51
|
Prakash Tripathy S, Subudhi S, Das S, Kumar Ghosh M, Das M, Acharya R, Acharya R, Parida K. Hydrolytically stable citrate capped Fe 3O 4@UiO-66-NH 2 MOF: A hetero-structure composite with enhanced activity towards Cr (VI) adsorption and photocatalytic H 2 evolution. J Colloid Interface Sci 2021; 606:353-366. [PMID: 34392031 DOI: 10.1016/j.jcis.2021.08.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/05/2021] [Indexed: 01/21/2023]
Abstract
Design and facile fabrication of a magnetically separable hetero-structure photocatalyst as well as an adsorbent having dual green benefits towards energy conversion and pollutant remediation are quite indispensable in the current scenario. In this regard, a composite of citrate capped Fe3O4 and UiO-66-NH2 has been designed to remediate Cr (VI) by adsorption and harvest photons from visible light for clean energy (H2) conversion. The material was prepared by the union of citrate capped Fe3O4 (CCM) and versatile aqueous stable Zr-based MOF (UiO-66-NH2) through in-situ solvothermal method. The composite of CCM with MOF (MU-2) was studied through sophisticated analysis techniques; PXRD, FT-IR, BET, UV-Visible DRS, PL, TG, HRTEM and XPS etc. to reveal the inherent characteristics of the material. BET surface analysis revealed high specific surface area (572.13 m2 g-1) of MU-2 in comparison to its pristine MOF. Furthermore, the dual function composite MU-2's VSM studies showed that its magnetic saturation is 3.07 emu g-1 that is suitable for magnetic separation after desired reaction from aqueous media. The Cr (VI) sorption studies revealed that the composite adsorbent (MU-2) showed maximum monolayer adsorption capacity (Qm) of 743 mg g-1 which followed pseudo second order kinetics. Moreover, the sorption thermodynamics revealed that the process was spontaneous and endothermic in nature. In addition to it, the synthesized composite material displayed enhanced activity towards photocatalytic H2 evolution with a maximum evolution rate of 417 µmole h-1 with an apparent conversion efficiency (ACE) of 3.12 %. Typically, MU-2 displays high adsorptions of Cr (VI) as well as some extent of Cr (VI) reduction owning to its populous active sites and free carboxylate groups respectively. Moreover, the synergistic effect of CCM and UNH in the composite resulted in Z scheme mediated charge transfer mechanism that showed enhanced H2 photo-evolution rates. Hence, MU-2 can be readily utilized as magnetically retrievable dual function composite for Cr (VI) adsorption and photocatalytic H2 evolution.
Collapse
Affiliation(s)
- Suraj Prakash Tripathy
- Centre for Nanoscience and Nanotechnology, S'O'A deemed to be university, Bhubaneswar 751030, India
| | - Satyabrata Subudhi
- Centre for Nanoscience and Nanotechnology, S'O'A deemed to be university, Bhubaneswar 751030, India
| | - Snehaprava Das
- Centre for Nanoscience and Nanotechnology, S'O'A deemed to be university, Bhubaneswar 751030, India
| | - Malay Kumar Ghosh
- Hydro & Electrometallurgy Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India
| | - Mira Das
- Department of Chemistry, S'O'A deemed to be university, Bhubaneswar 751030, India
| | - Raghunath Acharya
- Homi Bhabha National Institute, Department of Atomic Energy, Mumbai 400094, India; Radiochemistry Division, Bhabha Atomic Research Centre (BARC), Mumbai 400094, India
| | - Rashmi Acharya
- Centre for Nanoscience and Nanotechnology, S'O'A deemed to be university, Bhubaneswar 751030, India
| | - Kulamani Parida
- Centre for Nanoscience and Nanotechnology, S'O'A deemed to be university, Bhubaneswar 751030, India.
| |
Collapse
|
52
|
Abazari R, Sanati S, Morsali A, Kirillov AM. Instantaneous Sonophotocatalytic Degradation of Tetracycline over NU-1000@ZnIn 2S 4 Core-Shell Nanorods as a Robust and Eco-friendly Catalyst. Inorg Chem 2021; 60:9660-9672. [PMID: 34161079 DOI: 10.1021/acs.inorgchem.1c00951] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The universal pollution of diverse water bodies and declined water quality represent very important environmental problems. The development of new and efficient photocatalytic water treatment systems based on the Z-scheme mechanisms can contribute to tackling such problems. This study reports the preparation, full characterization, and detailed sonophotocatalytic activity of a new series of hybrid NU@ZIS nanocomposites, which comprise a p-n heterojunction of 3D Zr(IV) metal-organic framework nanorods (NU-1000) and photoactive ZnIn2S4 (ZIS) nanostars. Among the obtained materials with varying content of ZIS (5, 10, 20, and 30%) on the surface of NU-1000, the NU@ZIS20 nanocomposite revealed an ultrahigh catalytic performance and recyclability in a quick visible-light-induced degradation of the tetracycline antibiotic in water under sonophotocatalytic conditions. Moreover, increased activity of NU@ZIS20 can be ascribed to the formation of a p-n heterojunction between NU-1000 and ZIS, and a synergistic effect of these components, leading to a high level of radical production, facilitating a Z-scheme charge carrier transfer and reducing the recombination of charge carriers. The radical trapping tests revealed that •OH, •O2-, and h+ are the major active species in the sonophotocatalytic degradation of tetracycline. Possible mechanism and mineralization pathways were introduced. Cytotoxicity of NU@ZIS20 and aquatic toxicity of water samples after tetracycline degradation were also assessed, showing good biocompatibility of the catalyst and efficacy of sonophotocatalytic protocols to produce water that does not affect the growth of bacteria. Finally, the obtained nanocomposites and developed photocatalytic processes can represent an interesting approach toward diverse environmental applications in water remediation and the elimination of other types of organic pollutants.
Collapse
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran 14115-175, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran 14115-175, Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran 14115-175, Iran
| | - Alexander M Kirillov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal.,Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia
| |
Collapse
|
53
|
Swain G, Sultana S, Parida K. A review on vertical and lateral heterostructures of semiconducting 2D-MoS 2 with other 2D materials: a feasible perspective for energy conversion. NANOSCALE 2021; 13:9908-9944. [PMID: 34038496 DOI: 10.1039/d1nr00931a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fossil fuels as a double-edged sword are essential to daily life. However, the depletion of fossil fuel reservoirs has increased the search for alternative renewable energy sources to procure a more sustainable society. Accordingly, energy production through water splitting, CO2 reduction and N2 reduction via photocatalytic and electrocatalytic pathways is being contemplated as a greener methodology with zero environmental pollution. Owing to their atomic-level thickness, two-dimensional (2D) semiconductor catalysts have triggered the reawakening of interest in the field of energy and environmental applications. Among them, following the unconventional properties of graphene, 2D MoS2 has been widely investigated due to its outstanding optical and electronic properties. However, the photo/electrocatalytic performance of 2D-MoS2 is still unsatisfactory due to its low charge carrier density. Recently, the development of 2D/2D heterojunctions has evoked interdisciplinary research fascination in the scientific community, which can mitigate the shortcomings associated with 2D-MoS2. Following the recent research trends, the present review covers the recent findings and key aspects on the synthetic methods, fundamental properties and practical applications of semiconducting 2D-MoS2 and its heterostructures with other 2D materials such as g-C3N4, graphene, CdS, TiO2, MXene, black phosphorous, and boron nitride. Besides, this review details the viable application of these materials in the area of hydrogen energy production via the H2O splitting reaction, N2 fixation to NH3 formation and CO2 reduction to different value-added hydrocarbons and alcohol products through both photocatalysis and electrocatalysis. The crucial role of the interface together with the charge separation principle between two individual 2D structures towards achieving satisfactory activity for various applications is presented. Overall, the current studies provide a snapshot of the recent breakthroughs in the development of various 2D/2D-based catalysts in the field of energy production, delivering opportunities for future research.
Collapse
Affiliation(s)
- Gayatri Swain
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusandhan (Deemed to be University), Jagamohan Nagar, Jagamara, Bhubaneswar-751030, Odisha, India.
| | | | | |
Collapse
|
54
|
Zhao X, Li J, Li X, Huo P, Shi W. Design of metal-organic frameworks (MOFs)-based photocatalyst for solar fuel production and photo-degradation of pollutants. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63715-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
55
|
Ni J, Wang W, Liu D, Zhu Q, Jia J, Tian J, Li Z, Wang X, Xing Z. Oxygen vacancy-mediated sandwich-structural TiO 2-x /ultrathin g-C 3N 4/TiO 2-x direct Z-scheme heterojunction visible-light-driven photocatalyst for efficient removal of high toxic tetracycline antibiotics. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124432. [PMID: 33189474 DOI: 10.1016/j.jhazmat.2020.124432] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/09/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
A surface defect sandwich-structural TiO2-x/ultrathin g-C3N4/TiO2-x direct Z-scheme heterojunction photocatalyst is successfully constructed. The results manifest the existence of oxygen vacancies, sandwich structure and direct Z-scheme heterojunction. Noticeably, TiO2-x/ultrathin g-C3N4/TiO2-x efficiently eliminates high toxic tetracycline hydrochloride by means of·O2-, h+ and·OH, whose removal rate is 87.7% during 90 min and the pseudo-first-order rate constant reaches up to 31.7 min-1 × 10-3. The extraordinary performance can be attributed to the special 3D structure, Z-scheme heterojunction expediting charge transfer and promoting the generation of active species, meanwhile the oxygen vacancies enhancing the spatial separation of photo-induced carriers. Moreover, various environmental factors are systematically explored by statistics. SO42-, NH3-N and pH exhibit an obvious impact on removal rate. Meanwhile, TiO2-x/ultrathin g-C3N4/TiO2-x could also effectually remove tetracycline hydrochloride from complex actual-wastewater and exhibit high stability. Besides, the photocatalytic mechanism and degradation path of tetracycline hydrochloride are also elucidated.
Collapse
Affiliation(s)
- Jiaxin Ni
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Qi Zhu
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Jialin Jia
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jiayu Tian
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, China
| | - Zheyu Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xin Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zipeng Xing
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China.
| |
Collapse
|
56
|
Acharya L, Pattnaik SP, Behera A, Acharya R, Parida K. Exfoliated Boron Nitride (e-BN) Tailored Exfoliated Graphitic Carbon Nitride (e-CN): An Improved Visible Light Mediated Photocatalytic Approach towards TCH Degradation and H 2 Evolution. Inorg Chem 2021; 60:5021-5033. [PMID: 33739825 DOI: 10.1021/acs.inorgchem.1c00062] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A series of 2D/2D exfoliated boron nitride/exfoliated g-C3N4 nanocomposites denoted as e-BN/e-CN have been successfully prepared using a simple in situ technique. The successful deposition of e-BN on e-CN was confirmed from high-resolution transmission electron microscopy analysis. According to electrochemical measurements, 1.5 wt % e-BN/e-CN nanocomposites showed 1.5 times more photocurrent than e-CN, which indicates the successful formation of an e-BN/e-CN heterostructure. The photocatalytic activities of the e-CN and e-BN/e-CN composites were investigated through photocatalytic tetracycline hydrochloride (TCH) degradation and H2 evolution under visible light illumination. The 1.5 wt % e-BN/e-CN composite demonstrated the highest photocatalytic activities, which are about 21 and 1.5 fold greater than e-CN towards H2 generation with an apparent conversion efficiency of 2.34% and TCH degradation, respectively. The improved photocatalytic activities of e-BN/e-CN photocatalysts were ascribed to the augmented light-harvesting ability and enhanced separation efficiency of charge carriers. Lower photoluminescence intensity and a smaller arc value in the impedance spectra again proved the reduced recombination of the e--h+ pairs in the e-BN/e-CN nanocomposites. Trapping experiments show that •O2-, h+, and •OH radicals are the predominant reactive species that accelerated the photocatalytic activities of e-BN/e-CN composites. This study opens up a new window towards the fabrication of such 2D/2D nanocomposites in the field of photocatalysis.
Collapse
Affiliation(s)
- Lopamudra Acharya
- Centre for Nano Science and Nano Technology, ITER, Siksha "O" Anusandhan Deemed to be University, Bhubaneswar, Odisha 751030, India
| | - Sambhu Prasad Pattnaik
- Centre for Nano Science and Nano Technology, ITER, Siksha "O" Anusandhan Deemed to be University, Bhubaneswar, Odisha 751030, India
| | - Arjun Behera
- Centre for Nano Science and Nano Technology, ITER, Siksha "O" Anusandhan Deemed to be University, Bhubaneswar, Odisha 751030, India
| | - Rashmi Acharya
- Centre for Nano Science and Nano Technology, ITER, Siksha "O" Anusandhan Deemed to be University, Bhubaneswar, Odisha 751030, India
| | - Kulamani Parida
- Centre for Nano Science and Nano Technology, ITER, Siksha "O" Anusandhan Deemed to be University, Bhubaneswar, Odisha 751030, India
| |
Collapse
|
57
|
Nemiwal M, Subbaramaiah V, Zhang TC, Kumar D. Recent advances in visible-light-driven carbon dioxide reduction by metal-organic frameworks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:144101. [PMID: 33360464 DOI: 10.1016/j.scitotenv.2020.144101] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/21/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs) have emerged as promising materials and have attracted researchers due to their unique chemical and physical properties-design flexibility, tuneable pore channels, a high surface-to-volume ratio that allow their distinct application in diverse research fields-gas storage, gas separation, catalysis, adsorption, drug delivery, ion exchange, sensing, etc. The rapidly growing CO2 in the atmosphere is a global concern due to the excessive use of fossil fuels in the current era. CO2 is the prime cause of global warming and should be ameliorated either through adsorption or conversion into value-added products to protect the environment and mankind. Nowadays, MOFs are exploited as a photocatalyst for applications of CO2 reduction. Since the use of semiconductors limits the use of visible light for photocatalytic reduction of CO2, MOFs are promising options. The current review describes recent development in the application of MOFs as host, composites, and their derivatives in photocatalytic reduction of CO2 to CO and different organic chemicals (HCOOH, CH3OH, CH4). Efficient charge separation and visible light absorption by incorporation of active sites for efficient photocatalysis have been discussed. The selection of material for high CO2 uptake and potential strategies for the rational design and development of high-performance catalysts are outlined. Major challenges and future perspectives have also been discussed at the last of the review.
Collapse
Affiliation(s)
- Meena Nemiwal
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur 302017, India
| | - Verraboina Subbaramaiah
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur 302017, India
| | - Tian C Zhang
- Department of Civil & Environmental Engineering, University of Nebraska-Lincoln, Peter Kiewit Institute, Omaha, NE 68182-0178, USA
| | - Dinesh Kumar
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| |
Collapse
|
58
|
Subudhi S, Tripathy SP, Parida K. Highlights of the characterization techniques on inorganic, organic (COF) and hybrid (MOF) photocatalytic semiconductors. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02034f] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review is dedicated to the brave COVID warriors fighting against the COVID-2019 pandemic.
Collapse
Affiliation(s)
- Satyabrata Subudhi
- Centre for Nanoscience and Nanotechnology
- Siksha ‘O’ Anusandhan (Deemed to be University)
- Bhubaneswar-751030
- India
| | - Suraj Prakash Tripathy
- Centre for Nanoscience and Nanotechnology
- Siksha ‘O’ Anusandhan (Deemed to be University)
- Bhubaneswar-751030
- India
| | - Kulamani Parida
- Centre for Nanoscience and Nanotechnology
- Siksha ‘O’ Anusandhan (Deemed to be University)
- Bhubaneswar-751030
- India
| |
Collapse
|
59
|
Singh A, Singh AK, Liu J, Kumar A. Syntheses, design strategies, and photocatalytic charge dynamics of metal–organic frameworks (MOFs): a catalyzed photo-degradation approach towards organic dyes. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02275f] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The presented review focuses on design strategies to develop tailor-made MOFs/CPs of main group, transition and inner-transition elements and their photocatalytic properties to decompose dyes in wastewater discharge and their photocatalytic mechanism.
Collapse
Affiliation(s)
- Ayushi Singh
- Department of Chemistry
- Faculty of Science
- University of Lucknow
- Lucknow 226 007
- India
| | - Ashish Kumar Singh
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur-495009
- India
| | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University
- School of Pharmacy
- Guangdong Medical University
- Dongguan 523808
| | - Abhinav Kumar
- Department of Chemistry
- Faculty of Science
- University of Lucknow
- Lucknow 226 007
- India
| |
Collapse
|
60
|
Subudhi S, Tripathy SP, Parida K. Metal oxide integrated metal organic frameworks (MO@MOF): rational design, fabrication strategy, characterization and emerging photocatalytic applications. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01117g] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review focuses on the possible synthesis route, characterization techniques, and mechanistic pathways involved in the photocatalytic applications of MO@MOFs.
Collapse
Affiliation(s)
- Satyabrata Subudhi
- Centre for Nanoscience and Nanotechnology
- S'O'A Deemed to be University
- Bhubaneswar
- India
| | | | - Kulamani Parida
- Centre for Nanoscience and Nanotechnology
- S'O'A Deemed to be University
- Bhubaneswar
- India
| |
Collapse
|
61
|
Balu S, Chen YL, Juang RC, Yang TCK, Juan JC. Morphology-Controlled Synthesis of α-Fe 2O 3 Nanocrystals Impregnated on g-C 3N 4-SO 3H with Ultrafast Charge Separation for Photoreduction of Cr (VI) Under Visible Light. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115491. [PMID: 32911336 DOI: 10.1016/j.envpol.2020.115491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Surface functionalization and shape modifications are the key strategies being utilized to overcome the limitations of semiconductors in advanced oxidation processes (AOP). Herein, the uniform α-Fe2O3 nanocrystals (α-Fe2O3-NCs) were effectively synthesized via a simple solvothermal route. Meanwhile, the sulfonic acid functionalization (SAF) and the impregnation of α-Fe2O3-NCs on g-C3N4 (α-Fe2O3-NCs@CN-SAF) were achieved through complete solvent evaporation technique. The surface functionalization of the sulfonic acid group on g-C3N4 accelerates the faster migration of electrons to the surface owing to robust electronegativity. The incorporation of α-Fe2O3-NCs with CN-SAF significantly enhances the optoelectronic properties, ultrafast spatial charge separation, and rapid charge transportation. The α-Fe2O3-HPs@CN-SAF and α-Fe2O3-NPs@CN-SAF nanocomposites attained 97.41% and 93.64% of Cr (VI) photoreduction in 10 min, respectively. The photocatalytic efficiency of α-Fe2O3-NCs@CN-SAF nanocomposite is 2.4 and 2.1 times higher than that of pure g-C3N4 and α-Fe2O3, respectively. Besides, the XPS, PEC and recycling experiments confirm the excellent photo-induced charge separation via Z-scheme heterostructure and cyclic stability of α-Fe2O3-NCs@CN-SAF nanocomposites.
Collapse
Affiliation(s)
- Sridharan Balu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan, ROC
| | - Yi-Lun Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan, ROC
| | - R-C Juang
- Green Energy and Environmental Laboratories, Industrial Technology Research Institute, Hsinchu, 300, Taiwan, ROC
| | - Thomas C-K Yang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan, ROC; Precision Analysis and Materials Research Center, National Taipei University of Technology, Taipei, 106, Taiwan, ROC.
| | - Joon Ching Juan
- Nanotechnology and Catalysis Research Center (NANOCAT), University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
62
|
Subudhi S, Swain G, Tripathy SP, Parida K. UiO-66-NH 2 Metal-Organic Frameworks with Embedded MoS 2 Nanoflakes for Visible-Light-Mediated H 2 and O 2 Evolution. Inorg Chem 2020; 59:9824-9837. [PMID: 32628012 DOI: 10.1021/acs.inorgchem.0c01030] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrogen evolution from water splitting by means of a photocatalytic approach is an ideal future energy source and free of fossil reserves, in contrary photocatalytic O2 evolution remains a bottleneck due to high over potential and low efficiency. For reasonable use of solar light, photocatalysts must be sufficiently stable and efficient toward harvesting of sunlight from both theoretical and practical viewpoints. In this regard, here we have prepared MoS2-modified UiO-66-NH2 MOF through a facile hydrothermal technique and evaluated its efficiency toward photocatalytic H2 and O2 evolution by water splitting in the presence of sacrificial agents. A couple of similar type of analyses have been studied previously; however, this analysis represents a diverse scientific approach on the basis of interfacial contact toward reveal the actual potential of nanoflakes MoS2 as well as UiO-66-NH2. In this regard the as-synthesized photocatalyst was well-characterized by XRD, FTIR, UV-vis diffuse reflectance spectra, FESEM, HRTEM, XPS, and BET analysis techniques, which provide sufficient evidence toward successful synthesis of the pristine materials and efficacious anchorage of MoS2 on the active surface of UiO-66-NH2 by the ionic interaction between Zr-O and S/Mo. Among the synthesized photocatalysts (3 wt %) MoS2/UiO-66-NH2 shows the optimum outcome toward H2 and O2 evolution, i.e., 512.9 μmol/h (4.37 times greater than bare UiO-66-NH2) and 263.6 μmol/h (4.25 and 11.32 times greater than bare UiO-66-NH2 and MoS2, respectively). The superior performance obtained by the composite is due to the synergistic effect of pristine UiO-66-NH2 and MoS2 which proceeds through a type-II interband alignment for the facile channelization of excitons. This investigation will bestow a beneficial blue-print to construct challenging photocatalysts and to find out the paramount performance toward photocatalytic water redox reaction.
Collapse
Affiliation(s)
- Satyabrata Subudhi
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Gayatri Swain
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Suraj Prakash Tripathy
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Kulamani Parida
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| |
Collapse
|
63
|
Mansingh S, Das KK, Behera A, Subudhi S, Sultana S, Parida K. Bandgap engineering via boron and sulphur doped carbon modified anatase TiO 2: a visible light stimulated photocatalyst for photo-fixation of N 2 and TCH degradation. NANOSCALE ADVANCES 2020; 2:2004-2017. [PMID: 36132535 PMCID: PMC9419573 DOI: 10.1039/d0na00183j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/26/2020] [Indexed: 06/12/2023]
Abstract
The present research reports the synthesis of two-dimensional (2D) sheet/flake-like nanostructures of crystalline carbon modified TiO2 (CT), B-TiO2 (B-CT), and S-TiO2 (S-CT) using a facile one-pot synthesis method. The crystallinity and phase purity (anatase) of the prepared nano-photocatalyst were characterised using X-ray diffraction, selected area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM) analysis. Furthermore, the morphological details and elemental content of the sample were studied via scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), respectively. Additionally, the optoelectronic features of all of the prepared specimens were measured via UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence (PL), impedance and Mott-Schottky studies. After successful characterisation, their photocatalytic performance was tested towards dinitrogen photo-fixation and tetracycline hydrochloride (TCH) degradation under visible light illumination. Moreover, the effective charge separation and greater availability of the active surface area led to the robust photocatalytic activity of the fabricated B-CT compared to the CT and S-CT samples, which correlates well with the PL, impedance and surface area analysis. B-CT displays the highest photocatalytic activity, i.e. 32.38 μmol L-1 (conversion efficiency = 0.076%) of ammonia production, and 95% tetracycline hydrochloride (10 ppm) degradation. Here, we have effectively designed a novel and productive pathway towards the enhancement of the photocatalytic performance of visible photon active TiO2-based materials for energy and environmental sustainability.
Collapse
Affiliation(s)
- Sriram Mansingh
- Centre for Nano Science and Nano Technology, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751 030 Odisha India +91-674-2581637 +91-674-2379425
| | - Kundan Kumar Das
- Centre for Nano Science and Nano Technology, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751 030 Odisha India +91-674-2581637 +91-674-2379425
| | - Arjun Behera
- Centre for Nano Science and Nano Technology, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751 030 Odisha India +91-674-2581637 +91-674-2379425
| | - Satyabrata Subudhi
- Centre for Nano Science and Nano Technology, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751 030 Odisha India +91-674-2581637 +91-674-2379425
| | - Sabiha Sultana
- Centre for Nano Science and Nano Technology, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751 030 Odisha India +91-674-2581637 +91-674-2379425
| | - Kulamani Parida
- Centre for Nano Science and Nano Technology, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751 030 Odisha India +91-674-2581637 +91-674-2379425
| |
Collapse
|
64
|
Acharya L, Nayak S, Pattnaik SP, Acharya R, Parida K. Resurrection of boron nitride in p-n type-II boron nitride/B-doped-g-C3N4 nanocomposite during solid-state Z-scheme charge transfer path for the degradation of tetracycline hydrochloride. J Colloid Interface Sci 2020; 566:211-223. [DOI: 10.1016/j.jcis.2020.01.074] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/13/2020] [Accepted: 01/19/2020] [Indexed: 10/25/2022]
|
65
|
Mishra P, Behera A, Kandi D, Ratha S, Parida K. Novel Magnetic Retrievable Visible-Light-Driven Ternary Fe3O4@NiFe2O4/Phosphorus-Doped g-C3N4 Nanocomposite Photocatalyst with Significantly Enhanced Activity through a Double-Z-Scheme System. Inorg Chem 2020; 59:4255-4272. [DOI: 10.1021/acs.inorgchem.9b02996] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Priti Mishra
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar 752050, Odisha, India
| | - Arjun Behera
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar 752050, Odisha, India
| | - Debasmita Kandi
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar 752050, Odisha, India
| | - Satyajit Ratha
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar 752050, Odisha, India
| | - Kulamani Parida
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar 752050, Odisha, India
| |
Collapse
|
66
|
Yang R, Zhong S, Zhang L, Liu B. PW12/CN@Bi2WO6 composite photocatalyst prepared based on organic-inorganic hybrid system for removing pollutants in water. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116270] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
67
|
A type-II interband alignment heterojunction architecture of cobalt titanate integrated UiO-66-NH 2: A visible light mediated photocatalytic approach directed towards Norfloxacin degradation and green energy (Hydrogen) evolution. J Colloid Interface Sci 2020; 568:89-105. [PMID: 32088455 DOI: 10.1016/j.jcis.2020.02.043] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 11/21/2022]
Abstract
Environmental pollution and energy scarcity is a major issue of the current scenario which forbear the progress of developing world. To overcome these problems towards a sustainable future, the utilization of sunlight by means of photocatalysis can be regarded as a best and suitable pathway. To validate this purpose, design and development of efficient heterogeneous photocatalyst for harvesting solar energy should be the major research concern for scientific community. In this regard herein, we have prepared a series of stable and efficient CoTiO3/UiO-66-NH2 p-n junction mediated heterogeneous photocatalyst by hydrothermal method. The functionalised linker of UiO-66-NH2 provided an intimate interfacial contact with CoTiO3 by Co/TiON ionic interaction, as proved by HRTEM and XPS analysis. Moreover the inverted V-shaped Mott-Schottky plot confirmed the junction formation in the optimised CoTiO3/UiO-66-NH2 material. In addition, EIS and PL analysis also provides sufficient evidence about the hindrance of active species recombination in composite as a result of p-n hetero junction. LC-MS characterization technique traces the assorted intermediate species produced in the course of photodegradation of Norfloxacin and confirms its complete degradation to corresponding CO2, H2O and NH4+ by the optimised CoTiO3/UiO-66-NH2. The highest photo-catalytic activity obtained towards Norfloxacin degradation is 90.13% and H2 production is 530.87 µmol in 1 h. The enhanced photo-catalytic reaction follows Type-II p-n hetero junction charge transfer mechanism and thus, paves a new way to design MOF based heterojunction photocatalyst for diverse photo catalytic performance.
Collapse
|
68
|
Rojas S, Horcajada P. Metal–Organic Frameworks for the Removal of Emerging Organic Contaminants in Water. Chem Rev 2020; 120:8378-8415. [DOI: 10.1021/acs.chemrev.9b00797] [Citation(s) in RCA: 392] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sara Rojas
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain
| |
Collapse
|
69
|
Rokesh K, Sakar M, Do T. Calcium Bismuthate (CaBiO
3
): A Potential Sunlight‐Driven Perovskite Photocatalyst for the Degradation of Emerging Pharmaceutical Contaminants. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.201900265] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - Mohan Sakar
- Department of Chemical EngineeringLaval University Quebec G1V0A6 Canada
- Centre for Nano and Material SciencesJain University Bangalore 562112 India
| | - Trong‐On Do
- Department of Chemical EngineeringLaval University Quebec G1V0A6 Canada
| |
Collapse
|
70
|
Xiao F, Hu X, Chen Y, Zhang Y. Porous Zr-Based Metal-Organic Frameworks (Zr-MOFs)-Incorporated Thin-Film Nanocomposite Membrane toward Enhanced Desalination Performance. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47390-47403. [PMID: 31729858 DOI: 10.1021/acsami.9b17212] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Four different thin-film nanocomposite (TFN) membranes were prepared by adding different concentrations of porous Zr-metal-organic frameworks (MOFs) (UiO-66 and UiO-66-NH2) to piperazine aqueous solution (aqueous phase) or 1,3,5-benzenetricarbonyl trichloride-n-hexane solution (organic phase) by interfacial polymerization. The main purpose is to study the specific effects of different addition methods and addition amounts of nanoparticles on the structure and performance of the TFN membranes by interfacial polymerization. All four TFN membranes exhibited a higher water permeability while maintaining high salt rejection compared to thin-film composite membrane. On the one hand, the TFN membranes behave differently, which are prepared by adding the same kind of nanoparticles to the aqueous phase or organic phase, respectively. The TFN membrane prepared by adding 0.2 w/v% UiO-66 to the organic phase had a high water flux of 87.86 L m-2 h-1, compared to 46.31 L m-2 h-1 of the membrane prepared by adding 0.3 w/v% UiO-66 in the aqueous phase. This is due to the fact that UiO-66 greatly slows the interfacial polymerization rate when UiO-66 is added to the organic phase, resulting in a thinner and wider-aperture polyamide thin-film layer, reducing the water transmission resistance during filtration. Therefore, it is more economical by adding nanoparticles to organic phase than aqueous phase under the same filtering effect. On the other hand, different nanoparticles can also cause differences in performance and structure of the TFN membranes even in the same preparation manner. TFN membrane with UiO-66-NH2 in the aqueous phase has higher water permeance than the one with UiO-66 in the aqueous phase, owing to the good hydrophilicity of the amino group, which improves the water dispersibility of UiO-66-NH2 so that the TFN membrane is more uniform. In addition, UiO-66-NH2 slows down the process of interface polymerization, making the membrane more porous. The monomers in the aqueous phase and organic phase can be adsorbed in the pores of Zr-MOFs, which makes the interfacial polymerization occur both in the pores and on the surface of the pores. Thus, the compatibility between the polyamide and MOFs was enhanced and less defects were formed in the thin-film layer, resulting in a high salt rejection even when the concentration of Zr-MOFs increased. This is the first time to explain that polyamide membrane has not obvious salt rejection attenuation with increasing porous material content using pore adsorption reaction monomer principle. Also, the Zr-MOFs-based TFN membrane exhibited good heat resistance and antifouling property. This work shows that porous Zr-MOFs nanomaterials have significant advantages in the development of nanofiltration membranes with high water flux and rejection.
Collapse
Affiliation(s)
- Fan Xiao
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes , Tiangong University , Tianjin 300387 , P. R. China
| | - Xiaoyu Hu
- State Key Laboratory of Membrane Materials and Membrane Applications , Tianjin Motimo Membrane Technology Co., Ltd. , Tianjin 300042 , P. R. China
| | - Yingbo Chen
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes , Tiangong University , Tianjin 300387 , P. R. China
| | - Yufeng Zhang
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes , Tiangong University , Tianjin 300387 , P. R. China
| |
Collapse
|
71
|
Behera A, Kandi D, Martha S, Parida K. Constructive Interfacial Charge Carrier Separation of a p-CaFe2O4@n-ZnFe2O4 Heterojunction Architect Photocatalyst toward Photodegradation of Antibiotics. Inorg Chem 2019; 58:16592-16608. [DOI: 10.1021/acs.inorgchem.9b02610] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arjun Behera
- Centre for Nano Science and Nano Technology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751030, India
| | - Debasmita Kandi
- Centre for Nano Science and Nano Technology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751030, India
| | - Satyabadi Martha
- Centre for Nano Science and Nano Technology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751030, India
| | - Kulamani Parida
- Centre for Nano Science and Nano Technology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751030, India
| |
Collapse
|
72
|
Behera A, Kandi D, Mansingh S, Martha S, Parida K. Facile synthesis of ZnFe2O4@RGO nanocomposites towards photocatalytic ciprofloxacin degradation and H2 energy production. J Colloid Interface Sci 2019; 556:667-679. [DOI: 10.1016/j.jcis.2019.08.109] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
|
73
|
Tripathy SP, Subudhi S, Acharya R, Acharya R, Das M, Parida K. Adsorptive removal of Cr(VI) onto UiO-66-NH2 and its determination by radioanalytical techniques. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06761-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
74
|
Subudhi S, Mansingh S, Tripathy SP, Mohanty A, Mohapatra P, Rath D, Parida K. The fabrication of Au/Pd plasmonic alloys on UiO-66-NH2: an efficient visible light-induced photocatalyst towards the Suzuki Miyaura coupling reaction under ambient conditions. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01431d] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The current study on Au/Pd@UiO-66-NH2 explores a novel approach towards photocatalytic SMC coupling reaction. This investigation highlights a well studied mechanistic pathway towards the formation of biphenyl as the target product.
Collapse
Affiliation(s)
- Satyabrata Subudhi
- Centre for Nano Science and Nanotechnology
- Siksha “O” Anusnadhan (Deemed to be University)
- Bhubaneswar-751030
- India
| | - Sriram Mansingh
- Centre for Nano Science and Nanotechnology
- Siksha “O” Anusnadhan (Deemed to be University)
- Bhubaneswar-751030
- India
| | - Suraj Prakash Tripathy
- Centre for Nano Science and Nanotechnology
- Siksha “O” Anusnadhan (Deemed to be University)
- Bhubaneswar-751030
- India
| | - Ashutosh Mohanty
- Department of solid state and structural chemistry unit
- IISc Bangalore-560012
- India
| | - Priyabrat Mohapatra
- Department of Chemistry
- C.V. Raman College of Engineering
- Bhubaneswar- 752 054
- India
| | - Dharitri Rath
- Department of chemistry
- Rajdhani College
- Bhubaneswar-751003
- India
| | - Kulamani Parida
- Centre for Nano Science and Nanotechnology
- Siksha “O” Anusnadhan (Deemed to be University)
- Bhubaneswar-751030
- India
| |
Collapse
|
75
|
Singh AK, Gonuguntla S, Mahajan B, Pal U. Noble metal-free integrated UiO-66-PANI-Co3O4 catalyst for visible-light-induced H2 production. Chem Commun (Camb) 2019; 55:14494-14497. [DOI: 10.1039/c9cc07414g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discriminate etching chemistry (crystal engineering) of metal–organic frameworks (MOFs) offers promising opportunities for tailoring electron–hole separation, and charge-carrier utilization plays a central role in photocatalysis.
Collapse
Affiliation(s)
- Ajay K. Singh
- Division of Organic Synthesis and Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Spandana Gonuguntla
- Department of Energy and Environmental Engineering
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
| | - Bhushan Mahajan
- Division of Organic Synthesis and Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Ujjwal Pal
- Academy of Scientific and Innovative Research (AcSIR)
- CSIR-Human Resource Development Centre (CSIR-HRDC) Campus
- Ghaziabad 201002
- India
- Department of Energy and Environmental Engineering
| |
Collapse
|