51
|
Koli RR, Deshpande NG, Kim DS, Cho HK. A synergistic strategy to remove hazardous water pollutants by mimicking burdock flower morphology structures of iron oxide phases. CHEMOSPHERE 2022; 286:131789. [PMID: 34426139 DOI: 10.1016/j.chemosphere.2021.131789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Artificially mimicking structures/morphologies available in the nature to develop multifunctional materials for catalysis is receiving greater attention. Particularly, the burdock flower morphology, which has a hollow-globe surrounded by spiky sheets, represents a multifunctional structure helpful in adsorption as well as intercalation of molecules. Given this, we have strategically developed a robust microwave (MW) bubble-template process to achieve highly uniform α-Fe2O3 and carbon-enriched Fe3O4 (Fe3O4@C) phases resembling the characteristics of spiky hollow burdock morphologies. The utilization of the MW bubble-templates as a pretreatment to the iron-based precursor solution helps in producing hollowed open-space ferrous glycolate burdock flower morphology with rapid production rate and without any addition of extra agents. Such burdock flower structures remain intact even after annealing in air/N2 ambiance providing highly photoactive α-Fe2O3 or magnetic Fe3O4@C, respectively. Utilizing the hollow burdock flower structures together with the individual photo/magnetic properties of iron oxide phases, a dual-layer filter was designed to remove hazardous dye molecules from water, which efficiently photodegraded (99.2 %) in natural sunlight as well as showed excellent adsorption (99.7 %) within minutes. Comparatively, a lower catalytic activity using simple iron oxide nanoparticles, closed, and faded burdock morphologies were seen. Hence, the high catalytic activity in removing the dye molecules, retention of structural phases after repeated use, and strong durability were a result of the synergetic effect of photo/magnetic properties, activated surface/spiky open burdock structure.
Collapse
Affiliation(s)
- Rohit R Koli
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Nishad G Deshpande
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea; Indian Institute of Information Technology, Surat, 395007, Gujarat, India
| | - Dong Su Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Hyung Koun Cho
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea; Research Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
52
|
Congur G, Gül ÜD. Electrochemical Detection of Phenol Removal by using a Biosorbent Originated Factory Solid Waste. ELECTROANAL 2021. [DOI: 10.1002/elan.202100520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gulsah Congur
- Bilecik Seyh Edebali University Vocational School of Health Services 11230 Bilecik Turkey
- Bilecik Seyh Edebali University Biotechnology Application and Research Center 11230 Bilecik Turkey
| | - Ülküye Dudu Gül
- Bilecik Seyh Edebali University Biotechnology Application and Research Center 11230 Bilecik Turkey
- Bilecik Seyh Edebali University Faculty of Engineering . Department of Bioengineering 11230 Bilecik Turkey
| |
Collapse
|
53
|
Metal-directed thiophene-carboxylate-based nickel(II) complexes as multifunctional electrochemical and fluorescent sensors for detecting different analytes. TRANSIT METAL CHEM 2021. [DOI: 10.1007/s11243-021-00479-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
54
|
Monisha S, Mary Saral A, Senthil Kumar A. Electrochemical investigation of a tulsi-holy basil-crude plant extract on graphitized mesoporous carbon nanomaterial surface: Selective electrocatalytic activity of surface-confined rosmarinic acid for phenyl hydrazine-pollutant oxidation reaction. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
55
|
Simple fabrication of a hexagonal prisms with hexagonal pyramid tips V2O5@MOF(V, Co) and its application as electrochemical sensor for Pb2+. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
56
|
Tefera M, Tessema M, Admassie S, Ward M, Phelane L, Iwuoha EI, Baker PG. Electrochemical application of cobalt nanoparticles-polypyrrole composite modified electrode for the determination of phoxim. Anal Chim Acta X 2021; 9:100077. [PMID: 34622198 PMCID: PMC8482437 DOI: 10.1016/j.acax.2021.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/10/2022] Open
Abstract
In this study, cobalt nanoparticles (CoNPs) were synthesized and cobalt nanoparticles modified glassy carbon electrode (CoNPs/GCE) was prepared by drop coating the nanoparticles on glassy carbon electrode. After preparing polypyrrole modified glassy carbon electrode (PPy/GCE) using electropolymerization of pyrrole in LiClO4 solution, cobalt nanoparticles-polypyrrole composite modified glassy carbon electrode (CoNPs/PPy/GCE) was fabricated by drop coating the CoNPs on the PPy/GCE. Different characterization techniques such as scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, FTIR spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry were used to study the morphological structure and electrochemical behavior of the sensors. The results demonstrated that PPy chains interacted with CoNPs through donor-acceptor bonds. Among all the electrodes, CoNPs/PPy/GCE exhibited highest electroactive surface area and lowest electron transfer resistance towards phoxim. Under the optimal conditions, the sensor showed linear relationship between the reduction peak current and the concentration of phoxim in the range of 0.025 μM-12 μM with the detection limit as 4.5 nM. Besides, the composite electrode demonstrated excellent reproducibility, good stability and selectivity towards the possible interfering substances. All of these properties made CoNPs/PPy/GCE a suitable electrochemical sensor for the electrochemical determination of phoxim in water samples using square wave voltammetry.
Collapse
Affiliation(s)
- Molla Tefera
- Department of Chemistry, University of Gondar, P. O. Box 196, Gondar, Ethiopia
| | - Merid Tessema
- Department of Chemistry, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
| | - Shimelis Admassie
- Department of Chemistry, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
| | - Meryck Ward
- Sensor Lab, Department of Chemistry, University of the Western Cape, Private Bag X17, Robert Sobukwe Drive, Bellville, 7535, South Africa
| | - Lisebo Phelane
- Sensor Lab, Department of Chemistry, University of the Western Cape, Private Bag X17, Robert Sobukwe Drive, Bellville, 7535, South Africa
| | - Emmanuel I. Iwuoha
- Sensor Lab, Department of Chemistry, University of the Western Cape, Private Bag X17, Robert Sobukwe Drive, Bellville, 7535, South Africa
| | - Priscilla G.L. Baker
- Sensor Lab, Department of Chemistry, University of the Western Cape, Private Bag X17, Robert Sobukwe Drive, Bellville, 7535, South Africa
| |
Collapse
|
57
|
Theerthagiri J, Lee SJ, Karuppasamy K, Park J, Yu Y, Kumari MLA, Chandrasekaran S, Kim HS, Choi MY. Fabrication strategies and surface tuning of hierarchical gold nanostructures for electrochemical detection and removal of toxic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126648. [PMID: 34329090 DOI: 10.1016/j.jhazmat.2021.126648] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 05/20/2023]
Abstract
The intensive research on the synthesis and characterization of gold (Au) nanostructures has been extensively documented over the last decades. These investigations allow the researchers to understand the relationships between the intrinsic properties of Au nanostructures such as particle size, shape, morphology, and composition to synthesize the Au nano/hybrid nanostructures with novel physicochemical properties. By tuning the properties above, these nanostructures are extensively employed to detect and remove trace amounts of toxic pollutants from the environment. This review attempts to document the achievements and current progress in Au-based nanostructures, general synthetic and fabrication strategies and their utilization in electrochemical sensing and environmental remediation applications. Additionally, the applications of Au nanostructures (e.g., as adsorbents, sensing platforms, catalysts, and electrodes) and advancements in the field of electrochemical sensing of different target analytes (e.g., proteins, nucleic acids, heavy metals, small molecules, and antigens) are summarized. The literature survey concludes the existing methods for the detection of toxic contaminants at various concentration levels. Finally, the existing challenges and future research directions on electrochemical sensing and degradation of toxic contaminants using Au nanostructures are defined.
Collapse
Affiliation(s)
- Jayaraman Theerthagiri
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - Seung Jun Lee
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - K Karuppasamy
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Juhyeon Park
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - Yiseul Yu
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - M L Aruna Kumari
- Department of Chemistry, M.S. Ramaiah College of Arts, Science and Commerce, Bengaluru 560054, India
| | - Sivaraman Chandrasekaran
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea.
| |
Collapse
|
58
|
Dib M, Moutcine A, Ouchetto H, Ouchetto K, Chtaini A, Hafid A, Khouili M. Novel synthesis of α-Fe2O3@Mg/Al-CO3-LDH nanocomposite for rapid electrochemical detection of p-nitrophenol. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
59
|
Settu K, Chiu PT, Huang YM. Laser-Induced Graphene-Based Enzymatic Biosensor for Glucose Detection. Polymers (Basel) 2021; 13:2795. [PMID: 34451332 PMCID: PMC8400493 DOI: 10.3390/polym13162795] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 02/03/2023] Open
Abstract
Laser-induced graphene (LIG) has recently been receiving increasing attention due to its simple fabrication and low cost. This study reports a flexible laser-induced graphene-based electrochemical biosensor fabricated on a polymer substrate by the laser direct engraving process. For this purpose, a 450 nm UV laser was employed to produce a laser-induced graphene electrode (LIGE) on a polyimide substrate. After the laser engraving of LIGE, the chitosan-glucose oxidase (GOx) composite was immobilized on the LIGE surface to develop the biosensor for glucose detection. It was observed that the developed LIGE biosensor exhibited good amperometric responses toward glucose detection over a wide linear range up to 8 mM. The GOx/chitosan-modified LIGE biosensor showed high sensitivity of 43.15 µA mM-1 cm-2 with a detection limit of 0.431 mM. The interference studies performed with some possible interfering compounds such as ascorbic acid, uric acid, and urea exhibited no interference as there was no difference observed in the amperometric glucose detection. It was suggested that the LIGE-based biosensor proposed herein was easy to prepare and could be used for low-cost, rapid, and sensitive/selective glucose detection.
Collapse
Affiliation(s)
- Kalpana Settu
- Department of Electrical Engineering, National Taipei University, New Taipei City 23741, Taiwan; (P.-T.C.); (Y.-M.H.)
| | | | | |
Collapse
|
60
|
Nagles E, Ceroni M, Villanueva Huerta C, Hurtado JJ. Simultaneous Electrochemical Determination of Paracetamol and Allura Red in Pharmaceutical Doses and Food Using a Mo(VI) Oxide‐Carbon Paste Microcomposite. ELECTROANAL 2021. [DOI: 10.1002/elan.202100261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Edgar Nagles
- Facultad de Química e Ingeniería Química Universidad Nacional Mayor de San Marcos Lima Perú
| | - Mario Ceroni
- Facultad de Química e Ingeniería Química Universidad Nacional Mayor de San Marcos Lima Perú
| | | | - John J. Hurtado
- Departament of Chemistry Universidad de los Andes Carrera 1 No. 18A-12 111711 Bogotá Colombia
| |
Collapse
|
61
|
Parsimehr H, Ehsani A, Goharshenas Moghadam S, Arachchige Dumith Madushanka Jayathilaka W, Ramakrishna S. Energy Harvesting/Storage and Environmental Remediation via Hot Drinks Wastes. CHEM REC 2021; 21:1098-1118. [PMID: 33913239 DOI: 10.1002/tcr.202100018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/12/2021] [Indexed: 11/10/2022]
Abstract
Providing energy and materials are considered one most important issue in the world. Produce and storage energy and also, prepare chemical substances from disposable biomass materials have been widely developed in recent decades to decrease environmental pollutions and production costs. The waste of hot drinks including coffee wastes and tea wastes have considerable potentials to provide energy and different chemical substances. Also, hazardous materials (especially aqueous ions) can be absorbed via hot drinks wastes to protect the environment against perilous pollutants. The low-cost and benign hot drinks wastes including tea wastes and coffee grounds and also the pyrolyzed of them as the hot drinks waste biochar materials have been widely used to produce and store green energies and also, absorb hazardous materials. Production and storage energy and environmental remediation in these sustainable procedures not only reduce the cost of energy but also protect the environment.
Collapse
Affiliation(s)
- Hamidreza Parsimehr
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran.,Color and Surface Coatings Group, Polymer Processing Department, Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran
| | - Ali Ehsani
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| | - Saba Goharshenas Moghadam
- Color and Surface Coatings Group, Polymer Processing Department, Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran
| | | | - Seeram Ramakrishna
- Centre of Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, 119260, Singapore
| |
Collapse
|
62
|
Ying J, Jin L, Yu HY, Tian AX, Wang XL. A series of polyoxometalate-based hybrid complexes constructed by a tripodal ligand containing mixed N/O donors. CrystEngComm 2021. [DOI: 10.1039/d1ce01195b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We designed two synthetic strategies using identical ligands to construct six POM-based complexes. These complexes can act as amperometric sensors for the detection of Cr(vi), Fe(iii) and H2O2 and fluorescence sensors for sensing Cr3+.
Collapse
Affiliation(s)
- Jun Ying
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Liang Jin
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Hai-Yan Yu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Ai-Xiang Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Xiu-Li Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|
63
|
Javaid M, Haleem A, Singh RP, Rab S, Suman R. Significance of sensors for industry 4.0: Roles, capabilities, and applications. SENSORS INTERNATIONAL 2021. [DOI: 10.1016/j.sintl.2021.100110] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
64
|
MWCNT modified glassy carbon electrode in presence of cationic surfactant for the electro-analysis of paclitaxel. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|