51
|
Hallooman D, Rhyman L, Dalkılıç E, Daştan A, Elzagheid MI, Domingo LR, Ramasami P. Theoretical Studies on the Mechanism of the Formation of Cyclopentadienes and Dihydropyridazines. ChemistrySelect 2021. [DOI: 10.1002/slct.202102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dhanashree Hallooman
- Computational Chemistry Group Department of Chemistry Faculty of Science University of Mauritius Moka, Réduit 80837 Mauritius
| | - Lydia Rhyman
- Computational Chemistry Group Department of Chemistry Faculty of Science University of Mauritius Moka, Réduit 80837 Mauritius
- Centre for Natural Product Research Department of Chemical Sciences University of Johannesburg, Doornfontein Johannesburg 2028 South Africa
| | - Erdin Dalkılıç
- Atatürk University Science Faculty, Department of Chemistry Erzurum 25240 Turkey
| | - Arif Daştan
- Atatürk University Science Faculty, Department of Chemistry Erzurum 25240 Turkey
| | - Mohamed I. Elzagheid
- Department of Chemical and Process Engineering Jubail Industrial College Jubail Industrial City 31961 Saudi Arabia
| | - Luis R. Domingo
- Department of Organic Chemistry University of Valencia Dr. Moliner 50 E-46100 Burjassot Valencia Spain
| | - Ponnadurai Ramasami
- Computational Chemistry Group Department of Chemistry Faculty of Science University of Mauritius Moka, Réduit 80837 Mauritius
- Centre for Natural Product Research Department of Chemical Sciences University of Johannesburg, Doornfontein Johannesburg 2028 South Africa
| |
Collapse
|
52
|
Song H, Kwon G, Citek C, Jeon S, Kang K, Lee E. Pyrrolinium-Substituted Persistent Zwitterionic Ferrocenate Derivative Enabling the Application of Ferrocene Anolyte. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46558-46565. [PMID: 34558898 DOI: 10.1021/acsami.1c11571] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Here, we report the imidazolium-/pyrrolinium-substituted persistent zwitterionic ferrocenate derivatives, which were characterized by electron paramagnetic resonance (EPR) and 57Fe Mössbauer spectroscopy. Additional theoretical studies on these zwitterionic ferrocenate derivatives clearly explain the origin of their thermal stability and the orbital interactions between iron and imidazolium-/pyrrolinium-substituted zwitterionic cyclopentadienyl ligand. Exploiting the facile Fe(II/I) redox chemistry, we successfully demonstrated that the pyrrolinium-substituted ferrocene derivative can be applied as an example of derivatized ferrocene anolyte for redox-flow batteries. These zwitterionic ferrocenate derivatives will not only deepen our understanding of the intrinsic chemistry of ferrocenate but have the potential to open the way for the rational design of metallocenate derivatives for various applications.
Collapse
Affiliation(s)
- Hayoung Song
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Giyun Kwon
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Cooper Citek
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| | - Seungwon Jeon
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Kisuk Kang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
53
|
Wang L, Shi F, Qi C, Xu W, Xiong W, Kang B, Jiang H. Stereodivergent synthesis of β-iodoenol carbamates with CO 2 via photocatalysis. Chem Sci 2021; 12:11821-11830. [PMID: 34659721 PMCID: PMC8442729 DOI: 10.1039/d1sc03366b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/02/2021] [Indexed: 01/24/2023] Open
Abstract
Photocatalytic conversion of carbon dioxide (CO2) into value-added chemicals is of great significance from the viewpoint of green chemistry and sustainable development. Here, we report a stereodivergent synthesis of β-iodoenol carbamates through a photocatalytic three-component coupling of ethynylbenziodoxolones, CO2 and amines. By choosing appropriate photocatalysts, both Z- and E-isomers of β-iodoenol carbamates, which are difficult to prepare using existing methods, can be obtained stereoselectively. This transformation featured mild conditions, excellent functional group compatibility and broad substrate scope. The potential synthetic utility of this protocol was demonstrated by late-stage modification of bioactive molecules and pharmaceuticals as well as by elaborating the products to access a wide range of valuable compounds. More importantly, this strategy could provide a general and practical method for stereodivergent construction of trisubstituted alkenes such as triarylalkenes, which represents a fascinating challenge in the field of organic chemistry research. A series of mechanism investigations revealed that the transformation might proceed through a charge-transfer complex which might be formed through a halogen bond.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Fuxing Shi
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Chaorong Qi
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Wenjie Xu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Wenfang Xiong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Bangxiong Kang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
54
|
Abstract
Structurally authenticated free B-alkyl boroles are presented and electronic implications of alkyl substitution were assessed. Deprotonation of a boron-bound exocyclic methyl group in a B-methyl borole yields the first 5-boratafulvene anion-an isomer to boratabenzene. Boratafulvene was structurally characterized and its electronic structure probed by DFT calculations. The pKa value of the exocyclic B-CH3 in a set of boroles was computationally approximated and confirmed a pronounced acidic character caused by the boron atom embedded in an anti-aromatic moiety. The non-aromatic boratafulvene reacts as a C-centered nucleophile with the mild electrophile Me3 SnCl to give a stannylmethyl borole, regenerating the anti-aromaticity. As nucleophilic synthons for boroles, boratafulvenes thus open an entirely new avenue for synthetic strategies toward this highly reactive class of heterocycles. Boratafulvene reacts as a methylene transfer reagent in a bora-Wittig-type reaction generating a borole oxide.
Collapse
Affiliation(s)
- Tobias Heitkemper
- Institut für Anorganische ChemieGeorg-August-Universität GöttingenTammannstrasse 437077GöttingenGermany
| | - Leonard Naß
- Institut für Anorganische ChemieGeorg-August-Universität GöttingenTammannstrasse 437077GöttingenGermany
| | - Christian P. Sindlinger
- Institut für Anorganische ChemieGeorg-August-Universität GöttingenTammannstrasse 437077GöttingenGermany
| |
Collapse
|
55
|
Heitkemper T, Naß L, Sindlinger CP. Ein Boratafulven. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tobias Heitkemper
- Institut für Anorganische Chemie Georg-August-Universität Göttingen Tammannstraße 4 37077 Göttingen Deutschland
| | - Leonard Naß
- Institut für Anorganische Chemie Georg-August-Universität Göttingen Tammannstraße 4 37077 Göttingen Deutschland
| | - Christian P. Sindlinger
- Institut für Anorganische Chemie Georg-August-Universität Göttingen Tammannstraße 4 37077 Göttingen Deutschland
| |
Collapse
|
56
|
Platts K, Michel R, Green E, Gillam T, Ghetia M, O'Brien-Simpson N, Li W, Blencowe C, Blencowe A. Pentafulvene-Maleimide Cycloaddition for Bioorthogonal Ligation. Bioconjug Chem 2021; 32:1845-1851. [PMID: 34254789 DOI: 10.1021/acs.bioconjchem.1c00287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The applications of bioconjugation chemistry are rapidly expanding, and the addition of new strategies to the bioconjugation and ligation toolbox will further advance progress in this field. Herein, we present a detailed study of the Diels-Alder cycloaddition (DAC) reaction between pentafulvenes and maleimides in aqueous solutions and investigate the reaction as an emerging bioconjugation strategy. The DAC reactions were found to proceed efficiently, quantitatively yielding cycloadducts with reaction rates ranging up to ∼0.7 M-1 s-1 for a series of maleimides, including maleimide-derivatized peptides and proteins. The absence of cross-reactivity of the pentafulvene with a large panel of functional (bio)molecules and biological media further demonstrated the bioorthogonality of this approach. The utility of the DAC reaction for bioorthogonal bioconjugation applications was further demonstrated in the presence of biological media and proteins, as well as through protein derivatization and labeling, which was comparable to the widely employed sulfhydryl-maleimide coupling chemistry.
Collapse
Affiliation(s)
- Kirsten Platts
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Robert Michel
- Fleet Bioprocessing, Ltd., Pale Lane, Hartley Whitney, Hampshire RG27 8DH, United Kingdom
| | - Elise Green
- Fleet Bioprocessing, Ltd., Pale Lane, Hartley Whitney, Hampshire RG27 8DH, United Kingdom
| | - Todd Gillam
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.,Surface Interactions and Soft Matter (SISM) Group, Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Maulik Ghetia
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Neil O'Brien-Simpson
- Centre for Oral Health Research, The Melbourne Dental School and the Bio21 Institute, The University of Melbourne, 720 Swanston Street, Carlton, Melbourne, Victoria 3010, Australia
| | - Wenyi Li
- Centre for Oral Health Research, The Melbourne Dental School and the Bio21 Institute, The University of Melbourne, 720 Swanston Street, Carlton, Melbourne, Victoria 3010, Australia
| | - Christopher Blencowe
- Fleet Bioprocessing, Ltd., Pale Lane, Hartley Whitney, Hampshire RG27 8DH, United Kingdom
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| |
Collapse
|
57
|
Liu Y, Fan X, Tian R, Duan Z. FeCl 2 Catalyzed Three-Component Reactions of Phospholes, Pyrrolidine, and Ketones (Aldehydes): Chemoselective Synthesis of 1-Phosphafulvenes. Org Lett 2021; 23:2943-2947. [PMID: 33779177 DOI: 10.1021/acs.orglett.1c00602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have developed an unprecedented approach for the synthesis of transient 1-phosphafulvenes through three component reactions of phospholes. The generation of 1-phosphafulvenes was demonstrated by in situ [6 + 4] cycloaddition with 2H-phospholes and [6 + 6] self-dimerization. The [6 + 4] and [6 + 6] reaction pathway could be modulated by the starting ketones and aldehydes. The construction of 1-phosphafulvenes is illustrated by a proposed mechanism combining nucleophilic addition of phospholide to the iminium or isomerized azomethine ylide and a [1,5]-shift of phosphole.
Collapse
Affiliation(s)
- Yanjie Liu
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xinran Fan
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, PR China
| | - Rongqiang Tian
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zheng Duan
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
58
|
Prakash M, Lodhi R, Samanta S. Substrate-Controlled Domino Reaction of N-Sulfonyl Ketimines with 2-Aroyl-1-chlorocyclopropanecarboxylates: Access to Cyclopenta[c]chromenes and Benzo[f]cyclopenta[d][1,2]thiazepine Dioxides. J Org Chem 2021; 86:6721-6733. [DOI: 10.1021/acs.joc.1c00459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Meher Prakash
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh 453552, India
| | - Rajni Lodhi
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh 453552, India
| | - Sampak Samanta
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh 453552, India
| |
Collapse
|
59
|
Liu Y, Tian R, Duan Z, Mathey F. Nonbenzenoid aromaticity of 1-phosphafulvenes: synthesis of phosphacymantrenes. Dalton Trans 2021; 50:476-479. [PMID: 33355316 DOI: 10.1039/d0dt03934a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coordination chemistry of 1-phosphafulvenes was investigated by employing their [6 + 4] adducts or α-C2-bridged biphospholes as a precursor. Unbridged phosphacymantrenes arise from 1-phosphafulvenes via proton abstraction. α-C2-bridged biphosphacymantrenes are probably yielded by the reductive coupling of 1-phosphafulvene with Mn2(CO)10. The coordination behavior of 1-phosphafulvenes is comparable to that of pentafulvenes, which again demonstrates the phosphorus-carbon analogy in low-coordinate organophosphorus chemistry.
Collapse
Affiliation(s)
- Yanjie Liu
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450002, China.
| | - Rongqiang Tian
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450002, China.
| | - Zheng Duan
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450002, China.
| | - François Mathey
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450002, China.
| |
Collapse
|
60
|
Fuhrer TJ, Snelgrove J, Corley CA, Iacono ST. Density Functional Theory Investigation of Fulvene-Derivatized Fullerenes as Candidates for Organic Solar Cells. J Phys Chem A 2020; 124:10324-10329. [PMID: 33228357 DOI: 10.1021/acs.jpca.0c06469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interest within the scientific community in organic solar cells has been on the rise over the last two decades as researchers respond to increasing demands for alternative renewable energy sources. Fulvene, fullerene, and endohedral metallofullerene derivatives have individually shown great promise as efficient charge transfer agents. Despite the heavy demand for research in this area, there have been no studies reported to date that explore the electronic behavior of molecules containing both fullerene and fulvene groups. The lack of interest may be attributed to inherent limitations and inaccuracy in most density functional theory (DFT) band gap calculations for large molecules. Herein we present a systematic computational investigation of the band gaps and dipole moments of several test fullerene-fulvene molecules using a novel DFT method that has been modified to allow accurate computation of the band gaps of this class of molecules. Calculated results showed promising low band gap energies and attractive conductive properties for all fullerene-fulvene derivatives. This new DFT method can conceivably be an invaluable tool that can provide predictive insight into the suitability of similar high molecular weight materials for application in organic solar cell devices.
Collapse
Affiliation(s)
- Timothy J Fuhrer
- Department of Chemistry, Radford University, Radford, Virginia 24142, United States
| | - Jordan Snelgrove
- Department of Chemistry, Radford University, Radford, Virginia 24142, United States
| | - Cynthia A Corley
- Department of Chemistry and Chemistry Research Center, United States Air Force Academy, Colorado Springs, Colorado 80840, United States
| | - Scott T Iacono
- Department of Chemistry and Chemistry Research Center, United States Air Force Academy, Colorado Springs, Colorado 80840, United States
| |
Collapse
|
61
|
Schraff S, Trampert J, Orthaber A, Pammer F. Electronic Properties and Solid-State Packing of Isocyanofulvenes and Their Gold(I) Chloride Complexes. Inorg Chem 2020; 59:17171-17183. [DOI: 10.1021/acs.inorgchem.0c02435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sandra Schraff
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jens Trampert
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Andreas Orthaber
- Department of Chemistry−Ångström Laboratories, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Frank Pammer
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
62
|
Meitinger N, Mengele AK, Witas K, Kupfer S, Rau S, Nauroozi D. Tetraaryl Cyclopentadienones: Experimental and Theoretical Insights into Negative Solvatochromism and Electrochemistry. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nicolas Meitinger
- Institute of Inorganic Chemistry I Albert‐Einstein‐Allee 11 89081 Ulm Germany
| | | | - Kamil Witas
- Institute of Inorganic Chemistry I Albert‐Einstein‐Allee 11 89081 Ulm Germany
| | - Stephan Kupfer
- Institute of Physical Chemistry Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
| | - Sven Rau
- Institute of Inorganic Chemistry I Albert‐Einstein‐Allee 11 89081 Ulm Germany
| | - Djawed Nauroozi
- Institute of Inorganic Chemistry I Albert‐Einstein‐Allee 11 89081 Ulm Germany
| |
Collapse
|
63
|
Affiliation(s)
- Fabio Mazzotta
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Karl W. Törnroos
- Department of Chemistry, University of Bergen, Allégaten 41, 5007 Bergen, Norway
| | - Doris Kunz
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| |
Collapse
|
64
|
Aida Y, Nogami J, Sugiyama H, Uekusa H, Tanaka K. Enantioselective Synthesis of Polycyclic Aromatic Hydrocarbon (PAH)-Based Planar Chiral Bent Cyclophanes by Rhodium-Catalyzed [2+2+2] Cycloaddition. Chemistry 2020; 26:12579-12588. [PMID: 32350943 DOI: 10.1002/chem.202001450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/28/2020] [Indexed: 11/08/2022]
Abstract
The enantioselective synthesis of polycyclic aromatic hydrocarbon (PAH)-based planar chiral cyclophanes was achieved for the first time by the rhodium-catalyzed intramolecular regio- and enantioselective [2+2+2] cycloaddition of tethered diyne-benzofulvenes followed by stepwise oxidative transformations. The thus synthesized planar chiral bent cyclophanes, that possess bent p-terphenyl- and 9-fluorenone-cores, were converted to 9-fluorenol-based ones with excellent ee values of >99 % by diastereoselective 1,2-reduction. These 9-fluorenol-based cyclophanes exhibited high fluorescence quantum yields, which were significantly higher than that of an acyclic reference molecule (78-82 % vs. 48 %). The bending effect on the chiroptical property was also examined, which revealed that the anisotropy factors (gabs values) for electronic circular dichroism (ECD) of these 9-fluorenol-based planar chiral bent cyclophanes increase as the tether length becomes shorter.
Collapse
Affiliation(s)
- Yukimasa Aida
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Juntaro Nogami
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Haruki Sugiyama
- Research and Education Center for Natural Sciences, Keio University, Hiyoshi 4-1-1, Kohoku, Yokohama, Japan
| | - Hidehiro Uekusa
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| |
Collapse
|
65
|
Suremann NF, Meola G, Blacque O, Braband H, Alberto R. Synthesis and Reactivity of the Rhenium Fulvene Sandwich Complex [Re(η 6-C 5H 4CH 2)(η 6-C 6H 6)] +. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nina F. Suremann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Giuseppe Meola
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Henrik Braband
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Roger Alberto
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
66
|
Peng S, Chen N, Zhang H, He M, Li H, Lang M, Wang J. Palladium(II)-Catalyzed Oxidative Decarboxylative [2 + 2 + 1] Annulation of Cinnamic Acids with Alkynes: Access to Polysubstituted Pentafulvenes. Org Lett 2020; 22:5589-5593. [PMID: 32588631 DOI: 10.1021/acs.orglett.0c01955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An unprecedented palladium(II)-catalyzed oxidative decarboxylative [2 + 2 + 1] annulation of cinnamic acids with alkynes has been developed for the synthesis of polysubstituted pentafulvenes. Ag2CO3 and DMSO are essential for the reaction. This protocol features readily available starting materials, a wide substrate scope, and moderate to excellent yields. Moreover, various significant frameworks can be easily obtained from the late-stage transformations of pentafulvenes via oxidation, reduction, and Scholl-type reaction.
Collapse
Affiliation(s)
- Shiyong Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Nuan Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Hong Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Min He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Hongguang Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Ming Lang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Jian Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China.,School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
67
|
Nagireddy A, Singam MKR, Nanubolu JB, Sridhar Reddy M. Base-Mediated Cyclopentannulation of Ynones with Amino Crotonates for Regio- and Stereoselective Synthesis of Pentafulvenes and Cyclopenta[ c]quinolines. J Org Chem 2020; 85:6970-6980. [PMID: 32421329 DOI: 10.1021/acs.joc.0c00203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A regio- and stereoselective synthesis of unsymmetrically substituted pentafulvenes is reported via the condensation of readily available ynones and amino crotonates under very mild conditions. The mechanism of this 3 + 2 annulation involved a vinylogous Michael addition followed by an intramolecular enamine aldol condensation. Substrates with o-bromo tether further cyclized to pentannulated hydroquinolines through an isomerization/SNAr in the same reaction pot at the elevated temperature.
Collapse
Affiliation(s)
- Attunuri Nagireddy
- Academy of Scientific and Innovative Research, New Delhi 110001, India.,Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India
| | - Maneesh Kumar Reddy Singam
- Academy of Scientific and Innovative Research, New Delhi 110001, India.,Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India
| | | | - Maddi Sridhar Reddy
- Academy of Scientific and Innovative Research, New Delhi 110001, India.,Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India
| |
Collapse
|
68
|
Li Z, Li S, Kan T, Wang X, Xin X, Hou Y, Gong P. Silver(I)‐ and Base‐Mediated formal [4+3] Cycloaddition of
in Situ
generated 1,2‐Diaza‐1,3‐dienes with
C,N
‐Cyclic Azomethine Imines: An Efficient Protocol for the Synthesis of Tetrazepine Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zefei Li
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Shuaikang Li
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Tianjiao Kan
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Xinyue Wang
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Xin Xin
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Yunlei Hou
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Ping Gong
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| |
Collapse
|
69
|
Ahrens A, Schwarz J, Lustosa DM, Pourkaveh R, Hoffmann M, Rominger F, Rudolph M, Dreuw A, Hashmi ASK. Synthesis of Fulvene Vinyl Ethers by Gold Catalysis. Chemistry 2020; 26:5280-5287. [PMID: 32092204 PMCID: PMC7216831 DOI: 10.1002/chem.202000338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/23/2020] [Indexed: 11/05/2022]
Abstract
Gold-catalyzed cyclization of 1,5-diynes with ketones as reagents and solvent provides diversely substituted vinyl ethers under mild conditions. The regioselectivity of such gold-catalyzed cyclizations is usually controlled by the scaffold of the diyne. Herein, we report the first solvent-controlled switching of regioselectivity from a 6-endo-dig- to 5-endo-dig-cyclization in these transformations, providing fulvene derivatives. With respect to the functional-group tolerance, aryl fluorides, chlorides, bromides, and ethers are tolerated. Furthermore, the mechanism and selectivity are put to scrutiny by experimental studies and a thermodynamic analysis of the product. Additionally, 6-(vinyloxy)fulvenes are a hitherto unknown class of compounds. Their reactivity is briefly evaluated, to give insights into their potential applications.
Collapse
Affiliation(s)
- Alexander Ahrens
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Julia Schwarz
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Danilo M. Lustosa
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Interdisciplinary Center for Scientific Computing (IWR)Heidelberg UniversityIm Neuenheimer Feld 205A69120HeidelbergGermany
| | - Raheleh Pourkaveh
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Laboratory of Organic Synthesis and Natural ProductsDepartment of ChemistrySharif University of TechnologyAzadi StreetPO Box 111559516TehranIran
| | - Marvin Hoffmann
- Interdisciplinary Center for Scientific Computing (IWR)Heidelberg UniversityIm Neuenheimer Feld 205A69120HeidelbergGermany
| | - Frank Rominger
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Matthias Rudolph
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing (IWR)Heidelberg UniversityIm Neuenheimer Feld 205A69120HeidelbergGermany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
70
|
Wu J, Rouf AM, Huang Y, Zhuang D, Zhu J. Theoretical study on the stability and aromaticity in silapentafulvenes towards triplet ground state species. Phys Chem Chem Phys 2020; 22:4668-4676. [PMID: 32057041 DOI: 10.1039/c9cp06506g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pentafulvenes are dipolar hydrocarbons since they shift their π-electrons to achieve Hückel aromaticity and thus the electron donating groups at the exocyclic position can enhance their aromaticity. Silapentafulvenes are analogues of pentafulvene formed by the replacement of the carbon atoms at the exocyclic C[double bond, length as m-dash]C double bond with a silicon atom in pentafulvene. It remains unclear how the aromaticity of 5-silapentafulvenes and 6-silapentafulvenes can be changed due to the polarization of the C[double bond, length as m-dash]Si double bond. Here we perform density functional theory calculations and reveal the increased aromatic character in 6-silapentafulvenes and the reduced aromaticity of 5-silapentafulvenes in the ground state. In addition, the origin of the relative thermodynamic stability of the silapentafulvene isomers can be attributed to the bond dissociation energy (BDE) of the exocyclic bond. More interestingly, some triplet ground state 5-silapentafulvene species are predicted by introducing amino groups on the ring, which is supported by the coupled cluster calculations. Our findings could be useful for experimentalists to realize silaaromatics.
Collapse
Affiliation(s)
- Jiashun Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China.
| | - Alvi Muhammad Rouf
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China.
| | - Yuanyuan Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China.
| | - Danling Zhuang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China.
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China.
| |
Collapse
|
71
|
Phukon J, Gogoi S. Palladium(ii)-catalyzed vinylic geminal double C-H activation and alkyne annulation reaction: synthesis of pentafulvenes. Chem Commun (Camb) 2020; 56:1133-1136. [PMID: 31894770 DOI: 10.1039/c9cc09564k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first transition-metal-catalyzed vinylic geminal double C(sp2)-H activation and di-substituted alkyne annulation reaction is reported. This palladium(ii)-catalyzed, amide directed reaction of vinylic compounds with di-substituted alkynes offers an efficient synthetic path to pentafulvenes, which are very important compounds because of their bioactivity and interesting optical properties. A FeCl3-mediated transformation of pentafulvenes to fluorescent cyclopenta[b]quinolines is also developed.
Collapse
Affiliation(s)
- Jyotshna Phukon
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, AcSIR, Jorhat-785006, India.
| | - Sanjib Gogoi
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, AcSIR, Jorhat-785006, India.
| |
Collapse
|
72
|
Tanaka K, Asada Y, Hoshino Y, Honda K. Visible-light-induced [4 + 2] cycloaddition of pentafulvenes by organic photoredox catalysis. Org Biomol Chem 2020; 18:8074-8078. [PMID: 32789391 DOI: 10.1039/d0ob01151g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have developed thioxanthylium photoredox catalyzed [4 + 2] cycloaddition of pentafulvenes at room temperature under green light irradiation, which affords tetrahydrocyclopenta[b]chromenes with high regioselectivities. The present reaction provides a sustainable approach to carry out the cycloaddition of pentafulvenes without the use of transition metal catalysts or high-temperature conditions. This procedure enables a mild and straightforward access to 1,3a,9,9a-tetrahydrocyclopenta[b]chromenes. The quantum yield of the reaction (Φ = 0.15) indicates that the reaction would mainly proceed via photocatalytic pathways.
Collapse
Affiliation(s)
- Kenta Tanaka
- Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda-city, Chiba 278-8510, Japan.
| | - Yosuke Asada
- Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| | - Yujiro Hoshino
- Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| | - Kiyoshi Honda
- Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| |
Collapse
|
73
|
Fischer M, Vincent-Heldt L, Hillje M, Schmidtmann M, Beckhaus R. Synthesis of a titanium ethylene complex via C–H-activation and alternative access to Cp2Ti(η2-Me3SiC2SiMe3). Dalton Trans 2020; 49:2068-2072. [DOI: 10.1039/d0dt00237b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of a room temperature stable titanacyclopropane in a one-step-two-transformation protocol is presented. Additionally, a novel one-pot procedure toward Cp2Ti(η2-Me3SiC2SiMe3) was subsequently developed.
Collapse
Affiliation(s)
- Malte Fischer
- Institut für Chemie
- Fakultät für Mathematik und Naturwissenschaften
- Carl von Ossietzky Universität Oldenburg
- 26111 Oldenburg
- Germany
| | - Lisa Vincent-Heldt
- Institut für Chemie
- Fakultät für Mathematik und Naturwissenschaften
- Carl von Ossietzky Universität Oldenburg
- 26111 Oldenburg
- Germany
| | - Malena Hillje
- Institut für Chemie
- Fakultät für Mathematik und Naturwissenschaften
- Carl von Ossietzky Universität Oldenburg
- 26111 Oldenburg
- Germany
| | - Marc Schmidtmann
- Institut für Chemie
- Fakultät für Mathematik und Naturwissenschaften
- Carl von Ossietzky Universität Oldenburg
- 26111 Oldenburg
- Germany
| | - Ruediger Beckhaus
- Institut für Chemie
- Fakultät für Mathematik und Naturwissenschaften
- Carl von Ossietzky Universität Oldenburg
- 26111 Oldenburg
- Germany
| |
Collapse
|
74
|
Manßen M, Schafer LL. Titanium catalysis for the synthesis of fine chemicals – development and trends. Chem Soc Rev 2020; 49:6947-6994. [DOI: 10.1039/d0cs00229a] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Atlas as a Titan(ium) is holding the earth-abundant chemistry world. Titanium is the second most abundant transition metal, is a key player in important industrial processes (e.g. polyethylene) and shows much promise for diverse applications in the future.
Collapse
Affiliation(s)
- Manfred Manßen
- The Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | - Laurel L. Schafer
- The Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
75
|
Thomas AM, Zhao L, He C, Galimova GR, Mebel AM, Kaiser RI. Directed Gas‐Phase Synthesis of Triafulvene under Single‐Collision Conditions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Aaron M. Thomas
- Department of Chemistry University of Hawai'i at Manoa Honolulu HI 96822 USA
| | - Long Zhao
- Department of Chemistry University of Hawai'i at Manoa Honolulu HI 96822 USA
| | - Chao He
- Department of Chemistry University of Hawai'i at Manoa Honolulu HI 96822 USA
| | - Galiya R. Galimova
- Department of Chemistry and Biochemistry Florida International University Miami FL 33199 USA
- Samara National Research University Samara 443086 Russia
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry Florida International University Miami FL 33199 USA
| | - Ralf I. Kaiser
- Department of Chemistry University of Hawai'i at Manoa Honolulu HI 96822 USA
| |
Collapse
|
76
|
Thomas AM, Zhao L, He C, Galimova GR, Mebel AM, Kaiser RI. Directed Gas-Phase Synthesis of Triafulvene under Single-Collision Conditions. Angew Chem Int Ed Engl 2019; 58:15488-15495. [PMID: 31368202 DOI: 10.1002/anie.201908039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Indexed: 11/09/2022]
Abstract
The triafulvene molecule (c-C4 H4 )-the simplest representative of the fulvene family-has been synthesized for the first time in the gas phase through the reaction of the methylidyne radical (CH) with methylacetylene (CH3 CCH) and allene (H2 CCCH2 ) under single-collision conditions. The experimental and computational data suggest triafulvene is formed by the barrierless cycloaddition of the methylidyne radical to the π-electron density of either C3 H4 isomer followed by unimolecular decomposition through elimination of atomic hydrogen from the CH3 or CH2 groups of the reactants. The dipole moment of triafulvene of 1.90 D suggests that this molecule could represent a critical tracer of microwave-inactive allene in cold molecular clouds, thus defining constraints on the largely elusive hydrocarbon chemistry in low-temperature interstellar environments, such as that of the Taurus Molecular Cloud 1 (TMC-1).
Collapse
Affiliation(s)
- Aaron M Thomas
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Long Zhao
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Chao He
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Galiya R Galimova
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA.,Samara National Research University, Samara, 443086, Russia
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| |
Collapse
|
77
|
Fischer M, Fitschen K, Schmidtmann M, Beckhaus R. Reactivity Studies of a Bis(π-η5:σ-η1-benzofulvene)titanium Complex Including Simultaneous N–H and C(sp2)–H Activation of Dibenzylamine. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Malte Fischer
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Federal Republic of Germany
| | - Kerstin Fitschen
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Federal Republic of Germany
| | - Marc Schmidtmann
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Federal Republic of Germany
| | - Rüdiger Beckhaus
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Federal Republic of Germany
| |
Collapse
|
78
|
Swan E, Platts K, Blencowe A. An overview of the cycloaddition chemistry of fulvenes and emerging applications. Beilstein J Org Chem 2019; 15:2113-2132. [PMID: 31579091 PMCID: PMC6753682 DOI: 10.3762/bjoc.15.209] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/21/2019] [Indexed: 01/21/2023] Open
Abstract
The unusual electronic properties and unique reactivity of fulvenes have interested researchers for over a century. The propensity to form dipolar structures at relatively low temperatures and to participate as various components in cycloaddition reactions, often highly selectively, makes them ideal for the synthesis of complex polycyclic carbon scaffolds. As a result, fulvene cycloaddition chemistry has been employed extensively for the synthesis of natural products. More recently, fulvene cycloaddition chemistry has also found application to other areas including materials chemistry and dynamic combinatorial chemistry. This highlight article discusses the unusual properties of fulvenes and their varied cycloaddition chemistry, focussing on applications in organic and natural synthesis, dynamic combinatorial chemistry and materials chemistry, including dynamers, hydrogels and charge transfer complexes. Tables providing comprehensive directories of fulvene cycloaddition chemistry are provided, including fulvene intramolecular and intermolecular cycloadditions complete with reactant partners and their resulting cyclic adducts, which provide a useful reference source for synthetic chemists working with fulvenes and complex polycyclic scaffolds.
Collapse
Affiliation(s)
- Ellen Swan
- School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, South Australia 5000, Australia
| | - Kirsten Platts
- School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, South Australia 5000, Australia
| | - Anton Blencowe
- School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, South Australia 5000, Australia.,Future Industries Institute, The University of South Australia, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
79
|
Kochman MA, Durbeej B. Theoretical Study of Ground- and Excited-State Charge Transfer in Fulvene-Based Donor–Acceptor Systems. J Phys Chem A 2019; 123:6660-6673. [DOI: 10.1021/acs.jpca.9b02962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michał Andrzej Kochman
- Division of Theoretical Chemistry, Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden
| | - Bo Durbeej
- Division of Theoretical Chemistry, Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
80
|
Luo M, Deng Z, Ruan Y, Cai Y, Zhuo K, Zhang H, Xia H. Reactions of Metallacyclopentadiene with Terminal Alkynes: Isolation and Characterization of Metallafulvenallene Complexes. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00371] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Ming Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Zhihong Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Yonghong Ruan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Yapeng Cai
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Kaiyue Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Hong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| |
Collapse
|
81
|
Goodman H, Mei L, Gianetti TL. Molecular Orbital Insights of Transition Metal-Stabilized Carbocations. Front Chem 2019; 7:365. [PMID: 31214563 PMCID: PMC6558042 DOI: 10.3389/fchem.2019.00365] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/02/2019] [Indexed: 11/26/2022] Open
Abstract
Transition metal-stabilized carbocations are characterized by synthetically valuable interactions, yet, to date there are no comprehensive reports of the many bonding modes that can exist between a metal and carbocation. This review summarizes developments in these complexes to provide a clear picture of their properties and reactivities. In order to strategically exploit them, we propose this summary of the different bonding modes for transition metal-carbocation complexes. These models will help chemists understand the orbital interactions involved in these compounds so that they can approach their synthetic goals most effectively. Multiple transition metals and carbocations will be discussed.
Collapse
Affiliation(s)
- Hannah Goodman
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States
| | - Liangyong Mei
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States
| | - Thomas L Gianetti
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
82
|
Fischer M, Barbul D, Schmidtmann M, Beckhaus R. Unexpected Selective Methyl Group Abstractions from SiMe
3
Moieties of CH
2
SiMe
3
Ligands To Give New Cationic Titanium Complexes. Chemistry 2019; 25:7119-7130. [DOI: 10.1002/chem.201900599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Malte Fischer
- Institut für ChemieFakultät für Mathematik und NaturwissenschaftenCarl von Ossietzky Universität Oldenburg Postfach 2503 26111 Oldenburg Germany
| | - Daniel Barbul
- Institut für ChemieFakultät für Mathematik und NaturwissenschaftenCarl von Ossietzky Universität Oldenburg Postfach 2503 26111 Oldenburg Germany
| | - Marc Schmidtmann
- Institut für ChemieFakultät für Mathematik und NaturwissenschaftenCarl von Ossietzky Universität Oldenburg Postfach 2503 26111 Oldenburg Germany
| | - Ruediger Beckhaus
- Institut für ChemieFakultät für Mathematik und NaturwissenschaftenCarl von Ossietzky Universität Oldenburg Postfach 2503 26111 Oldenburg Germany
| |
Collapse
|
83
|
Frei A. Synthetic Routes towards Multifunctional Cyclopentadienes. Chemistry 2019; 25:7074-7090. [DOI: 10.1002/chem.201900276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Angelo Frei
- Institute for Molecular BioscienceThe University of Queensland St Lucia Queensland 4072 Australia
| |
Collapse
|
84
|
Suzuki S, Kinoshita H, Miura K. Palladium-Catalyzed Regio- and Stereoselective Synthesis of ( E)-1,3-Bissilyl-6-arylfulvenes from Aryl Iodides and Silylacetylenes. Org Lett 2019; 21:1612-1616. [PMID: 30789738 DOI: 10.1021/acs.orglett.9b00144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient synthetic route to ( E)-1,3-bissilyl-6-arylfulvenes has been developed. The reaction of aryl iodides with trimethylsilylacetylene in the presence of a catalytic amount of PdBr2 gives 6-aryl-1,3-bis(trimethylsilyl)fulvenes in good to excellent yields with complete regio- and stereoselectivity. The reaction involves trimerization of trimethylsilylacetylene and cleavage of one silyl group. The silylated fulvenes obtained could be converted into halogenated fulvenes by site-selective halodesilylation. The halogenated fulvenes underwent the Stille coupling leading to the corresponding arylated fulvenes.
Collapse
Affiliation(s)
- Souta Suzuki
- Department of Applied Chemistry, Graduate School of Science and Engineering , Saitama University , 255 Shimo-ohkubo , Sakura-ku, Saitama 338-8570 , Japan
| | - Hidenori Kinoshita
- Department of Applied Chemistry, Graduate School of Science and Engineering , Saitama University , 255 Shimo-ohkubo , Sakura-ku, Saitama 338-8570 , Japan
| | - Katsukiyo Miura
- Department of Applied Chemistry, Graduate School of Science and Engineering , Saitama University , 255 Shimo-ohkubo , Sakura-ku, Saitama 338-8570 , Japan
| |
Collapse
|
85
|
Yadav S, El Bakouri O, Jorner K, Tong H, Dahlstrand C, Solà M, Ottosson H. Exploiting the Aromatic Chameleon Character of Fulvenes for Computational Design of Baird‐Aromatic Triplet Ground State Compounds. Chem Asian J 2019; 14:1870-1878. [DOI: 10.1002/asia.201801821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Sangeeta Yadav
- Department of Chemistry-Ångström Laboratory, Box 523Uppsala University 75120 Uppsala Sweden
| | - Ouissam El Bakouri
- Department of Chemistry-Ångström Laboratory, Box 523Uppsala University 75120 Uppsala Sweden
| | - Kjell Jorner
- Department of Chemistry-Ångström Laboratory, Box 523Uppsala University 75120 Uppsala Sweden
| | - Hui Tong
- Department of Chemistry-BMC, Box 576Uppsala University 75123 Uppsala Sweden
| | | | - Miquel Solà
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de Girona c/ Maria Aurèlia Capmany 69 17003 Girona Catalonia Spain
| | - Henrik Ottosson
- Department of Chemistry-Ångström Laboratory, Box 523Uppsala University 75120 Uppsala Sweden
| |
Collapse
|
86
|
Wei L, Shen C, Hu YZ, Tao HY, Wang CJ. Enantioselective synthesis of multi-nitrogen-containing heterocycles using azoalkenes as key intermediates. Chem Commun (Camb) 2019; 55:6672-6684. [PMID: 31134230 DOI: 10.1039/c9cc02371b] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chiral multi-nitrogen-containing heterocycles, such as pyrazole, imidazole and pyridazine, are widely found in naturally occurring organic compounds and pharmaceuticals, and hence, their stereoselective and efficient synthesis is an important issue in organic synthesis. Out of the variety of methods that have been developed over the past century, the catalytic asymmetric cyclization and cycloaddition reactions are recognized as the most synthetically useful strategies due to their step-, atom- and redox-economic nature. In particular, the recently developed annulation reactions using azoalkenes as key intermediates show their great ability to construct diverse types of multi-nitrogen-containing heterocycles. In this feature article, we critically analyse the strategic development and the efficient transformation of azoalkenes to chiral heterocycles and α-functionalized ketone derivatives since 2010. The plausible mechanism for each reaction model is also discussed.
Collapse
Affiliation(s)
- Liang Wei
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | | | | | | | | |
Collapse
|
87
|
Zhang SC, Lei XX, Yang YJ, Luo YC, Zhang HH, Xu PF. Palladium catalysed [3 + 2]-annulation reaction of vinylcyclopropanes with pentafulvenes: synthesis of polysubstituted spiro[4,4]nona-6,8-dienes. Org Chem Front 2019. [DOI: 10.1039/c9qo00467j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel palladium catalysed [3 + 2]-annulation reaction of vinylcyclopropanes with pentafulvenes has been developed for the synthesis of spiro[4,4]nona-6,8-dienes.
Collapse
Affiliation(s)
- Si-Chen Zhang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- P. R. China
| | - Xin-Xin Lei
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- P. R. China
| | - Yong-jian Yang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- P. R. China
| | - Yong-Chun Luo
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- P. R. China
| | - Huan-Huan Zhang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- P. R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- P. R. China
| |
Collapse
|
88
|
Belen’kii LI, Evdokimenkova YB. The literature of heterocyclic chemistry, part XVII, 2017. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019:337-418. [DOI: 10.1016/bs.aihch.2019.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
89
|
Beckhaus R. Pentafulvene complexes of group four metals: Versatile organometallic building blocks. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
90
|
Schraff S, Sun Y, Orthaber A, Pammer F. Gold(I) Complexes of Fulvenyl‐Functionalized Arylisocyanides. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201801031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sandra Schraff
- Institute of Organic Chemistry II and Advanced Materials Ulm University Albert‐Einstein‐Allee 11 89081 Ulm Germany
| | - Yu Sun
- Fachbereich Chemie Anorganische Chemie Technische Universität Kaiserslautern Erwin‐Schrödinger‐Strasse 54 67663 Kaiserslautern Germany
| | - Andreas Orthaber
- Department of Chemistry Ångström Laboratories Anorganische Chemie Uppsala University BOX 523 75120 Uppsala Sweden
| | - Frank Pammer
- Institute of Organic Chemistry II and Advanced Materials Ulm University Albert‐Einstein‐Allee 11 89081 Ulm Germany
| |
Collapse
|
91
|
Carreras J, Popowski Y, Caballero A, Amir E, Pérez PJ. Catalytic Functionalization of C-H Bonds of Azulene by Carbene/Nitrene Incorporation. J Org Chem 2018; 83:11125-11132. [PMID: 30032616 DOI: 10.1021/acs.joc.8b01731] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The selective catalytic functionalization of the C-H bond of azulene upon incorporation of carbene or nitrene units with metal-based catalysts is described. Ethyl diazoacetate or ArI═NTs are employed as carbene or nitrene precursors, respectively. The azulene derivatives are subsequently employed as building blocks toward more complex structures with potential use as biodegradable materials.
Collapse
Affiliation(s)
- Javier Carreras
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química , Universidad de Huelva , Huelva 21007 , Spain
| | - Yanay Popowski
- Department of Polymers and Plastics Engineering , Shenkar College , Ramat-Gan 52526 , Israel
| | - Ana Caballero
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química , Universidad de Huelva , Huelva 21007 , Spain
| | - Elizabeth Amir
- Department of Polymers and Plastics Engineering , Shenkar College , Ramat-Gan 52526 , Israel
| | - Pedro J Pérez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química , Universidad de Huelva , Huelva 21007 , Spain
| |
Collapse
|
92
|
Manßen M, Dierks A, de Graaff S, Schmidtmann M, Beckhaus R. Bis(η5
:η1
-pentafulvene)niobium(V) Complexes: Efficient Synthons for Niobium Carbene and Imido Derivatives. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Manfred Manßen
- Institut für Chemie; Fakultät für Mathematik und Naturwissenschaften; Carl von Ossietzky Universität Oldenburg; Postfach 2503 26111 Oldenburg Germany
| | - Anna Dierks
- Institut für Chemie; Fakultät für Mathematik und Naturwissenschaften; Carl von Ossietzky Universität Oldenburg; Postfach 2503 26111 Oldenburg Germany
| | - Simon de Graaff
- Institut für Chemie; Fakultät für Mathematik und Naturwissenschaften; Carl von Ossietzky Universität Oldenburg; Postfach 2503 26111 Oldenburg Germany
| | - Marc Schmidtmann
- Institut für Chemie; Fakultät für Mathematik und Naturwissenschaften; Carl von Ossietzky Universität Oldenburg; Postfach 2503 26111 Oldenburg Germany
| | - Rüdiger Beckhaus
- Institut für Chemie; Fakultät für Mathematik und Naturwissenschaften; Carl von Ossietzky Universität Oldenburg; Postfach 2503 26111 Oldenburg Germany
| |
Collapse
|
93
|
Manßen M, Dierks A, de Graaff S, Schmidtmann M, Beckhaus R. Bis(η5
:η1
-pentafulvene)niobium(V) Complexes: Efficient Synthons for Niobium Carbene and Imido Derivatives. Angew Chem Int Ed Engl 2018; 57:12062-12066. [DOI: 10.1002/anie.201805300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/31/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Manfred Manßen
- Institut für Chemie; Fakultät für Mathematik und Naturwissenschaften; Carl von Ossietzky Universität Oldenburg; Postfach 2503 26111 Oldenburg Germany
| | - Anna Dierks
- Institut für Chemie; Fakultät für Mathematik und Naturwissenschaften; Carl von Ossietzky Universität Oldenburg; Postfach 2503 26111 Oldenburg Germany
| | - Simon de Graaff
- Institut für Chemie; Fakultät für Mathematik und Naturwissenschaften; Carl von Ossietzky Universität Oldenburg; Postfach 2503 26111 Oldenburg Germany
| | - Marc Schmidtmann
- Institut für Chemie; Fakultät für Mathematik und Naturwissenschaften; Carl von Ossietzky Universität Oldenburg; Postfach 2503 26111 Oldenburg Germany
| | - Rüdiger Beckhaus
- Institut für Chemie; Fakultät für Mathematik und Naturwissenschaften; Carl von Ossietzky Universität Oldenburg; Postfach 2503 26111 Oldenburg Germany
| |
Collapse
|
94
|
Schraff S, Sun Y, Pammer F. Fulvenyl-Functionalized Polyisocyanides: Cross-Conjugated Electrochromic Polymers with Variable Optical and Electrochemical Properties. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00977] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sandra Schraff
- Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Yu Sun
- Technische
Universität
Kaiserslautern, Erwin-Schrödinger-Strasse 54, D-67663 Kaiserslautern, Germany
| | - Frank Pammer
- Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| |
Collapse
|
95
|
Gómez-Pantoja M, González-Pérez JI, Martín A, Mena M, Santamaría C, Temprado M. Reactivity of Tuck-over Titanium Oxo Complexes with Isocyanides. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- María Gómez-Pantoja
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, 28805 Alcalá de Henares, Madrid, Spain
- Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, Campus Universitario, 28805 Alcalá de Henares, Madrid, Spain
| | - Juan. I. González-Pérez
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, 28805 Alcalá de Henares, Madrid, Spain
- Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, Campus Universitario, 28805 Alcalá de Henares, Madrid, Spain
| | - Avelino Martín
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, 28805 Alcalá de Henares, Madrid, Spain
- Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, Campus Universitario, 28805 Alcalá de Henares, Madrid, Spain
| | - Miguel Mena
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, 28805 Alcalá de Henares, Madrid, Spain
- Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, Campus Universitario, 28805 Alcalá de Henares, Madrid, Spain
| | - Cristina Santamaría
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, 28805 Alcalá de Henares, Madrid, Spain
- Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, Campus Universitario, 28805 Alcalá de Henares, Madrid, Spain
| | - Manuel Temprado
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Campus Universitario, 28805 Alcalá de Henares, Madrid, Spain
- Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, Campus Universitario, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
96
|
Ping L, Bak J, Kim Y, Bouffard J. Addition, Substitution, and Ring-Contraction Reactions of Quinones with N-Heterocyclic Carbenes. J Org Chem 2018; 83:9240-9249. [DOI: 10.1021/acs.joc.8b01236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lucy Ping
- Department of Chemistry and Nano Science (BK 21 Plus), Ewha Womans University, 03760 Seoul, Korea
| | - JungMin Bak
- Department of Chemistry and Nano Science (BK 21 Plus), Ewha Womans University, 03760 Seoul, Korea
| | - Youngmee Kim
- Department of Chemistry and Nano Science (BK 21 Plus), Ewha Womans University, 03760 Seoul, Korea
| | - Jean Bouffard
- Department of Chemistry and Nano Science (BK 21 Plus), Ewha Womans University, 03760 Seoul, Korea
| |
Collapse
|
97
|
Bejcek LP, Murelli RP. Oxidopyrylium [5+2] Cycloaddition Chemistry: Historical Perspective and Recent Advances (2008-2018). Tetrahedron 2018; 74:2501-2521. [PMID: 30455508 PMCID: PMC6238658 DOI: 10.1016/j.tet.2018.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Lauren P Bejcek
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, NY, Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| | - Ryan P Murelli
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, NY, Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| |
Collapse
|
98
|
Wei L, Zhu Q, Song ZM, Liu K, Wang CJ. Catalytic asymmetric inverse electron demand Diels-Alder reaction of fulvenes with azoalkenes. Chem Commun (Camb) 2018; 54:2506-2509. [PMID: 29459924 DOI: 10.1039/c7cc09896k] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented copper(i)-catalyzed asymmetric inverse electron demand Diels-Alder reaction of azoalkenes with fulvenes is reported. This methodology offers a directed entry to synthesize bicyclic tetrapyridazine derivatives in good yield with exclusive regioselectivity and excellent stereoselectivity.
Collapse
Affiliation(s)
- Liang Wei
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | | | | | | | | |
Collapse
|
99
|
Saranya S, Baiju TV, Gopalan G, Radhakrishnan KV. Lewis acid catalyzed Povarov reaction of pentafulvenes and spiro[2,4]-hepta-[4,6]-diene: An efficient access to cyclopentene fused quinolines. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2018.1427270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Shreyass Saranya
- Organic Chemistry Section, Chemical Science and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram, India
| | - Thekke Veettil Baiju
- Organic Chemistry Section, Chemical Science and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram, India
| | - Greeshma Gopalan
- Organic Chemistry Section, Chemical Science and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram, India
| | - Kokkuvayil Vasu Radhakrishnan
- Organic Chemistry Section, Chemical Science and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram, India
| |
Collapse
|
100
|
Banerjee S, Soldevila-Barreda JJ, Wolny JA, Wootton CA, Habtemariam A, Romero-Canelón I, Chen F, Clarkson GJ, Prokes I, Song L, O'Connor PB, Schünemann V, Sadler PJ. New activation mechanism for half-sandwich organometallic anticancer complexes. Chem Sci 2018; 9:3177-3185. [PMID: 29732100 PMCID: PMC5916112 DOI: 10.1039/c7sc05058e] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 02/18/2018] [Indexed: 01/12/2023] Open
Abstract
The Cp x C-H protons in certain organometallic RhIII half-sandwich anticancer complexes [(η5-Cp x )Rh(N,N')Cl]+, where Cp x = Cp*, phenyl or biphenyl-Me4Cp, and N,N' = bipyridine, dimethylbipyridine, or phenanthroline, can undergo rapid sequential deuteration of all 15 Cp* methyl protons in aqueous media at ambient temperature. DFT calculations suggest a mechanism involving abstraction of a Cp* proton by the Rh-hydroxido complex, followed by sequential H/D exchange, with the Cp* rings behaving like dynamic molecular 'twisters'. The calculations reveal the crucial role of pπ orbitals of N,N'-chelated ligands in stabilizing deprotonated Cp x ligands, and also the accessibility of RhI-fulvene intermediates. They also provide insight into why biologically-inactive complexes such as [(Cp*)RhIII(en)Cl]+ and [(Cp*)IrIII(bpy)Cl]+ do not have activated Cp* rings. The thiol tripeptide glutathione (γ-l-Glu-l-Cys-Gly, GSH) and the activated dienophile N-methylmaleimide, (NMM) did not undergo addition reactions with the proposed RhI-fulvene, although they were able to control the extent of Cp* deuteration. We readily trapped and characterized RhI-fulvene intermediates by Diels-Alder [4+2] cyclo-addition reactions with the natural biological dienes isoprene and conjugated (9Z,11E)-linoleic acid in aqueous media, including cell culture medium, the first report of a Diels-Alder reaction of a metal-bound fulvene in aqueous solution. These findings will introduce new concepts into the design of organometallic Cp* anticancer complexes with novel mechanisms of action.
Collapse
Affiliation(s)
- Samya Banerjee
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | | | - Juliusz A Wolny
- Department of Physics , University of Kaiserslautern , Erwin-Schrödinger-Straße 46 , 67663 Kaiserslautern , Germany
| | - Christopher A Wootton
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Abraha Habtemariam
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Isolda Romero-Canelón
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Feng Chen
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Guy J Clarkson
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Ivan Prokes
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Lijiang Song
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Peter B O'Connor
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Volker Schünemann
- Department of Physics , University of Kaiserslautern , Erwin-Schrödinger-Straße 46 , 67663 Kaiserslautern , Germany
| | - Peter J Sadler
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| |
Collapse
|