51
|
Wang L, Shi Z, Wang X, Mu S, Xu X, Shen L, Li P. Protective effects of bovine milk exosomes against oxidative stress in IEC-6 cells. Eur J Nutr 2020; 60:317-327. [PMID: 32328746 DOI: 10.1007/s00394-020-02242-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 03/27/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Bovine milk exosomes, which are enriched with microRNAs (miRNAs) and proteins, regulate immune response and growth. In the present study, we aimed to assess the protective effects of bovine milk exosomes against oxidative stress of intestinal crypt epithelial cells (IEC-6). METHODS Bovine milk exosomes were isolated and characterized. To assess the protective effects of exosomes, IEC-6 cells were pretreated with exosomes, followed by H2O2. Cell viability and levels of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GPX), reactive oxidative species (ROS), and lactate dehydrogenase (LDH) were measured. The expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (Ho1) genes, and miR-146a, miR-155, and the HO-1 protein were also determined. RESULTS The isolated bovine milk exosome were positive for CD63 and CD9 expression. The exosomes were approximately circular and had a diameter of about 67.23 nm. Pretreatment of IEC-6 cells with bovine milk exosomes enhanced cell viability; increased SOD and GPX activities; and reduced LDH, ROS, and MDA levels after H2O2 challenge. Further analysis showed that exosome pretreatment increased intracellular miR-146a and miR-155 levels. Exosome pretreatment inhibited the elevation of Nrf2 and Ho1 gene expression induced by H2O2, but promoted HO-1 protein expression. CONCLUSION The results indicated that bovine milk exosomes exerted protective effects against oxidative stress in IEC-6 cells.
Collapse
Affiliation(s)
- Lanfang Wang
- Research Center for Translational Medicine at Shanghai East Hospital, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
| | - Zhexi Shi
- Research Center for Translational Medicine at Shanghai East Hospital, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Xinyan Wang
- The People's Hospital of Zhaoyuan City, Zhaoyuan, 265400, Shandong Province, China
| | - Shu Mu
- Research Center for Translational Medicine at Shanghai East Hospital, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Xiaoyan Xu
- Research Center for Translational Medicine at Shanghai East Hospital, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Li Shen
- Department of Pathogen Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Ping Li
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| |
Collapse
|
52
|
Li J, Luo J, Zhang Y, Tang C, Wang J, Chen C. Silencing of soluble epoxide hydrolase 2 gene reduces H 2O 2-induced oxidative damage in rat intestinal epithelial IEC-6 cells via activating PI3K/Akt/GSK3β signaling pathway. Cytotechnology 2020; 72:23-36. [PMID: 31907700 PMCID: PMC7002799 DOI: 10.1007/s10616-019-00354-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/03/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress plays a vital role in the occurrence and development of intestinal injury. Soluble epoxide hydrolase 2 gene (EPHX2) is a class of hydrolytic enzymes. We aim to explore the effects and molecular mechanism of siEPHX2 on H2O2-induced oxidative damage in rat intestinal epithelial IEC-6 cells. IEC-6 cells were transfected with EPHX2-siRNA and control si RNA plasmids by lipofectamine™ 2000 transfection reagent. The transfected samples were treated with H2O2 (50, 100, 200, 300, 400, and 500 µmol/L) for 12, 24, and 48 h, respectively. Cell viability was determined by cell counting kit-8 (CCK-8). Lactate dehydrogenase (LDH), malondialdehyde (MDA), and superoxide dismutase (SOD) were assessed by respective detection kits. Mitochondrial membrane potential (MMP), cell apoptosis and reactive oxygen species (ROS) and the levels of factors were determined by flow cytometer, quantitative real-time PCR (qRT-PCR) and western blot assays, respectively. We found that the IC50 of H2O2 was 200 µmol/L at 24 h, and the transfection of siEHPX2 in H2O2-induced IEC-6 cells significantly promoted the cell viability, SOD activity and MMP rate, and reduced the rates of ROS and apoptosis as well as LDH and MDA contents. siEHPX2 up-regulated the B-cell lymphoma-2 (Bcl-2) level and down-regulated the levels of fibroblast-associated (Fas), Fas ligand (Fasl), Bcl-2 associated X protein (Bax), and Caspase-3. Moreover, the phosphorylation levels of phosphoinositide 3 kinase (PI3K), protein kinase B (Akt), and glycogen synthase kinase3β (GSK3β) were up-regulated. We proved that siEPHX2 had a protective effect on H2O2-induced oxidative damage in IEC-6 cells through activating PI3K/Akt/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Jun Li
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital, No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan, China
| | - Jihui Luo
- Department of Surgical Oncology, Chenzhou No.1 People's Hospital, Chenzhou, China
| | - Yang Zhang
- Department of Burn Plastic Surgery, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Chunming Tang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Jiang Wang
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital, No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan, China
| | - Chaowu Chen
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital, No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan, China.
| |
Collapse
|
53
|
Qi L, Jiang J, Zhang J, Zhang L, Wang T. Curcumin Protects Human Trophoblast HTR8/SVneo Cells from H 2O 2-Induced Oxidative Stress by Activating Nrf2 Signaling Pathway. Antioxidants (Basel) 2020; 9:antiox9020121. [PMID: 32024207 PMCID: PMC7071057 DOI: 10.3390/antiox9020121] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Pregnancy complications are associated with oxidative stress induced by accumulation of trophoblastic ROS in the placenta. We employed the human trophoblast HTR8/SVneo cell line to determine the effect of curcumin pre-treatment on H2O2-induced oxidative damage in HTR8/Sveo cells. Cells were pretreated with 2.5 or 5 μM curcumin for 24 h, and then incubated with 400 μM H2O2 for another 24 h. The results showed that H2O2 decreased the cell viability and induced excessive accumulation of reactive oxygen species (ROS) in HTR8/Sveo cells. Curcumin pre-treatment effectively protected HTR8/SVneo cells against oxidative stress-induced apoptosis via increasing Bcl-2/Bax ratio and decreasing the protein expression level of cleaved-caspase 3. Moreover, curcumin pre-treatment alleviated the excessive oxidative stress by enhancing the activity of antioxidative enzymes. The antioxidant effect of curcumin was achieved by activating Nrf2 and its downstream antioxidant proteins. In addition, knockdown of Nrf2 by Nrf2-siRNA transfection abolished the protective effects of curcumin on HTR8/SVneo cells against oxidative damage. Taken together, our results show that curcumin could protect HTR8/SVneo cells from H2O2-induced oxidative stress by activating Nrf2 signaling pathway.
Collapse
|
54
|
Liu J, Yang J, Hou Y, Zhu Z, He J, Zhao H, Ye X, Li D, Wu Z, Huang Z, Hao B, Yao K. Casticin inhibits nasopharyngeal carcinoma growth by targeting phosphoinositide 3-kinase. Cancer Cell Int 2019; 19:348. [PMID: 31889900 PMCID: PMC6925493 DOI: 10.1186/s12935-019-1069-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022] Open
Abstract
Background Casticin, an isoflavone compound extracted from the herb Fructus Viticis, has demonstrated anti-inflammatory and anticancer activities and properties. The aim of this study was to investigate the effects and mechanisms of casticin in nasopharyngeal carcinoma (NPC) cells and to determine its potential for targeted use as a medicine. Methods NPC cells were used to perform the experiments. The CCK‑8 assay and colony formation assays were used to assess cell viability. Flow cytometry was used to measure the cell cycle and apoptosis analysis (annexin V/PI assay). A three-dimensional (3D) tumour sphere culture system was used to characterize the effect of casticin on NPC stem cells. In silico molecular docking prediction and high-throughput KINOME scan assays were used to evaluate the binding of casticin to phosphoinositide 3-kinase (PI3K), including wild-type and most of mutants variants. We also used the SelectScreen assay to detect the IC50 of ATP activity in the active site of the target kinase. Western blotting was used to evaluate the changes in key proteins involved cell cycle, apoptosis, stemness, and PI3K/protein kinase B (AKT) signalling. The effect of casticin treatment in vivo was determined by using a xenograft mouse model. Results Our results indicate that casticin is a new and novel selective PI3K inhibitor that can significantly inhibit NPC proliferation and that it induces G2/GM arrest and apoptosis by upregulating Bax/BCL2 expression. Moreover, casticin was observed to affect the self-renewal ability of the nasopharyngeal carcinoma cell lines, and a combination of casticin with BYL719 was observed to induce a decrease in the level of the phosphorylation of mTORC1 downstream targets in BYL719-insensitive NPC cell lines. Conclusion Casticin is a newly emerging selective PI3K inhibitor with potential for use as a targeted therapeutic treatment for nasopharyngeal carcinoma. Accordingly, casticin might represent a novel and effective agent against NPC and likely has high potential for combined use with pharmacological agents targeting PI3K/AKT.
Collapse
Affiliation(s)
- Jingxian Liu
- 1Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China
| | - Jinghong Yang
- 1Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China
| | - Yuhe Hou
- 1Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China
| | - Zhenwei Zhu
- 1Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China.,2Shenzhen Hospital, Southern Medical University, Shenzhen, 518000 Guangdong People's Republic of China
| | - Jie He
- 1Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China
| | - Hao Zhao
- 1Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China
| | - Xidong Ye
- 1Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China
| | - Dengke Li
- 1Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China
| | - Zhaohui Wu
- 1Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China
| | - Zhongxi Huang
- 1Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China.,2Shenzhen Hospital, Southern Medical University, Shenzhen, 518000 Guangdong People's Republic of China
| | - Bingtao Hao
- 1Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China.,3Shunde Hospital, Southern Medical University, Shunde, 528300 Guangdong People's Republic of China
| | - Kaitai Yao
- 1Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China.,2Shenzhen Hospital, Southern Medical University, Shenzhen, 518000 Guangdong People's Republic of China
| |
Collapse
|
55
|
Li Y, Zhao W, Wang L, Chen Y, Zhang H, Wang T, Yang X, Xing F, Yan J, Fang X. Protective Effects of Fucoidan against Hydrogen Peroxide-Induced Oxidative Damage in Porcine Intestinal Epithelial Cells. Animals (Basel) 2019; 9:ani9121108. [PMID: 31835456 PMCID: PMC6940796 DOI: 10.3390/ani9121108] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
Simple Summary High levels of production in intensive farming systems make domestic animals like piglets particularly susceptible to oxidative stress, which is detrimental to intestinal homeostasis and function. It is of paramount importance to identify effective and reliable nutrients to counteract oxidative damage to the porcine intestinal epithelium, especially with the recent phasing out of the use of antibiotics in China. This study indicates that fucoidan could ameliorate hydrogen peroxide-induced oxidative stress in porcine intestinal epithelial cells, primarily owing to the action of fucoidan to facilitate nuclear factor-erythroid 2-related factor-2 signals and cellular antioxidant responses. These findings may provide useful implications for practical swine production. Abstract This study was conducted to evaluate the effectiveness of fucoidan in ameliorating hydrogen peroxide (H2O2)-induced oxidative stress to porcine intestinal epithelial cell line (IPEC-1). The cell viability test was initially performed to screen out appropriate concentrations of H2O2 and fucoidan. After that, cells were exposed to H2O2 in the presence or absence of pre-incubation with fucoidan. Hydrogen peroxide increased the apoptotic and necrotic rate, boosted reactive oxygen species (ROS) generation, and disturbed the transcriptional expression of genes associated with antioxidant defense and apoptosis in IPEC-1 cells. Pre-incubation with fucoidan inhibited the increases in necrosis and ROS accumulation induced by H2O2. Consistently, in the H2O2-treated IPEC-1 cells, fucoidan normalized the content of reduced glutathione as well as the mRNA abundance of NAD(P)H quinone dehydrogenase 1 and superoxide dismutase 1 while it prevented the overproduction of malondialdehyde. Moreover, H2O2 stimulated the translocation of nuclear factor-erythroid 2-related factor-2 to the nucleus of IPEC-1 cells, but this increase was further promoted by fucoidan pre-treatment. The results suggest that fucoidan is effective in protecting IPEC-1 cells against oxidative damage induced by H2O2, which may help in developing appropriate strategies for maintaining the intestinal health of young piglets.
Collapse
Affiliation(s)
- Yue Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (W.Z.); (L.W.); (X.Y.); (F.X.); (J.Y.)
| | - Weimin Zhao
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (W.Z.); (L.W.); (X.Y.); (F.X.); (J.Y.)
| | - Li Wang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (W.Z.); (L.W.); (X.Y.); (F.X.); (J.Y.)
| | - Yueping Chen
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (H.Z.); (T.W.)
| | - Hao Zhang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (H.Z.); (T.W.)
| | - Tian Wang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (H.Z.); (T.W.)
| | - Xiaoyang Yang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (W.Z.); (L.W.); (X.Y.); (F.X.); (J.Y.)
| | - Fei Xing
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (W.Z.); (L.W.); (X.Y.); (F.X.); (J.Y.)
| | - Junshu Yan
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (W.Z.); (L.W.); (X.Y.); (F.X.); (J.Y.)
| | - Xiaomin Fang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (W.Z.); (L.W.); (X.Y.); (F.X.); (J.Y.)
- Correspondence: ; Tel.: +86-25-84391941
| |
Collapse
|
56
|
Wang Y, Jiang F, Cheng H, Tan X, Liu Y, Wei C, Song E. Astragaloside IV Protects Against Oxidative Stress in Calf Small Intestine Epithelial Cells via NFE2L2-Antioxidant Response Element Signaling. Int J Mol Sci 2019; 20:ijms20246131. [PMID: 31817362 PMCID: PMC6941087 DOI: 10.3390/ijms20246131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress can damage intestinal epithelial cell integrity and function, causing gastrointestinal disorders. Astragaloside IV (ASIV) exhibits a variety of biological and pharmacological properties, including anti-inflammatory and antioxidant effects. The purpose of this research was to investigate the cytoprotective action of ASIV and its mechanisms in calf small intestine epithelial cells with hydrogen peroxide (H2O2)-induced oxidative stress. ASIV pretreatment not only increased cell survival, but it also decreased reactive oxygen species generation and apoptosis, enhanced superoxide dismutase, catalase, and glutathione peroxidase levels, and it reduced malondialdehyde formation. Furthermore, pretreatment with ASIV elevated the mRNA and protein levels of nuclear factor erythroid 2-related factor 2 (NFE2L2), heme oxygenase-1 (HMOX1), and NAD(P)H quinone dehydrogenase 1 (NQO1). The NFE2L2 inhibitor ML385 inhibited NFE2L2 expression and then blocked HMOX1 and NQO1 expression. These results demonstrate that ASIV treatment effectively protects against H2O2-induced oxidative damage in calf small intestine epithelial cells through the activation of the NFE2L2-antioxidant response element signaling pathway.
Collapse
Affiliation(s)
- Yafang Wang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road, Number 8, Jinan 250100, China; (Y.W.); (F.J.); (H.C.); (C.W.)
- Shandong Key Laboratory of Animal Disease Control and Breeding, Sangyuan Road, Number 8, Jinan 250100, China
- College of Life Sciences, Shandong Normal University, East Wenhua Road Number 88, Jinan 250014, China
| | - Fugui Jiang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road, Number 8, Jinan 250100, China; (Y.W.); (F.J.); (H.C.); (C.W.)
- Shandong Key Laboratory of Animal Disease Control and Breeding, Sangyuan Road, Number 8, Jinan 250100, China
| | - Haijian Cheng
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road, Number 8, Jinan 250100, China; (Y.W.); (F.J.); (H.C.); (C.W.)
- Shandong Key Laboratory of Animal Disease Control and Breeding, Sangyuan Road, Number 8, Jinan 250100, China
| | - Xiuwen Tan
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road, Number 8, Jinan 250100, China; (Y.W.); (F.J.); (H.C.); (C.W.)
- Shandong Key Laboratory of Animal Disease Control and Breeding, Sangyuan Road, Number 8, Jinan 250100, China
| | - Yifan Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road, Number 8, Jinan 250100, China; (Y.W.); (F.J.); (H.C.); (C.W.)
- Shandong Key Laboratory of Animal Disease Control and Breeding, Sangyuan Road, Number 8, Jinan 250100, China
| | - Chen Wei
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road, Number 8, Jinan 250100, China; (Y.W.); (F.J.); (H.C.); (C.W.)
- Shandong Key Laboratory of Animal Disease Control and Breeding, Sangyuan Road, Number 8, Jinan 250100, China
| | - Enliang Song
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road, Number 8, Jinan 250100, China; (Y.W.); (F.J.); (H.C.); (C.W.)
- Shandong Key Laboratory of Animal Disease Control and Breeding, Sangyuan Road, Number 8, Jinan 250100, China
- College of Life Sciences, Shandong Normal University, East Wenhua Road Number 88, Jinan 250014, China
- Correspondence:
| |
Collapse
|
57
|
Yang H, Shan W, Zhu F, Wu J, Wang Q. Ketone Bodies in Neurological Diseases: Focus on Neuroprotection and Underlying Mechanisms. Front Neurol 2019; 10:585. [PMID: 31244753 PMCID: PMC6581710 DOI: 10.3389/fneur.2019.00585] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022] Open
Abstract
There is growing evidence that ketone bodies, which are derived from fatty acid oxidation and usually produced in fasting state or on high-fat diets have broad neuroprotective effects. Although the mechanisms underlying the neuroprotective effects of ketone bodies have not yet been fully elucidated, studies in recent years provided abundant shreds of evidence that ketone bodies exert neuroprotective effects through possible mechanisms of anti-oxidative stress, maintaining energy supply, modulating the activity of deacetylation and inflammatory responses. Based on the neuroprotective effects, the ketogenic diet has been used in the treatment of several neurological diseases such as refractory epilepsy, Parkinson's disease, Alzheimer's disease, and traumatic brain injury. The ketogenic diet has great potential clinically, which should be further explored in future studies. It is necessary to specify the roles of components in ketone bodies and their therapeutic targets and related pathways to optimize the strategy and efficacy of ketogenic diet therapy in the future.
Collapse
Affiliation(s)
- Huajun Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Wei Shan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Fei Zhu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Jianping Wu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|