51
|
Post SJ, Keohane CE, Rossiter LM, Kaplan AR, Khowsathit J, Matuska K, Karanicolas J, Wuest WM. Target-Based Design of Promysalin Analogues Identifies a New Putative Binding Cleft in Succinate Dehydrogenase. ACS Infect Dis 2020; 6:1372-1377. [PMID: 32286041 PMCID: PMC7293565 DOI: 10.1021/acsinfecdis.0c00024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Promysalin is a small-molecule natural product that specifically inhibits growth of the Gram-negative pathogen Pseudomonas aeruginosa (PA). This activity holds promise in the treatment of multidrug resistant infections found in immunocompromised patients with chronic illnesses, such as cystic fibrosis. In 2015, our lab completed the first total synthesis; subsequent analogue design and SAR investigation enabled identification of succinate dehydrogenase (Sdh) as the biological target in PA. Herein, we report the target-guided design of new promysalin analogues with varying alkyl chains, one of which is on par with our most potent analogue to date. Computational docking revealed that some analogues have a different orientation in the Sdh binding pocket, placing the terminal carbon proximal to a tryptophan residue. This inspired the design of an extended side chain analogue bearing a terminal phenyl moiety, providing a basis for the design of future analogues.
Collapse
Affiliation(s)
- Savannah J Post
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Colleen E Keohane
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Lauren M Rossiter
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Anna R Kaplan
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jittasak Khowsathit
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, United States
| | - Katie Matuska
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - John Karanicolas
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, United States
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Emory Antibiotic Resistance Center, Emory School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
52
|
Yang Y, Hu H, Guo Y, Xia A, Xu J, Zhang X. Supramolecular Polymeric Radicals: Highly Promoted Formation and Stabilization of Naphthalenediimide Radical Anions. Macromol Rapid Commun 2020; 41:e2000080. [DOI: 10.1002/marc.202000080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/17/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Yuchong Yang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing 100084 China
| | - Hao Hu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yuanyuan Guo
- The Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Andong Xia
- The Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Jiang‐Fei Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing 100084 China
- State Key Lab of Supramolecular Structure and Materials Jilin University Changchun 130012 China
| |
Collapse
|
53
|
Hansen E, Karslake J, Woods RJ, Read AF, Wood KB. Antibiotics can be used to contain drug-resistant bacteria by maintaining sufficiently large sensitive populations. PLoS Biol 2020; 18:e3000713. [PMID: 32413038 PMCID: PMC7266357 DOI: 10.1371/journal.pbio.3000713] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/02/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022] Open
Abstract
Standard infectious disease practice calls for aggressive drug treatment that rapidly eliminates the pathogen population before resistance can emerge. When resistance is absent, this elimination strategy can lead to complete cure. However, when resistance is already present, removing drug-sensitive cells as quickly as possible removes competitive barriers that may slow the growth of resistant cells. In contrast to the elimination strategy, a containment strategy aims to maintain the maximum tolerable number of pathogens, exploiting competitive suppression to achieve chronic control. Here, we combine in vitro experiments in computer-controlled bioreactors with mathematical modeling to investigate whether containment strategies can delay failure of antibiotic treatment regimens. To do so, we measured the "escape time" required for drug-resistant Escherichia coli populations to eclipse a threshold density maintained by adaptive antibiotic dosing. Populations containing only resistant cells rapidly escape the threshold density, but we found that matched resistant populations that also contain the maximum possible number of sensitive cells could be contained for significantly longer. The increase in escape time occurs only when the threshold density-the acceptable bacterial burden-is sufficiently high, an effect that mathematical models attribute to increased competition. The findings provide decisive experimental confirmation that maintaining the maximum number of sensitive cells can be used to contain resistance when the size of the population is sufficiently large.
Collapse
Affiliation(s)
- Elsa Hansen
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jason Karslake
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Robert J. Woods
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrew F. Read
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences and Departments of Biology and Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kevin B. Wood
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Physics, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
54
|
Sah PP, Bhattacharya S, Banerjee A, Ray S. Identification of novel therapeutic target and epitopes through proteome mining from essential hypothetical proteins in Salmonella strains: An In silico approach towards antivirulence therapy and vaccine development. INFECTION GENETICS AND EVOLUTION 2020; 83:104315. [PMID: 32276082 DOI: 10.1016/j.meegid.2020.104315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
Abstract
Salmonella strains are responsible for a huge mortality rate through foodborne ailment in the world that necessitated the discovery of novel drugs and vaccines. Essential hypothetical proteins (EHPs), whose structures and functions were previously unknown, could serve as potential therapeutic and vaccine targets. Antivirulence therapy shall emerge as a superior therapeutic approach that uses virulence factors as drug targets. This study annotated the biological functions of 96 out of total 106 essential hypothetical proteins in five strains of Salmonella and classified into nine important protein categories. 34 virulence factors were predicted among the EHPs, out of which, 11 were identified to be pathogen specific potential drug targets for antivirulence therapy. These targets were non-homologous to both human and gut microbiota proteome to avoid cross-reactivity with them. Seven identified targets had druggable property, while the rest four targets were novel targets. Four identified targets (DEG10320148, DEG10110027, DEG10110040 and DEG10110142) had antigenic properties and were further classified as: two membrane-bound Lipid-binding transmembrane proteins, a Zinc-binding membrane protein and an extracellular glycosylase. These targets could be potentially used for the development of subunit vaccines. The study further identified 11 highly conserved and exposed epitope sequences from these 4 vaccine targets. The three-dimensional structures of the vaccine targets were also elucidated along with highlighting the conformation of the epitopes. This study identified potential therapeutic targets for antivirulence therapy against Salmonella. It would therefore instigate in novel drug designing as well as provide important leads to new Salmonella vaccine development.
Collapse
Affiliation(s)
| | | | - Arundhati Banerjee
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, India
| | - Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India.
| |
Collapse
|
55
|
Bhattacharya S, Ghosh P, Banerjee D, Banerjee A, Ray S. In Silico Drug Target Discovery Through Proteome Mining from M. tuberculosis: An Insight into Antivirulent Therapy. Comb Chem High Throughput Screen 2020; 23:253-268. [PMID: 32072892 DOI: 10.2174/1386207323666200219120903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/23/2020] [Accepted: 02/01/2020] [Indexed: 11/22/2022]
Abstract
AIM AND OBJECTIVE One of the challenges to conventional therapies against Mycobacterium tuberculosis is the development of multi-drug resistant pathogenic strains. This study was undertaken to explore new therapeutic targets for the revolutionary antivirulence therapy utilizing the pathogen's essential hypothetical proteins, serving as virulence factors, which is the essential first step in novel drug designing. METHODS Functional annotations of essential hypothetical proteins from Mycobacterium tuberculosis (H37Rv strain) were performed through domain annotation, Gene Ontology analysis, physicochemical characterization and prediction of subcellular localization. Virulence factors among the essential hypothetical proteins were predicted, among which pathogen-specific drug target candidates, non-homologous to human and gut microbiota, were identified. This was followed by druggability and spectrum analysis of the identified targets. RESULTS AND CONCLUSION The study successfully assigned functions of 83 essential hypothetical proteins of Mycobacterium tuberculosis, among which 25 were identified as virulence factors. Out of 25, 12 virulence factors were observed as potential pathogen-specific drug target candidates. Nine potential targets had druggable properties and rest three were considered as novel targets. Exploration of these targets will provide new insights into future drug development. Characterization of subcellular localizations revealed that most of the predicted targets were cytoplasmic which could be ideal for intracellular drugs, while two drug targets were membranebound, ideal for vaccines. Spectrum analysis identified one broad-spectrum and 11 narrowspectrum targets. This study would, therefore, instigate designing novel therapeutics for antivirulence therapy, which have the potential to serve as revolutionary treatment instead of conventional antibiotic therapies to overcome the lethality of antibiotic-resistant strains.
Collapse
Affiliation(s)
| | - Puja Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | | | - Arundhati Banerjee
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, India
| | - Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| |
Collapse
|
56
|
Ma Y, Wang C, Li Y, Li J, Wan Q, Chen J, Tay FR, Niu L. Considerations and Caveats in Combating ESKAPE Pathogens against Nosocomial Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901872. [PMID: 31921562 PMCID: PMC6947519 DOI: 10.1002/advs.201901872] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/04/2019] [Indexed: 05/19/2023]
Abstract
ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are among the most common opportunistic pathogens in nosocomial infections. ESKAPE pathogens distinguish themselves from normal ones by developing a high level of antibiotic resistance that involves multiple mechanisms. Contemporary therapeutic strategies which are potential options in combating ESKAPE bacteria need further investigation. Herein, a broad overview of the antimicrobial research on ESKAPE pathogens over the past five years is provided with prospective clinical applications.
Collapse
Affiliation(s)
- Yu‐Xuan Ma
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Chen‐Yu Wang
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Yuan‐Yuan Li
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Jing Li
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Qian‐Qian Wan
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Ji‐Hua Chen
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Franklin R. Tay
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
- The Graduate SchoolAugusta University1430, John Wesley Gilbert DriveAugustaGA30912‐1129USA
| | - Li‐Na Niu
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
- The Graduate SchoolAugusta University1430, John Wesley Gilbert DriveAugustaGA30912‐1129USA
| |
Collapse
|
57
|
Shan J, Li X, Yang K, Xiu W, Wen Q, Zhang Y, Yuwen L, Weng L, Teng Z, Wang L. Efficient Bacteria Killing by Cu 2WS 4 Nanocrystals with Enzyme-like Properties and Bacteria-Binding Ability. ACS NANO 2019; 13:13797-13808. [PMID: 31696705 DOI: 10.1021/acsnano.9b03868] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Antibacterial agents with high antibacterial efficiency and bacteria-binding capability are highly desirable. Herein, we describe the successful preparation of Cu2WS4 nanocrystals (CWS NCs) with excellent antibacterial activity. CWS NCs with small size (∼20 nm) achieve more than 5 log (>99.999%) inactivation efficiency of both Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) at low concentration (<2 μg mL-1) with or without ambient light, which is much better than most of the reported antibacterial nanomaterials (including Ag, TiO2, etc.) and even better than the widely used antibiotics (vancomycin and daptomycin). Antibacterial mechanism study showed that CWS NCs have both enzyme-like (oxidase and peroxidase) properties and selective bacteria-binding ability, which greatly facilitate the production of reactive oxygen species to kill bacteria. Animal experiments further indicated that CWS NCs can effectively treat wounds infected with methicillin-resistant Staphylococcus aureus (MRSA). This work demonstrates that CWS NCs have the potential as effective antibacterial nanozymes for the treatment of bacterial infection.
Collapse
Affiliation(s)
- Jingyang Shan
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , China
| | - Xiao Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , China
| | - Kaili Yang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , China
| | - Weijun Xiu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , China
| | - Qirui Wen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , China
| | - Yuqian Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , China
| | - Lihui Yuwen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , China
| | - Lixing Weng
- School of Geography and Biological Information , Nanjing University of Posts and Telecommunications , Nanjing 210023 , China
| | - Zhaogang Teng
- Department of Medical Imaging, Jinling Hospital, School of Medicine , Nanjing University , Nanjing 210002 , China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , China
| |
Collapse
|
58
|
Gao F, Xiao J, Huang G. Current scenario of tetrazole hybrids for antibacterial activity. Eur J Med Chem 2019; 184:111744. [DOI: 10.1016/j.ejmech.2019.111744] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/05/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022]
|
59
|
Sun B, Xi Z, Wu F, Song S, Huang X, Chu X, Wang Z, Wang Y, Zhang Q, Meng N, Zhou N, Shen J. Quaternized Chitosan-Coated Montmorillonite Interior Antimicrobial Metal-Antibiotic in Situ Coordination Complexation for Mixed Infections of Wounds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15275-15286. [PMID: 31665888 DOI: 10.1021/acs.langmuir.9b02821] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Conventional drug delivery systems for natural clay materials still face critical challenges in their practical application, including multiple bacterial infections, combined infection of bacteria and fungi, and low sterilization efficiency. In this work, we address these challenges using the multifunctional montmorillonite nanosheet-based (MMT-based) drug nanoplatform, which involves the antibiotic 5-fluorocytosine (5-FC), antibacterial metal copper ions, and quaternized chitosan (QCS). Composite material QCS/MMT/5-FCCu can can strongly inhibit Staphylococcus aureus (a typical Gram-positive bacterium), Escherichia coli (a typical Gram-negative bacterium), and Candida albicans (a fungus) because 5-FC coordinates with copper ions in situ and due to the deposition of QCS. The subsequent drug release behavior of 5-FCCu was studied, and the results show an initial high concentration kills microorganisms and long-acting sustained release inhibition. Moreover, in vivo wound experiments and toxicity experiments show the promotion of wound healing and excellent biocompatibility. As a demonstration of the utility of the latter, we have shown that the MMT-based smart platform can be used for the treatment of mixed infections of wounds.
Collapse
Affiliation(s)
- Baohong Sun
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Zhenhua Xi
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Fan Wu
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| | - Saijie Song
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Xinrong Huang
- School of Food Science and Pharmaceutical Engineering , Nanjing Normal University , Nanjing 210023 , China
| | - Xiaohong Chu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Zhixuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Yuli Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Qicheng Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Na Meng
- School of Food Science and Pharmaceutical Engineering , Nanjing Normal University , Nanjing 210023 , China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| |
Collapse
|
60
|
Annunziato G. Strategies to Overcome Antimicrobial Resistance (AMR) Making Use of Non-Essential Target Inhibitors: A Review. Int J Mol Sci 2019; 20:E5844. [PMID: 31766441 PMCID: PMC6928725 DOI: 10.3390/ijms20235844] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/23/2022] Open
Abstract
Antibiotics have always been considered as one of the most relevant discoveries of the twentieth century. Unfortunately, the dawn of the antibiotic era has sadly corresponded to the rise of the phenomenon of antimicrobial resistance (AMR), which is a natural process whereby microbes evolve in such a way to withstand the action of drugs. In this context, the identification of new potential antimicrobial targets and/or the identification of new chemical entities as antimicrobial drugs are in great demand. To date, among the many possible approaches used to deal with antibiotic resistance is the use of antibiotic adjuvants that hit bacterial non-essential targets. In this review, the author focuses on the discovery of antibiotic adjuvants and on new tools to study and reduce the prevalence of resistant bacterial infections.
Collapse
Affiliation(s)
- Giannamaria Annunziato
- Probes for Targets Group (P4T group), Department of food and Drug, University of Parma, 43124 Parma, Italy
| |
Collapse
|
61
|
Kang M, Zhou C, Wu S, Yu B, Zhang Z, Song N, Lee MMS, Xu W, Xu FJ, Wang D, Wang L, Tang BZ. Evaluation of Structure-Function Relationships of Aggregation-Induced Emission Luminogens for Simultaneous Dual Applications of Specific Discrimination and Efficient Photodynamic Killing of Gram-Positive Bacteria. J Am Chem Soc 2019; 141:16781-16789. [PMID: 31553608 DOI: 10.1021/jacs.9b07162] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bacterial infectious diseases, especially those caused by Gram-positive bacteria, have been seriously threatening human health. Preparation of a multifunctional system bearing both rapid bacterial differentiation and effective antibacterial effects is highly in demand, but remains a severe challenge. Herein, we rationally designed and successfully developed a sequence of aggregation-induced emission luminogens (AIEgens) with orderly enhanced D-A strength. Evaluation of structure-function relationships reveals that AIEgens having intrinsic positive charge and proper ClogP value are able to stain Gram-positive bacteria. Meanwhile, one of the presented AIEgens (TTPy) can generate reactive oxygen species (ROS) in extraordinarily high efficiency under white light irradiation due to the smaller singlet-triplet energy gap. Thanks to the NIR emission, excellent specificity to Gram-positive bacteria, and effective ROS generation efficiency, TTPy has been proved to perform well in selective photodynamic killing of Gram-positive bacteria in vitro, such as S. aureus and S. epidermidis, even in S. aureus-infected rat wounds.
Collapse
Affiliation(s)
- Miaomiao Kang
- Center for AIE Research, College of Materials Science and Engineering , Shenzhen University , Shenzhen 518060 , China.,Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Chengcheng Zhou
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Shuangmei Wu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Bingran Yu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Zhijun Zhang
- Center for AIE Research, College of Materials Science and Engineering , Shenzhen University , Shenzhen 518060 , China.,Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Nan Song
- Center for AIE Research, College of Materials Science and Engineering , Shenzhen University , Shenzhen 518060 , China.,Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Michelle Mei Suet Lee
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Wenhan Xu
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Fu-Jian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Lei Wang
- Center for AIE Research, College of Materials Science and Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Ben Zhong Tang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| |
Collapse
|
62
|
Qing G, Zhao X, Gong N, Chen J, Li X, Gan Y, Wang Y, Zhang Z, Zhang Y, Guo W, Luo Y, Liang XJ. Thermo-responsive triple-function nanotransporter for efficient chemo-photothermal therapy of multidrug-resistant bacterial infection. Nat Commun 2019; 10:4336. [PMID: 31551496 PMCID: PMC6760232 DOI: 10.1038/s41467-019-12313-3] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022] Open
Abstract
New strategies with high antimicrobial efficacy against multidrug-resistant bacteria are urgently desired. Herein, we describe a smart triple-functional nanostructure, namely TRIDENT (Thermo-Responsive-Inspired Drug-Delivery Nano-Transporter), for reliable bacterial eradication. The robust antibacterial effectiveness is attributed to the integrated fluorescence monitoring and synergistic chemo-photothermal killing. We notice that temperature rises generated by near-infrared irradiation did not only melt the nanotransporter via a phase change mechanism, but also irreversibly damaged bacterial membranes to facilitate imipenem permeation, thus interfering with cell wall biosynthesis and eventually leading to rapid bacterial death. Both in vitro and in vivo evidence demonstrate that even low doses of imipenem-encapsulated TRIDENT could eradicate clinical methicillin-resistant Staphylococcus aureus, whereas imipenem alone had limited effect. Due to rapid recovery of infected sites and good biosafety we envision a universal antimicrobial platform to fight against multidrug-resistant or extremely drug-resistant bacteria. Antibiotic resistance is a major global health challenge. Here, the authors report on a thermoresponsive delivery system for combined photothermal and antibiotic delivery with fluorescent tracking abilities and demonstrate application against antibiotic resistant bacteria in vitro and in vivo.
Collapse
Affiliation(s)
- Guangchao Qing
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China.,Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China.,Department of Materials and Energy, Southwest University, No. 2 Tiansheng Street, Beibei District, Chongqing, 400715, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xianxian Zhao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, 400038, P. R. China
| | - Ningqiang Gong
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jing Chen
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xianlei Li
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yaling Gan
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Yongchao Wang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhen Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuxuan Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Weisheng Guo
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P.R. China.
| | - Yang Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China. .,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Department of Nuclear Medicine, the Affiliated Hospital of Southwest Medical University, Sichuan, 646000, P. R. China.
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| |
Collapse
|
63
|
Zhang H, Jiang JM, Han L, Lao YZ, Zheng D, Chen YY, Wan SJ, Zheng CW, Tan HS, Li ZG, Xu HX. Uncariitannin, a polyphenolic polymer from Uncaria gambier, attenuates Staphylococcus aureus virulence through an MgrA-mediated regulation of α-hemolysin. Pharmacol Res 2019; 147:104328. [PMID: 31288080 DOI: 10.1016/j.phrs.2019.104328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 10/26/2022]
Abstract
A global transcriptional regulator, MgrA, was previously identified as a key determinant of virulence in Staphylococcus aureus. An 80% EtOH extract of Uncaria gambier was found to attenuate the virulence of S. aureus via its effects on MgrA. Using bioassay-guided fractionation, a polyphenolic polymer, uncariitannin, was found to be the main bioactive constituent of the extract, and its structure was characterized using spectral and chemical analysis. The molecular weight and polydispersity of uncariitannin were determined by gel permeation chromatography-refractive index-light scattering analysis. An electrophoretic mobility shift assay showed that uncariitannin could effectively inhibit the interaction of MgrA with DNA in a dose-dependent manner. Treatment with uncariitannin could decrease the mRNA and protein levels of Hla in both the S. aureus Newman and USA300 LAC strains. Further analysis of Hla expression levels in the Newman ΔmgrA and Newman ΔmgrA/pYJ335-mgrA strains indicated that uncariitannin altered Hla expression primarily in an MgrA-dependent manner. A mouse model of infection indicated that uncariitannin could attenuate MRSA virulence. In conclusion, uncariitannin may be a potential candidate for further development as an antivirulence agent for the treatment of S. aureus infection.
Collapse
Affiliation(s)
- Hong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, PR China
| | - Jia-Ming Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, PR China
| | - Li Han
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, PR China
| | - Yuan-Zhi Lao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, PR China
| | - Dan Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, PR China
| | - Yu-Yu Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, PR China
| | - Shi-Jie Wan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, PR China
| | - Chang-Wu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, PR China
| | - Hong-Sheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, PR China
| | - Zi-Gang Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, PR China.
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, PR China.
| |
Collapse
|
64
|
|
65
|
Liu TT, Yang T, Gao MN, Chen KX, Yang S, Yu KQ, Jiang HL. The inhibitory mechanism of aurintricarboxylic acid targeting serine/threonine phosphatase Stp1 in Staphylococcus aureus: insights from molecular dynamics simulations. Acta Pharmacol Sin 2019; 40:850-858. [PMID: 30796354 PMCID: PMC6786342 DOI: 10.1038/s41401-019-0216-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/17/2019] [Indexed: 12/19/2022] Open
Abstract
Serine/threonine phosphatase (Stp1) is a member of the bacterial Mg2+- or Mn2+- dependent protein phosphatase/protein phosphatase 2C family, which is involved in the regulation of Staphylococcus aureus virulence. Aurintricarboxylic acid (ATA) is a known Stp1 inhibitor with an IC50 of 1.03 μM, but its inhibitory mechanism has not been elucidated in detail because the Stp1-ATA cocrystal structure has not been determined thus far. In this study, we performed 400 ns molecular dynamics (MD) simulations of the apo-Stp1 and Stp1-ATA complex models. During MD simulations, the flap subdomain of the Stp1-ATA complex experienced a clear conformational transition from an open state to a closed state, whereas the flap domain of apo-Stp1 changed from an open state to a semi-open state. In the Stp1-ATA complex model, the hydrogen bond (H-bond) between D137 and N142 disappeared, whereas critical H-bond interactions were formed between Q160 and H13, Q160/R161 and ATA, as well as N162 and D198. Finally, four residues (D137, N142, Q160, and R161) in Stp1 were mutated to alanine and the mutant enzymes were assessed using phosphate enzyme activity assays, which confirmed their important roles in maintaining Stp1 activity. This study indicated the inhibitory mechanism of ATA targeting Stp1 using MD simulations and sheds light on the future design of allosteric Stp1 inhibitors.
Collapse
Affiliation(s)
- Ting-Ting Liu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Teng Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Mei-Na Gao
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai-Xian Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China.
| | - Kun-Qian Yu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hua-Liang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
66
|
Affiliation(s)
- Bowen Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| |
Collapse
|
67
|
Gao F, Wang T, Gao M, Zhang X, Liu Z, Zhao S, Lv Z, Xiao J. Benzofuran-isatin-imine hybrids tethered via different length alkyl linkers: Design, synthesis and in vitro evaluation of anti-tubercular and anti-bacterial activities as well as cytotoxicity. Eur J Med Chem 2019; 165:323-331. [DOI: 10.1016/j.ejmech.2019.01.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
|
68
|
Shi Y, Zhang J, Tian X, Wu X, Li T, Lu C, Shen Y. Isolation of 11,12- seco-Rifamycin W Derivatives Reveals a Cleavage Pattern of the Rifamycin Ansa Chain. Org Lett 2019; 21:900-903. [PMID: 30714736 DOI: 10.1021/acs.orglett.8b03792] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study reported the isolation and characterization of 11 rifamycin congeners including six new ones (1-6) from the agar fermentation extract of Amycolatopsis mediterranei S699. Compounds 1 and 2 are rifamycin glycosides named as rifamycinosides A and B, respectively. Their polyketide skeleton represents a novel cleavage pattern of the rifamycin ansa chain. Compounds 6 and 8 showed potential T3SS inhibitory activity, and 6 induced G2/M phase arrest and caused DNA damage in HCT116 cells.
Collapse
Affiliation(s)
- Yanrong Shi
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , No. 44 West Wenhua Road , Jinan , Shandong 250012 , P.R. China
| | - Juanli Zhang
- Department of Pharmacy, Xijing Hospital , The Fourth Military Medical University , Changle West Street 15 , Xi'an , Shaanxi 710032 , P.R. China
| | - Xiuyu Tian
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , No. 44 West Wenhua Road , Jinan , Shandong 250012 , P.R. China
| | - Xingkang Wu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , No. 44 West Wenhua Road , Jinan , Shandong 250012 , P.R. China.,Modern Research Center for Traditional Chinese Medicine , Shanxi University , No. 92, Wucheng Road , Taiyuan , Shanxi 030006 , P.R. China
| | - Tianhong Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , No. 44 West Wenhua Road , Jinan , Shandong 250012 , P.R. China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , No. 44 West Wenhua Road , Jinan , Shandong 250012 , P.R. China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , No. 44 West Wenhua Road , Jinan , Shandong 250012 , P.R. China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Academic City , No. 3491 Platina Way , Hitech Zone, Guiyang , Guizhou 550014 , P.R. China
| |
Collapse
|
69
|
Li X, Bai H, Yang Y, Yoon J, Wang S, Zhang X. Supramolecular Antibacterial Materials for Combatting Antibiotic Resistance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805092. [PMID: 30536445 DOI: 10.1002/adma.201805092] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 08/24/2018] [Indexed: 05/07/2023]
Abstract
Antibiotic-resistant bacteria have emerged as a severe threat to human health. As effective antibacterial therapies, supramolecular materials display unprecedented advantages because of the flexible and tunable nature of their noncovalent interactions with biomolecules and the ability to incorporate various active agents in their platforms. Herein, supramolecular antibacterial materials are discussed using a format that focuses on their fundamental active elements and on recent advances including material selection, fabrication methods, structural characterization, and activity performance.
Collapse
Affiliation(s)
- Xingshu Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, South Korea
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuchong Yang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, South Korea
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xi Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
70
|
Garland M, Babin BM, Miyashita SI, Loscher S, Shen Y, Dong M, Bogyo M. Covalent Modifiers of Botulinum Neurotoxin Counteract Toxin Persistence. ACS Chem Biol 2019; 14:76-87. [PMID: 30571080 DOI: 10.1021/acschembio.8b00937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Botulinum neurotoxins (BoNTs) are the most potent toxins known to man and a significant threat as weapons of bioterrorism. BoNTs contain a metalloprotease domain that blocks neurotransmitter release in nerve terminals, resulting in a descending, flaccid paralysis with a 5-10% mortality rate. Existing treatment options cannot access or neutralize the toxin following its endocytosis, so there is a clear need to develop novel therapies. Numerous substrate-based and zinc-chelating small-molecule inhibitors have been reported; however, none have progressed to the clinic. This is likely due to the difficulty that reversible inhibitors have in achieving sustained inhibition of the toxin, which has a half-life of months in vivo. An alternative strategy for mitigating BoNT persistence is covalent, irreversible inhibition of toxin function. However, few examples of covalent BoNT inhibitors have been reported. Here, we describe a competition-based screen to identify covalent modifiers of the conserved active-site-adjacent cysteine C165 in the BoNT/A serotype. We found that compounds containing cysteine-reactive electrophiles designed to target cysteine proteases failed to bind C165 while selenide compounds were efficient covalent binders of this cysteine. Importantly, covalent modification at C165 resulted in sustained, irreversible inhibition of BoNT/A protease activity. Covalent selenide inhibitors were nontoxic and protective in a neuronal assay of intoxication, making them promising new scaffolds for the study of the BoNT/A toxin as well as for the design of novel therapy agents.
Collapse
Affiliation(s)
- Megan Garland
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California 94305, United States
| | | | - Shin-Ichiro Miyashita
- Department of Urology, Boston Children’s Hospital,
and Department of Microbiology and Immunobiology, Department of Surgery,
Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | - Yi Shen
- Department of Urology, Boston Children’s Hospital,
and Department of Microbiology and Immunobiology, Department of Surgery,
Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Min Dong
- Department of Urology, Boston Children’s Hospital,
and Department of Microbiology and Immunobiology, Department of Surgery,
Harvard Medical School, Boston, Massachusetts 02115, United States
| | | |
Collapse
|
71
|
Hu YY, Yadav Bheemanaboina RR, Battini N, Zhou CH. Sulfonamide-Derived Four-Component Molecular Hybrids as Novel DNA-Targeting Membrane Active Potentiators against Clinical Escherichia coli. Mol Pharm 2019; 16:1036-1052. [DOI: 10.1021/acs.molpharmaceut.8b01021] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuan-Yuan Hu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Rammohan R. Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
72
|
Mahon CS, Wildsmith GC, Haksar D, de Poel E, Beekman JM, Pieters RJ, Webb ME, Turnbull WB. A ‘catch-and-release’ receptor for the cholera toxin. Faraday Discuss 2019; 219:112-127. [DOI: 10.1039/c9fd00017h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thermoresponsive receptors for the recognition unit of the cholera toxin (CTB) can recognise the protein with nanomolar affinity. An increase in temperature can drastically reduce their avidity, enabling on-demand release of CTB.
Collapse
Affiliation(s)
- Clare S. Mahon
- School of Chemistry and Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds
- UK
- Department of Chemistry
| | - Gemma C. Wildsmith
- School of Chemistry and Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds
- UK
| | - Diksha Haksar
- Department of Chemical Biology & Drug Discovery
- Utrecht Institute for Pharmaceutical Sciences
- Utrecht University
- Utrecht
- The Netherlands
| | - Eyleen de Poel
- Department of Pediatric Pulmonology
- Wilhelmina Children’s Hospital and Regenerative Medicine Center Utrecht
- University Medical Centre Utrecht
- Utrecht
- The Netherlands
| | - Jeffrey M. Beekman
- Department of Pediatric Pulmonology
- Wilhelmina Children’s Hospital and Regenerative Medicine Center Utrecht
- University Medical Centre Utrecht
- Utrecht
- The Netherlands
| | - Roland J. Pieters
- Department of Chemical Biology & Drug Discovery
- Utrecht Institute for Pharmaceutical Sciences
- Utrecht University
- Utrecht
- The Netherlands
| | - Michael E. Webb
- School of Chemistry and Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds
- UK
| | - W. Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds
- UK
- Department of Chemistry
| |
Collapse
|
73
|
Molecules that Inhibit Bacterial Resistance Enzymes. Molecules 2018; 24:molecules24010043. [PMID: 30583527 PMCID: PMC6337270 DOI: 10.3390/molecules24010043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022] Open
Abstract
Antibiotic resistance mediated by bacterial enzymes constitutes an unmet clinical challenge for public health, particularly for those currently used antibiotics that are recognized as "last-resort" defense against multidrug-resistant (MDR) bacteria. Inhibitors of resistance enzymes offer an alternative strategy to counter this threat. The combination of inhibitors and antibiotics could effectively prolong the lifespan of clinically relevant antibiotics and minimize the impact and emergence of resistance. In this review, we first provide a brief overview of antibiotic resistance mechanism by bacterial secreted enzymes. Furthermore, we summarize the potential inhibitors that sabotage these resistance pathways and restore the bactericidal activity of inactive antibiotics. Finally, the faced challenges and an outlook for the development of more effective and safer resistance enzyme inhibitors are discussed.
Collapse
|
74
|
Matsuoka K, Nishikawa K, Goshu Y, Koyama T, Hatano K, Matsushita T, Watanabe-Takahashi M, Natori Y, Terunuma D. Synthetic construction of sugar-amino acid hybrid polymers involving globotriaose or lactose and evaluation of their biological activities against Shiga toxins produced by Escherichia coli O157:H7. Bioorg Med Chem 2018; 26:5792-5803. [PMID: 30420327 DOI: 10.1016/j.bmc.2018.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 01/09/2023]
Abstract
Synthetic assembly of sugar moieties and amino acids in order to create "sugar-amino acid hybrid polymers" was accomplished by means of simple radical polymerization of carbohydrate monomers having an amino acid-modified polymerizable aglycon. Amines derived from globotriaoside and lactoside as glycoepitopes were condensed with known carbobenzyloxy derivatives, including Z-Gly, Z-l-Ala and Z-β-Ala, which had appropriate spacer ability and a chiral center to afford fully protected sugar-amino acid hybrid compounds in good yields. After deprotection followed by acryloylation, the water-soluble glycomonomers were polymerized with or without acrylamide in the presence of a radical initiator in water to give corresponding copolymers and homopolymers, which were shown by SEC analysis to have high molecular weights. Evaluation of the biological activities of the glycopolymers against Shiga toxins (Stxs) was carried out, and the results suggested that glycopolymers having highly clustered globotriaosyl residues had high affinity against Stx2 (KD = 2.7∼4.0 µM) even though other glycopolymers did not show any affinity or showed very weak binding affinity. When Stx1 was used for the same assay, all of the glycopolymers having globotriaosyl residues showed high affinity (KD = 0.30∼1.74 µM). Interestingly, couple of glycopolymers having lactosyl moieties had weaker binding affinity against Stx1. In addition, when cytotoxicity assays were carried out for both Stxs, glycopolymers having highly clustered globotriaosyl residues showed higher affinity than that of the copolymers, and only highly clustered-type glycopolymers displayed neutralization potency against Stx2.
Collapse
Affiliation(s)
- Koji Matsuoka
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan; Medical Innovation Research Unit (MiU), Advanced Institute of Innovative Technology (AIIT), Saitama University, Sakura, Saitama 338-8570, Japan.
| | - Kiyotaka Nishikawa
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakotani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Yusuke Goshu
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Tetsuo Koyama
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Ken Hatano
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan; Medical Innovation Research Unit (MiU), Advanced Institute of Innovative Technology (AIIT), Saitama University, Sakura, Saitama 338-8570, Japan
| | - Takahiko Matsushita
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan; Medical Innovation Research Unit (MiU), Advanced Institute of Innovative Technology (AIIT), Saitama University, Sakura, Saitama 338-8570, Japan
| | - Miho Watanabe-Takahashi
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakotani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Yasuhiro Natori
- Department of Health Chemistry, School of Pharmacy, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate 020-8505, Japan
| | - Daiyo Terunuma
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
| |
Collapse
|
75
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Thinking Outside the Box-Novel Antibacterials To Tackle the Resistance Crisis. Angew Chem Int Ed Engl 2018; 57:14440-14475. [PMID: 29939462 DOI: 10.1002/anie.201804971] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/13/2022]
Abstract
The public view on antibiotics as reliable medicines changed when reports about "resistant superbugs" appeared in the news. While reasons for this resistance development are easily spotted, solutions for re-establishing effective antibiotics are still in their infancy. This Review encompasses several aspects of the antibiotic development pipeline from very early strategies to mature drugs. An interdisciplinary overview is given of methods suitable for mining novel antibiotics and strategies discussed to unravel their modes of action. Select examples of antibiotics recently identified by using these platforms not only illustrate the efficiency of these measures, but also highlight promising clinical candidates with therapeutic potential. Furthermore, the concept of molecules that disarm pathogens by addressing gatekeepers of virulence will be covered. The Review concludes with an evaluation of antibacterials currently in clinical development. Overall, this Review aims to connect select innovative antimicrobial approaches to stimulate interdisciplinary partnerships between chemists from academia and industry.
Collapse
Affiliation(s)
- Markus Lakemeyer
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Weining Zhao
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Franziska A Mandl
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases, Sanofi-Aventis (Deutschland) GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Stephan A Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
76
|
Calvert MB, Jumde VR, Titz A. Pathoblockers or antivirulence drugs as a new option for the treatment of bacterial infections. Beilstein J Org Chem 2018; 14:2607-2617. [PMID: 30410623 PMCID: PMC6204809 DOI: 10.3762/bjoc.14.239] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/20/2018] [Indexed: 12/19/2022] Open
Abstract
The rapid development of antimicrobial resistance is threatening mankind to such an extent that the World Health Organization expects more deaths from infections than from cancer in 2050 if current trends continue. To avoid this scenario, new classes of anti-infectives must urgently be developed. Antibiotics with new modes of action are needed, but other concepts are also currently being pursued. Targeting bacterial virulence as a means of blocking pathogenicity is a promising new strategy for disarming pathogens. Furthermore, it is believed that this new approach is less susceptible towards resistance development. In this review, recent examples of anti-infective compounds acting on several types of bacterial targets, e.g., adhesins, toxins and bacterial communication, are described.
Collapse
Affiliation(s)
- Matthew B Calvert
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Varsha R Jumde
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| |
Collapse
|
77
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Über bisherige Denkweisen hinaus - neue Wirkstoffe zur Überwindung der Antibiotika-Krise. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Markus Lakemeyer
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Weining Zhao
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Franziska A. Mandl
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases; Sanofi-Aventis (Deutschland) GmbH; Industriepark Höchst 65926 Frankfurt am Main Deutschland
| | - Stephan A. Sieber
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| |
Collapse
|
78
|
McBrayer DN, Cameron CD, Gantman BK, Tal-Gan Y. Rational Design of Potent Activators and Inhibitors of the Enterococcus faecalis Fsr Quorum Sensing Circuit. ACS Chem Biol 2018; 13:2673-2681. [PMID: 30141904 DOI: 10.1021/acschembio.8b00610] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The increasing rate of resistance development to conventional antibiotics by bacteria necessitates the identification of alternative treatment possibilities that can reduce the ability of bacteria to adapt. Enterococcus faecalis remains the leading cause of clinical enterococci infections and has exhibited quorum sensing (QS)-dependent pathogenicity. Here, we report the development of macrocyclic peptide-based activators and inhibitors of the E. faecalis Fsr QS circuitry. To this end, we developed, optimized, and compared three synthetic routes for lactone-containing macrocyclic peptide scaffolds. We then utilized previous and current structure-activity relationship (SAR) insights of the native QS signaling peptide to rationally design the most potent activators and inhibitors of the Fsr QS circuitry identified to date. The application of these peptides could provide a means to attenuate the pathogenicity of E. faecalis without introducing significant selective pressure on the bacteria to develop resistance.
Collapse
Affiliation(s)
- Dominic N. McBrayer
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Crissey D. Cameron
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Brooke K. Gantman
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
79
|
Shapiro JA, Kaplan AR, Wuest WM. From General to Specific: Can Pseudomonas Primary Metabolism Be Exploited for Narrow-Spectrum Antibiotics? Chembiochem 2018; 20:34-39. [PMID: 30088315 DOI: 10.1002/cbic.201800383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Indexed: 12/16/2022]
Abstract
The spread of antimicrobial resistance is a major threat to human health, and patients requiring prolonged antibiotic exposure are in desperate need of new therapeutic strategies. It has been hypothesized that tailoring our antibiotics to inhibit molecular targets specific to pathogens might stem the spread of resistance. A prime candidate for such a strategy is Pseudomonas aeruginosa, which can be found in the lungs of nearly all adult cystic fibrosis patients and, due to chronic exposure to antibiotics, has a high rate of multidrug-resistant strains. Although much research has been done on P. aeruginosa virulence factors as narrow-spectrum targets, less attention has been paid to primary carbon metabolism being leveraged for pathogen-specific mechanisms. However, early studies show that primary metabolic pathways, although shared amongst all organisms, contain intricacies specific to Pseudomonas species that have potential for antibiotic exploitation. Here we lay out some of this work in the hopes that it inspires researchers to continue developing a knowledge base for future antibiotic discovery to build upon and include a case study of a Pseudomonas primary metabolic pathway that has been targeted by small molecules in a species-specific manner.
Collapse
Affiliation(s)
- Justin A Shapiro
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Anna R Kaplan
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - William M Wuest
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| |
Collapse
|
80
|
Guo H. Design, Synthesis, and Antibacterial Evaluation of Propylene-tethered 8-Methoxyl Ciprofloxacin-isatin Hybrids. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hua Guo
- School of Chemistry and Life Science; Anshan Normal University; Anshan 114007 Liaoning China
| |
Collapse
|
81
|
Zhang GB, Maddili SK, Tangadanchu VKR, Gopala L, Gao WW, Cai GX, Zhou CH. Discovery of natural berberine-derived nitroimidazoles as potentially multi-targeting agents against drug-resistant Escherichia coli. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9169-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
82
|
González-Bello C. Antibiotic adjuvants - A strategy to unlock bacterial resistance to antibiotics. Bioorg Med Chem Lett 2017; 27:4221-4228. [PMID: 28827113 DOI: 10.1016/j.bmcl.2017.08.027] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/08/2017] [Accepted: 08/13/2017] [Indexed: 12/11/2022]
Abstract
Resistance to available antibiotics in pathogenic bacteria is currently a global challenge since the number of strains that are resistant to multiple types of antibiotics has increased dramatically each year and has spread worldwide. To unlock this problem, the use of an 'antibiotic adjuvant' in combination with an antibiotic is now being exploited. This approach enables us to prolong the lifespan of these life-saving drugs. This digests review provides an overview of the main types of antibiotic adjuvants, the basis of their operation and the remaining issues to be tackled in this field. Particular emphasis is placed on those compounds that are already in clinical development, namely β-lactamase inhibitors.
Collapse
Affiliation(s)
- Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
83
|
McBrayer DN, Gantman BK, Cameron CD, Tal-Gan Y. An Entirely Solid Phase Peptide Synthesis-Based Strategy for Synthesis of Gelatinase Biosynthesis-Activating Pheromone (GBAP) Analogue Libraries: Investigating the Structure-Activity Relationships of the Enterococcus faecalis Quorum Sensing Signal. Org Lett 2017; 19:3295-3298. [PMID: 28590764 DOI: 10.1021/acs.orglett.7b01444] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of an entirely solid-phase peptide synthesis (SPPS)-based synthesis of the quorum sensing signal gelatinase biosynthesis-activating pheromone (GBAP) from Enterococcus faecalis is reported. The method was used to prepare three libraries of analogues to investigate the structure-activity relationships (SARs) of the GBAP signal. The SAR studies revealed new characteristics of the GBAP signal and uncovered the most potent quorum sensing activator in E. faecalis known to date.
Collapse
Affiliation(s)
- Dominic N McBrayer
- Department of Chemistry, University of Nevada, Reno , 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Brooke K Gantman
- Department of Chemistry, University of Nevada, Reno , 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Crissey D Cameron
- Department of Chemistry, University of Nevada, Reno , 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno , 1664 North Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
84
|
Mydock-McGrane LK, Hannan TJ, Janetka JW. Rational design strategies for FimH antagonists: new drugs on the horizon for urinary tract infection and Crohn's disease. Expert Opin Drug Discov 2017; 12:711-731. [PMID: 28506090 DOI: 10.1080/17460441.2017.1331216] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The bacterial adhesin FimH is a virulence factor and an attractive therapeutic target for urinary tract infection (UTI) and Crohn's Disease (CD). Located on type 1 pili of uropathogenic E. coli (UPEC), the FimH adhesin plays an integral role in the pathogenesis of UPEC. Recent efforts have culminated in the development of small-molecule mannoside FimH antagonists that target the mannose-binding lectin domain of FimH, inhibiting its function and preventing UPEC from binding mannosylated host cells in the bladder, thereby circumventing infection. Areas covered: The authors describe the structure-guided design of mannoside ligands, and review the structural biology of the FimH lectin domain. Additionally, they discuss the lead optimization of mannosides for therapeutic application in UTI and CD, and describe various assays used to measure mannoside potency in vitro and mouse models used to determine efficacy in vivo. Expert opinion: To date, mannoside optimization has led to a diverse set of small-molecule FimH antagonists with oral bioavailability. With clinical trials already initiated in CD and on the horizon for UTI, it is the authors, opinion that mannosides will be a 'first-in-class' treatment strategy for UTI and CD, and will pave the way for treatment of other Gram-negative bacterial infections.
Collapse
Affiliation(s)
| | | | - James W Janetka
- b Department of Biochemistry and Molecular Biophysics , Washington University School of Medicine , Saint Louis , MO , USA
| |
Collapse
|
85
|
Wright GD. Opportunities for natural products in 21 st century antibiotic discovery. Nat Prod Rep 2017; 34:694-701. [PMID: 28569300 DOI: 10.1039/c7np00019g] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Natural products and their derivatives are mainstays of our antibiotic drugs, but they are increasingly in peril. The combination of widespread multidrug resistance in once susceptible bacterial pathogens, disenchantment with natural products as sources of new drugs, lack of success using synthetic compounds and target-based discovery methods, along with shifting economic and regulatory issues, conspire to move investment in research and development away from the antibiotics arena. The result is a growing crisis in antibiotic drug discovery that threatens modern medicine. 21st century natural product research is perfectly positioned to fill the antibiotic discovery gap and bring new drug candidates to the clinic. Innovations in genomics and techniques to explore new sources of antimicrobial chemical matter are revealing new chemistry. Increasing appreciation of the value of narrow-spectrum drugs and re-examination of once discarded chemical scaffolds coupled with synthetic biology methods to generate new compounds and improve yields offer new strategies to revitalize once moribund natural product programs. The increasing awareness that the combination of antibiotics with adjuvants, non-antibiotic compounds that overcome resistance and enhance drug activity, can rescue older chemical scaffolds, and concepts such as blocking pathogen virulence present orthogonal strategies to traditional antibiotics. In all these areas, natural products offer chemical matter, shaped by natural selection, that is privileged in this therapeutic area. Natural product research is poised to regain prominence in delivering new drugs to solve the antibiotic crisis.
Collapse
Affiliation(s)
- Gerard D Wright
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8N 4K1, Canada.
| |
Collapse
|