51
|
Structural analysis and immunomodulatory activity of a homopolysaccharide isolated from Parabacteroides distasonis. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
52
|
He P, Pan L, Wu H, Zhang L, Zhang Y, Zhang Y, Yang J, Lin Z, Zhang M. Isolation, Identification, and Immunomodulatory Mechanism of Peptides from Lepidium meyenii (Maca) Protein Hydrolysate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4328-4341. [PMID: 35357828 DOI: 10.1021/acs.jafc.1c08315] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Maca is a protein-enriched edible plant with immunomodulatory activity. However, the role of proteins in the immunomodulatory activity of maca is unclear. In this study, peptide products of maca proteins obtained through in vitro gastrointestinal digestion were isolated and purified, and the immunomodulatory activities of these peptides were assessed in macrophages (RAW 264.7 cells). The results show that the maca protein hydrolysate enhanced the phagocytic capacity and NO, TNF-α, and IL-6 secretion of RAW 264.7 cells. Forty-five peptides from known proteins of maca or the cruciferous family were identified by ultraperformance liquid chromatography-tandem mass spectrometry in the hydrolysate, and the peptide RNPFLP exhibited the strongest immunomodulatory activity. Antibody blocking, siRNA, pathway inhibitors, and western blot assays showed that RNPFLP-activated RAW 264.7 cells through the NF-κB and MAPK signaling pathways mediated by TLR2 and TLR4 receptors. An analysis of the structure-activity relationship showed that the N9-H60 active site in arginine plays an important role in the immunomodulatory activity of RNPFLP. This study provides a new understanding of the immunomodulatory activity of maca.
Collapse
Affiliation(s)
- Ping He
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Leiman Pan
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Hui Wu
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Lina Zhang
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Yi Zhang
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Yizhe Zhang
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Jinxi Yang
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Zhengli Lin
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Mengmeng Zhang
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| |
Collapse
|
53
|
Wang X, Xiu W, Han Y, Xie J, Zhang K, Zhou K, Ma Y. Structural characterization of a novel polysaccharide from sweet corncob that inhibits glycosylase in STZ-induced diabetic rats : Structural characterization of a novel polysaccharide. Glycoconj J 2022; 39:413-427. [PMID: 35386020 DOI: 10.1007/s10719-022-10059-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/01/2022]
Abstract
In the current study, we extracted a polysaccharide from sweet corncob and evaluated its hypoglycemic function. After collection in water, alcohol precipitation, and purification by DEAE-52 and Sephadex G-100 columns, we obtained a polysaccharide (SCP50) that was composed primarily of mannose and glucose (9.73:190.27), with a molecular weight of 9280.33 Da. We demonstrated that SCP50 exhibited significant inhibition of α-glucosidase activity, with an IC50 of 4.866 mg/mL, Km of 1.297 × 10-3, and Vmax of 0.076 mol/L·min-1 in vitro. We also observed that SCP50 markedly attenuated disaccharidase (maltase, sucrase, and lactase) activity in a rat model of T2DM. We conclude that SCP50 exerts a hypoglycemic effect via inhibition of intestinal glycosylase. These results thus provide new insight into the hypoglycemic action underlying sweet corncob polysaccharide's effects.
Collapse
Affiliation(s)
- Xin Wang
- Heilongjiang Provincial Key Laboratory of Cereal and Comprehensive Processing of Cereal Resources, School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China.
| | - Weiye Xiu
- Heilongjiang Provincial Key Laboratory of Cereal and Comprehensive Processing of Cereal Resources, School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Ye Han
- Heilongjiang Provincial Key Laboratory of Cereal and Comprehensive Processing of Cereal Resources, School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Jingnan Xie
- Heilongjiang Provincial Key Laboratory of Cereal and Comprehensive Processing of Cereal Resources, School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Kai Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Kechi Zhou
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, Heilongjiang, 161000, China
| | - Yongqiang Ma
- Heilongjiang Provincial Key Laboratory of Cereal and Comprehensive Processing of Cereal Resources, School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China.
| |
Collapse
|
54
|
Cao X, Zhang Q, Zhu Y, Li S, Cai Y, Li P, Liu D, Leng Y, Ye S, Xu Z, Li H, Shen B, Liao Q, Liu L, Xie Z. Structural Characterization and Immunoenhancing Effects of a Polysaccharide from the Soft Coral Lobophytum sarcophytoides. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:203-215. [PMID: 35175461 DOI: 10.1007/s10126-022-10099-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Previous studies on the soft coral Lobophytum sarcophytoides (Lobophytum sp.) are mainly about small molecules, and there has been no systematic research on polysaccharides. In the study, a novel polysaccharide (LCPs-1-A) with immunoenhancing functions was successfully extracted and purified from the soft coral Lobophytum sp. After preliminary analysis, our data indicated that LCPs-1-A was composed of glucose and had a molecular weight of 4.90 × 106 Da. Moreover, our findings showed that LCPs-1-A could promote the proliferation and phagocytosis of RAW264.7 cells, stimulate the production of NO and ROS, and increase the mRNA expression of IL-1β, IL-6, and TNF-α, which indicated that LCPs-1-A had a good immunoenhancing activity. Through further studies, we found that LCPs-1-A might play an immunoenhancing role through the TLR4/NF-κB signaling pathway. Therefore, our results demonstrated that LCPs-1-A might be a natural immunostimulant for use in medical and food industries.
Collapse
Affiliation(s)
- Xueqin Cao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Qian Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Yanglu Zhu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Siju Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Ying Cai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Deliang Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Yun Leng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Simin Ye
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Zengmei Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Hao Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Baochun Shen
- School of Pharmacy, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
55
|
Zhan Q, Chen Y, Guo Y, Wang Q, Wu H, Zhao L. Effects of selenylation modification on the antioxidative and immunoregulatory activities of polysaccharides from the pulp of Rose laevigata Michx fruit. Int J Biol Macromol 2022; 206:242-254. [PMID: 35240204 DOI: 10.1016/j.ijbiomac.2022.02.149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/10/2022] [Accepted: 02/24/2022] [Indexed: 12/28/2022]
Abstract
Selenylation modification has been widely utilized to improve the activity of polysaccharides and to develop novel sources of selenium (Se) supplements. A purified pulp polysaccharide of Rose laevigata Michx fruit (PPRLMF-2) was selenized into Se-PPRLMF-2 in this study. PPRLMF-2 + Se was formulated by Na2SeO3 according to the Se content of Se-PPRLMF-2. To investigate the effects of selenylation modification on the structure and functions of PPRLMF-2, the characteristics, antioxidative and immunoregulatory activities of PPRLMF-2 before and after selenylation were compared. The results showed that compared with PPRLMF-2, Se-PPRLMF-2 became an irregular fibrous network, and its Mw decreased and C-6 substitution predominated in 13C NMR spectra. Se-PPRLMF-2 significantly increased chemical antioxidant activity and reduced the oxidative damage of erythrocytes, which was not due to Se alone. Se-PPRLMF-2 significantly increased immunomodulatory activity on macrophages, which was related to Se alone. Se-PPRLMF-2 could be a good potential source of antioxidants, immune enhancers and dietary Se supplements.
Collapse
Affiliation(s)
- Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China; College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Yong Chen
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; College of Chemical and Biological Engineering, Guangxi Normal University for Nationalities, Chongzuo 532200, PR China
| | - Yifang Guo
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Qian Wang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Hui Wu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China.
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
56
|
Chen W, Zhu X, Wang L, Xin X, Zhang M. Effects of Two Polysaccharides from Lepidium meyenii (Maca) on Intestinal Immunity and Inflammation in vitro. Food Funct 2022; 13:3441-3452. [DOI: 10.1039/d1fo02659c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In our previous studies, two polysaccharides (MC-1 and MC-2) were identified in the roots of maca (Lepidium meyenii). In this study, the effects of these two polysaccharides on intestinal immunity...
Collapse
|
57
|
Todorova V, Ivanov K, Ivanova S. Comparison between the Biological Active Compounds in Plants with Adaptogenic Properties ( Rhaponticum carthamoides, Lepidium meyenii, Eleutherococcus senticosus and Panax ginseng). PLANTS (BASEL, SWITZERLAND) 2021; 11:64. [PMID: 35009068 PMCID: PMC8747685 DOI: 10.3390/plants11010064] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND In the 1960s, research into plant adaptogens began. Plants with adaptogenic properties have rich phytochemical compositions and have been used by humanity since ancient times. However, it is not still clear whether the adaptogenic properties are because of specific compounds or because of the whole plant extracts. The aim of this review is to compare the bioactive compounds in the different parts of these plants. METHODS The search strategy was based on studies related to the isolation of bioactive compounds from Rhaponticum carthamoides, Lepidium meyenii, Eleutherococcus senticosus, and Panax ginseng. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. RESULTS This review includes data from 259 articles. The phytochemicals isolated from Rhaponticum carthamoides, Lepidium meyenii, Eleutherococcus senticosus, and Panax ginseng were described and classified in several categories. CONCLUSIONS Plant species have always played an important role in drug discovery because their effectiveness is based on the hundreds of years of experience with folk medicine in different nations. In our view, there is great potential in the near future for some of the phytochemicals found in these plants species to become pharmaceutical agents.
Collapse
Affiliation(s)
- Velislava Todorova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (K.I.); (S.I.)
| | | | | |
Collapse
|
58
|
Zhang X, Liu Z, Zhong C, Pu Y, Yang Z, Bao Y. Structure characteristics and immunomodulatory activities of a polysaccharide RGRP-1b from radix ginseng Rubra. Int J Biol Macromol 2021; 189:980-992. [PMID: 34478797 DOI: 10.1016/j.ijbiomac.2021.08.176] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/10/2021] [Accepted: 08/24/2021] [Indexed: 01/11/2023]
Abstract
The present study was undertaken to explore the structure characteristics, immune regulation, and anti-cancer abilities of polysaccharides in radix ginseng Rubra (RGR). For this purpose, RGR polysaccharides (RGRP) were purified through DEAE and S-300 chromatography. Monosaccharide composition, methylation, and GC-MS analyses, as well as field emission scanning electron microscope (FESEM), atomic force microscope (AFM), Fourier-transformed infrared resonance (FT-IR), and nuclear magnetic resonance (NMR) spectra, were used to establish the structure of RGRP-1b. Our results revealed that RGRP-1a and RGRP-1b possess different molecular weights (21.3 kDa and 10.2 kDa, respectively). RGRP-1a was found to be composed of glucose, while RGRP-1b was composed of glucose, galactose, and arabinose. The main chain structure of RGRP-1b was composed of 1,4-α-Glcp, with a 1,4,6-α-Glcp branch unit. Its side chains were branched at the O-4 position of 1,4,6-α-Glcp, namely 1)-β-Galp-(4 → 1)-α-Araf-(5 → α-Araf and 1)-β-Galp-(6 → α-Glcp. The changes in the nitric oxide (NO) levels and cytotoxicity revealed that macrophages probably get activated by RGRP-1b. The expressions of IL-6, IL-12, and TNF-α were found to be upregulated after treatment with RGRP-1b. RGRP-1b thus possesses the potential to arrest the growth of Huh7 through immunoregulation. Our cumulative findings indicate that RGRP-1b obtained from radix ginseng Rubra can function as a strong immune modulator.
Collapse
Affiliation(s)
- Xuyu Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zijing Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Cheng Zhong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Youwei Pu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhongwei Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yixi Bao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
59
|
Yang Y, Guo T, Xu J, Xiong Y, Cui X, Ke Y, Wang C. Micelle nanovehicles for co-delivery of Lepidium meyenii Walp. (maca) polysaccharide and chloroquine to tumor-associated macrophages for synergistic cancer immunotherapy. Int J Biol Macromol 2021; 189:577-589. [PMID: 34450149 DOI: 10.1016/j.ijbiomac.2021.08.155] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 01/18/2023]
Abstract
Here, we fabricated amphiphilic polysaccharide micelles for synergistic cancer immunotherapy targeting tumor-associated macrophages (TAMs). Lepidium meyenii Walp. (maca) polysaccharide (MP), a naturally derived macromolecule with a strong TAM-remodeling effect, was grafted on a hydrophobic poly(lactic-co-glycolic acid) (PLGA) segment, with a disulfide bond for redox-sensitive linkage. The amphiphilic polysaccharide derivatives could self-assemble into core (PLGA)-shell (MP)-structured micelles and encapsulate chloroquine (CQ) into the hydrophobic core. By using a 4T1-M2 macrophage co-culture model and a 4T1 tumor xenograft mouse model, we showed that the prepared micelles could co-deliver MP and CQ to the tumor sites and selectively accumulate at TAMs because of the specific properties of MP. Furthermore, the nanoparticles exerted synergistic tumor immunotherapeutic and antimetastatic effects, which might be attributable to the enhanced cell internalization of the micelles and the multiple regulatory mechanisms of MP and CQ. Thus, immunomodulatory MP may be a promising biomaterial for cancer immunotherapy.
Collapse
Affiliation(s)
- Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming 650500, China
| | - Tingting Guo
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming 650500, China
| | - Junwei Xu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yin Xiong
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming 650500, China
| | - Xiuming Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming 650500, China
| | - Yang Ke
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Kunming Medical University, Kunming 650500, China.
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming 650500, China.
| |
Collapse
|
60
|
Ryu B, Je JG, Jeon YJ, Yang HW. Zebrafish Model for Studying Dexamethasone-Induced Muscle Atrophy and Preventive Effect of Maca ( Lepidium meyenii). Cells 2021; 10:cells10112879. [PMID: 34831102 PMCID: PMC8616435 DOI: 10.3390/cells10112879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023] Open
Abstract
Loss of myofibers during muscle atrophy affects functional capacity and quality of life. Dexamethasone, an inducer of rapid atrophy of skeletal myofibers, has been studied as a glucocorticoid receptor in muscle atrophy or motor neurodegeneration. In this study, we examined dexamethasone-induced muscle atrophy using zebrafish (Danio rerio), a vertebrate model, and assessed whether administration of Lepidium meyenii (maca) as a dietary supplement can prevent muscle atrophy. Changes in skeletal myofibers in zebrafish were evaluated after exposure to dexamethasone for different periods and at different concentrations. Under optimized conditions, zebrafish pre-fed with maca for 3 days were exposed to 0.01% dexamethasone for 1 h/day for 7 days. Thereafter, myofiber loss, damaged muscle contractile proteins, and abnormal exploratory behavior due to the structural and functional impairment of skeletal muscle associated with muscle atrophy were investigated using hematoxylin-eosin, immunofluorescence staining, and behavioral analyses. Our findings suggest that dexamethasone induces muscle atrophy in zebrafish, inhibiting exploratory behavior by inducing myofiber loss, inhibiting muscle contraction, and causing changes in endurance and velocity. Thus, the zebrafish model can be used to screen pharmaceutical agents and to study muscle atrophy. Furthermore, maca is a potential dietary supplement to prevent muscle atrophy, as it protects muscle fibers.
Collapse
Affiliation(s)
- Bomi Ryu
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (B.R.); (J.-G.J.)
- Healthy Seafood Research Center, Jeju National University, Jeju 63243, Korea
| | - Jun-Geon Je
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (B.R.); (J.-G.J.)
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (B.R.); (J.-G.J.)
- Healthy Seafood Research Center, Jeju National University, Jeju 63243, Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
- Correspondence: (Y.-J.J.); (H.-W.Y.); Tel.: +82-64-754-3475 (Y.-J.J.)
| | - Hye-Won Yang
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (B.R.); (J.-G.J.)
- Correspondence: (Y.-J.J.); (H.-W.Y.); Tel.: +82-64-754-3475 (Y.-J.J.)
| |
Collapse
|
61
|
Maca against Echinococcosis?-A Reverse Approach from Patient to In Vitro Testing. Pathogens 2021; 10:pathogens10101335. [PMID: 34684284 PMCID: PMC8537204 DOI: 10.3390/pathogens10101335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023] Open
Abstract
Drug-based treatment of alveolar echinococcosis (AE) with benzimidazoles is in most cases non-curative, thus has to be taken lifelong. Here, we report on a 56-year-old male AE patient who received standard benzimidazole treatment and biliary plastic stents, and additionally self-medicated himself with the Peruvian plant extract Maca (Lepidium meyenii). After 42 months, viable parasite tissue had disappeared. Based on this striking observation, the anti-echinococcal activity of Maca was investigated in vitro and in mice experimentally infected with Echinococcus multilocularis metacestodes. Albendazole (ABZ)-treated mice and mice treated with an ABZ+Maca combination exhibited a significantly reduced parasite burden compared to untreated or Maca-treated mice. As shown by a newly established UHPLC-MS/MS-based measurement of ABZ-metabolites, the presence of Maca during the treatment did not alter ABZ plasma levels. In vitro assays corroborated these findings, as exposure to Maca had no notable effect on E. multilocularis metacestodes, and in cultures of germinal layer cells, possibly unspecific, cytotoxic effects of Maca were observed. However, in the combined treatments, Maca inhibited the activity of ABZ in vitro. While Maca had no direct anti-parasitic activity, it induced in vitro proliferation of murine spleen cells, suggesting that immunomodulatory properties could have contributed to the curative effect seen in the patient.
Collapse
|
62
|
Xie J, Qiu L, Zou L, Xie Y, Luo D, Xu H, Wu X, Wang L. Purification, structural elucidation and immunostimulatory effect of a new protein-polysaccharide conjugate produced by Nervilia fordii. J Carbohydr Chem 2021. [DOI: 10.1080/07328303.2021.1975733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jizhao Xie
- Medical College, Guangxi University, Nanning, China
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, China
| | - Li Qiu
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, China
| | - Luhui Zou
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, China
| | - Yunfeng Xie
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, China
| | - Di Luo
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, China
| | - Huanji Xu
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, China
| | - Xinduo Wu
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, China
| | - Lisheng Wang
- Medical College, Guangxi University, Nanning, China
| |
Collapse
|
63
|
Tu JQ, Liu HP, Wen YH, Chen P, Liu ZT. A novel polysaccharide from Hericium erinaceus: Preparation, structural characteristics, thermal stabilities, and antioxidant activities in vitro. J Food Biochem 2021; 45:e13871. [PMID: 34402085 DOI: 10.1111/jfbc.13871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022]
Abstract
A novel polysaccharide fraction (HEP) from Hericium erinaceus was successively isolated and purified in the present study. We researched its structure and thermal stabilities, and further studied its antioxidant activities in vitro. The results showed that HEP was an acid heteropolysaccharide, with an average molecular weight of approximately 19.7 kDa by high-performance gel permeation chromatography. Ion chromatography indicated that HEP was mainly composed of fucose:galactose:glucose:mannose:gluconic acid (Fuc:Gal:Glu:Man:GlcA) in a molar ratio of 1:2.87:0.09:0.12:0.01. Additionally, Fourier-transformed infrared and NMR spectroscopy further demonstrated that HEP was a pyranose containing α-configuration, mainly consisting of α-1-4-Fuc and α-1-6-Gal as the main chain, with →3,6)-α-D-Man-(1→and→1,6)-Glc was branched, with α-D-GlcpA-(1 as T-terminal. The specific rotation of HEP was +55°; by the differential scanning calorimetry and the thermal stability measurement of thermogravimetric analysis for HEP showed that the pyrolysis process of HEP was mainly divided into two processes, and its melting point was 75.93℃. In vitro anti-oxidation experiments showed that HEP had a certain ability to scavenge DPPH, hydroxyl, superoxide anion, and ABTS radicals. It was found that HEP had a strong ability to scavenge DPPH-free radicals, and the highest scavenging rate could reach 91.72% ± 0.17%, which was basically equivalent to the scavenging ability of Vitamin C (Vc). Therefore, it was revealed that HEP might be used as a natural antioxidant component. PRACTICAL APPLICATIONS: A novel polysaccharide (HEP) had a potent activity possibly due to its monosaccharide composition, sugar residues, and physicochemical properties. This research proved the potential of HEP in anti-oxidation and provided the possibility of developing new natural anti-oxidation products.
Collapse
Affiliation(s)
- Jian-Qiu Tu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, PR China
| | - Hui-Ping Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, PR China
| | - Ya-Hui Wen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, PR China
| | - Pei Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, PR China
| | - Zi-Tian Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, PR China
| |
Collapse
|
64
|
Mirzadeh M, Keshavarz Lelekami A, Khedmat L. Plant/algal polysaccharides extracted by microwave: A review on hypoglycemic, hypolipidemic, prebiotic, and immune-stimulatory effect. Carbohydr Polym 2021; 266:118134. [PMID: 34044950 DOI: 10.1016/j.carbpol.2021.118134] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/04/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
Microwave-assisted extraction (MAE) is an emerging technology to obtain polysaccharides with an extensive spectrum of biological characteristics. In this study, the hypoglycemic, hypolipidemic, prebiotic, and immunomodulatory (e.g., antiinflammatory, anticoagulant, and phagocytic) effects of algal- and plant-derived polysaccharides rich in glucose, galactose, and mannose using MAE were comprehensively discussed. The in vitro and in vivo results showed that these bioactive macromolecules with the low digestibility rate could effectively alleviate the fatty acid-induced lipotoxicity, acute hemolysis, and dyslipidemia status. The optimally extracted glucomannan- and glucogalactan-containing polysaccharides revealed significant antidiabetic effects through inhibiting α-amylase and α-glucosidase, improving dynamic insulin sensitivity and secretion, and promoting pancreatic β-cell proliferation. These bioactive macromolecules as prebiotics not only improve the digestibility in gastrointestinal tract but also reduce the survival rate of pathogens and tumor cells by activating macrophages and producing pro-inflammatory biomarkers and cytokines. They can effectively prevent gastrointestinal disorders and microbial infections without any toxicity.
Collapse
Affiliation(s)
- Monirsadat Mirzadeh
- Metabolic Disease Research Center, Research Institute for Prevention of Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Keshavarz Lelekami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Leila Khedmat
- Health Management Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
65
|
Characterization of a neutral polysaccharide from pumpkin (Cucurbita moschata Duch) with potential immunomodulatory activity. Int J Biol Macromol 2021; 188:729-739. [PMID: 34389393 DOI: 10.1016/j.ijbiomac.2021.08.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 01/05/2023]
Abstract
A neutral polysaccharide designated as CMDP-1a (molecular mass 9.263 kDa) was isolated from Cucurbita moschata Duch through hot water extraction, ethanol precipitation, and column chromatography. On the basis of methylation, fourier-transform infrared, monosaccharide composition, and one- and two-dimensional nuclear magnetic resonance spectroscopy analyses, the structure of CMDP-1a was determined to be a backbone composed of α-1,4 linked glucopyranosyl residues with α-Glcp residue linkage at backbone C-6. Atomic force microscopy and scanning electron microscopy analyses revealed that CMDP-1a had a spherical conformation in solution. In immunostimulation assays, CMDP-1a promoted the proliferation of RAW 264.7 macrophages and significantly enhanced their pinocytic and phagocytic capacity. Furthermore, CMDP-1a induced the M1 polarization of original macrophages and the conversion of macrophages from M2 to M1, thereby modulating the balance of M1/M2 macrophages. These results indicated that CMDP-1a might be a potential immunomodulator for food purposes.
Collapse
|
66
|
Fu CY, Ren L, Liu WJ, Sui Y, Nong QN, Xiao QH, Li XQ, Cao W. Structural characteristics of a hypoglycemic polysaccharide from Fructus Corni. Carbohydr Res 2021; 506:108358. [PMID: 34111687 DOI: 10.1016/j.carres.2021.108358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/06/2021] [Accepted: 05/24/2021] [Indexed: 02/08/2023]
Abstract
PFC-3 is a homogeneous polysaccharide extracted from the dried pulps of Fructus Corni with a molecular weight of 40.3 kDa. The crude polysaccharide was obtained and further purified by DEAE-Sephadex A-25 and Sephadex G-100 columns to investigate its structure and glycemic effect. The monosaccharides in the PFC-3, determined by high-performance liquid chromatography, consisted of glucose (Glc), xylose (Xyl), and galactose (Gal) with a mass molar ratio of 2.35:12.49:1.00. The methylation analysis combined with 1D (1H and 13C), and 2D NMR (1H-1H COSY, HSQC, and HMBC) further demonstrated that PFC-3 was mainly composed of 1,3-α-D-Xylp, 1,6-α-D-Galp, 1,2-α-D-Glcp, and T-α-D-Galp, and contained a backbone fragment of →6)-α-D-Galp-(1 → 2)-α-D-Glcp-(1 → 3)-α-D-Xylp-(1 → . The hypoglycemic effect of PFC-3 in vitro was evaluated by glucose uptake and consumption assays, and the results showed that PFC-3 concentration-dependently enhanced glucose uptake and significantly improved glucose consumption in insulin-resistant HepG2 cells. Furthermore, PFC-3 significantly reduced fasting blood glucose level, glycosylated hemoglobin level, amylase activity, ameliorate lipid metabolism, and hepatic lesions in streptozotocin-induced diabetic rats. Our research provided insights into the hypoglycemic activities of PFC-3.
Collapse
Affiliation(s)
- Cheng-Yang Fu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Li Ren
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Wen-Juan Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Yi Sui
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Qiu-Na Nong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Qian-Han Xiao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Xiao-Qiang Li
- Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Wei Cao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China; Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
67
|
Gao X, Qi J, Ho CT, Li B, Xie Y, Chen S, Hu H, Chen Z, Wu Q. Purification, Physicochemical Properties, and Antioxidant Activities of Two Low-Molecular-Weight Polysaccharides from Ganoderma leucocontextum Fruiting Bodies. Antioxidants (Basel) 2021; 10:antiox10071145. [PMID: 34356378 PMCID: PMC8301108 DOI: 10.3390/antiox10071145] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Two low-molecular-weight polysaccharides (GLP-1 and GLP-2) were purified from Ganoderma leucocontextum fruiting bodies, and their physicochemical properties and antioxidant activities were investigated and compared in this study. The results showed that GLP-1 and GLP-2 were mainly composed of mannose, glucose, galactose, xylose, and arabinose, with weight-average molecular weights of 6.31 and 14.07 kDa, respectively. Additionally, GLP-1 and GLP-2 had a similar chain conformation, crystal structure, and molecular surface morphology. Moreover, GLP-1 exhibited stronger antioxidant activities than GLP-2 in five different assays: 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), hydroxyl radical, superoxide anion radical, ferric reducing antioxidant power (FRAP), and oxygen radical antioxidant capacity (ORAC). The main linkage types of GLP-1 were found to be →4)-α-D-Glcp-(1→, →4)-β-D-Glcp-(1→, →3)-β-D-Glcp-(1→, →6)-β-D-Galp-(1→, →6)-α-D-Glcp-(1→, →4,6)-α-D-Glcp-(1→, and Glcp-(1→ by methylation analysis and nuclear magnetic resonance (NMR) spectroscopy. In addition, GLP-1 could protect NIH3T3 cells against tert-butyl hydroperoxide (tBHP)-induced oxidative damage by increasing catalase (CAT) and glutathione peroxidase (GSH-Px) activities, elevating the glutathione/oxidized glutathione (GSH/GSSG) ratio, and decreasing the malondialdehyde (MDA) level. These findings indicated that GLP-1 could be explored as a potential antioxidant agent for application in functional foods.
Collapse
Affiliation(s)
- Xiong Gao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.G.); (Y.X.); (S.C.); (H.H.)
- Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China
| | - Jiayi Qi
- Department of Bioengineering, College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China; (J.Q.); (B.L.)
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA;
| | - Bin Li
- Department of Bioengineering, College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China; (J.Q.); (B.L.)
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Department of Food Science, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.G.); (Y.X.); (S.C.); (H.H.)
- Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China
| | - Shaodan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.G.); (Y.X.); (S.C.); (H.H.)
| | - Huiping Hu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.G.); (Y.X.); (S.C.); (H.H.)
| | - Zhongzheng Chen
- Department of Bioengineering, College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China; (J.Q.); (B.L.)
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Department of Food Science, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Z.C.); (Q.W.)
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.G.); (Y.X.); (S.C.); (H.H.)
- Correspondence: (Z.C.); (Q.W.)
| |
Collapse
|
68
|
Jiang S, Yin H, Li R, Shi W, Mou J, Yang J. The activation effects of fucoidan from sea cucumber Stichopus chloronotus on RAW264.7 cells via TLR2/4-NF-κB pathway and its structure-activity relationship. Carbohydr Polym 2021; 270:118353. [PMID: 34364600 DOI: 10.1016/j.carbpol.2021.118353] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/06/2021] [Accepted: 06/13/2021] [Indexed: 11/27/2022]
Abstract
Sea cucumber Stichopus chloronotus is a traditional tonic food with high nutritive value in Southern China. Fucoidan from sea cucumber Stichopus chloronotus (Fuc-Sc) is its main bio-active polysaccharide, the immune-activation effects of which have been fully investigated on RAW264.7 cells in the present study. The results indicated that Fuc-Sc could stimulate the RAW264.7 cells by promoting the production of NO, TNF-α, IL-6 and IL-10. Western blot and RT-PCR analysis revealed that TLR4 and TLR2 were involved in the recognition of Fuc-Sc and activation of downstream NF-κB signal pathway. Moreover, the chemical structure parameter molecular weight showed obvious impact on the stimulation effects of Fuc-Sc on NO production. Degraded product of Fuc-Sc with weight average molecular weight of 113.1 × 104 Da exhibited higher activities than that of intact Fuc-Sc, suggesting the existent of optimum chain length to exert its highest activities. Taken together, Fuc-Sc exerted its immunostimulating activity via TLR2/4 activation of NF-κB pathway and showed potentials to be a good immunoadjuvant.
Collapse
Affiliation(s)
- Shuxin Jiang
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China
| | - Huanan Yin
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China
| | - Rui Li
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China
| | - Weiwei Shi
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China
| | - Jiaojiao Mou
- School of Public Health, Weifang Medical University, Weifang 261053, Shandong, China.
| | - Jie Yang
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China; Innovative Drug Research and Development Center, Weifang Medical University, Weifang 261053, Shandong, China.
| |
Collapse
|
69
|
Wen Y, Bi S, Hu X, Yang J, Li C, Li H, Yu DB, Zhu J, Song L, Yu R. Structural characterization and immunomodulatory mechanisms of two novel glucans from Morchella importuna fruiting bodies. Int J Biol Macromol 2021; 183:145-157. [PMID: 33878360 DOI: 10.1016/j.ijbiomac.2021.04.084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/29/2021] [Accepted: 04/14/2021] [Indexed: 12/27/2022]
Abstract
Two novel glucans named MIPB50-W and MIPB50-S-1 were obtained from edible Morchella importuna with molecular weights (Mw) of 939.2 kDa and 444.5 kDa, respectively. MIPB50-W has a backbone of α-(1 → 4)-d-glucan, which was substituted at O-6 position by α-d-Glcp-(1→. Moreover, MIPB50-S-1 has a backbone of α-(1 → 4)-d-glucan, which was substituted at O-6 position by α-d-Glcp-(1 → 6)-α-d-Glcp-(1→. This is the first report about glucan found in Morchella mushrooms. Furthermore, MIPB50-W and MIPB50-S-1 strengthened the phagocytosis function and the promoted secretion of interleukins (IL)-6/tumor necrosis factor-alpha (TNF-α) and nitric oxide (NO), which induced the activation of Toll-like receptor 2 (TLR2), TLR4 as well as mitogen activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways. Interestingly, MIPB50-S-1 performed the better immunomodulatory activity than that of MIPB50-W in almost all tests. Therefore, MIPB50-W and MIPB50-S-1 are potential immune-enhancing components of functional foods.
Collapse
Affiliation(s)
- Yao Wen
- Biotechnological Institute of Chinese Materia Medica, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Sixue Bi
- Department of Pharmacology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xianjing Hu
- Department of Natural Products Chemistry, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jianing Yang
- Department of Pharmacology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Chunlei Li
- Biotechnological Institute of Chinese Materia Medica, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Hang Li
- Department of Natural Products Chemistry, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Dong Bo Yu
- Department of Cardiovascular Care, ThedaCare Regional Medical Center, Appleton, WI, USA
| | - Jianhua Zhu
- Department of Natural Products Chemistry, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Liyan Song
- Department of Pharmacology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; Department of Natural Products Chemistry, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
70
|
Role of D-Mannose in the Prevention of Recurrent Uncomplicated Cystitis: State of the Art and Future Perspectives. Antibiotics (Basel) 2021; 10:antibiotics10040373. [PMID: 33915821 PMCID: PMC8066587 DOI: 10.3390/antibiotics10040373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Urinary tract infections (UTI) are highly frequent in women, with a significant impact on healthcare resources. Although antibiotics still represent the standard treatment to manage recurrent UTI (rUTI), D-mannose, an inert monosaccharide that is metabolized and excreted in urine and acts by inhibiting bacterial adhesion to the urothelium, represents a promising nonantibiotic prevention strategy. The aim of this narrative review is to critically analyze clinical studies reporting data concerning the efficacy and safety of D-mannose in the management of rUTIs. METHODS A non-systematic literature search, using the Pubmed, EMBASE, Scopus, Web of science, Cochrane Central Register of Controlled Trials, and Cochrane Central Database of Systematic Reviews databases, was performed for relevant articles published between January 2010 and January 2021. The following Medical Subjects Heading were used: "female/woman", "urinary tract infection", and "D-mannose". Only clinical studies, systematic reviews, and meta-analyses reporting efficacy or safety data on D-mannose versus placebo or other competitors were selected for the present review. Evidence was limited to human data. The selected studies were organized in two categories according to the presence or not of a competitor to D-mannose. RESULTS After exclusion of non-pertinent studies/articles, 13 studies were analyzed. In detail, six were randomized controlled trials (RCTs), one a randomized cross-over trial, five prospective cohort studies, and one a retrospective analysis. Seven studies compared D-mannose to placebo or others drugs/dietary supplements. Six studies evaluated the efficacy of D-mannose comparing follow-up data with the baseline. D-mannose is well tolerated, with few reported adverse events (diarrhea was reported in about 8% of patients receiving 2 g of D-mannose for at least 6 months). Most of the studies also showed D-mannose can play a role in the prevention or rUTI or urodynamics-associated UTI and can overlap antibiotic treatments in some cases. The possibility to combine D-mannose with polyphenols or Lactobacillus seems another important option for UTI prophylaxis. However, the quality of the collected studies was very low, generating, consequently, a weak grade of recommendations as suggested by international guidelines. Data on D-mannose dose, frequency, and duration of treatment are still lacking. CONCLUSION D-mannose alone or in combination with several dietary supplements or Lactobacillus has a potential role in the non antimicrobial prophylaxis or recurrent UTI in women. Despite its frequent prescription in real-life practice, we believe that further well-designed studies are urgently needed to definitively support the role of D-mannose in the management of recurrent UTIs in women.
Collapse
|
71
|
Zhao H, Xu J, Wang R, Tang W, Kong L, Wang W, Wang L, Zhang Y, Ma W. Plantaginis Semen polysaccharides ameliorate renal damage through regulating NLRP3 inflammasome in gouty nephropathy rats. Food Funct 2021; 12:2543-2553. [PMID: 33624653 DOI: 10.1039/d0fo03143g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gouty nephropathy (GN) is considered to be a prevalent renal disease and is an inflammatory event mainly induced by MSU crystals. Plantaginis Semen is a traditional Chinese herb that has been used in the treatment of gout, gouty arthritis and GN, but the mechanism and ingredients have been unclear. In this study, we explored and evaluated the preliminary structural characterizations of Plantaginis Semen polysaccharides (PSPs) and the activity of protecting against renal damage in GN rats. Three polysaccharide fractions, PSP-D, PSP-H and PSP-S, were sequentially extracted by different processes from the seed of Plantago asiatica L. The Fourier transform infrared spectral (FTIR) results showed that there were significant differences between PSP-S and the other two polysaccharides (PSP-D and PSP-H). PSP-D and PSP-H have pyrene monomers and linkages of β-glycosides in their structures, and PSP-S has furanoside in the molecular structure. The scanning electron microscope (SEM) images of three polysaccharides showed that PSP-D has a smooth surface and a small curve, PSP-H is block-like and uneven in magnitude, whereas PSP-S is sea-tent-like and its surface is very distinct from the others. Main components and molar ratios are also different. Rats were randomly divided into six groups (n1/6 8 per group): the control group, model group, positive group, and three treatment groups (PSP-D, PSP-H and PSP-S). For all groups except the control group, rats were intragastrically administered the adenine suspension (50 mg kg-1 d-1) and fed with a high-yeast diet (15 g kg-1 d-1) for 28 days. On the 9th day, the control group and the model group were administered normal saline at the same time. Treatment groups were individually given corresponding drugs for 20 days. We found that PSPs could prevent renal damage, including decreasing the inflammatory response and regulating the (NOD)-like receptor protein 3 (NLRP3) protein in renal tissue. The underlying mechanism was related to NLRP3 inflammasome signal pathways, and it could take effect through the down-regulation of the protein expression levels of NLRP3, ASC and caspase-1 and inhibit the release of downstream inflammatory factors. PSPs are promising polysaccharides that could protect against renal injury through ameliorating renal inflammation in GN rats. Plantaginis Semen polysaccharides are potential functional food ingredients or pharmacological agents for treating GN in clinical practice.
Collapse
Affiliation(s)
- Hong Zhao
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Mzoughi Z, Majdoub H. Pectic polysaccharides from edible halophytes: Insight on extraction processes, structural characterizations and immunomodulatory potentials. Int J Biol Macromol 2021; 173:554-579. [PMID: 33508358 DOI: 10.1016/j.ijbiomac.2021.01.144] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
The preparation, chemical properties and bio-activities of polysaccharides derived from halophytes have gained an increasing interest in the past few years. Phytochemical and pharmacological reports have shown that carbohydrates are important biologically active compounds of halophytes with numerous biological potentials. It is believed that the mechanisms involved in these bio-activities are due to the modulation of immune system. The main objective of this summary is to appraise available literature of a comparative study on the extraction, structural characterizations and biological potentials, particularly immunomodulatory effects, of carbohydrates isolated from halophytes (10 families). This review also attempts to discuss on bioactivities of polysaccharides related with their structure-activity relationship. Data indicated that the highest polysaccharides yield of around 35% was obtained under microwave irradiation. Structurally, results revealed that the most of extracted carbohydrates are pectic polysaccharides which mainly composed of arabinose (from 0.9 to 72%), accompanied by other monosaccharides (galactose, glucose, rhamnose, mannose and xylose), significant amounts of uronic acids (from 18.9 to 90.1%) and some proportions of fucose (from 0.2 to 8.3%). The molecular mass of these pectic polysaccharides was varied from 10 to 2650 kDa. Hence, the evaluation of these polysaccharides offers a great opportunity to discover novel therapeutic agents that presented especially beneficial immunomodulatory properties. Moreover, reports indicated that uronic acids, molecular weights, as well as the presence of sulfate and unmethylated acidic groups may play a significant role in biological activities of carbohydrates from halophyte species.
Collapse
Affiliation(s)
- Zeineb Mzoughi
- University of Monastir, Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, Monastir 5000, Tunisia.
| | - Hatem Majdoub
- University of Monastir, Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
73
|
Li K, Cui LJ, Cao YX, Li SY, Shi LX, Qin XM, Du YG. UHPLC Q-Exactive MS-Based Serum Metabolomics to Explore the Effect Mechanisms of Immunological Activity of Astragalus Polysaccharides With Different Molecular Weights. Front Pharmacol 2021; 11:595692. [PMID: 33390982 PMCID: PMC7774101 DOI: 10.3389/fphar.2020.595692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Astragalus polysaccharides (APS) have a wide range of biological activities. Most researchers discuss total APS as the main research object. However, because the relative molecular weight of APS has a wide distribution, in-depth studies on the mechanisms of the biological activity of notable molecules are limited. For example, the relationship between the immunomodulatory effect of APS and its relative molecular weight has not been clearly defined. Therefore, in this paper, we separated and obtained APS of different molecular weights by ultrafiltration technology and then constructed a mouse cyclophosphamide-induced immunosuppression model to investigate the immune activity of APS of different molecular weights. The immune enhancement mechanism of APS was explored by examining changes in routine blood indicators, body weight, immune organs, and differential metabolites in mouse serum. Results showed that APS-I (molecular weight, >2,000 kDa), APS-II (molecular weight, 1.02 × 104 Da) and APS-III (molecular weight, 286 Da) could increase the number of immune cells in mouse serum and improve immune organ damage to varying degrees. Among the samples obtained, APS-II showed the best effects. Compared with those in the blank group, 29 metabolites determined by UHPLC Q-Exactive MS in the serum of the model group changed remarkably, and APS-I, APS-II, and APS-III respectively restored 13, 25, and 19 of these metabolites to normal levels. Metabolomics analysis revealed that APS-II is mainly responsible for the immunomodulatory activity of APS. Metabolomics analysis revealed that the mechanisms of this specific molecule may involve the regulation of phenylalanine metabolism, cysteine and methionine metabolism, tricarboxylic acid cycle (TCA cycle) and arginine and proline metabolism.
Collapse
Affiliation(s)
- Ke Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Lian-Jie Cui
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| | - Yu-Xin Cao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Shu-Ying Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| | - Li-Xia Shi
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Yu-Guang Du
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
74
|
He P, Wang Q, Zhan Q, Pan L, Xin X, Wu H, Zhang M. Purification and characterization of immunomodulatory peptides from enzymatic hydrolysates of duck egg ovalbumin. Food Funct 2021; 12:668-681. [DOI: 10.1039/d0fo02674c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Duck egg white (DEW) is considered as an abandoned protein resource.
Collapse
Affiliation(s)
- Ping He
- College of Food Sciences and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Qian Wang
- College of Food Sciences and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Qiping Zhan
- College of Food Sciences and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Leiman Pan
- College of Food Sciences and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Xuan Xin
- College of Food Sciences and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Hui Wu
- College of Food Sciences and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Mengmeng Zhang
- College of Food Sciences and Engineering
- South China University of Technology
- Guangzhou
- China
| |
Collapse
|
75
|
Wu F, Huang H. Surface morphology and protective effect of Hericium erinaceus polysaccharide on cyclophosphamide-induced immunosuppression in mice. Carbohydr Polym 2021; 251:116930. [DOI: 10.1016/j.carbpol.2020.116930] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022]
|
76
|
Yang Y, Hu T, Li J, Xin M, Zhao X. Structural characterization and effect on leukopenia of fucoidan from Durvillaea antarctica. Carbohydr Polym 2020; 256:117529. [PMID: 33483047 DOI: 10.1016/j.carbpol.2020.117529] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Fucoidans from brown seaweed shows various bioactive properties and promising prospects in biomedical field. Here, a novel fucoidan (F-4) was extracted and purified from Durvillaea antarctica. The structure of F-4 was characterized by HPLC, HPGPC, GC-MS, together with IR and NMR spectral analysis. F-4 is a sulfated polysaccharide mainly composed of fucose (Fuc), galactose (Gal), and glucose (Glc) in a molar ratio of 26.4: 7.1: 1.0. The backbone of F-4 is composed of (1→3) and (1→4)-linked-α-L-Fucp residues, which sulfated at C-4 or C-2 positions and branched with α-L-Fuc, β-D-Gal, and β-D-Glc residues. Furthermore, F-4 can effectively promote the growth of leukocyte in a mouse model induced by cyclophosphamide, possibly by activating hematopoietic progenitor cells and regulating the hematopoietic microenvironment of bone marrow. Our data provide useful information for further investigation of fucoidan in the treatment of chemotherapy-induced leukopenia.
Collapse
Affiliation(s)
- Yingjie Yang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Ting Hu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China.
| | - Jianjie Li
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Meng Xin
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China.
| |
Collapse
|
77
|
Zhang S, An L, Li Z, Wang X, Wang H, Shi L, Bao J, Lan X, Zhang E, Lall N, Reid AM, Li Y, Jin DQ, Xu J, Guo Y. Structural elucidation of an immunological arabinan from the rhizomes of Ligusticum chuanxiong, a traditional Chinese medicine. Int J Biol Macromol 2020; 170:42-52. [PMID: 33316344 DOI: 10.1016/j.ijbiomac.2020.12.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022]
Abstract
In the present study, an immunological arabinan, LCP70-2A, was isolated from Ligusticum chuanxiong for the first time. The absolute molecular weight of LCP70-2A was determined to be 6.46 × 104 g/mol using the HPSEC-MALLS-RID method. The absolute configuration of arabinose in LCP70-2A was determined to be L-configuration. Physicochemical characterization revealed that LCP70-2A was a homogeneous polysaccharide and had a backbone of (1 → 5)-linked α-L-Araf with terminal α-L-arabinose residues at position O-2 and O-3. Molecular conformation analysis showed that LCP70-2A was a branching polysaccharide with a compact coil chain conformation in 0.1 M NaCl solution. In addition, in vitro cell assays showed that LCP70-2A can activate macrophages by enhancing the phagocytosis and potentiating the secretion of immunoregulatory factors including NO, TNF-α, IL-6, and IL-1β. Furthermore, LCP70-2A was proved to promote the production of ROS and NO using the zebrafish model, suggesting that LCP70-2A can be further developed as a candidate supplement for immunological enhancement.
Collapse
Affiliation(s)
- Shaojie Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Lijun An
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Zhengguo Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Xuelian Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Honglin Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Lijuan Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Jiahe Bao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Xiaozhong Lan
- Food Science College, Tibet Agricultural & Animal Husbandry University, Linzhi 860000, People's Republic of China
| | - Erhao Zhang
- Food Science College, Tibet Agricultural & Animal Husbandry University, Linzhi 860000, People's Republic of China
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Anna-Mari Reid
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Yuhao Li
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Da-Qing Jin
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
78
|
Structural characterization and immunomodulatory activity of a water-soluble polysaccharide from Ganoderma leucocontextum fruiting bodies. Carbohydr Polym 2020; 249:116874. [DOI: 10.1016/j.carbpol.2020.116874] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022]
|
79
|
Lan H, Cheng Y, Mu J, Huang Y, Chen H, Zhao L, Wang K, Hu Z. Glucose-rich polysaccharide from dried 'Shixia' longan activates macrophages through Ca 2+ and CR3- mediated MAPKs and PI3K-AKT pathways. Int J Biol Macromol 2020; 167:845-853. [PMID: 33181209 DOI: 10.1016/j.ijbiomac.2020.11.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/25/2020] [Accepted: 11/06/2020] [Indexed: 11/19/2022]
Abstract
A water-soluble glucose-rich polysaccharide from dried 'Shixia' longan pulp (LPsx) has been isolated for the first time, and its structure and immuno-regulatory mechanism were studied. LPsx is a hetero-polysaccharide with the average molecular weight 4102 g/mol. It was mainly consisted of glucose (95.9%), and small proportions of arabinose (2.1%), galactose (1.0%), mannose (0.6%), and xylose (0.4%). As analyzed by NMR, LPsx was mainly composed of (1 → 6)-α-d-glucose and (1 → 6)-β-d-glucose, branched with α-d-glucose-(1→. The immunomodulatory activity study showed that LPsx significantly increased the phagocytosis of macrophages, and strongly promoted the production of NO, IL-1β, IL-6 and TNF-α. Moreover, LPsx could inhibit the inflammatory response induced by lipopolysaccharide. The immuno-regulatory mechanism of LPsx was studied using RNA- sequencing and receptors activity analyses. It was found that LPsx induced macrophage activation via Ca2+ and CR3-mediated MAPKs and PI3K-AKT signaling pathways. The results would be helpful for revealing the health promoting mechanism of dried 'Shixia' longan in traditional Chinese medicine.
Collapse
Affiliation(s)
- Haibo Lan
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongxia Cheng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jingjing Mu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yanfen Huang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Huifang Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lei Zhao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Kai Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Zhuoyan Hu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
80
|
Tian W, Xiao N, Yang Y, Xiao J, Zeng R, Xie L, Qiu Z, Li P, Du B. Structure, antioxidant and immunomodulatory activity of a polysaccharide extracted from Sacha inchi seeds. Int J Biol Macromol 2020; 162:116-126. [PMID: 32565299 DOI: 10.1016/j.ijbiomac.2020.06.150] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/27/2022]
Abstract
In this study, a novel water-soluble polysaccharide (PVLP-1) was extracted and purified from Sacha inchi (Plukenetia volubilis L.) seeds and the structure, antioxidant and immunomodulatory activity of PVLP-1 were investigated. PVLP-1 (144 kDa) consisted of glucose (69.76%), mannose (14.86%), arabinose (10.53%), galactose (2.42%), ribose (1.23%), rhamnose (0.27%) and xylose (0.93%). PVLP-1 displayed characteristic polysaccharide bands in Fourier transform NMR spectra and infrared. The primary structure of PVLP-1 was a heteropolysaccharide with a backbone of (1 → 6)-linked glucose, sidechains of (1 → 4)-linked mannose, (1 → 4)-linked glucose and (1 → 3, 6)-linked mannose and a residue unit of →1)-linked arabinose as revealed the methylation analysis. PVLP-1 possessed good water-holding capacity (WHC), oil-holding capacity (OHC) and antioxidant capacities. Besides, PVLP-1 induced the proliferation of RAW264.7 cell and enhanced the expression of inflammatory cytokines IL-6, TNF-alpha(TNF-α) and IL-1 beta (IL-1β). The present study indicated that PVLP-1 possessed immune-enhancing bioactivities and could be functional food or adjuvant drug to improve biological immunity of immunodeficiency diseases and hypoimmunity.
Collapse
Affiliation(s)
- Wenni Tian
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Nan Xiao
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Yunyun Yang
- Guangdong Engineering and Technology Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Jie Xiao
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Ruiping Zeng
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Lanhua Xie
- Expert Research Station of Dubing, Pu'er City, Yunnan, 665000, China
| | - Ziyou Qiu
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China.
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
81
|
Structural characterization and immunomodulatory activity of a polysaccharide from Eurotium cristatum. Int J Biol Macromol 2020; 162:609-617. [DOI: 10.1016/j.ijbiomac.2020.06.099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/30/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022]
|
82
|
Purification, characterization and antioxidant activity of polysaccharides from Porphyra haitanensis. Int J Biol Macromol 2020; 165:2116-2125. [PMID: 33069819 DOI: 10.1016/j.ijbiomac.2020.10.053] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 01/24/2023]
Abstract
In order to study the antioxidant activity of Porphyra haitanensis polysaccharides and the effect of their structure on the antioxidant activity, the Porphyra haitanensis polysaccharide (PHP), prepared by hot water extraction and alcohol precipitation, was separated and purified by Cellulose DEAE-52 ion exchange and Sephadex G-100 column chromatography. Three purified components including PHP1, PHP2 and PHP3 were obtained, and chemical composition analysis and structural characterization were performed. The in vitro free radical scavenging activity of the purified polysaccharide fractions and their ability to relieve oxidative stress in macrophage RAW264.7 were investigated. The results indicated that all the three fractions possessed appreciable DPPH radical, superoxide anion radical, and hydroxyl radical scavenging ability and reducing power. They were also found to effectively reduce the MDA content and ROS level, and to improve the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) in H2O2-treated RAW264.7 cells. Among the three polysaccharides, PHP3 possessed the most potent activity. Porphyra haitanensis polysaccharides have potential to develop as natural non-toxic antioxidants and may find application as the ingredients of functional foods.
Collapse
|
83
|
Li X, Zhao Y, Lai X, Nong J, Zhao G, Xiao X. One-pot biocatalytic synthesis and antioxidant activities of highly lipophilic naringin derivatives by using bi-functional whole-cells. Food Res Int 2020; 136:109291. [PMID: 32846510 DOI: 10.1016/j.foodres.2020.109291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/11/2020] [Accepted: 05/01/2020] [Indexed: 01/07/2023]
|
84
|
A new water-soluble polysaccharide from Echinops pungens Trautv roots. Part I. Isolation, purification, characterization and antioxidant activity. Int J Biol Macromol 2020; 161:909-916. [DOI: 10.1016/j.ijbiomac.2020.06.128] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022]
|
85
|
Tautau FAP, Izumi M, Matsunaga E, Higuchi Y, Takegawa K. Microbial α-L-Rhamnosidases of Glycosyl Hydrolase Families GH78 and GH106 Have Broad Substrate Specificities toward α-L-Rhamnosyl- and α-L-Mannosyl-Linkages. J Appl Glycosci (1999) 2020; 67:87-93. [PMID: 34354534 PMCID: PMC8132073 DOI: 10.5458/jag.jag.jag-2020_0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/10/2020] [Indexed: 11/21/2022] Open
Abstract
α-L-Rhamnosidases (α-L-Rha-ases, EC 3.2.1.40) are glycosyl hydrolases (GHs) that hydrolyze a terminal α-linked L-rhamnose residue from a wide spectrum of substrates such as heteropolysaccharides, glycosylated proteins, and natural flavonoids. As a result, they are considered catalysts of interest for various biotechnological applications. α-L-rhamnose (6-deoxy-L-mannose) is structurally similar to the rare sugar α-L-mannose. Here we have examined whether microbial α-L-Rha-ases possess α-L-mannosidase activity by synthesizing the substrate 4-nitrophenyl α-L-mannopyranoside. Four α-L-Rha-ases from GH78 and GH106 families were expressed and purified from Escherichia coli cells. All four enzymes exhibited both α-L-rhamnosyl-hydrolyzing activity and weak α-L-mannosyl-hydrolyzing activity. SpRhaM, a GH106 family α-L-Rha-ase from Sphingomonas paucimobilis FP2001, was found to have relatively higher α-L-mannosidase activity as compared with three GH78 α-L-Rha-ases. The α-L-mannosidase activity of SpRhaM showed pH dependence, with highest activity observed at pH 7.0. In summary, we have shown that α-L-Rha-ases also have α-L-mannosidase activity. Our findings will be useful in the identification and structural determination of α-L-mannose-containing polysaccharides from natural sources for use in the pharmaceutical and food industries.
Collapse
Affiliation(s)
| | - Minoru Izumi
- 2 Graduate School of Environmental and Life Science, Okayama University
| | - Emiko Matsunaga
- 1 Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| | - Yujiro Higuchi
- 1 Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| | - Kaoru Takegawa
- 1 Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| |
Collapse
|
86
|
Structural characteristics of a mannoglucan isolated from Chinese yam and its treatment effects against gut microbiota dysbiosis and DSS-induced colitis in mice. Carbohydr Polym 2020; 250:116958. [PMID: 33049862 DOI: 10.1016/j.carbpol.2020.116958] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022]
Abstract
A water-soluble polysaccharide named CYP-1 was isolated from Chinese yam. CYP-1 was characterized as a mannoglucan having a backbone consisting predominately of 1,4-α-linked Glcp branched at O-2, O-3, and O-6 position by t-α-linked Manp with a molecular weight of 2.86 kDa. CYP-1 could inhibit the overproduction of pro-inflammatory cytokines (such as TNF-α and IL-1β) in LPS-induced RAW 264.7 cells and DSS-induced colitis mice. Oral administration of CYP-1 dramatically alleviated colonic pathological damage, suppressed the activation of colonic inflammatory signaling pathways (such as NF-κB and NLRP3 inflammasome), recovered the mRNA expression of junctional proteins (such as ZO-1, claudin-1, occludin, and connexin-43), and modulated the gut microbiota by decreasing the abundances of Alistipes, Helicobacter, and an unidentified Enterobacteriaceae, in DSS-induced colitis mice. Overall, the present study elucidated that a new polysaccharide structure CYP-1 from Chinese yam and its therapeutic potential as a prebiotic for the prevention of inflammatory bowel disease.
Collapse
|
87
|
Guo T, Yang Y, Gao M, Qu Y, Guo X, Liu Y, Cui X, Wang C. Lepidium meyenii Walpers polysaccharide and its cationic derivative re-educate tumor-associated macrophages for synergistic tumor immunotherapy. Carbohydr Polym 2020; 250:116904. [PMID: 33049880 DOI: 10.1016/j.carbpol.2020.116904] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
Abstract
In the current study, we developed a synergistic chemo-immunotherapy using doxorubicin (Dox) and a natural polysaccharide as immunomodulator. First, we isolated a polysaccharide (MPW) from the root of Lepidium meyenii Walp. (maca) and characterized its chemical properties. MPW contains → 4) -α-D-Glcp- (1 → glycosidic bonds, while the terminal α-D-Glcp- (1 → group is connected to the main chain through an O-6 bond. This polysaccharide was then modified by cationization (C-MPW) to enhance immunoregulatory activity. MPW and C-MPW were combined with Dox and their chemo-immunotherapy effects on 4T1 tumor-bearing mice were assessed. Results indicated that the combination of MPW/C-MPW exerted a stronger anti-tumor effect than Dox alone, while reducing systemic toxicity and inhibiting tumor metastasis. In addition, MPW and C-MPW exerted tumor immunotherapy effects through the NF-κB, STAT1, and STAT3 signaling pathways, redirecting TAMs to the M1 phenotype that facilitates immunological responses against tumors. As a result, the immunosuppressive tumor microenvironment was remodeled into an immune-activated state due to enhanced secretion of IL-12, TNF-α, and INF-γ. Moreover, C-MPW exerted a stronger immunomodulatory effect than MPW. In conclusion, MPW and its cationic derivative are promising tools for cancer immunotherapy.
Collapse
Affiliation(s)
- Tingting Guo
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, China
| | - Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, China
| | - Mingju Gao
- Wenshan University, Yunnan Province, Wenshan, 663000, China
| | - Yuan Qu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, China
| | - Xiaoxi Guo
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yuan Liu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, China
| | - Xiuming Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, China.
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, China.
| |
Collapse
|
88
|
A novel Hericium erinaceus polysaccharide: Structural characterization and prevention of H2O2-induced oxidative damage in GES-1 cells. Int J Biol Macromol 2020; 154:1460-1470. [DOI: 10.1016/j.ijbiomac.2019.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/21/2019] [Accepted: 11/05/2019] [Indexed: 12/28/2022]
|
89
|
Dong Z, Zhang M, Li H, Zhan Q, Lai F, Wu H. Structural characterization and immunomodulatory activity of a novel polysaccharide from Pueraria lobata (Willd.) Ohwi root. Int J Biol Macromol 2020; 154:1556-1564. [DOI: 10.1016/j.ijbiomac.2019.11.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 02/01/2023]
|
90
|
Hu L, Liu R, Wu T, Sui W, Zhang M. Structural Properties of Homogeneous Polysaccharide Fraction Released from Wheat Germ by Hydrothermal Treatment. Carbohydr Polym 2020; 240:116238. [DOI: 10.1016/j.carbpol.2020.116238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/23/2020] [Accepted: 03/29/2020] [Indexed: 02/08/2023]
|
91
|
Liu G, Ye J, Li W, Zhang J, Wang Q, Zhu XA, Miao JY, Huang YH, Chen YJ, Cao Y. Extraction, structural characterization, and immunobiological activity of ABP Ia polysaccharide from Agaricus bisporus. Int J Biol Macromol 2020; 162:975-984. [PMID: 32599242 DOI: 10.1016/j.ijbiomac.2020.06.204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 01/05/2023]
Abstract
The extraction, purification, immunobiological activities, and structure of Agaricus bisporus polysaccharides (ABP) were investigated. Especially we purified and identified the polysaccharides with the highest in vitro immunobiological activity. The extraction conditions of ABP were optimized using single factor and orthogonal experiment. ABP Ia was screened after double purification with DEAE-52 and Sephadex G-200 and showed the best immunoregulatory activity. UV spectra analysis and high-performance gel permeation chromatography results indicated that the ABP Ia fraction did not contain any proteins or nucleotides and was a homogeneous polysaccharide with a relative molecular weight of 784 kDa. Gas chromatography mass spectroscopy results showed that ABP Ia was a heteropolysaccharide consisting of ribose, rhamnose, arabinose, xylose, mannose, glucose, and galactose at a molar ratio of 2.08:4.61:2.45:22.25:36.45:89.22:1.55. FT-IR and periodic acid oxidation analysis indicated that ABP Ia was an α-pyran polysaccharide composed of 1 → 2 and 1 → 4 glycosidic bonds, as well as a possible 1 → 3 glycosidic bond. Furthermore, atomic force microscopy revealed that ABP Ia polysaccharide chains twisted to form a rod-like architecture and, at a 5% concentration, aggregated into a tight structure similar to the shape of a stone forest. These findings identify ABP Ia as a potential functional food ingredient or pharmaceutical for immunoregulation.
Collapse
Affiliation(s)
- Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China; College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jing Ye
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qun Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Ai Zhu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jian-Yin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ya-Hui Huang
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yun-Jiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
92
|
Duan Z, Zhang Y, Zhu C, Wu Y, Du B, Ji H. Structural characterization of phosphorylated Pleurotus ostreatus polysaccharide and its hepatoprotective effect on carbon tetrachloride-induced liver injury in mice. Int J Biol Macromol 2020; 162:533-547. [PMID: 32565302 DOI: 10.1016/j.ijbiomac.2020.06.107] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 11/18/2022]
Abstract
This study aimed to explore the basic structural features of phosphorylated Pleurotus ostreatus polysaccharide (PPOP) and study the protective effect of PPOP on liver injury induced by carbon tetrachloride in male Kunming mice. The phosphorylated polysaccharide was prepared from the natural polysaccharide extracted from Pleurotus ostreatus (POP). The structures of PPOP and POP were characterized by FT-IR, ESEM spectroscopy, and Congo red test. Chemical composition analysis revealed that PPOP was mainly composed of rhamnose, galacturonic acid, and xylose in a molar ratio of 0.10: 1.98: 1.00. Structural analysis indicated that PPOP had multi-strand structure and the absorption peaks of PO and P-O-C. Furthermore, animal experiments showed that the hepatoprotective effect of PPOP against liver injury was reflected by decreasing the levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total cholesterol, trilaurin, and low-density lipoprotein cholesterol in the serum, increasing the content of high-density lipoprotein cholesterol and albumin in blood, reducing the content of malondialdehyde and promoting the activity of antioxidant enzymes in liver. PPOP exhibited stronger hepatoprotective effect and antioxidant activity in vivo than POP. The final results indicated that PPOP could be used in the treatment of chemical-induced hepatotoxicity based on the above biological research.
Collapse
Affiliation(s)
- Zhen Duan
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yang Zhang
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Caiping Zhu
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China; International Joint Research Center of Shaanxi Province for Food and Health Sciences, Xi'an 710119, China.
| | - Yuan Wu
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Biqi Du
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Huijie Ji
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
93
|
Zeng F, Chen W, He P, Zhan Q, Wang Q, Wu H, Zhang M. Structural characterization of polysaccharides with potential antioxidant and immunomodulatory activities from Chinese water chestnut peels. Carbohydr Polym 2020; 246:116551. [PMID: 32747236 DOI: 10.1016/j.carbpol.2020.116551] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/26/2020] [Accepted: 05/30/2020] [Indexed: 12/20/2022]
Abstract
Chinese water chestnut peels are a kind of vegetable processing waste containing many active components such as polysaccharides, the structure of which remains unknown. To elucidate the structure of polysaccharides from Chinese water chestnut peels, two polysaccharides named WVP-1 and WVP-2 were isolated. WVP-1 (3.16 kDa) consisted of mannose (1.75 %), glucose (84.69 %), galactose (6.32 %), and arabinose (7.24 %), while WVP-2 (56.97 kDa) was composed of mannose (3.18 %), rhamnose (1.52 %), glucuronic acid (1.42 %), galacturonic acid (4.83 %), glucose (11.51 %), galactose (36.02 %), and arabinose (41.53 %). Linkage and NMR data indicated that WVP-1 was composed mainly of →4)-α-d-Glcp(1→ and a certain proportion of →3)-β-d-Glcp-(1→, including linear and branched polysaccharides simultaneously. WVP-2 was a pectin-like polysaccharide with →4)-α-d-GalpA6Me-(1→ units and the branch points of →3,4)-α-l-Arap-(1→, →3,6)-β-d-Galp-(1→. WVP-2 exhibited stronger potential antioxidant and immunomodulatory activities than WVP-1 in vitro. These results provide a foundation for the further study of polysaccharides from Chinese water chestnut peels.
Collapse
Affiliation(s)
- Fanke Zeng
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Wenbo Chen
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Ping He
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Qiping Zhan
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Qian Wang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Hui Wu
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China.
| | - Mengmeng Zhang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China.
| |
Collapse
|
94
|
Liu W, Bi S, Li C, Zheng H, Guo Z, Luo Y, Ou X, Song L, Zhu J, Yu R. Purification and Characterization of a New CRISP-Related Protein from Scapharca broughtonii and Its Immunomodulatory Activity. Mar Drugs 2020; 18:E299. [PMID: 32512803 PMCID: PMC7344751 DOI: 10.3390/md18060299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/26/2022] Open
Abstract
More and more attention has been paid to bioactive compounds isolated from marine organisms or microorganisms in recent years. At the present study, a new protein coded as HPCG2, was purified from Scapharca broughtonii by stepwise chromatography methods. The molecular weight of HPCG2 was determined to be 30.71 kDa by MALDI-TOF-MS. The complete amino acid sequence of HPCG2 was obtained by tandem mass spectrometry combined with transcriptome database analysis, and its secondary structure was analyzed using circular dichroism. HPCG2 comprised 251 amino acids and contained 28.4% α-helix, 26% β-sheet, 18.6% β-turn, and 29.9% random coil. HPCG2 was predicted to be a cysteine-rich secretory protein-related (CRISP-related) protein by domain prediction. Moreover, HPCG2 was proved to possess the immunomodulatory effect on the murine immune cells. MTT assay showed that HPCG2 promoted the proliferation of splenic lymphocytes and the cytotoxicity of NK cells against YAC-1 cells. Flow cytometry test revealed that HPCG2 enhanced the phagocytic function of macrophages and polarized them into M1 type in RAW264.7 cells. In particular, Western blot analysis indicated that the immunomodulatory mechanism of HPCG2 was associated with the regulation on TLR4/JNK/ERK and STAT3 signaling pathways in RAW 264.7 cells. These results suggested that HPCG2 might be developed as a potential immunomodulatory agent or new functional product from marine organisms.
Collapse
Affiliation(s)
- Wanying Liu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, China; (W.L.); (H.Z.)
| | - Sixue Bi
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, China; (S.B.); (Z.G.); (X.O.); (L.S.)
| | - Chunlei Li
- Department of Natural Product Chemistry, College of Pharmacy, Jinan University, Guangzhou 510632, China; (C.L.); (Y.L.)
| | - Hang Zheng
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, China; (W.L.); (H.Z.)
| | - Zhongyi Guo
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, China; (S.B.); (Z.G.); (X.O.); (L.S.)
| | - Yuanyuan Luo
- Department of Natural Product Chemistry, College of Pharmacy, Jinan University, Guangzhou 510632, China; (C.L.); (Y.L.)
| | - Xiaozheng Ou
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, China; (S.B.); (Z.G.); (X.O.); (L.S.)
| | - Liyan Song
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, China; (S.B.); (Z.G.); (X.O.); (L.S.)
| | - Jianhua Zhu
- Department of Natural Product Chemistry, College of Pharmacy, Jinan University, Guangzhou 510632, China; (C.L.); (Y.L.)
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, China; (W.L.); (H.Z.)
- Department of Natural Product Chemistry, College of Pharmacy, Jinan University, Guangzhou 510632, China; (C.L.); (Y.L.)
| |
Collapse
|
95
|
Novel polysaccharide from Chaenomeles speciosa seeds: Structural characterization, α-amylase and α-glucosidase inhibitory activity evaluation. Int J Biol Macromol 2020; 153:755-766. [DOI: 10.1016/j.ijbiomac.2020.03.057] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/28/2022]
|
96
|
Chen Y, Ou X, Yang J, Bi S, Peng B, Wen Y, Song L, Li C, Yu R, Zhu J. Structural characterization and biological activities of a novel polysaccharide containing N-acetylglucosamine from Ganoderma sinense. Int J Biol Macromol 2020; 158:S0141-8130(20)33174-3. [PMID: 32387611 DOI: 10.1016/j.ijbiomac.2020.05.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
A novel homogeneous heteropolysaccharide (GSPB70-S) with a molecular weight of 2.87 kDa was isolated from Ganoderma sinense. Structural analysis showed that GSPB70-S was composed of glucose, glucosamine, mannose, and galactose with a molar ratio of 12.90:3.70:2.26:1.00. The repeating structure units of GSPB70-S were characterized by the combined application of chemical methods and nuclear magnetic resonance. GSPB70-S contains a backbone of →3)-β-D-Glcp-(1 → 4)-α-D-GlcpNAc-(1 → 4)-α-D-Manp-(1 → 3)-β-D-Glcp-(1→, with branches of β-D-Glcp-(1→, α-D-GlcpNAc-(1 → and →4)-α-D-Galp-(1→. Scanning electron microscope (SEM) showed that GSPB70-S presented a long strip shape with different thicknesses, and there were many lamellar substances on the surface. Biological research showed that GSPB70-S inhibited the activity of α-glucosidase in vitro, increased the viability of RAW 264.7 macrophages, and promoted the release of NO. In addition, GSPB70-S showed good abilities to scavenge free radicals.
Collapse
Affiliation(s)
- Yiyu Chen
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaozheng Ou
- Department of Natural Product Chemistry, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jianing Yang
- Department of Pharmacology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Sixue Bi
- Department of Pharmacology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Bao Peng
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yao Wen
- Department of Natural Product Chemistry, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Liyan Song
- Department of Pharmacology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Chunlei Li
- Department of Natural Product Chemistry, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; Department of Natural Product Chemistry, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Jianhua Zhu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; Department of Natural Product Chemistry, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
97
|
Lee YK, Chang YH. Microencapsulation of a maca leaf polyphenol extract in mixture of maltodextrin and neutral polysaccharides extracted from maca roots. Int J Biol Macromol 2020; 150:546-558. [DOI: 10.1016/j.ijbiomac.2020.02.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/14/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
|
98
|
Ascorbic acid induced degradation of polysaccharide from natural products: a review. Int J Biol Macromol 2020; 151:483-491. [DOI: 10.1016/j.ijbiomac.2020.02.193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/09/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
|
99
|
Zheng T, Gu D, Wang X, Shen X, Yan L, Zhang W, Pu Y, Ge C, Fan J. Purification, characterization and immunomodulatory activity of polysaccharides from Leccinum crocipodium (Letellier.) Watliag. Int J Biol Macromol 2020; 148:647-656. [DOI: 10.1016/j.ijbiomac.2020.01.155] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/23/2019] [Accepted: 01/16/2020] [Indexed: 01/09/2023]
|
100
|
De A, Das B, Mitra D, Sen AK, Samanta A. Exploration of an arabinogalactan isolated from
Odina wodier
Roxb.: Physicochemical, compositional characterisations and functional attributes. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Arnab De
- Department of Pharmaceutical TechnologyJadavpur University Kolkata India
| | - Bhaskar Das
- Department of Pharmaceutical TechnologyJadavpur University Kolkata India
| | - Debmalya Mitra
- Department of Pharmaceutical TechnologyJadavpur University Kolkata India
| | - Asish K Sen
- Emeritus Scientist (Rtd.), Department of ChemistryIndian Institute of Chemical Biology Kolkata India
| | - Amalesh Samanta
- Department of Pharmaceutical TechnologyJadavpur University Kolkata India
| |
Collapse
|