51
|
Ding RB, Bao J, Deng CX. Emerging roles of SIRT1 in fatty liver diseases. Int J Biol Sci 2017; 13:852-867. [PMID: 28808418 PMCID: PMC5555103 DOI: 10.7150/ijbs.19370] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/19/2017] [Indexed: 12/11/2022] Open
Abstract
Fatty liver diseases, which are commonly associated with high-fat/calorie diet, heavy alcohol consumption and/or other metabolic disorder causes, lead to serious medical concerns worldwide in recent years. It has been demonstrated that metabolic homeostasis disruption is most likely to be responsible for this global epidemic. Sirtuins are a group of conserved nicotinamide adenine dinucleotide (NAD+) dependent histone and/or protein deacetylases belonging to the silent information regulator 2 (Sir2) family. Among seven mammalian sirtuins, sirtuin 1 (SIRT 1) is the most extensively studied one and is involved in both alcoholic and nonalcoholic fatty liver diseases. SIRT1 plays beneficial roles in regulating hepatic lipid metabolism, controlling hepatic oxidative stress and mediating hepatic inflammation through deacetylating some transcriptional regulators against the progression of fatty liver diseases. Here we summarize the latest advances of the biological roles of SIRT1 in regulating lipid metabolism, oxidative stress and inflammation in the liver, and discuss the potential of SIRT1 as a therapeutic target for treating alcoholic and nonalcoholic fatty liver diseases.
Collapse
Affiliation(s)
- Ren-Bo Ding
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Jiaolin Bao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Chu-Xia Deng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| |
Collapse
|
52
|
Tousian Shandiz H, Razavi BM, Hosseinzadeh H. Review of Garcinia mangostana and its Xanthones in Metabolic Syndrome and Related Complications. Phytother Res 2017; 31:1173-1182. [PMID: 28656594 DOI: 10.1002/ptr.5862] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 12/31/2022]
Abstract
Metabolic syndrome is coexistence of abdominal obesity, hyperglycemia, hyperlipidemia and hypertension that causes cardiovascular diseases, diabetes and their complications, low quality and short lifespan. Garcinia mangostana and its xanthones such as α-mangostin have been shown desirable effects such as anti-obesity, anti-hyperglycemic, anti-dyslipidemia, anti-diabetic and antiinflammatory effects in experimental studies. Various databases such as PubMed, Scopus and Web of Science with keywords of 'Garcinia mangostana', 'mangosteen', 'α-mangostin', 'metabolic syndrome', 'hypoglycemic', 'antihyperglicemic', 'antidiabetic', 'hypotensive', 'antihypertensive', 'atherosclerosis', 'arteriosclerosis' and 'hyperlipidemia' have been investigated in this search without publication time limitation. This study reviewed all pharmacological effects and molecular pathways of G. mangostana and its xanthones in the management of metabolic syndrome and its complications in in-vitro and in-vivo studies. Based on these studies, mangosteen and its xanthones have good potential to design human studies for controlling and modification of metabolic syndrome and its related disorders such as obesity, disrupted lipid profile, diabetes and its complications. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
53
|
You BH, Chae HS, Song J, Ko HW, Chin YW, Choi YH. α-Mangostin ameliorates dextran sulfate sodium-induced colitis through inhibition of NF-κB and MAPK pathways. Int Immunopharmacol 2017; 49:212-221. [PMID: 28601023 DOI: 10.1016/j.intimp.2017.05.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/18/2017] [Accepted: 05/22/2017] [Indexed: 12/22/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) of the colon as a target site. Previous reports regarding the efficacy of α-mangostin (αMG) to inhibit nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) as well as relatively high distribution to the colon suggested the therapeutic potential of this compound in UC model. In dextran sodium sulfate (DSS)-induced colitis mice (DSS mice), the disease activity index scores involving diarrhea, bloody stool, body weight reduction, and myeloperoxidase (MPO) activities of the esophagus and colon increased with the reduced colon length. Also histologic disturbances and changes of NF-κB and MAPK pathways including phosphorylation of IκB kinase, ERK1/2, SAPK/JNK and p38 were observed in the colon of the DSS mice. However, all of these impaired conditions in the DSS mice were restored by αMG treatment, and the intestinal metabolism of αMG decreased, increasing its distribution to the colons in the DSS mice compared with the control mice. All of these results suggest that high distribution of αMG in the colon might attenuate DSS-induced colitis by inhibiting NF-κB and MAPK pathways in the colon.
Collapse
Affiliation(s)
- Byoung Hoon You
- College of Pharmacy, Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Hee-Sung Chae
- College of Pharmacy, Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Jieun Song
- College of Pharmacy, Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Hyuk Wan Ko
- College of Pharmacy, Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Young-Won Chin
- College of Pharmacy, Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| | - Young Hee Choi
- College of Pharmacy, Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
54
|
Abstract
Mangosteen (Garcinia mangostana Linn.) is a well-known tropical tree indigenous to Southeast Asia. Its fruit's pericarp abounds with a class of isoprenylated xanthones which are referred as mangostins. Numerous in vitro and in vivo studies have shown that mangostins and their derivatives possess diverse pharmacological activities, such as antibacterial, antifungal, antimalarial, anticarcinogenic, antiatherogenic activities as well as neuroprotective properties in Alzheimer's disease (AD). This review article provides a comprehensive review of the pharmacological activities of mangostins and their derivatives to reveal their promising utilities in the treatment of certain important diseases, mainly focusing on the discussions of the underlying molecular targets/pathways, modes of action, and relevant structure-activity relationships (SARs). Meanwhile, the pharmacokinetics (PK) profile and recent toxicological studies of mangostins are also described for further druggability exploration in the future.
Collapse
|
55
|
Xu WK, Jiang H, Yang K, Wang YQ, Zhang Q, Zuo J. Development and in vivo evaluation of self-microemulsion as delivery system for α-mangostin. Kaohsiung J Med Sci 2017; 33:116-123. [PMID: 28254113 DOI: 10.1016/j.kjms.2016.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/31/2016] [Accepted: 12/14/2016] [Indexed: 12/31/2022] Open
Abstract
α-Mangostin (MG) is a versatile bioactive compound isolated from mangosteen and possesses significant pharmacokinetic shortages. To augment the potential clinical efficacy, MG-loaded self-microemulsion (MG-SME) was designed and prepared in this study, and its potential as a drug loading system was evaluated based on the pharmacokinetic performance and tissue distribution feature. The formula of MG-SME was optimized by an orthogonal test under the guidance of ternary phase diagram, and the prepared MG-SME was characterized by encapsulation efficiency, size distribution, and morphology. Optimized high performance liquid chromatography method was employed to determine concentrations of MG and characterize the pharmacokinetic and tissue distribution features of MG in rodents. It was found that diluted MG-SME was characterized as spherical particles with a mean diameter of 24.6 nm and an encapsulation efficiency of 87.26%. The delivery system enhanced the area under the curve of MG by 4.75 times and increased the distribution in lymphatic organs. These findings suggested that SME as a nano-sized delivery system efficiently promoted the digestive tract absorption of MG and modified its distribution in tissues. The targeting feature and high oral bioavailability of MG-SME promised a good clinical efficacy, especially for immune diseases.
Collapse
Affiliation(s)
- Wen-Ke Xu
- Department of Pharmacy, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Hui Jiang
- Department of Pharmacy, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Kui Yang
- Department of Pharmacy, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Ya-Qin Wang
- Department of Pharmacy, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Qian Zhang
- Department of Pharmacy, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Jian Zuo
- Department of Pharmacy, Yijishan Hospital, Wannan Medical College, Wuhu, China; Anhui Provincial Engineering Technology Research Center of Polysaccharides Drug, Wuhu, China.
| |
Collapse
|
56
|
Zhong J, Gong W, Lu L, Chen J, Lu Z, Li H, Liu W, Liu Y, Wang M, Hu R, Long H, Wei L. Irbesartan ameliorates hyperlipidemia and liver steatosis in type 2 diabetic db/db mice via stimulating PPAR-γ, AMPK/Akt/mTOR signaling and autophagy. Int Immunopharmacol 2016; 42:176-184. [PMID: 27919004 DOI: 10.1016/j.intimp.2016.11.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 12/27/2022]
Abstract
Irbesartan (Irb), a unique subset of angiotensin II receptor blockers (ARBs) with PPAR-γ activation function, has been reported to play a role in renal dysfunction, glucose metabolism, and abnormal lipid profile in diabetic animal models and humans. However, the underlying mechanisms that improve hyperlipidemia and liver steatosis are unclear. This study investigated the effects of Irb on lipid metabolism and hepatic steatosis using the spontaneous type 2 diabetic db/db mouse model. The results demonstrated body and liver weight, food consumption, lipid content in serum and liver tissue, and liver dysfunction as well as hepatic steatosis were increased in db/db mice compared with db/m mice, whereas the increases were reversed by Irb treatment. Moreover, Irb administration resulted in an increase in LC3BII as well as the LC3BII/I ratio through activating PPAR-γ and p-AMPK and inhibiting p-Akt and p-mTOR, thereby inducing autophagy in the db/db mouse liver. Therefore, our findings suggest that Irb can ameliorate hyperlipidemia and liver steatosis by upregulating the expression of PPAR-γ, activating the AMPK/Akt/mTOR signaling pathway and inducing liver autophagy.
Collapse
Affiliation(s)
- Juan Zhong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China; Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China; Department of Traditional Chinese Medicine, The First People's Hospital of Nanning, Nanning, Guangxi 530022, PR China
| | - Wangqiu Gong
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Lu Lu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China; Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Jing Chen
- Laboratory Medicine Center, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Zibin Lu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - HongYu Li
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Wenting Liu
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Yangyang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China; Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Mingqing Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China; Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Rong Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China; Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Haibo Long
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China.
| | - Lianbo Wei
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China; Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China.
| |
Collapse
|
57
|
Tsai SY, Chung PC, Owaga EE, Tsai IJ, Wang PY, Tsai JI, Yeh TS, Hsieh RH. Alpha-mangostin from mangosteen ( Garcinia mangostana Linn.) pericarp extract reduces high fat-diet induced hepatic steatosis in rats by regulating mitochondria function and apoptosis. Nutr Metab (Lond) 2016; 13:88. [PMID: 27980597 PMCID: PMC5134003 DOI: 10.1186/s12986-016-0148-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/22/2016] [Indexed: 02/06/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is caused by multiple factors including hepatic oxidative stress, lipotoxicity, and mitochondrial dysfunction. Obesity is among the risk factors for NAFLD alongside type 2 diabetes mellitus and hyperlipidemia. α- mangostin (α-MG) extracts from the pericarps of mangosteen (Garcinia mangostana Linn.) may regulate high fat diet-induced hepatic steatosis; however the underlying mechanisms remain unknown. The aim of this study was to investigate the regulatory effect of α-MG on high fat diet-induced hepatic steatosis and the underlying mechanisms related to mitochondrial functionality and apoptosis in vivo and in vitro. Methods Sprague Dawley (SD) rats were fed on either AIM 93-M control diet, a high-fat diet (HFD), or high-fat diet supplemented with 25 mg/day mangosteen pericarp extract (MGE) for 11 weeks. Thereafter, the following were determined: body weight change, plasma free fatty acids, liver triglyceride content, antioxidant enzymes (superoxide dismutase, SOD; glutathione, GSH; glutathione peroxidase, GPx; glutathione reductase GRd; catalase, CAT) and mitochondrial complex enzyme activities. In the in vitro study, primary liver cells were treated with 1 mM free fatty acid (FFA) (palmitate: oleate acid = 2:0.25) to induce steatosis. Thereafter, the effects of α-MG (10 μM, 20 μM, 30 μM) on total and mitochondria ROS (tROS, mitoROS), mitochondria bioenergetic functions, and mitochondrial pathway of apoptosis were examined in the FFA-treated primary liver cells. Results The MGE group showed significantly decreased plasma free fatty acids and hepatic triglycerides (TG) and thiorbarbituric acid reactive substances (TBARS) levels; increased activities of antioxidant enzymes (SOD, GSH, GPx, GRd, CAT); and enhanced NADH-cytochrome c reductase (NCCR) and succinate-cytochrome c reductase (SCCR) activities in the liver tissue compared with HFD group. In the in vitro study, α-MG significantly increased mitochondrial membrane potential, enhanced cellular oxygen consumption rate (OCR), decreased tROS (total ROS) and mitoROS (mitochondrial ROS) levels ; reduced Ca2+ and cytochrome c (cyt c) release from mitochondria, and reduced caspases 9 and 3 activities compared with control group. Conclusion These findings demonstrate α-MG attenuated hepatic steatosis in high fat-diet fed rats potentially through enhanced cellular antioxidant capacity and improved mitochondrial functions as well as suppressed apoptosis of hepatocytes. The findings of study represent a novel nutritional approach on the use of α-MG in the prevention and management of NAFLD.
Collapse
Affiliation(s)
- Shin-Yu Tsai
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110 Taiwan
| | - Pei-Chin Chung
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110 Taiwan
| | - Eddy E Owaga
- Institute of Food Bioresources and Technology, Dedan Kimathi University of Technology, P.O. Box 657-10100 Nyeri, Kenya
| | - I-Jong Tsai
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110 Taiwan
| | - Pei-Yuan Wang
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110 Taiwan
| | - Jeng-I Tsai
- Yuan Lyu Technology Corporation, 10F-3, 120 Chung Cheng 1st Road, Kaohsiung, 802 Taiwan
| | - Tien-Shun Yeh
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, 112 Taiwan
| | - Rong-Hong Hsieh
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110 Taiwan
| |
Collapse
|
58
|
Sirtuin1 promotes osteogenic differentiation through downregulation of peroxisome proliferator-activated receptor γ in MC3T3-E1 cells. Biochem Biophys Res Commun 2016; 478:439-445. [DOI: 10.1016/j.bbrc.2016.06.154] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 06/29/2016] [Indexed: 12/30/2022]
|
59
|
Zhang K, Guo Y, Ge Z, Zhang Z, Da Y, Li W, Zhang Z, Xue Z, Li Y, Ren Y, Jia L, Chan KH, Yang F, Yan J, Yao Z, Xu A, Zhang R. Adiponectin Suppresses T Helper 17 Cell Differentiation and Limits Autoimmune CNS Inflammation via the SIRT1/PPARγ/RORγt Pathway. Mol Neurobiol 2016; 54:4908-4920. [PMID: 27514756 DOI: 10.1007/s12035-016-0036-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022]
Abstract
T helper 17 (Th17) cells are vital components of the adaptive immune system involved in the pathogenesis of most autoimmune and inflammatory syndromes, and adiponectin(ADN) is correlated with inflammatory diseases such as multiple sclerosis (MS) and type II diabetes. However, the regulatory effects of adiponectin on pathogenic Th17 cell and Th17-mediated autoimmune central nervous system (CNS) inflammation are not fully understood. In this study, we demonstrated that ADN could inhibit Th1 and Th17 but not Th2 cells differentiation in vitro. In the in vivo study, we demonstrated that ADN deficiency promoted CNS inflammation and demyelination and exacerbated experimental autoimmune encephalomyelitis (EAE), an animal model of human MS. Furthermore, ADN deficiency increased the Th1 and Th17 cell cytokines of both the peripheral immune system and CNS in mice suffering from EAE. It is worth mentioning that ADN deficiency predominantly promoted the antigen-specific Th17 cells response in autoimmune encephalomyelitis. In addition, in vitro and in vivo, ADN upregulated sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor γ (PPARγ) and inhibited retinoid-related orphan receptor-γt (RORγt); the key transcription factor during Th17 cell differentiation. These results systematically uncovered the role and mechanism of adiponectin on pathogenic Th17 cells and suggested that adiponectin could inhibit Th17 cell-mediated autoimmune CNS inflammation.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Immunology, Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China
| | - Yawei Guo
- Department of Family Medicine and Primary Care, Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhenzhen Ge
- Department of Immunology, Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Zhihui Zhang
- Department of Immunology, Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Yurong Da
- Department of Immunology, Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Wen Li
- Department of Immunology, Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Zimu Zhang
- Department of Immunology, Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Zhenyi Xue
- Department of Immunology, Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Yan Li
- Department of Immunology, Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Yinghui Ren
- Department of Immunology, Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Long Jia
- Department of Immunology, Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Koon-Ho Chan
- State Key laboratory of Pharmaceutical Biotechnology, and Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fengrui Yang
- Department of Immunology, Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Jun Yan
- Tianjin Animal Science and Veterinary Research Institute, Tianjin, 300381, China
| | - Zhi Yao
- Department of Immunology, Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Aimin Xu
- State Key laboratory of Pharmaceutical Biotechnology, and Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rongxin Zhang
- Department of Immunology, Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China. .,Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
60
|
Lee D, Choi YO, Kim KH, Chin YW, Namgung H, Yamabe N, Jung K. Protective effect of α-mangostin against iodixanol-induced apoptotic damage in LLC-PK1 cells. Bioorg Med Chem Lett 2016; 26:3806-9. [DOI: 10.1016/j.bmcl.2016.05.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 12/23/2022]
|
61
|
Zhu J, Ren T, Zhou M, Cheng M. The combination of blueberry juice and probiotics reduces apoptosis of alcoholic fatty liver of mice by affecting SIRT1 pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1649-61. [PMID: 27274198 PMCID: PMC4869661 DOI: 10.2147/dddt.s102883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Purpose To explore the effects of the combination of blueberry juice and probiotics on the apoptosis of alcoholic fatty liver disease (AFLD). Methods Healthy C57BL/6J mice were used in the control group (CG). AFLD mice models were established with Lieber–DeCarli ethanol diet and evenly assigned to six groups with different treatments: MG (model), SI (SIRT1 [sirtuin type 1] small interfering RNA [siRNA]), BJ (blueberry juice), BJSI (blueberry juice and SIRT1 siRNA), BJP (blueberry juice and probiotics), and BJPSI (blueberry juice, probiotics, and SIRT1 siRNA). Hepatic tissue was observed using hematoxylin and eosin (HE) and Oil Red O (ORO) staining. Biochemical indexes of the blood serum were analyzed. The levels of SIRT1, caspase-3, forkhead box protein O1 (FOXO1), FasL (tumor necrosis factor ligand superfamily member 6), BAX, and Bcl-2 were measured by reverse transcription-polymerase chain reaction and Western blotting. Results HE and ORO staining showed that the hepatocytes were heavily destroyed with large lipid droplets in MG and SI groups, while the severity was reduced in the CG, BJ, and BJP groups (P<0.05). The levels of superoxide dismutase (SOD), reduced glutathione (GSH), and high-density lipoprotein-cholesterol (HDL-C) were increased in BJ and BJP groups when compared with the model group (P<0.05). In contrast, the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), total triglycerides (TGs), total cholesterol, low-density lipoprotein-cholesterol (LDL-C), and malondialdehyde (MDA) were lower in BJ and BJP groups than in the model group (P<0.05). The level of SIRT1 was increased, while the levels of FOXO1, phosphorylated FOXO1, acetylated FOXO1, FasL, caspase-3, BAX, and Bcl-2 were decreased in CG, BJ, and BJP groups (P<0.05). Meanwhile, SIRT1 silence resulted in increase of the levels of FOXO1, phosphorylated FOXO1, acetylated FOXO1, FasL, caspase-3, BAX, and Bcl-2. Conclusion The combination of blueberry juice and probiotics reduces apoptosis in AFLD by suppressing FOXO1, phosphorylated FOXO1, acetylated FOXO1, FasL, caspase-3, BAX, and Bcl-2 via the upregulation of SIRT1.
Collapse
Affiliation(s)
- Juanjuan Zhu
- First Hospital Affiliated to Suzhou University, Suzhou, People's Republic of China; Department of Infectious Diseases, Affiliated Hospital of Guiyang Medical College, Guiyang, People's Republic of China
| | - Tingting Ren
- Biochemistry Department, Affiliated Hospital of Guiyang Medical College, Guiyang, People's Republic of China
| | - Mingyu Zhou
- Department of Infectious Diseases, Affiliated Hospital of Guiyang Medical College, Guiyang, People's Republic of China
| | - Mingliang Cheng
- Department of Infectious Diseases, Affiliated Hospital of Guiyang Medical College, Guiyang, People's Republic of China
| |
Collapse
|
62
|
Ren M, Zhang S, Liu X, Li S, Mao X, Zeng X, Qiao S. Different Lipopolysaccharide Branched-Chain Amino Acids Modulate Porcine Intestinal Endogenous β-Defensin Expression through the Sirt1/ERK/90RSK Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3371-3379. [PMID: 27083206 DOI: 10.1021/acs.jafc.6b00968] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nutritional induction of endogenous antimicrobial peptide expression is considered a promising approach to inhibit the outgrowth and infection of pathogenic microbes in mammals. The present study investigated possible regulation of porcine epithelial β-defensins in response to branched-chain amino acids (BCAA) in vivo and in vitro. BCAA treatment increased relative mRNA expression of jejunal and ileal β-defensins in weaned piglets. In IPEC-J2 cells, isoleucine, leucine, and valine could stimulate β-defensin expression, possibly associated with stimulation of ERK1/2 phosphorylation. Inhibition of Sirt1 and ERK completely blocked the activation of ERK and 90RSK protein by isoleucine, simultaneously decreasing defensin expression. BCAA stimulate expression of porcine intestinal epithelial β-defensins with isoleucine the most, potent possibly through activation of the Sirt1/ERK/90RSK signaling pathway. The β-defensins regulation of lipopolysaccharide was related with an ERK-independent pathway. BCAA modulation of endogenous defensin might be a promising approach to enhance disease resistance and intestinal health in young animals and children.
Collapse
Affiliation(s)
- Man Ren
- State Key Laboratory of Animal Nutrition, China Agricultural University , No. 2 Yuanmingyuan West Road, Beijing 100193, China
- College of Animal Science, Anhui Science & Technology University , No. 9 Donghua Road, Fengyang, Anhui 233100, China
| | - Shihai Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University , No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xutong Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University , No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Shenghe Li
- College of Animal Science, Anhui Science & Technology University , No. 9 Donghua Road, Fengyang, Anhui 233100, China
| | - Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University , No. 46 Xinkang Road, Yucheng, Ya'an 625014, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, China Agricultural University , No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, China Agricultural University , No. 2 Yuanmingyuan West Road, Beijing 100193, China
| |
Collapse
|
63
|
Chae HS, Kim EY, Han L, Kim NR, Lam B, Paik JH, Yoon KD, Choi YH, Chin YW. Xanthones with pancreatic lipase inhibitory activity from the pericarps ofGarcinia mangostanaL. (Guttiferae). EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201500516] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hee-Sung Chae
- College of Pharmacy and BK21Plus R-Find Team; Dongguk University-Seoul; Goyang Gyeonggi-do Republic of Korea
| | - Eun-Young Kim
- College of Pharmacy and BK21Plus R-Find Team; Dongguk University-Seoul; Goyang Gyeonggi-do Republic of Korea
| | - Ling Han
- College of Pharmacy and BK21Plus R-Find Team; Dongguk University-Seoul; Goyang Gyeonggi-do Republic of Korea
| | - Na-Rae Kim
- College of Pharmacy and BK21Plus R-Find Team; Dongguk University-Seoul; Goyang Gyeonggi-do Republic of Korea
| | - Bunthoeun Lam
- College of Pharmacy and BK21Plus R-Find Team; Dongguk University-Seoul; Goyang Gyeonggi-do Republic of Korea
| | - Jin Hyub Paik
- International Biological Material Research Center; Korea Research Institute of Bioscience and Biotechnology; Daejeon Republic of Korea
| | - Kee Dong Yoon
- College of Pharmacy; The Catholic University of Korea; Gyeonggi-do Republic of Korea
| | - Young Hee Choi
- College of Pharmacy and BK21Plus R-Find Team; Dongguk University-Seoul; Goyang Gyeonggi-do Republic of Korea
| | - Young-Won Chin
- College of Pharmacy and BK21Plus R-Find Team; Dongguk University-Seoul; Goyang Gyeonggi-do Republic of Korea
| |
Collapse
|
64
|
Qian X, Han J, Wang L. tert-Butoxide mediated cascade desulfonylation/arylation/hydrolysis of cyclic sulfonyimines using diaryliodonium salts: synthesis of diaryl ether derivatives bearing a 2-aldehyde group. RSC Adv 2016. [DOI: 10.1039/c6ra19313g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cascades of cyclic sulfonyimines mediated by tBuOK with diaryliodonium salts has been developed, giving the diaryl ethers in good yields.
Collapse
Affiliation(s)
- Xiaofei Qian
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Jianwei Han
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis
| | - Limin Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|