51
|
Xu L, Luo Y, Fu X, Luo F, Xu Y, Sun S. Effect of Saccharomyces uvarum on lipid oxidation and carbonyl compounds in silver carp mince during cold storage. Food Sci Nutr 2019; 7:2404-2411. [PMID: 31367369 PMCID: PMC6657708 DOI: 10.1002/fsn3.1101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/27/2019] [Accepted: 05/04/2019] [Indexed: 12/24/2022] Open
Abstract
Fish lipid is highly susceptible to oxidation, resulting in accumulation of toxic substances reactive carbonyl compounds (RCCs), the reduction of nutritional value, and the production of odorous substances. In this study, the effect of yeast (Saccharomyces uvarum) on RCCs, fat acid composition, volatiles, and sensory traits in silver carp mince stored at 4°C was evaluated. Yeast eliminated malondialdehyde, 4-hydroxyl-2-hexenal, and 4-hydroxyl-2-nonenal by about 80%, 68%, and 60%, which increased by about 170%, 340%, and 300% in the control, respectively. Yeast helped retain about 80% of the polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), respectively; only about 53% and 46% of EPA and DHA, respectively, were maintained in the control. Yeast removed off-odors hexanal, nonanal, and decenal, resulting in enhanced sensory traits. These findings were economically important for improving the quality of fish products. It might present an approach to improve the flavor of fish products.
Collapse
Affiliation(s)
- Lina Xu
- College of Food Science and EngineeringCentral South University of Forestry and TechnologyChangshaChina
| | - Yu Luo
- College of Food Science and EngineeringCentral South University of Forestry and TechnologyChangshaChina
| | - Xiangjin Fu
- College of Food Science and EngineeringCentral South University of Forestry and TechnologyChangshaChina
| | - Feijun Luo
- College of Food Science and EngineeringCentral South University of Forestry and TechnologyChangshaChina
| | - Youzhi Xu
- College of Food Science and EngineeringCentral South University of Forestry and TechnologyChangshaChina
| | - Shuguo Sun
- College of Food Science and EngineeringCentral South University of Forestry and TechnologyChangshaChina
| |
Collapse
|
52
|
Wang YZ, Wang SY, Fu SG, Yang DJ, Yu YS, Chen JW, Chen YC. Effects of rosemary (Rosmarinus officinalis L.) extracts and dry ice on the physicochemical stability of omega-3 fatty-acid-fortified surimi-like meat products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3843-3851. [PMID: 30680724 DOI: 10.1002/jsfa.9606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/05/2019] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Lipid peroxidation entails major quality degradation in omega-3 (ω-3) fatty-acid-fortified surimi-like meat products upon storage. Currently, the use of label-friendly alternatives to synthetic antioxidants is encouraged in the industry. Hence, we aimed to examine the applicability of the hurdle-technology concept, using an 80% (v/v) ethanol solution to obtain rosemary extracts (REs) containing substantial amounts of polyphenol, and dry ice (DI) which can create a cryogenic environment, on the physicochemical stabilities of ω-3 fatty-acid (FA)-fortified meat products after manufacturing and storage periods. The polyphenolic profiles of the REs were also investigated. RESULTS Carnosol and rosmarinic acid are major phenolic components in REs. Furthermore, DI addition during the chopping procedure increased (P < 0.05) whiteness values and hardness of products, while total ω-3 and ω-6 FAs were relatively well preserved (P < 0.05) in products with flaxseed oil premixed with RE. During 14-day storage at 4 °C, combined treatment with RE and DI decreased (P < 0.05) thiobarbituric acid reactive substance (TBARS) levels and the centrifugation loss of products. Single or combined treatment with RE and/or DI decreased (P < 0.05) TBARS levels in products after 60 days of storage at -20 °C. CONCLUSION Due to the antioxidant-polyphenol profile of REs and a possible oxygen exclusion of DI treatment under atmospheric pressure during food manufacturing, application of the hurdle-technology concept, using treatment with both RE and DI, can reduce lipid peroxidation and maintain a greater water-holding capacity of ω-3 FA-fortified meat products upon storage. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu-Zhu Wang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Sheng-Yao Wang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shih-Guei Fu
- Department of Applied Life Science and Health, Chia Nan University of Pharmacy & Science, Tainan, Taiwan
| | - Deng-Jye Yang
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Shan Yu
- Office of Food and Drug Safety, Taichung, Taiwan
| | - Jr-Wei Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Poultry Industry Section, Department of Animal Industry, Council of Agriculture, Executive Yuan, Taipei, Taiwan
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
53
|
Goethals S, Vossen E, Michiels J, Vanhaecke L, Van Camp J, Van Hecke T, De Smet S. Impact of Red versus White Meat Consumption in a Prudent or Western Dietary Pattern on the Oxidative Status in a Pig Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5661-5671. [PMID: 31012581 DOI: 10.1021/acs.jafc.9b00559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Human diets contain a complex mixture of antioxidants and pro-oxidants that contribute to the body's oxidative status. In this study, 32 pigs were fed chicken versus red and processed meat in the context of a prudent or Western dietary pattern for 4 weeks, to investigate their oxidative status. Lipid oxidation products (malondialdehyde, 4-hydroxy-2-nonenal, and hexanal) were higher in the chicken versus red and processed meat diets (1.7- to 8.3-fold) and subsequent in vitro (1.3- to 1.9-fold) and in vivo (1.4 to 3-fold) digests ( P < 0.001), which was presumably related to the higher polyunsaturated fatty acid content in chicken meat and/or the added antioxidants in processed meat. However, diet had only a marginal or no effect on the systemic oxidative status, as determined by plasma oxygen radical absorbance capacity, malondialdehyde, glutathione, and glutathione peroxidase activity in blood and organs, except for α-tocopherol, which was higher after the consumption of the chicken-Western diet. In conclusion, in contrast to the hypothesis, the consumption of chicken in comparison to that of the red and processed meat resulted in higher concentrations of lipid oxidation products in the pig intestinal contents; however, this was not reflected in the body's oxidative status.
Collapse
Affiliation(s)
- Sophie Goethals
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety , Ghent University , Salisburylaan 133 , B-9820 Merelbeke , Belgium
- Research Group Food Chemistry and Human Nutrition, Department of Food Safety and Food Quality , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium
| | - Els Vossen
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium
| | - Joris Michiels
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety , Ghent University , Salisburylaan 133 , B-9820 Merelbeke , Belgium
- Institute for Global Food Security, School of Biological Sciences , Queen's University , University Road , Belfast BT7 1NN , Northern Ireland , United Kingdom
| | - John Van Camp
- Research Group Food Chemistry and Human Nutrition, Department of Food Safety and Food Quality , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium
| | - Thomas Van Hecke
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium
| | - Stefaan De Smet
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium
| |
Collapse
|
54
|
Ma L, Liu G, Zhang H, Liu X. Understanding the difference of 4‐hydroxyhexenal and 4‐hydroxynonenal formation in various vegetable oils during thermal processes by kinetic and thermodynamic study. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lukai Ma
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Products Safety Ministry of Education Engineering Research Center of Starch & Protein Processing School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Guoqin Liu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Products Safety Ministry of Education Engineering Research Center of Starch & Protein Processing School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Hua Zhang
- Facility of Food Science School of Agriculture Yanbian University Yanji 133000 China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health School of Food and Chemical Engineering Beijing Technology and Business University Beijing 100048 China
| |
Collapse
|
55
|
Lamothe S, Guérette C, Dion F, Sabik H, Britten M. Antioxidant activity of milk and polyphenol-rich beverages during simulated gastrointestinal digestion of linseed oil emulsions. Food Res Int 2019; 122:149-156. [PMID: 31229066 DOI: 10.1016/j.foodres.2019.03.068] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/05/2019] [Accepted: 03/30/2019] [Indexed: 12/25/2022]
Abstract
Polyunsaturated fatty acids (PUFA) are associated with health benefits. However, high PUFA intake increases the risk of lipid oxidation and formation of potentially toxic lipid oxidation species. The objective of this study was to determine the antioxidant activity of milk fractions (whole milk, skim milk, acid whey, ultrafiltration (UF) permeate) and polyphenol-rich beverages (green tea, grape juice) during simulated gastrointestinal digestion. We also determined the effect of milk and polyphenol-rich beverages on the formation of advanced oxidation species during in vitro digestion of PUFA-rich emulsion. Antioxidant activity during digestion of milk fractions emphasized the important role of proteins (more specifically caseins) and the contribution of fat to the antioxidant capacity of milk. In comparison to milk, the antioxidant activity of polyphenol-rich beverages was at least four times higher. During digestion of a PUFA-rich emulsion, the formation of 4-hydroxyhexanal (4-HHE) and 4-hydroxynonenal (4-HNE) in the intestinal phase were respectively reduced by 60% and 75%, in the presence of milk or polyphenol-rich beverages. Further reduction was observed when the emulsion was co-digested with both, milk and polyphenol-rich beverages (89% for 4-HHE and 93% for 4-HNE). These results suggest that the combination of milk and polyphenol-rich beverages increases the antioxidant activity and synergistically reduces the formation of toxic lipid oxidation species during simulated digestion of PUFA-rich foods.
Collapse
Affiliation(s)
- Sophie Lamothe
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, Quebec J2S 8E3, Canada
| | - Cassandra Guérette
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, Quebec J2S 8E3, Canada
| | - Frédéric Dion
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, Quebec J2S 8E3, Canada
| | - Hassan Sabik
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, Quebec J2S 8E3, Canada
| | - Michel Britten
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, Quebec J2S 8E3, Canada.
| |
Collapse
|
56
|
Hidalgo FJ, Zamora R. Characterization of Carbonyl-Phenol Adducts Produced by Food Phenolic Trapping of 4-Hydroxy-2-hexenal and 4-Hydroxy-2-nonenal. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2043-2051. [PMID: 30702290 DOI: 10.1021/acs.jafc.8b07091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
4-Hydroxy-2-alkenals disappear in the presence of food phenolics (i.e., cathechin or quercetin), and the corresponding carbonyl-phenol adducts are produced. In an attempt to identify structure(s) of formed adducts, the reactions between model phenolics (resorcinol, 2-methylresorcinol, orcinol, and 2,5-dimethylresorcinol) and hydroxyalkenals (4-hydroxy-2-hexenal and 4-hydroxy-2-nonenal) were studied and the produced adducts were isolated by column chromatography and unambiguously characterized by one- and two-dimensional nuclear magnetic resonance and mass spectrometry as dihydrobenzofuranols (1), chromane-2,7-diols (2), and 2 H-chromen-7-ols (3). These compounds were mainly produced at slightly basic pH values and moderate temperatures. Their activation energies ( Ea) of formation were ∼25 kJ mol-1 for adducts 1, ∼32 kJ mol-1 for adducts 2, and ∼38 kJ mol-1 for adducts 3. A reaction pathway that explains their formation is proposed. All of these results confirm that, analogously to other lipid-derived carbonyl compounds, phenolics can trap 4-hydroxy-2-alkenals in an efficient way. Obtained results provide the basis for the potential detection of carbonyl-phenol adducts derived from hydroxyalkenals in food products.
Collapse
Affiliation(s)
- Francisco J Hidalgo
- Instituto de la Grasa , Consejo Superior de Investigaciones Científicas , Carretera de Utrera km 1 , Campus Universitario, Edificio 46, 41013 Seville , Spain
| | - Rosario Zamora
- Instituto de la Grasa , Consejo Superior de Investigaciones Científicas , Carretera de Utrera km 1 , Campus Universitario, Edificio 46, 41013 Seville , Spain
| |
Collapse
|
57
|
Nieva-Echevarría B, Goicoechea E, Guillén MD. Food lipid oxidation under gastrointestinal digestion conditions: A review. Crit Rev Food Sci Nutr 2018; 60:461-478. [DOI: 10.1080/10408398.2018.1538931] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Bárbara Nieva-Echevarría
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria, Spain
| | - Encarnación Goicoechea
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria, Spain
| | - María D. Guillén
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria, Spain
| |
Collapse
|
58
|
Van Hecke T, Basso V, De Smet S. Lipid and Protein Oxidation during in Vitro Gastrointestinal Digestion of Pork under Helicobacter pylori Gastritis Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13000-13010. [PMID: 30411892 DOI: 10.1021/acs.jafc.8b04335] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Helicobacter pylori gastritis affects gastric pH and concentrations of ascorbic acid, hydrogen peroxide, hypochlorite, ammonia and urea, pepsin, and mucin. First, the separate effects of each of these altered factors on oxidation of pork were investigated during in vitro gastrointestinal digestion. Lipid and protein oxidation increased (range 23-48%) in duodenal digests of pork previously exposed to elevated (6.1) versus normal acidic stomach pH (2.3 to 3.5) conditions. Salivary nitrite reduced the formation of lipid and protein oxidation products (range 14-20%) under normal acidic but not elevated stomach pH conditions. Higher amounts of hydrogen peroxide and lower amounts of ascorbic acid decreased concentrations of lipid oxidation products in duodenal pork digests, whereas ammonia slightly stimulated protein oxidation during digestion. Second, two H. pylori gastritis-duodenal digestion models were installed using a set of altered compound concentrations at normal acidic or elevated stomach pH. The elevated pH-gastritis-duodenal digestion model increased pork protein oxidation compared with the normal pH-gastritis and the normal digestion model (14.3 ± 2.1 vs 8.2 ± 1.0 nmol DNPH/mg protein, P < 0.001). Compared with the other models, protein oxidation was also increased when nitrite-cured pork was exposed to the elevated pH-gastritis-duodenal digestion model (10.8 ± 1.4 vs 5.9 ± 0.8 nmol DNPH/mg protein, P < 0.001), but no significant effect of the model was observed when the pork was seasoned with herbs. Lipid oxidation was not or was marginally affected by the installed model.
Collapse
Affiliation(s)
- Thomas Van Hecke
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium
| | - Veronica Basso
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium
| | - Stefaan De Smet
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium
| |
Collapse
|
59
|
Iron-catalysed chemistry in the gastrointestinal tract: Mechanisms, kinetics and consequences. A review. Food Chem 2018; 268:27-39. [DOI: 10.1016/j.foodchem.2018.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/28/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
|
60
|
Ma L, Liu G, Liu X. Amounts of malondialdehyde do not accurately represent the real oxidative level of all vegetable oils: a kinetic study of malondialdehyde formation. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13952] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lukai Ma
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Guoqin Liu
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety; South China University of Technology; Guangzhou 510640 China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health; Beijing Technology and Business University; Beijing 100048 China
- School of Food and Chemical Engineering; Beijing Technology and Business University; Beijing 100048 China
| |
Collapse
|
61
|
Behrens G, Gredner T, Stock C, Leitzmann MF, Brenner H, Mons U. Cancers Due to Excess Weight, Low Physical Activity, and Unhealthy Diet. DEUTSCHES ARZTEBLATT INTERNATIONAL 2018; 115:578-585. [PMID: 30236216 PMCID: PMC6206246 DOI: 10.3238/arztebl.2018.0578] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 04/16/2018] [Accepted: 07/10/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Excess weight, low physical activity, low intakes of dietary fiber, fruits, and vegetables, and high meat and salt intake increase cancer risk. METHODS Numbers and proportions (population-attributable fractions, PAF) of incident cancer cases in Germany in 2018 attributable to these factors were estimated by sex and age groups for ages 35 to 84 years using population projections, national cancer incidence and exposure data, and published risk estimates. RESULTS Estimated numbers (percentages) of attributable cancers were 30 567 (7%) for excess weight, 27 081 (6%) for low physical activity, 14 474 (3%) for low dietary fiber intake, 9447 (2%) for low fruit and vegetable consumption, 9454 (2%) and 1687 (0.4%) for processed meat and high red meat consumption, respectively, and 1204 (0.3%) for high salt intake. Excess weight substantially contributed to endometrial, renal, and liver cancer (PAF = 24 to 35%). Low physical activity contributed to endometrial, renal, and lung cancer (PAF = 15 to 19%), and dietary factors mainly contributed to colorectal, breast, and lung cancer (PAF = 9 to 16%). CONCLUSION A considerable proportion of cancer cases are attributable to excess weight, physical inactivity, and unhealthy dietary habits. Major prevention efforts are needed to reduce the cancer incidence attributable to these avoidable factors.
Collapse
Affiliation(s)
- Gundula Behrens
- Gundula Behrens and Thomas Gredner contributed equally to this work; Hermann Brenner and Ute Mons contributed equally to this work; Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg; Medical Faculty Heidelberg, University of Heidelberg, Heidelberg; Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg; Cancer Prevention Unit, German Cancer Research Center (DKFZ), Heidelberg
| | | | | | | | | | | |
Collapse
|
62
|
Paradiso VM, Pasqualone A, Summo C, Caponio F. Everything Should Be as Simple as It Can Be. But Not Simpler. Does Food Lipid Oxidation Require an Omics Approach? EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Vito M. Paradiso
- Department of Soil, Plant and Food SciencesUniversity of BariVia Amendola 165/aI‐70126BariItaly
| | - Antonella Pasqualone
- Department of Soil, Plant and Food SciencesUniversity of BariVia Amendola 165/aI‐70126BariItaly
| | - Carmine Summo
- Department of Soil, Plant and Food SciencesUniversity of BariVia Amendola 165/aI‐70126BariItaly
| | - Francesco Caponio
- Department of Soil, Plant and Food SciencesUniversity of BariVia Amendola 165/aI‐70126BariItaly
| |
Collapse
|
63
|
Choe J, Lee J, Jo K, Jo C, Song M, Jung S. Application of winter mushroom powder as an alternative to phosphates in emulsion-type sausages. Meat Sci 2018; 143:114-118. [PMID: 29734004 DOI: 10.1016/j.meatsci.2018.04.038] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 04/10/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
Abstract
This research evaluated the utilization of winter mushrooms as a replacement for phosphate in emulsion-type sausages. Winter mushroom powder (WMP) was added to the sausages at 0, 0.5, 1.0, 1.5, and 2.0% (w/w), and phosphate was added at 0.3% as a positive control. The WMP additions above 1.0% increased the pH of meat batter and efficiently inhibited the exudation of fat from the sausages (p < 0.05). Lipid oxidation of sausages was inhibited by the addition of WMP (p < 0.05). On the other hand, the addition of phosphate and WMP provided different instrumental texture properties. However, no adverse effects were observed with respect to the color and sensory properties of the sausages containing WMP, except for that containing 2.0% WMP. Therefore, this research indicates that WMP can effectively replace phosphate in meat products, and that the most effective addition level may be 1.0% WMP.
Collapse
Affiliation(s)
- Jeehwan Choe
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Juri Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea; Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
64
|
Hemeryck LY, Rombouts C, De Paepe E, Vanhaecke L. DNA adduct profiling of in vitro colonic meat digests to map red vs. white meat genotoxicity. Food Chem Toxicol 2018; 115:73-87. [DOI: 10.1016/j.fct.2018.02.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 01/28/2023]
|
65
|
Sottero B, Leonarduzzi G, Testa G, Gargiulo S, Poli G, Biasi F. Lipid Oxidation Derived Aldehydes and Oxysterols Between Health and Disease. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700047] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Barbara Sottero
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| | - Simona Gargiulo
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| | - Fiorella Biasi
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| |
Collapse
|
66
|
Jacalin-copper sulfide nanoparticles complex enhance the antibacterial activity against drug resistant bacteria via cell surface glycan recognition. Colloids Surf B Biointerfaces 2018; 163:209-217. [DOI: 10.1016/j.colsurfb.2017.12.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 11/23/2022]
|
67
|
Tan BL, Norhaizan ME, Liew WPP. Nutrients and Oxidative Stress: Friend or Foe? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9719584. [PMID: 29643982 PMCID: PMC5831951 DOI: 10.1155/2018/9719584] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/24/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023]
Abstract
There are different types of nutritionally mediated oxidative stress sources that trigger inflammation. Much information indicates that high intakes of macronutrients can promote oxidative stress and subsequently contribute to inflammation via nuclear factor-kappa B- (NF-κB-) mediated cell signaling pathways. Dietary carbohydrates, animal-based proteins, and fats are important to highlight here because they may contribute to the long-term consequences of nutritionally mediated inflammation. Oxidative stress is a central player of metabolic ailments associated with high-carbohydrate and animal-based protein diets and excessive fat consumption. Obesity has become an epidemic and represents the major risk factor for several chronic diseases, including diabetes, cardiovascular disease (CVD), and cancer. However, the molecular mechanisms of nutritionally mediated oxidative stress are complex and poorly understood. Therefore, this review aimed to explore how dietary choices exacerbate or dampen the oxidative stress and inflammation. We also discussed the implications of oxidative stress in the adipocyte and glucose metabolism and obesity-associated noncommunicable diseases (NCDs). Taken together, a better understanding of the role of oxidative stress in obesity and the development of obesity-related NCDs would provide a useful approach. This is because oxidative stress can be mediated by both extrinsic and intrinsic factors, hence providing a plausible means for the prevention of metabolic disorders.
Collapse
Affiliation(s)
- Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Esa Norhaizan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Research Centre of Excellent, Nutrition and Non-Communicable Diseases (NNCD), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Winnie-Pui-Pui Liew
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
68
|
Ma L, Liu G. Simultaneous Analysis of Malondialdehyde, 4-Hydroxy-2-hexenal, and 4-Hydroxy-2-nonenal in Vegetable Oil by Reversed-Phase High-Performance Liquid Chromatography. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11320-11328. [PMID: 29179555 DOI: 10.1021/acs.jafc.7b04566] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A group of toxic aldehydes such as, malondialdehyde (MDA), 4-hydroxy-2-hexenal (HHE), and 4-hydroxy-2-nonenal (HNE) have been found in various vegetable oils and oil-based foods. Then simultaneous determination of them holds a great need in both the oil chemistry field and food field. In the present study, a simple and efficient analytical method was successfully developed for the simultaneous separation and detection of MDA, HHE, and HNE in vegetable oils by reversed-phase-high-performance liquid chromatography (RP-HPLC) coupled with photodiode array detector (PAD) at dual-channel detection mode. The effect of various experimental factors on the extraction performance, such as coextraction solvent system, butylated hydroxytoluene addition, and trichloroacetic acid addition were systematically investigated. Results showed that the linear ranges were 0.02-10.00 μg/mL for MDA, 0.02-4.00 μg/mL for HHE, and 0.03-4.00 μg/mL for HNE with the satisfactory correlation coefficient of >0.999 for all detected aldehydes. The limit of detection (LOD) and limit of quantification (LOQ) of MDA, HHE, and HNE were ∼0.021and 0.020 μg/mL, ∼0.009 and 0.020 μg/mL, and ∼0.014 and 0.030 μg/mL, respectively. Their recoveries were 99.64-102.18%, 102.34-104.61%, and 98.87-103.04% for rapeseed oil and 96.38-98.05%, 96.19-101.34%, and 96.86-99.04% for French fries, separately. Under the selected conditions, the developed methods was successfully applied to the simultaneous determination of MDA, HHE, and HNE in different tested vegetable oils. The results indicated that this method could be employed for the quality assessment of vegetable oils.
Collapse
Affiliation(s)
- Lukai Ma
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Guoqin Liu
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology , Guangzhou 510640, China
| |
Collapse
|
69
|
Tullberg C, Vegarud G, Undeland I, Scheers N. Effects of Marine Oils, Digested with Human Fluids, on Cellular Viability and Stress Protein Expression in Human Intestinal Caco-2 Cells. Nutrients 2017; 9:nu9111213. [PMID: 29113061 PMCID: PMC5707685 DOI: 10.3390/nu9111213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/19/2017] [Accepted: 11/01/2017] [Indexed: 02/05/2023] Open
Abstract
In vitro digestion of marine oils has been reported to promote lipid oxidation, including the formation of reactive aldehydes (e.g., malondialdehyde (MDA) and 4-hydroxy-2-hexenal (HHE)). We aimed to investigate if human in vitro digestion of supplemental levels of oils from algae, cod liver, and krill, in addition to pure MDA and HHE, affect intestinal Caco-2 cell survival and oxidative stress. Cell viability was not significantly affected by the digests of marine oils or by pure MDA and HHE (0-90 μM). Cellular levels of HSP-70, a chaperone involved in the prevention of stress-induced protein unfolding was significantly decreased (14%, 28%, and 14% of control for algae, cod and krill oil, respectively; p ≤ 0.05). The oxidoreductase thioredoxin-1 (Trx-1) involved in reducing oxidative stress was also lower after incubation with the digested oils (26%, 53%, and 22% of control for algae, cod, and krill oil, respectively; p ≤ 0.001). The aldehydes MDA and HHE did not affect HSP-70 or Trx-1 at low levels (8.3 and 1.4 μM, respectively), whilst a mixture of MDA and HHE lowered Trx-1 at high levels (45 μM), indicating less exposure to oxidative stress. We conclude that human digests of the investigated marine oils and their content of MDA and HHE did not cause a stress response in human intestinal Caco-2 cells.
Collapse
Affiliation(s)
- Cecilia Tullberg
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering,Chalmers University of Technology, Kemigården 4, 412 96 Gothenburg, Sweden.
| | - Gerd Vegarud
- Division of Food Proteins, Structure and Biological Function, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Chr. M. Falsens vei 1, 1432 Ås, Norway.
| | - Ingrid Undeland
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering,Chalmers University of Technology, Kemigården 4, 412 96 Gothenburg, Sweden.
| | - Nathalie Scheers
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering,Chalmers University of Technology, Kemigården 4, 412 96 Gothenburg, Sweden.
| |
Collapse
|
70
|
Behaviour of non-oxidized and oxidized flaxseed oils, as models of omega-3 rich lipids, during in vitro digestion. Occurrence of epoxidation reactions. Food Res Int 2017; 97:104-115. [DOI: 10.1016/j.foodres.2017.03.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 03/20/2017] [Accepted: 03/26/2017] [Indexed: 01/03/2023]
|
71
|
Effect of liquid smoking on lipid hydrolysis and oxidation reactions during in vitro gastrointestinal digestion of European sea bass. Food Res Int 2017; 97:51-61. [DOI: 10.1016/j.foodres.2017.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/14/2017] [Accepted: 03/19/2017] [Indexed: 01/15/2023]
|
72
|
Steppeler C, Sødring M, Egelandsdal B, Kirkhus B, Oostindjer M, Alvseike O, Gangsei LE, Hovland EM, Pierre F, Paulsen JE. Effects of dietary beef, pork, chicken and salmon on intestinal carcinogenesis in A/J Min/+ mice. PLoS One 2017; 12:e0176001. [PMID: 28426718 PMCID: PMC5398569 DOI: 10.1371/journal.pone.0176001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/04/2017] [Indexed: 01/26/2023] Open
Abstract
The International Agency for Research on Cancer has classified red meat as “probably carcinogenic to humans” (Group 2A). In mechanistic studies exploring the link between intake of red meat and CRC, heme iron, the pigment of red meat, is proposed to play a central role as a catalyzer of luminal lipid peroxidation and cytotoxicity. In the present work, the novel A/J Min/+ mouse was used to investigate the effects of dietary beef, pork, chicken, or salmon (40% muscle food (dry weight) and 60% powder diet) on Apc-driven intestinal carcinogenesis, from week 3–13 of age. Muscle food diets did not differentially affect carcinogenesis in the colon (flat ACF and tumors). In the small intestine, salmon intake resulted in a lower tumor size and load than did meat from terrestrial animals (beef, pork or chicken), while no differences were observed between the effects of white meat (chicken) and red meat (pork and beef). Additional results indicated that intestinal carcinogenesis was not related to dietary n-6 polyunsaturated fatty acids, intestinal formation of lipid peroxidation products (thiobarbituric acid reactive substances, TBARS), or cytotoxic effects of fecal water on Apc-/+ cells. Notably, the amount of heme reaching the colon appeared to be relatively low in this study. The greatest tumor load was induced by the reference diet RM1, underlining the importance of the basic diets in experimental CRC. The present study in A/J Min/+ mice does not support the hypothesis of a role of red meat in intestinal carcinogenesis.
Collapse
Affiliation(s)
- Christina Steppeler
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
- * E-mail:
| | - Marianne Sødring
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Bjørg Egelandsdal
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Bente Kirkhus
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Marije Oostindjer
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Ole Alvseike
- Animalia–Norwegian Meat and Poultry Research Centre, Oslo, Norway
| | | | | | - Fabrice Pierre
- INRA UMR1331 Toxalim (Research Center in Food Toxicology), University of Toulouse, Toulouse, France
| | - Jan Erik Paulsen
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
73
|
Vandemoortele A, Babat P, Yakubu M, De Meulenaer B. Reactivity of Free Malondialdehyde during In Vitro Simulated Gastrointestinal Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2198-2204. [PMID: 28244323 DOI: 10.1021/acs.jafc.7b00053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An aqueous buffer, a saturated glycerol triheptanoate oil, and a Tween 20 stabilized fully hydrogenated coconut oil-in-water emulsion, all spiked with malondialdehyde, were subjected to in vitro digestion. A dynamic equilibrium between malondialdehyde, its aldol self-condensation products, and its hydrolytic cleavage products was observed. This equilibrium depended upon the kind of sample and the temperature at which these samples were preincubated during 24 h. The presence of oil during gastric digestion protected the aldol self-condensation and cleavage products from conversion to malondialdehyde, which occurred in the aqueous acidic gastric chyme. In parallel, the presence of oil enhanced the reactivity of malondialdehyde throughout the gastrointestinal digestion process. Malondialdehyde recoveries after digestion varied between 42 and 90%, depending upon the model system studied, with the aldol self-condensation as the main reaction pathway. In conclusion, this study revealed that malondialdehyde is a very reactive molecule whose reactivity does not stop at the point of ingestion.
Collapse
Affiliation(s)
- Angelique Vandemoortele
- NutriFOODchem Unit, Department of Food Safety and Food Quality (Partner in Food2Know), Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
| | - Pinar Babat
- NutriFOODchem Unit, Department of Food Safety and Food Quality (Partner in Food2Know), Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
| | - Mariam Yakubu
- NutriFOODchem Unit, Department of Food Safety and Food Quality (Partner in Food2Know), Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
| | - Bruno De Meulenaer
- NutriFOODchem Unit, Department of Food Safety and Food Quality (Partner in Food2Know), Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
74
|
Nieva-Echevarría B, Goicoechea E, Manzanos MJ, Guillén MD. Fish in Vitro Digestion: Influence of Fish Salting on the Extent of Lipolysis, Oxidation, and Other Reactions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:879-891. [PMID: 28052192 DOI: 10.1021/acs.jafc.6b04334] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A study of the various chemical reactions which take place during fish in vitro digestion and the potential effect of fish salting on their extent is addressed for the first time. Farmed European sea bass fillets, raw, brine-salted or dry-salted, were digested using a gastrointestinal in vitro model. Fish lipid extracts before and after digestion were analyzed by 1H NMR, and the headspace composition of the digestates was investigated by SPME-GC/MS. During digestion, not only lipolysis, but also fish lipid oxidation took place. This latter was evidenced by the generation of conjugated dienes supported on chains having also hydroperoxy- and hydroxy-groups (primary oxidation compounds), by the increase of volatile secondary oxidation products, and by the decrease of the antioxidant 2,6-di-tert-butyl-hydroxytoluene (BHT). Likewise, esterification and Maillard-type reactions also occurred. Salting, and especially dry-salting, enhanced all these reactions, except for lipolysis, during digestion.
Collapse
Affiliation(s)
- Bárbara Nieva-Echevarría
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU) , Paseo de la Universidad n° 7, 01006 Vitoria, Spain
| | - Encarnación Goicoechea
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU) , Paseo de la Universidad n° 7, 01006 Vitoria, Spain
| | - María J Manzanos
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU) , Paseo de la Universidad n° 7, 01006 Vitoria, Spain
| | - María D Guillén
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU) , Paseo de la Universidad n° 7, 01006 Vitoria, Spain
| |
Collapse
|
75
|
Van Hecke T, Van Camp J, De Smet S. Oxidation During Digestion of Meat: Interactions with the Diet andHelicobacter pyloriGastritis, and Implications on Human Health. Compr Rev Food Sci Food Saf 2017; 16:214-233. [DOI: 10.1111/1541-4337.12248] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Thomas Van Hecke
- the Laboratory for Animal Nutrition and Animal Product Quality; Ghent Univ.; Ghent Belgium
| | - John Van Camp
- the Unit of Food Chemistry and Human Nutrition; Ghent Univ.; Ghent Belgium
| | - Stefaan De Smet
- the Laboratory for Animal Nutrition and Animal Product Quality; Ghent Univ.; Ghent Belgium
| |
Collapse
|
76
|
Estévez M, Li Z, Soladoye OP, Van-Hecke T. Health Risks of Food Oxidation. ADVANCES IN FOOD AND NUTRITION RESEARCH 2017; 82:45-81. [PMID: 28427536 DOI: 10.1016/bs.afnr.2016.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The impact of dietary habits on our health is indisputable. Consumer's concern on aging and age-related diseases challenges scientists to underline the potential role of food on the extension and guarantee of lifespan and healthspan. While some dietary components and habits are generally regarded as beneficial for our health, some others are being found to exert potential toxic effects and hence, contribute to the onset of particular health disorders. Among the latter, lipid and protein oxidation products formed during food production, storage, processing, and culinary preparation have been recently identified as potentially harmful to humans. Upon intake, food components are further degraded and oxidized during the subsequent digestion phases and the pool of compounds formed in the lumen is in close contact with the lamina propria of the intestines. Some of these oxidation products have been found to promote inflammatory conditions in the gut (i.e., bowel diseases) and are also reasonably linked to the onset of carcinogenic processes. Upon intestinal uptake, some species are distributed by the bloodstream causing an increase in oxidative stress markers and impairment of certain physiological processes through alteration of specific gene expression pathways. This chapter summarizes the most recent discoveries on this topic with particular stress on challenges that we face in the near future: understanding the molecular basis of disease, the suitability of using living animals vs in vitro model systems and the necessity of using massive genomic techniques and versatile mass spectrometric technology.
Collapse
Affiliation(s)
- Mario Estévez
- IPROCAR Research Institute, TECAL Research Group, University of Extremadura, Cáceres, Spain.
| | - Zhuqing Li
- The Laboratory of Food Nutrition and Functional Factors, Food Science and Technology, Jiangnan University, Wuxi, China
| | - Olugbenga P Soladoye
- Lacombe Research Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada; College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
77
|
1H NMR and SPME-GC/MS study of hydrolysis, oxidation and other reactions occurring during in vitro digestion of non-oxidized and oxidized sunflower oil. Formation of hydroxy-octadecadienoates. Food Res Int 2017; 91:171-182. [DOI: 10.1016/j.foodres.2016.11.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/17/2016] [Accepted: 11/27/2016] [Indexed: 01/01/2023]
|
78
|
Steppeler C, Sødring M, Paulsen JE. Colorectal Carcinogenesis in the A/J Min/+ Mouse Model is Inhibited by Hemin, Independently of Dietary Fat Content and Fecal Lipid Peroxidation Rate. BMC Cancer 2016; 16:832. [PMID: 27806694 PMCID: PMC5094071 DOI: 10.1186/s12885-016-2874-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/22/2016] [Indexed: 12/30/2022] Open
Abstract
Background Intake of red meat is considered a risk factor for colorectal cancer (CRC) development, and heme, the prosthetic group of myoglobin, has been suggested as a potential cause. One of the proposed molecular mechanisms of heme-induced CRC is based on an increase in the rate of lipid peroxidation catalysed by heme. Methods In the present work, the novel A/J Min/+ mouse model for Apc-driven colorectal cancer was used to investigate the effect of dietary heme (0.5 μmol/g), combined with high (40 energy %) or low (10 energy %) dietary fat levels, on intestinal carcinogenesis. At the end of the dietary intervention period (week 3–11), spontaneously developed lesions in the colon (flat aberrant crypt foci (flat ACF) and tumors) and small intestine (tumors) were scored and thiobarbituric reactive substances (TBARS), a biomarker for lipid peroxidation was analysed in feces. Results Dietary hemin significantly reduced colonic carcinogenesis. The inhibitory effect of hemin was not dependent on the dietary fat level, and no association could be established between colonic carcinogenesis and the lipid oxidation rate measured as fecal TBARS. Small intestinal carcinogenesis was not affected by hemin. Fat tended to stimulate intestinal carcinogenesis. Conclusions Contradicting the hypothesis, dietary hemin did inhibit colonic carcinogenesis in the present study. The results indicate that fecal TBARS concentration is not directly related to intestinal lesions and is therefore not a suitable biomarker for CRC. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2874-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christina Steppeler
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, PO Box 8146 Dep, 0033, Oslo, Norway.
| | - Marianne Sødring
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, PO Box 8146 Dep, 0033, Oslo, Norway
| | - Jan Erik Paulsen
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, PO Box 8146 Dep, 0033, Oslo, Norway
| |
Collapse
|
79
|
Larsson K, Tullberg C, Alminger M, Havenaar R, Undeland I. Malondialdehyde and 4-hydroxy-2-hexenal are formed during dynamic gastrointestinal in vitro digestion of cod liver oils. Food Funct 2016; 7:3458-67. [PMID: 27396605 DOI: 10.1039/c6fo00635c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Marine long-chain polyunsaturated fatty acids (LC n-3 PUFA) are associated with reduced risk for inflammatory diseases, such as cardiovascular diseases and rheumatoid arthritis. These fatty acids, however, are rapidly oxidized, generating highly reactive malondialdehyde (MDA), 4-hydroxy-2-hexenal (HHE) and 4-hydroxy-2-nonenal (HNE). These oxidation products may interact with DNA and proteins, thus possibly leading to impaired cell functions. Little is known about the formation of MDA, HHE and HNE in fish oil in the gastrointestinal (GI) tract. In this study, the effect of dynamic in vitro digestion of cod liver oil on the generation of MDA, HHE and HNE was evaluated using the TNO Gastro-Intestinal Model (tiny-TIM). Effects of pre-formed oxidation products, pre-emulsification of the oil, and addition of oxidants (EDTA and hemoglobin, Hb) on GI oxidation were evaluated. Formation of aldehydes occurred during GI digestion. However, only emulsified oil fortified with 11.5 μM Hb oxidized to a degree that overcame the dilution induced by gastric secretion, which caused increased aldehyde concentrations in gastric lumen up to 90 min. The maximum levels of aldehydes generated in this study were 24.5 μM MDA, 1.6 μM HHE and 0.07 μM HNE. Oils containing different amounts of pre-formed lipid oxidation products maintained the same oxidation ranking order during digestion, even though the relative changes were not directly proportional. Emulsification of the oil had an unclear effect in the gastric phase, but a pro-oxidative effect in the intestinal phase. In general, higher aldehyde levels were reached in the intestinal lumen than in the initial meal, demonstrating that GI digestion promotes oxidation. Hence, epithelial cells may be exposed to elevated amounts of reactive aldehydes for several hours after a meal containing fish oil.
Collapse
Affiliation(s)
- Karin Larsson
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden.
| | | | | | | | | |
Collapse
|