytic asymmetric synthesis of planar-chiral dianthranilides, a unique class of tub-shaped eight-membered cyclic dilactams. This protocol is enabled by cinchona alkaloid-catalyzed (dynamic) kinetic resolution. Under mild conditions, various C2- or C1-symmetric planar-chiral dianthranilides have been readily prepared in high yields with excellent enantioselectivity. These dianthranilides can serve as an addition to the family of planar-chiral molecules. Its synthetic value has been demonstrated by kinetic resolution of racemic amines via acyl transfer, enantiodivergent synthesis of the natural product eupolyphagin, and preliminary antitumor activity studies.
Collapse
Affiliation(s)
- Chun-Yan Guan
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Shuai Zou
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Can Luo
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Zhen-Yu Li
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Mingjie Huang
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Lihua Huang
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, College of Chemistry, Zhengzhou University, Zhengzhou, China.
- Pingyuan Laboratory (Zhengzhou University), Zhengzhou, China.
| | - Xiao Xiao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Donghui Wei
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Min-Can Wang
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Guang-Jian Mei
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, College of Chemistry, Zhengzhou University, Zhengzhou, China.
- Pingyuan Laboratory (Zhengzhou University), Zhengzhou, China.
| |
Collapse
|
61
|
Tampellini N, Mercado BQ, Miller SJ. Scaffold-Oriented Asymmetric Catalysis: Conformational Modulation of Transition State Multivalency during a Catalyst-Controlled Assembly of a Pharmaceutically Relevant Atropisomer. Chemistry 2024; 30:e202401109. [PMID: 38507249 PMCID: PMC11132932 DOI: 10.1002/chem.202401109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
A new class of superbasic, bifunctional peptidyl guanidine catalysts is presented, which enables the organocatalytic, atroposelective synthesis of axially chiral quinazolinediones. Computational modeling unveiled the conformational modulation of the catalyst by a novel phenyl urea N-cap, that preorganizes the structure into the active, folded state. A previously unanticipated noncovalent interaction involving a difluoroacetamide acting as a hybrid mono- or bidentate hydrogen bond donor emerged as a decisive control element inducing atroposelectivity. These discoveries spurred from a scaffold-oriented project inspired from a fascinating investigational BTK inhibitor featuring two stable chiral axes and relies on a mechanistic framework that was foreign to the extant lexicon of asymmetric catalysis.
Collapse
Affiliation(s)
- Nicolò Tampellini
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06511 (USA)
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06511 (USA)
| | - Scott J. Miller
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06511 (USA)
| |
Collapse
|
62
|
Chen XW, Li C, Gui YY, Yue JP, Zhou Q, Liao LL, Yang JW, Ye JH, Yu DG. Atropisomeric Carboxylic Acids Synthesis via Nickel-Catalyzed Enantioconvergent Carboxylation of Aza-Biaryl Triflates with CO 2. Angew Chem Int Ed Engl 2024; 63:e202403401. [PMID: 38527960 DOI: 10.1002/anie.202403401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Upgrading CO2 to value-added chiral molecules via catalytic asymmetric C-C bond formation is a highly important yet challenging task. Although great progress on the formation of centrally chiral carboxylic acids has been achieved, catalytic construction of axially chiral carboxylic acids with CO2 has never been reported to date. Herein, we report the first catalytic asymmetric synthesis of axially chiral carboxylic acids with CO2, which is enabled by nickel-catalyzed dynamic kinetic asymmetric reductive carboxylation of racemic aza-biaryl triflates. A variety of important axially chiral carboxylic acids, which are valuable but difficult to obtain via catalysis, are generated in an enantioconvergent version. This new methodology features good functional group tolerance, easy to scale-up, facile transformation and avoids cumbersome steps, handling organometallic reagents and using stoichiometric chiral materials. Mechanistic investigations indicate a dynamic kinetic asymmetric transformation process induced by chiral nickel catalysis.
Collapse
Affiliation(s)
- Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Chao Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yong-Yuan Gui
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Qi Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jing-Wei Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
63
|
Sun Y, Sun L, Zhang S, Zhang Z, Wang T. Synthesis of C-N Axially Chiral N-Arylbenzo[ g]indoles via a Central-to-Axial Chirality Conversion Strategy. Org Lett 2024. [PMID: 38780223 DOI: 10.1021/acs.orglett.4c01576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Gold-catalyzed cascade cyclization of diynes for the synthesis of previously unexplored C-N axially chiral N-arylbenzo[g]indoles was described. The transformation was achieved via a central-to-axial chirality conversion strategy. The chiral conversion exhibited high efficiency. Besides single C-N chiral axis, N-arylbenzo[g]indoles bearing both C-N and C-C chiral axes were also afforded. The title compound derived monophosphine ligand was prepared and was evaluated in Pd-catalyzed asymmetric allylic substitutions, showing excellent chiral induction ability.
Collapse
Affiliation(s)
- Yuan Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, 710119 Shaanxi Province, China
| | - Lingzhi Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, 710119 Shaanxi Province, China
| | - Shaoting Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, 710119 Shaanxi Province, China
| | - Zunting Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, 710119 Shaanxi Province, China
| | - Tao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, 710119 Shaanxi Province, China
| |
Collapse
|
64
|
Zhou YQ, He KC, Zheng WH, Lv JF, He SM, Yu N, Yang YB, Liu LY, Jiang K, Wei Y. 1,5-Hydrogen atom transfer of α-iminyl radical cations: a new platform for relay annulation for pyridine derivatives and axially chiral heterobiaryls. Chem Sci 2024; 15:7502-7514. [PMID: 38784726 PMCID: PMC11110145 DOI: 10.1039/d4sc01858c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
The exploitation of new reactive species and novel transformation modes for their synthetic applications have significantly promoted the development of synthetic organic methodology, drug discovery, and advanced functional materials. α-Iminyl radical cations, a class of distonic ions, exhibit great synthetic potential for the synthesis of valuable molecules. For their generation, radical conjugate addition to α,β-unsaturated iminium ions represents a concise yet highly challenging route, because the in situ generated species are short-lived and highly reactive and they have a high tendency to cause radical elimination (β-scission) to regenerate the more stable iminium ions. Herein, we report a new transformation mode of the α-iminyl radical cation, that is to say, 1,5-hydrogen atom transfer (1,5-HAT). Such a strategy can generate a species bearing multiple reactive sites, which serves as a platform to realize (asymmetric) relay annulations. The present iron/secondary amine synergistic catalysis causes a modular assembly of a broad spectrum of new structurally fused pyridines including axially chiral heterobiaryls, and exhibits good functional group tolerance. A series of mechanistic experiments support the α-iminyl radical cation-induced 1,5-HAT, and the formation of several radical species in the relay annulations. Various synthetic transformations of the reaction products demonstrate the usefulness of this relay annulation protocol for the synthesis of significant molecules.
Collapse
Affiliation(s)
- Yu-Qiang Zhou
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Kui-Cheng He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Wei-Hao Zheng
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Jing-Fang Lv
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Shi-Mei He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Ning Yu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Yun-Bo Yang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Lv-Yan Liu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Kun Jiang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Ye Wei
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| |
Collapse
|
65
|
Liu Y, Yuan L, Dai L, Zhu Q, Zhong G, Zeng X. Carbene-Catalyzed Atroposelective Construction of Chiral Diaryl Ethers. J Org Chem 2024. [PMID: 38738853 DOI: 10.1021/acs.joc.4c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Atropoisomeric chemotypes of diaryl ethers-related scaffolds are prevalent in naturally active compounds. Nevertheless, there remains considerable research to be carried out on the catalytic asymmetric synthesis of these axially chiral molecules. In this instance, we disclose an N-heterocyclic carbene (NHC)-catalyzed synthesis of axially chiral diaryl ethers via atroposelective esterification of dialdehyde-containing diaryl ethers. NHC desymmetrization produces axially chiral diaryl ether atropisomers with high yields and enantioselectivities in moderate circumstances. Chiral diaryl ether compounds may be precursors for highly functionalized diaryl ethers with bioactivity and chiral ligands for asymmetric catalysis.
Collapse
Affiliation(s)
- Yuheng Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
- Kharkiv Institute at Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Lutong Yuan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Linlong Dai
- Department of Chemistry, Eastern Institute for Advanced Study, Ningbo 315200, Zhejiang, China
| | - Qiaohong Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Guofu Zhong
- Department of Chemistry, Eastern Institute for Advanced Study, Ningbo 315200, Zhejiang, China
| | - Xiaofei Zeng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| |
Collapse
|
66
|
Sun J, Yan Y, Chen X, Huang Z, Huang Y. Palladium-catalyzed regio- and stereo-selective phosphination of cyclic biarylsulfonium salts to access atropoisomeric phosphines. Chem Sci 2024; 15:6943-6948. [PMID: 38725501 PMCID: PMC11077574 DOI: 10.1039/d4sc00446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
A palladium-catalyzed regio- and stereo-selective phosphination of cyclic biarylsulfonium salts (racemic) with HPAr3Ar4 for straightforward synthesis of atropoisomeric phosphines (P,S-ligands) bearing a stereogenic axis or both a stereogenic axis and a P-stereogenic center is reported. The high reactivity and regio- and stereo-selectivity originate from the torsional strain release and palladium catalysis, and the construction of a P-stereogenic center is enabled by an efficient dynamic kinetic resolution. The high performance of the nascent P,S-ligands has been demonstrated in palladium-catalyzed asymmetric allylic substitutions, indicating the great potential of the present methodology.
Collapse
Affiliation(s)
- Jinghui Sun
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Yifei Yan
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Xuanxuan Chen
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Zhiwei Huang
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Yinhua Huang
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University Hangzhou 311121 P. R. China
| |
Collapse
|
67
|
Guo Y, Zhang Y, Chen L, Dai X, Zhang X, Meng F, Gao Z. Enantioselective Construction of Chiral THIQUINOL and Its Derivatives via Chiral Phosphoric Acid Catalysis. Org Lett 2024; 26:3569-3574. [PMID: 38648520 DOI: 10.1021/acs.orglett.4c01000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The first catalytic enantioselective construction of chiral THIQUINOL and its derivatives has been accomplished through a chiral phosphoric-acid-catalyzed direct aza-Friedel-Crafts reaction of 3,4-dihydroisoquinolines with 2-naphthols/anthracen-2-ols/phenanthren-9-ol. This method offers a powerful and straightforward synthetic route toward chiral THIQUINOL derivatives with good to excellent yields and enantioselectivities. These structural motifs are crucial chiral components for further transformations into established or potential chiral ligands and catalysis.
Collapse
Affiliation(s)
- Yongbiao Guo
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Ye Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
- Sichuan University of Science & Engineering, Zigong 643002, China
| | - Lina Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xiandong Dai
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xujin Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
- Sichuan University of Science & Engineering, Zigong 643002, China
| | - Fanhua Meng
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Zhenhua Gao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| |
Collapse
|
68
|
Huang Y, Peng X, Li T. Recent Advances in NHC-Catalyzed Chemoselective Activation of Carbonyl Compounds. Chem Asian J 2024; 19:e202400097. [PMID: 38451172 DOI: 10.1002/asia.202400097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
N-Heterocyclic carbenes (NHCs) catalysts have been employed as effective tools in the development of various reactions, which have made notable contributions in developing diverse reaction modes and generating significant functionalized molecules. This review provides an overview of the recent advancements in the chemo- and regioselective activation of different aldehydes using NHCs, categorized into five parts based on the different activation modes. A brief conclusion and outlook is provided to stimulate the development of novel activation modes for accessing functional molecules.
Collapse
Affiliation(s)
- Yixian Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xiaolin Peng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Tingting Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| |
Collapse
|
69
|
Uchikura T, Kanno Y, Fukuda Y, Sato M, Akiyama T. Kinetic resolution of 1,1'-binaphthyl-2,2'-diamine derivatives by chiral calcium phosphate-catalyzed acylation. Org Biomol Chem 2024; 22:3444-3447. [PMID: 38595221 DOI: 10.1039/d4ob00355a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
1,1'-Binaphthyl-2,2'-diamine (BINAM) is a useful axially chiral compound. The kinetic resolution of BINAM is one of the most crucial methods for synthesizing chiral BINAM. We have developed a chiral calcium phosphate-catalyzed kinetic resolution of BINAM by utilizing an acylation reaction to produce a mono-amide. The kinetic resolution of BINAM derivatives was achieved by using isobutyric anhydride in the presence of chiral calcium phosphate and 4-morpholinopyridine with up to s = 127. 6,6'-Substituted BINAM derivatives were also applicable for this reaction. The resulting mono-acylated BINAM could be transformed into BINAM by hydrolysis under acidic conditions.
Collapse
Affiliation(s)
- Tatsuhiro Uchikura
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo, Japan.
| | - Yuki Kanno
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo, Japan.
| | - Yukino Fukuda
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo, Japan.
| | - Mikoto Sato
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo, Japan.
| | - Takahiko Akiyama
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo, Japan.
| |
Collapse
|
70
|
Đorđević Zlatković MR, Radulović NS, Dangalov M, Vassilev NG. Conformation Analysis and Stereodynamics of Symmetrically ortho-Disubstituted Carvacrol Derivatives. Molecules 2024; 29:1962. [PMID: 38731453 PMCID: PMC11085911 DOI: 10.3390/molecules29091962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
The design and synthesis of analogs of natural products can be a valuable source of medicinal preparations for the pharmaceutical industry. In the present study, the structural elucidation of eleven derivatives of 2,4-dihalogeno substituted synthetic analogues of the natural compound carvacrol was carried out by means of NMR experiments, and of another thirteen by DFT calculations. By selective NOE experiments and the irradiation of CH signals of the isopropyl group, individual conformers were assigned as syn and anti. By comparing GIAO/B3LYP/6-311++G(d,p)-calculated and experimentally measured vicinal 3JCH spin-spin constants, this assignment was confirmed. An unusual relationship is reported for proton-carbon vicinal couplings: 3JCH (180°) < 3JCH (0°). The conformational mobility of carvacrols was studied by 2D EXSY spectra. The application of homonuclear decoupling technique (HOBS) to these spectra simplifies the spectra, improves resolution without reducing the sensitivity, and allows a systematic examination of the rotational barrier of all compounds via their CH signals of the isopropyl group in a wider temperature interval. The rate constants of the isopropyl rotation between syn and anti conformers were determined and the corresponding energy barriers (14-17 kcal/mol) were calculated. DFT calculations of the energy barriers in carvacrol derivatives allowed the determination of the steric origin of the restricted isopropyl rotation. The barrier height depends on the size of the 2- and 4-position substituents, and is independent of the derivatization of the OH group.
Collapse
Affiliation(s)
| | - Niko S. Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia;
| | - Miroslav Dangalov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. Bl. 9, 1113 Sofia, Bulgaria;
| | - Nikolay G. Vassilev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. Bl. 9, 1113 Sofia, Bulgaria;
| |
Collapse
|
71
|
Zhang ZJ, Jacob N, Bhatia S, Boos P, Chen X, DeMuth JC, Messinis AM, Jei BB, Oliveira JCA, Radović A, Neidig ML, Wencel-Delord J, Ackermann L. Iron-catalyzed stereoselective C-H alkylation for simultaneous construction of C-N axial and C-central chirality. Nat Commun 2024; 15:3503. [PMID: 38664372 PMCID: PMC11045758 DOI: 10.1038/s41467-024-47589-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
The assembly of chiral molecules with multiple stereogenic elements is challenging, and, despite of indisputable advances, largely limited to toxic, cost-intensive and precious metal catalysts. In sharp contrast, we herein disclose a versatile C-H alkylation using a non-toxic, low-cost iron catalyst for the synthesis of substituted indoles with two chiral elements. The key for achieving excellent diastereo- and enantioselectivity was substitution on a chiral N-heterocyclic carbene ligand providing steric hindrance and extra represented by noncovalent interaction for the concomitant generation of C-N axial chirality and C-stereogenic center. Experimental and computational mechanistic studies have unraveled the origin of the catalytic efficacy and stereoselectivity.
Collapse
Affiliation(s)
- Zi-Jing Zhang
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Nicolas Jacob
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute-Alsace, ECPM, 67087, Strasbourg, France
| | - Shilpa Bhatia
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
| | - Philipp Boos
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Xinran Chen
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Joshua C DeMuth
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
| | - Antonis M Messinis
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Becky Bongsuiru Jei
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - João C A Oliveira
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Aleksa Radović
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
| | - Michael L Neidig
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute-Alsace, ECPM, 67087, Strasbourg, France.
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
72
|
Fan P, Li L, Qian D. Catalytic asymmetric construction of helicenes via transformation of biaryls. Org Biomol Chem 2024; 22:3186-3197. [PMID: 38591656 DOI: 10.1039/d4ob00012a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
This review showcases a systematic overview of the available tools for the catalytic asymmetric transformation of biaryl substrates toward the construction of challenging enantioenriched helicenes and the conceptual aspects associated with each type of transformation. Depending on the properties of the biaryl and the nature of the process, several methodologies have been developed, including olefin metathesis, hydroarylation of alkynes, C-X (X = C, O, N) coupling, and C-H functionalization. Pioneering studies and an array of representative reactions are discussed to underscore the potential of these synthetic protocols.
Collapse
Affiliation(s)
- Peiling Fan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P.R. China.
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P.R. China
| | - Lun Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P.R. China.
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P.R. China
| | - Deyun Qian
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P.R. China.
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P.R. China
| |
Collapse
|
73
|
Deng R, Dong P, Ge J, Zhang W, Xue X, Duan L, Shi L, Gu Z. Regio- and Atroposelective Ring-Opening of 1H-Benzo[4,5]oxazolopyridinones. Angew Chem Int Ed Engl 2024; 63:e202402231. [PMID: 38407456 DOI: 10.1002/anie.202402231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
The development of new methods for regio- and stereoselective activation of C-O bonds in ethers holds significant promise for synthetic chemistry, offering advantages in terms of environmental sustainability and economic efficiency. Moreover, the C-N atropisomers represent a fascinating and crucial chiral system, extensively found in natural products, pharmaceutical leads, and the frameworks of advanced materials. In this work, we have introduced a nickel-catalyzed regio- and enantioselective carbon-oxygen arylation reaction for atroposelective synthesis of N-arylisoquinoline-1,3(2H,4H)-diones. The high regioselectivity of C-O cleavage benefits from the high stability of the in situ formed (amido)ethenolate via oxidative addition. Additionally, the self-activation of the aryl C-O bond facilitates the reaction under mild conditions, leading to outstanding enantioselectivities. The diverse post-functionalizations of the axially chiral isoquinoline-1,3(2H,4H)-diones further highlighted the utility of this protocol in preparing valuable C-N atropisomers, including the chiral phosphine ligands.
Collapse
Affiliation(s)
- Ruixian Deng
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Puyang Dong
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jimeng Ge
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Wenjing Zhang
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaoping Xue
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450001, China
| | - Longhui Duan
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Linlin Shi
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhenhua Gu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
74
|
Zhang C, Ye S, Wu J. Asymmetric Sulfonylation from a Reaction of Cyclopropan-1-ol, Sulfur Dioxide, and 1-(Alkynyl)naphthalen-2-ol. Org Lett 2024; 26:3321-3325. [PMID: 38598174 DOI: 10.1021/acs.orglett.4c01011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Asymmetric sulfonylation from a reaction of cyclopropan-1-ol, sulfur dioxide, and 1-(alkynyl)naphthalen-2-ol in the presence of a catalytic amount of organocatalyst at room temperature is developed. Axially chiral (S)-(E)-1-(1-(alkylsulfonyl)-2-arylvinyl)naphthalen-2-ols are generated in moderate to good yields with excellent enantioselectivity and regioselectivity under mild conditions. During this transformation, γ-keto sulfinate generated in situ from cyclopropan-1-ol and sulfur dioxide acts as the key intermediate.
Collapse
Affiliation(s)
- Chun Zhang
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Shengqing Ye
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
75
|
Kammeraad JA, Das S, Argüelles AJ, Sayyed FB, Zimmerman PM. Conformational Sampling over Transition-Metal-Catalyzed Reaction Pathways: Toward Revealing Atroposelectivity. Org Lett 2024; 26:2867-2871. [PMID: 38241482 PMCID: PMC11135461 DOI: 10.1021/acs.orglett.3c04047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
The Py-Conformational-Sampling (PyCoSa) technique is introduced as a systematic computational means to sample the configurational space of transition-metal-catalyzed stereoselective reactions. When applied to atroposelective Suzuki-Miyaura coupling to create axially chiral biaryl products, the results show a range of mechanistic possibilities that include multiple low-energy channels through which C-C bonds can be formed.
Collapse
Affiliation(s)
- Joshua A Kammeraad
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Soumik Das
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Alonso J Argüelles
- Synthetic Molecule Design and Development, Eli Lilly, Eli Lilly, Indianapolis, Indiana 46221, United States
| | - Fareed Bhasha Sayyed
- Synthetic Molecule Design and Development, Eli Lilly Services India Pvt Ltd, Devarabeesanahalli, Bengaluru, Karnataka 560103, India
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
76
|
Luo W, Guo H, Qiu X, Ming M, Zhang L, Zhu H, Zhou J. Organocatalytic Atroposelective Construction of Pentatomic Heterobiaryl Diamines through Arylation of 5-Aminoisoxazoles with Azonaphthalenes. Org Lett 2024; 26:2564-2568. [PMID: 38514236 DOI: 10.1021/acs.orglett.4c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
An efficient catalytic asymmetric Michael-type reaction of azonaphthalenes with 5-aminoisoxazoles has been developed. The reaction was based on the utilization of a chiral phosphoric acid as the catalyst, delivering a large panel of axially chiral heterobiaryl diamines in generally good yields with excellent enantioselectivities. The gram-scale reaction and postmodification of the chiral product demonstrated their potentials in the synthesis of chiral catalysts and ligands. This approach not only provides a useful method for the construction of pentatomic heterobiaryl scaffolds but also offers new members to the axially chiral diamine family with promising applications in synthetic and medicinal chemistry.
Collapse
Affiliation(s)
- Weiwei Luo
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Huanhuan Guo
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Xueying Qiu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Meijun Ming
- Sichuan Police College, Luzhou 646000, China
| | - Lin Zhang
- Sichuan Police College, Luzhou 646000, China
| | - Hao Zhu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jun Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| |
Collapse
|
77
|
Zhu Z, Li Y, Ma S, Zhou X, Huang Y, Sun J, Ding WY. Electrochemical Cross-Coupling between N-(4-Hydroxyphenyl)-sulfonamides and 2-Naphthols: Synthesis of 2,2'-Bis(arenol)s. J Org Chem 2024. [PMID: 38567628 DOI: 10.1021/acs.joc.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We herein present an electrochemical method for the dehydrogenative cross-coupling of N-(4-hydroxyphenyl)-sulfonamides and 2-naphthols. This transformation provides a direct and scalable approach to a wide range of C1-symmetric 2,2'-bis(arenol)s with moderate to high yields under mild conditions. Preliminary attempts with the asymmetric variant of this reaction were also performed with ≤55% ee for the synthesis of 2,2'-bis(arenol)s. Control experiments were conducted to propose a plausible mechanism for the reaction.
Collapse
Affiliation(s)
- Zheng Zhu
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Yanan Li
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Shitang Ma
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Xuan Zhou
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Yekai Huang
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Jianan Sun
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Wei-Yi Ding
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
78
|
Campbell ADG, Roper NJ, Waddell PG, Wills C, Dixon CM, Denton RM, Ermanis K, Armstrong RJ. Synthesis, structure and stereodynamics of atropisomeric N-chloroamides. Chem Commun (Camb) 2024; 60:3818-3821. [PMID: 38494914 DOI: 10.1039/d4cc00268g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Atropisomeric N-chloroamides were efficiently accessed by electrophilic halogenation of ortho-substituted secondary anilides. The stereodynamics of atropisomerism in these novel scaffolds was interrogated by detailed experimental and computational studies, revealing that racemization is correlated with amide isomerization. The stereoelectronic nature of the amide was shown to significantly influence racemization rates, with potentially important implications for other C-N atropisomeric scaffolds.
Collapse
Affiliation(s)
- Aaron D G Campbell
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| | - Natalie J Roper
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| | - Paul G Waddell
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| | - Corinne Wills
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| | - Casey M Dixon
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| | - Ross M Denton
- School of Chemistry, University Park, Nottingham, UK.
| | | | - Roly J Armstrong
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| |
Collapse
|
79
|
Cao Q, Tu YM, Fan HZ, Shan SY, Cai Z, Zhu JB. Torsional Strain Enabled Ring-Opening Polymerization towards Axially Chiral Semiaromatic Polyesters with Chemical Recyclability. Angew Chem Int Ed Engl 2024; 63:e202400196. [PMID: 38356038 DOI: 10.1002/anie.202400196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/16/2024]
Abstract
The development of new chemically recyclable polymers via monomer design would provide a transformative strategy to address the energy crisis and plastic pollution problem. Biaryl-fused cyclic esters were targeted to generate axially chiral polymers, which would impart new material performance. To overcome the non-polymerizability of the biaryl-fused monomer DBO, a cyclic ester Me-DBO installed with dimethyl substitution was prepared to enable its polymerizability via enhancing torsional strain. Impressively, Me-DBO readily went through well-controlled ring-opening polymerization, producing polymer P(Me-DBO) with high glass transition temperature (Tg >100 °C). Intriguingly, mixing these complementary enantiopure polymers containing axial chirality promoted a transformation from amorphous to crystalline material, affording a semicrystalline stereocomplex with a melting transition temperature more than 300 °C. P(Me-DBO) were capable of depolymerizing back to Me-DBO in high efficiency, highlighting an excellent recyclability.
Collapse
Affiliation(s)
- Qing Cao
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Yi-Min Tu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Hua-Zhong Fan
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Si-Yi Shan
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Zhongzheng Cai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Jian-Bo Zhu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| |
Collapse
|
80
|
Wu Y, Guan X, Zhao H, Li M, Liang T, Sun J, Zheng G, Zhang Q. Synthesis of axially chiral diaryl ethers via NHC-catalyzed atroposelective esterification. Chem Sci 2024; 15:4564-4570. [PMID: 38516093 PMCID: PMC10952084 DOI: 10.1039/d3sc06444a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/28/2024] [Indexed: 03/23/2024] Open
Abstract
Axially chiral diaryl ethers bearing two potential axes find unique applications in bioactive molecules and catalysis. However, only very few catalytic methods have been developed to construct structurally diverse diaryl ethers. We herein describe an NHC-catalyzed atroposelective esterification of prochiral dialdehydes, leading to the construction of enantioenriched axially chiral diaryl ethers. Mechanistic studies indicate that the matched kinetic resolutions play an essential role in the challenging chiral induction of flexible dual-axial chirality by removing minor enantiomers via over-functionalization. This protocol features mild conditions, excellent enantioselectivity, broad substrate scope, and applicability to late-stage functionalization, and provides a modular platform for the synthesis of axially chiral diaryl ethers and their derivatives.
Collapse
Affiliation(s)
- Yingtao Wu
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Xin Guan
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Huaqiu Zhao
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Mingrui Li
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Tianlong Liang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Jiaqiong Sun
- School of Environment, Northeast Normal University Changchun 130117 China
| | - Guangfan Zheng
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Qian Zhang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
81
|
Xu Q, Jia J, Fan H, Ma Z, Wu Y, Zhang Y, Su P, Gao W, Wang Y, Li D. Catalytic Atroposelective Synthesis of Axially Chiral Heterobiaryl Oxime Ethers via the One-Step Dynamic Kinetic Condensation Reaction. Org Lett 2024. [PMID: 38502802 DOI: 10.1021/acs.orglett.4c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The catalytic atroposelective synthesis of axially chiral heterobiaryls was first developed through the direct one-step dynamic kinetic condensation reaction with the simple transformation of the C═O bond to the C═N bond, delivering a series of novel axially chiral heterobiaryl oxime ethers.
Collapse
Affiliation(s)
- Qianqian Xu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Jifan Jia
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Haitong Fan
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Zhifeng Ma
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, Yunnan 650500, China
| | - Yuqing Wu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yifeng Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chi-nese Materia Medica, China Academy of Chinese Medical Science, Beijng 100700, China
| | - Ping Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chi-nese Materia Medica, China Academy of Chinese Medical Science, Beijng 100700, China
| | - Wei Gao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuji Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Dan Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
82
|
Saha J, Banerjee S, Malo S, Das AK, Das I. A Torquoselective Thermal 6π-Electrocyclization Approach to 1,4-Cyclohexadienes via Solvent-Aided Proton Transfer: Experimental and Theoretical Studies. Chemistry 2024; 30:e202304009. [PMID: 38179806 DOI: 10.1002/chem.202304009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/06/2024]
Abstract
The thermal 6π-electrocyclization of hexatriene typically delivers 1,3-cyclohexadiene (1,3-CHD). However, there is only limited success in directly synthesizing 1,4-cyclohexadiene (1,4-CHD) using such an approach, probably due to the difficulty in realizing thermally-forbidden 1,3-hydride shift after electrocyclic ring closure. The present study shows that by heating (2E,4E,6E)-hexatrienes bearing ester or ketone substituents at the C1-position in a mixture of toluene/MeOH or EtOH (2 : 1) solvents at 90-100 °C, 1,4-CHDs can be selectively synthesized. This is achieved through a torquoselective disrotatory 6π-electrocyclic ring closure followed by a proton-transfer process. The success of this method depends on the polar protic solvent-assisted intramolecular proton transfer from 1,3-CHD to 1,4-CHD, which has been confirmed by deuterium-labeling experiments. There are no reports to date for such a solvent-assisted isomerization. Density functional theory (DFT) studies have suggested that forming 1,3-CHD and subsequent isomerization is a thermodynamically feasible process, regardless of the functional groups involved. Two possible successive polar solvent-assisted proton-transfer pathways have been identified for isomerization.
Collapse
Affiliation(s)
- Jayanta Saha
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Soumadip Banerjee
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata, 700032, India
| | - Sidhartha Malo
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abhijit Kumar Das
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata, 700032, India
| | - Indrajit Das
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
83
|
Yang Y, Wu C, Xing J, Dou X. Developing Biarylhemiboronic Esters for Biaryl Atropisomer Synthesis via Dynamic Kinetic Atroposelective Suzuki-Miyaura Cross-Coupling. J Am Chem Soc 2024; 146:6283-6293. [PMID: 38381856 DOI: 10.1021/jacs.3c14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
We herein introduce biarylhemiboronic esters as a new type of bridged biaryl reagent for asymmetric synthesis of axially chiral biaryl structures, and the palladium-catalyzed asymmetric Suzuki-Miyaura cross-coupling of biarylhemiboronic esters is developed. This dynamic kinetic atroposelective coupling reaction exhibits high enantioselectivity, good functional group tolerance, and a broad substrate scope. The synthetic application of the current method was demonstrated by transformations of the product and a programmed synthesis of chiral polyarene. Preliminary mechanistic studies suggested that the reaction proceeded via an enantio-determining dynamic kinetic atroposelective transmetalation step.
Collapse
Affiliation(s)
- Yiming Yang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Changhui Wu
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Junhao Xing
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xiaowei Dou
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
84
|
Hou XX, Wei D. Mechanism and Origin of Stereoselectivity for the NHC-Catalyzed Desymmetrization Reaction for the Synthesis of Axially Chiral Biaryl Aldehydes. J Org Chem 2024; 89:3133-3142. [PMID: 38359780 DOI: 10.1021/acs.joc.3c02575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Organocatalytic desymmetrization reaction is a powerful tool for constructing axial chirality, but the theoretical study on the origin of stereoselectivity still lags behind even now. In this work, the N-heterocyclic carbene (NHC)-catalyzed desymmetrization reaction of biaryl frameworks for the synthesis of axially chiral aldehydes has been selected and theoretically investigated by using density functional theory (DFT). The fundamental pathway involves several steps, i.e., desymmetrization, formation of Breslow oxidation, esterification, and NHC regeneration. The desymmetrization and formation of Breslow processes have been identified as stereoselectivity-determining and rate-determining steps. Further weak interaction analyses proved that the C-H···O hydrogen bond and C-H···π interactions are responsible for the stability of the key stereoselective desymmetrization transition states. This research contributes to understanding the nature of NHC-catalyzed desymmetrization reactions for the synthesis of axially chiral compounds.
Collapse
Affiliation(s)
- Xiao-Xiao Hou
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Donghui Wei
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
85
|
Hore S, Singh A, Singh RP. Asymmetric 1,2-diaxial synthesis of bi-(hetero)aryl benzofulvene atropisomers via transient directing group-assisted dehydrogenative coupling. Chem Commun (Camb) 2024; 60:2524-2527. [PMID: 38328816 DOI: 10.1039/d3cc06011j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The efficient cross-dehydrogenative coupling of electronically rich and sterically congested benzofulvene with bi-(hetero)aryl moieties to construct an axially chiral benzofulvene core remains a formidable task. In this study, we describe a highly efficient and practical palladium-catalyzed approach for atroposelective bi-(hetero)aryl benzofulvene synthesis, achieving excellent enantioselectivity with moderate yields. This protocol offers a remarkable opportunity for the direct regio- and enantioselective conversion of C-H bonds of benzofulvene to C-C bonds. Furthermore, the protocol permits the incorporation of benzofulvene with a 4-phenyl coumarin core, enabling access to a novel class of axially chiral coumarins.
Collapse
Affiliation(s)
- Soumyadip Hore
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Abhijeet Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Ravi P Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
86
|
Zhang J, Wang K, Zhu C. Deracemization of Atropisomeric Biaryls Enabled by Copper Catalysis. JACS AU 2024; 4:502-511. [PMID: 38425940 PMCID: PMC10900502 DOI: 10.1021/jacsau.3c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 03/02/2024]
Abstract
Atropisomeric biaryls have found crucial applications in versatile chiral catalysts as well as in ligands for transition metals. Herein, we have developed an efficient crystallization-induced deracemization (CID) method to access chiral biaryls from their racemates with a chiral ammonium salt under copper catalysis including BINOL, NOBIN, and BINAM derivatives. After being significantly accelerated by its bidentate diamine ligand, the copper catalyst exhibits high efficiency and selectivity in racemizing biaryl skeletons, and the cocrystal complex would be enantioselectively formed together with chiral ammonium salt, which on acid-quenching would directly deliver chiral biaryl without further chromatographic purification. This CID process is easily scalable, and the chiral ammonium salt was nicely recoverable. Ligand effect studies showed that bulky alkyl substitution was an indispensable element to ensure efficient racemization, which probably proceeds via a radical-cation intermediate and further allows axial rotation by forming a delocalized radical.
Collapse
Affiliation(s)
| | | | - Can Zhu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|
87
|
Ye M, Li C, Xiao D, Qu G, Yuan B, Sun Z. Atroposelective Synthesis of Aldehydes via Alcohol Dehydrogenase-Catalyzed Stereodivergent Desymmetrization. JACS AU 2024; 4:411-418. [PMID: 38425895 PMCID: PMC10900225 DOI: 10.1021/jacsau.3c00814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Axially chiral aldehydes have emerged recently as a unique class of motifs for drug design. However, few biocatalytic strategies have been reported to construct structurally diverse atropisomeric aldehydes. Herein, we describe the characterization of alcohol dehydrogenases to catalyze atroposelective desymmetrization of the biaryl dialdehydes. Investigations into the interactions between the substrate and key residues of the enzymes revealed the distinct origin of atroposelectivity. A panel of 13 atropisomeric monoaldehydes was synthesized with moderate to high enantioselectivity (up to >99% ee) and yields (up to 99%). Further derivatization allows enhancement of the diversity and application potential of the atropisomeric compounds. This study effectively expands the scope of enzymatic synthesis of atropisomeric aldehydes and provides insights into the binding modes and recognition mechanisms of such molecules.
Collapse
Affiliation(s)
- Mengjing Ye
- College
of Biotechnology, Tianjin University of
Science and Technology, Tianjin 300457, China
- Tianjin
Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin 300308, China
| | - Congcong Li
- Tianjin
Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin 300308, China
- Key
Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin Airport Economic
Area, Tianjin 300308, China
| | - Dongguang Xiao
- College
of Biotechnology, Tianjin University of
Science and Technology, Tianjin 300457, China
| | - Ge Qu
- Tianjin
Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin 300308, China
- Key
Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin Airport Economic
Area, Tianjin 300308, China
| | - Bo Yuan
- Tianjin
Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin 300308, China
- Key
Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin Airport Economic
Area, Tianjin 300308, China
| | - Zhoutong Sun
- Tianjin
Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin 300308, China
- Key
Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin Airport Economic
Area, Tianjin 300308, China
| |
Collapse
|
88
|
Pan ML, Hsu CH, Lin YD, Chen WS, Chen BH, Lu CH, Yang SD, Cheng MJ, Chou PT, Wu YT. A New Series of Sandwich-Type 5,5'-Biterphenylenes: Synthetic Challenge, Structural Uniqueness and Photodynamics. Chemistry 2024; 30:e202303523. [PMID: 37997021 DOI: 10.1002/chem.202303523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
A new series of biaryls, bi-linear-terphenylenes (BLTPs), were prepared using the tert-butyllithium-mediated cyclization as the key synthetic step. The three-dimensional structures of the studied compounds were verified using X-ray crystallography and DFT calculations. Tetraaryl(ethynyl)-substituted BLTPs are highly crowded molecules, and the internal rotation around the central C-C bond is restricted due to a high barrier (>50 kcal/mol). These structures contain several aryl/terphenylenyl/aryl sandwiches, where the through-space π-π (TSPP) interactions are strongly reflected in the shielding of 1 H NMR chemical shifts, reduction of oxidation potentials, increasing aromaticity of the central six-membered ring and decreasing antiaromaticity of the four-membered rings in a terphenylenyl moiety based on NICS(0) and iso-chemical shielding surfaces. Despite the restricted C-C bond associated intramolecular TSPP interactions for BLTPs in the ground state, to our surprise, the electronic coupling between two linear terphenylenes (LTPs) in BLTPs in the excited state is weak, so that the excited-state behavior is dominated by the corresponding monomeric LTPs. In other words, all BLTPs undergo ultrafast relaxation dynamics via strong exciton-vibration coupling, acting as a blue-light absorber with essentially no emission.
Collapse
Affiliation(s)
- Ming-Lun Pan
- Department of Chemistry, National Cheng Kung University, 70101, Tainan, Taiwan
| | - Chao-Hsien Hsu
- Department of Chemistry, National Taiwan University, 10617, Taipei, Taiwan
| | - Yan-Ding Lin
- Department of Chemistry, National Taiwan University, 10617, Taipei, Taiwan
| | - Wei-Sen Chen
- Department of Chemistry, National Cheng Kung University, 70101, Tainan, Taiwan
| | - Bo-Han Chen
- Institute of Photonics Technologies, National Tsing Hua University, 30013, Hsinchu, Taiwan
| | - Chih-Hsuan Lu
- Institute of Photonics Technologies, National Tsing Hua University, 30013, Hsinchu, Taiwan
| | - Shang-Da Yang
- Institute of Photonics Technologies, National Tsing Hua University, 30013, Hsinchu, Taiwan
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, 70101, Tainan, Taiwan
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, 10617, Taipei, Taiwan
| | - Yao-Ting Wu
- Department of Chemistry, National Cheng Kung University, 70101, Tainan, Taiwan
| |
Collapse
|
89
|
Li Y, Li X. Theoretical insights into the enantiodivergence induced by chiral phosphoric acid catalysis with a Lewis acid for the synthesis of N-N axially chiral atropisomers. Org Biomol Chem 2024; 22:1654-1661. [PMID: 38295370 DOI: 10.1039/d3ob02011h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
A detailed theoretical mechanistic investigation on chiral phosphoric acid (CPA)-catalyzed Paal-Knorr reactions, in the presence and absence of a Lewis acid, for the synthesis of N-N axially chiral atropisomers is described herein. Density functional theory (DFT) studies elucidate that in the absence of a Lewis acid, CPA catalyzes both the initial cyclization and the subsequent dehydroxylation processes, ambiguously identified as the rate-determining step in the reactions. Conversely, when a Lewis acid participates in the reaction, it facilitates the second dehydroxylation process with a significantly lower energy barrier, thereby reversing the rate-determining step to the initial cyclization step. It is noteworthy that in the case of N-aminoindoles, both the S-configurational transition state TS1 in the cyclization step and TS2 in the dehydroxylation process are favourable. In contrast, for the synthesis of a bispyrrole, the R-configurational TS1 and the S-configurational TS2 are dominant. Therefore, the enantiodivergence observed is essentially induced by the reversed rate-determining steps in the absence or presence of a Lewis acid in the case of a bispyrrole. Furthermore, the non-covalent interaction (NCI) and atoms-in-molecules (AIM) analysis of the TS structures reveal that the non-covalent interactions play a pivotal role in determining the enantiodivergence observed in these reactions.
Collapse
Affiliation(s)
- Yanze Li
- Department of Chemistry, College of Sciences, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China.
| | - Xinyao Li
- Department of Chemistry, College of Sciences, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
90
|
Wang JY, Gao CH, Ma C, Wu XY, Ni SF, Tan W, Shi F. Design and Catalytic Asymmetric Synthesis of Furan-Indole Compounds Bearing both Axial and Central Chirality. Angew Chem Int Ed Engl 2024; 63:e202316454. [PMID: 38155472 DOI: 10.1002/anie.202316454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
In the chemistry community, catalytic asymmetric synthesis of furan-based compounds bearing both axial and central chirality has proven to be a significant but challenging issue owing to the importance and difficulty in constructing such frameworks. In this work, we have realized the first catalytic asymmetric synthesis of five-five-membered furan-based compounds bearing both axial and central chirality via organocatalytic asymmetric (2+4) annulation of achiral furan-indoles with 2,3-indolyldimethanols with uncommon regioselectivity. By this strategy, furan-indole compounds bearing both axial and central chirality were synthesized in high yields with excellent regio-, diastereo-, and enantioselectivities. Moreover, theoretical calculations were conducted to provide an in-depth understanding of the reaction pathway, activation mode, and the origin of the selectivity.
Collapse
Affiliation(s)
- Jing-Yi Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Cong-Hui Gao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Cheng Ma
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Xin-Yue Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Wei Tan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
91
|
Li Z, Xu W, Song S, Wang M, Zhao Y, Shi Z. Enantioselective Rhodium-Catalyzed C-H Arylation Enables Direct Synthesis of Atropisomeric Phosphines. Angew Chem Int Ed Engl 2024; 63:e202316035. [PMID: 38182545 DOI: 10.1002/anie.202316035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/07/2024]
Abstract
Atropisomeric phosphines hold considerable significance in asymmetric catalysis, yet their synthesis presents a formidable challenge owing to intricate multistep procedures. In this context, a groundbreaking methodology has been presented for their preparation. This innovative approach entails an atroposelective rhodium-catalyzed C-H activation employing aryl and heteroaryl halides, chelated by a P(III) center. The essence of this strategy lies in its ability to directly construct chiral phosphine ligands in a single step, thereby exhibiting exceptional efficiency in terms of atom and redox economy. Illustrative examples serve to demonstrate the immense potential of in situ-formed ligands in asymmetric catalysis. Mechanistic experiments have further provided invaluable insights into this transformation.
Collapse
Affiliation(s)
- Zexian Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Weipeng Xu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shuaishuai Song
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
92
|
Li JH, Li XK, Feng J, Yao W, Zhang H, Lu CJ, Liu RR. Organocatalytic Enantioselective Synthesis of Seven-Membered Ring with Inherent Chirality. Angew Chem Int Ed Engl 2024; 63:e202319289. [PMID: 38185722 DOI: 10.1002/anie.202319289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/09/2024]
Abstract
Inherent chirality is used to describe chiral cyclic molecules devoid of central, axial, planar, or helical chirality and has tremendous applications in chiral recognition and enantioselective synthesis. Catalytic and divergent syntheses of inherently chiral molecules have attracted increasing interest from chemists. Herein, we report the enantioselective synthesis of inherently chiral tribenzocycloheptene derivatives via chiral phosphoric acid (CPA)-catalyzed condensation of cyclic ketones and hydroxylamines. This chemistry paves the way to accessing the less stable derivatives of 7-membered rings with inherent chirality. A series of chiral tribenzocycloheptene oxime ethers was synthesized in good yields (up to 97 %) with excellent enantioselectivities (up to 99 % ee).
Collapse
Affiliation(s)
- Jia-Hao Li
- College of Chemistry and Chemical Engineering, Qingdao University, NingXia Road 308#, Qingdao, 266071, China
| | - Xiao-Kai Li
- College of Chemistry and Chemical Engineering, Qingdao University, NingXia Road 308#, Qingdao, 266071, China
| | - Jia Feng
- College of Chemistry and Chemical Engineering, Qingdao University, NingXia Road 308#, Qingdao, 266071, China
| | - Wang Yao
- College of Chemistry and Chemical Engineering, Qingdao University, NingXia Road 308#, Qingdao, 266071, China
| | - Huan Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, NingXia Road 308#, Qingdao, 266071, China
| | - Chuan-Jun Lu
- College of Chemistry and Chemical Engineering, Qingdao University, NingXia Road 308#, Qingdao, 266071, China
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, NingXia Road 308#, Qingdao, 266071, China
| |
Collapse
|
93
|
Maclean I, Gallent E, Orozco O, Molina A, Rodríguez N, Adrio J, Carretero JC. Atroposelective Synthesis of Axially Chiral Naphthylpyrroles by a Catalytic Asymmetric 1,3-Dipolar Cycloaddition/Aromatization Sequence. Org Lett 2024; 26:922-927. [PMID: 38266629 PMCID: PMC10845160 DOI: 10.1021/acs.orglett.3c04261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
A straightforward methodology for the enantioselective preparation of axially chiral 2-naphthylpyrroles has been developed. This protocol is based on a CuI/Fesulphos-catalyzed highly enantioselective 1,3-dipolar cycloaddition of an azomethine ylide followed by pyrrolidine alkylation and pyrrolidine to pyrrole oxidation. The mild conditions employed in the DDQ/blue light-mediated aromatization process facilitate an effective central-to-axial chirality transfer affording the corresponding pyrroles with high atroposelectivity.
Collapse
Affiliation(s)
- Ian Maclean
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Enrique Gallent
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Oscar Orozco
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alba Molina
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Nuria Rodríguez
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem) and Center for
Innovation in Advanced Chemistry (ORFEO-CINQA), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Javier Adrio
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem) and Center for
Innovation in Advanced Chemistry (ORFEO-CINQA), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan C. Carretero
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem) and Center for
Innovation in Advanced Chemistry (ORFEO-CINQA), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
94
|
Yu L, Nagata Y, Nakamura H. Atroposelective Total Synthesis of Cihunamide B. J Am Chem Soc 2024; 146:2549-2555. [PMID: 38240691 DOI: 10.1021/jacs.3c11016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
A short, atroposelective synthesis of cihunamide B (1) is reported. The feature of this report is the decagram-scale SNAr reaction of l-tryptophan derivatives, followed by atroposelective Larock macrocyclization. This strategy allowed the construction of a Trp-Trp cross-linkage with unprecedented atropisomerism. The atroposelectivity of this Larock macrocyclization has been investigated through a combination of experimental and computational chemistry, yielding detailed insights into the synthesis of biaryl linkages. It also enabled the concise synthesis of cihunamide B (1), which is expected to be a potential antibacterial agent.
Collapse
Affiliation(s)
- Longhui Yu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Yuuya Nagata
- WPI Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Hugh Nakamura
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| |
Collapse
|
95
|
Lee C, Lee S, Kim A, Kwon Y. Nitro-Enabled Atroposelective Dynamic Kinetic Resolution of 2-Arylindoles by Phase-Transfer Catalysis. Org Lett 2024; 26:681-686. [PMID: 38232328 DOI: 10.1021/acs.orglett.3c03933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
This study presents the atroposelective alkylation of 2-arylindoles catalyzed by a substituted cinchonium salt as a phase-transfer catalyst. Under the optimized reaction conditions, various substrates are employed to yield products with high enantioselectivity. The presence of an ortho-nitro group at the aromatic ring is essential for high atroposelectivity, because it facilitates favorable interactions between the catalyst and substrate. The origin of the enantioselectivity reveals favorable π-π interactions for both enantiomers and unfavorable steric strains for undesired enantiomers.
Collapse
Affiliation(s)
- Chanhee Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sujin Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ahreum Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yongseok Kwon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
96
|
Yang QQ, Chen C, Yao D, Liu W, Liu B, Zhou J, Pan D, Peng C, Zhan G, Han B. Catalytic Atroposelective Synthesis of Axially Chiral Azomethine Imines and Neuroprotective Activity Evaluation. Angew Chem Int Ed Engl 2024; 63:e202312663. [PMID: 38032817 DOI: 10.1002/anie.202312663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
Azomethine imines, as a prominent class of 1,3-dipolar species, hold great significance and potential in organic and medicinal chemistry. However, the reported synthesis of centrally chiral azomethine imines relies on kinetic resolution, and the construction of axially chiral azomethine imines remains unexplored. Herein, we present the synthesis of axially chiral azomethine imines through copper- or chiral phosphoric acid catalyzed ring-closure reactions of N'-(2-alkynylbenzylidene)hydrazides, showcasing high efficiency, mild conditions, broad substrate scope, and excellent enantioselectivity. Furthermore, the biological evaluation revealed that the synthesized axially chiral azomethine imines effectively protect dorsal root ganglia (DRG) neurons by inhibiting apoptosis induced by oxaliplatin, offering a promising therapeutic approach for chemotherapy-induced peripheral neuropathy (CIPN). Remarkably, the (S)- and (R)-atropisomers displayed distinct neuroprotective activities, underscoring the significance of axial stereochemistry.
Collapse
Affiliation(s)
- Qian-Qian Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Chen Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518060, Guangdong, China
| | - Wei Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Dabo Pan
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, 999078, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| |
Collapse
|
97
|
Liu X, Zhu B, Zhang X, Zhu H, Zhang J, Chu A, Wang F, Wang R. Enantioselective synthesis of [4]helicenes by organocatalyzed intermolecular C-H amination. Nat Commun 2024; 15:732. [PMID: 38272928 PMCID: PMC10810882 DOI: 10.1038/s41467-024-45049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Catalytic asymmetric synthesis of helically chiral molecules has remained an outstanding challenge and witnessed fairly limited progress in the past decades. Current methods to construct such compounds almost entirely rely on catalytic enantiocontrolled fused-ring system extension. Herein, we report a direct terminal peri-functionalization strategy, which allows for efficient assembling of 1,12-disubstituted [4]carbohelicenes via an organocatalyzed enantioselective amination reaction of 2-hydroxybenzo[c]phenanthrene derivates with diazodicarboxamides. The key feature of this approach is that the stereochemical information of the catalyst could be transferred into not only the helix sense but also the remote C-N axial chirality of the products, thus enabling the synthesis of [4]- and [5]helicenes with both structural diversity and stereochemical complexity in good efficiency and excellent enantiocontrol. Besides, the large-scale preparations and representative transformations of the helical products further demonstrate the practicality of this protocol. Moreover, DFT calculations reveal that both the hydrogen bonds and the C-H---π interactions between the substrates and catalyst contribute to the ideal stereochemical control.
Collapse
Affiliation(s)
- Xihong Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 730000, Lanzhou, China.
| | - Boyan Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 730000, Lanzhou, China
| | - Xiaoyong Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, 518107, Shenzhen, China
| | - Hanwen Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 730000, Lanzhou, China
| | - Jingying Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 730000, Lanzhou, China
| | - Anqi Chu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 730000, Lanzhou, China
| | - Fujun Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 730000, Lanzhou, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 730000, Lanzhou, China.
| |
Collapse
|
98
|
Zhang HH, Li TZ, Liu SJ, Shi F. Catalytic Asymmetric Synthesis of Atropisomers Bearing Multiple Chiral Elements: An Emerging Field. Angew Chem Int Ed Engl 2024; 63:e202311053. [PMID: 37917574 DOI: 10.1002/anie.202311053] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
With the rapid development of asymmetric catalysis, the demand for the enantioselective synthesis of complex and diverse molecules with different chiral elements is increasing. Owing to the unique features of atropisomerism, the catalytic asymmetric synthesis of atropisomers has attracted a considerable interest from the chemical science community. In particular, introducing additional chiral elements, such as carbon centered chirality, heteroatomic chirality, planar chirality, and helical chirality, into atropisomers provides an opportunity to incorporate new properties into axially chiral compounds, thus expanding the potential applications of atropisomers. Thus, it is important to perform catalytic asymmetric transformations to synthesize atropisomers bearing multiple chiral elements. In spite of challenges in such transformations, in recent years, chemists have devised powerful strategies under asymmetric organocatalysis or metal catalysis, synthesizing a wide range of enantioenriched atropisomers bearing multiple chiral elements. Therefore, the catalytic asymmetric synthesis of atropisomers bearing multiple chiral elements has become an emerging field. This review summarizes the rapid progress in this field and indicates challenges, thereby promoting this field to a new horizon.
Collapse
Affiliation(s)
- Hong-Hao Zhang
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Tian-Zhen Li
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Si-Jia Liu
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Feng Shi
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
99
|
Yamanomoto K, Yamamoto K, Yoshida S, Sato S, Akiyama T. Enantioselective synthesis of 3-( N-indolyl)quinolines containing axial and central chiralities. Chem Commun (Camb) 2024; 60:582-585. [PMID: 38095093 DOI: 10.1039/d3cc05142k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Quinoline and indole are important core structures in biologically active compounds and materials. Atropisomeric biaryls consisting of quinoline and indole are a unique class of axially chiral molecules. We report herein enantioselective synthesis of 3-(N-indolyl)quinolines having both C-N axial chirality and carbon central chirality by a photoredox Minisci-type addition reaction catalyzed by a chiral lithium phosphate/Ir-photoredox complex. The catalytic system enabled access to a unique class of 3-(N-indolyl)quinolines with high chemo-, regio-, and stereoselectivities in good yields through the appropriate choice of an acid catalyst and a photocatalyst. This is the first example of the synthesis of 3-(N-indolyl)quinoline atropisomers in a highly enantioselective manner.
Collapse
Affiliation(s)
- Ken Yamanomoto
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kota Yamamoto
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Satoshi Yoshida
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sota Sato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Division of Advanced Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Takahiko Akiyama
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| |
Collapse
|
100
|
Feng J, Liu RR. Catalytic Asymmetric Synthesis of N-N Biaryl Atropisomers. Chemistry 2024; 30:e202303165. [PMID: 37850396 DOI: 10.1002/chem.202303165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/19/2023]
Abstract
Atropisomers have emerged as important structural scaffolds in natural products, drug design, and asymmetric synthesis. Recently, N-N biaryl atropisomers have drawn increasing interest due to their unique structure and relatively stable axes. However, its asymmetric synthesis remains scarce compared to its well-developed C-C biaryl analogs. In this concept, we summarize the asymmetric synthesis of N-N biaryl atropisomers including N-N pyrrole-pyrrole, N-N pyrrole-indole, N-N indole-indole, and N-N indole-carbazole, during which a series synthetic strategies are highlighted. Also, a synthetic evolution is briefly reviewed and an outlook of N-N biaryl atropisomers synthesis is offered.
Collapse
Affiliation(s)
- Jia Feng
- College of Chemistry and Chemical Engineering, Qingdao University, NingXia Road 308#, Qingdao, 266071, China
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, NingXia Road 308#, Qingdao, 266071, China
| |
Collapse
|