51
|
Synthesis, toxicities and bio-activities of manganese complexes with CO and H2S dual donors. Eur J Med Chem 2018; 159:339-356. [DOI: 10.1016/j.ejmech.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 09/29/2018] [Accepted: 10/01/2018] [Indexed: 01/09/2023]
|
52
|
Clopidogrel as a donor probe and thioenol derivatives as flexible promoieties for enabling H 2S biomedicine. Nat Commun 2018; 9:3952. [PMID: 30262863 PMCID: PMC6160475 DOI: 10.1038/s41467-018-06373-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/22/2018] [Indexed: 12/30/2022] Open
Abstract
Hydrogen sulfide has emerged as a critical endogenous signaling transmitter and a potentially versatile therapeutic agent. The key challenges in this field include the lack of approved hydrogen sulfide-releasing probes for in human exploration and the lack of controllable hydrogen sulfide promoieties that can be flexibly installed for therapeutics development. Here we report the identification of the widely used antithrombotic drug clopidogrel as a clinical hydrogen sulfide donor. Clopidogrel is metabolized in patients to form a circulating metabolite that contains a thioenol substructure, which is found to undergo spontaneous degradation to release hydrogen sulfide. Model studies demonstrate that thioenol derivatives are a class of controllable promoieties that can be conveniently installed on a minimal structure of ketone with an α-hydrogen. These results can provide chemical tools for advancing hydrogen sulfide biomedical research as well as developing hydrogen sulfide-releasing drugs. Hydrogen sulphide (H2S) is a gaseous signalling molecule, which has shown therapeutic value. Here, the authors show that a thioenol metabolite of the antithrombotic drug clopidogrel is an efficient H2S donor and masked thioenols can be linked to existing compounds to develop H2S-releasing agents.
Collapse
|
53
|
Cerda MM, Zhao Y, Pluth MD. Thionoesters: A Native Chemical Ligation-Inspired Approach to Cysteine-Triggered H 2S Donors. J Am Chem Soc 2018; 140:12574-12579. [PMID: 30230325 DOI: 10.1021/jacs.8b07268] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Native chemical ligation (NCL) is a simple, widely used, and powerful synthetic tool to ligate N-terminal cysteine residues and C-terminal α-thioesters via a thermodynamically stable amide bond. Building on this well-established reactivity, as well as advancing our interests in the chemical biology of reactive sulfur species including hydrogen sulfide (H2S), we hypothesized that thionoesters, which are constitutional isomers of thioesters, would undergo a similar NCL reaction in the presence of cysteine to release H2S under physiological conditions. Herein, we report mechanistic and kinetic investigations into cysteine-mediated H2S release from thionoesters. We found that this reaction proceeds with high H2S-releasing efficiency (∼80%) and with a rate constant (9.1 ± 0.3 M-1 s-1) comparable to that for copper-catalyzed azide-alkyne cycloadditions (CuAAC). Additionally, we found that the final product of the reaction of cysteine with thionoesters results in the formation of a stable dihydrothiazole, which is an iron-binding motif commonly found in siderophores produced by bacteria during periods of nutrient deprivation.
Collapse
Affiliation(s)
- Matthew M Cerda
- Department of Chemistry and Biochemistry, Materials Science Institute, Institute of Molecular Biology , University of Oregon , Eugene , Oregon 97403 , United States
| | - Yu Zhao
- Department of Chemistry and Biochemistry, Materials Science Institute, Institute of Molecular Biology , University of Oregon , Eugene , Oregon 97403 , United States
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Institute of Molecular Biology , University of Oregon , Eugene , Oregon 97403 , United States
| |
Collapse
|
54
|
Colorimetric Carbonyl Sulfide (COS)/Hydrogen Sulfide (H
2
S) Donation from γ‐Ketothiocarbamate Donor Motifs. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
55
|
Zhao Y, Steiger AK, Pluth MD. Colorimetric Carbonyl Sulfide (COS)/Hydrogen Sulfide (H 2 S) Donation from γ-Ketothiocarbamate Donor Motifs. Angew Chem Int Ed Engl 2018; 57:13101-13105. [PMID: 30102448 DOI: 10.1002/anie.201806854] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/29/2018] [Indexed: 12/13/2022]
Abstract
Hydrogen sulfide (H2 S) is a biologically active molecule that exhibits protective effects in a variety of physiological and pathological processes. Although several H2 S-related biological effects have been discovered by using H2 S donors, knowing how much H2 S has been released from donors under different conditions remains challenging. Now, a series of γ-ketothiocarbamate (γ-KetoTCM) compounds that provide the first examples of colorimetric H2 S donors and enable direct quantification of H2 S release, were reported. These compounds are activated through a pH-dependent deprotonation/β-elimination sequence to release carbonyl sulfide (COS), which is quickly converted into H2 S by carbonic anhydrase. The p-nitroaniline released upon donor activation provides an optical readout that correlates directly to COS/H2 S release, thus enabling colorimetric measurement of H2 S donation.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, and Materials Science Institute, University of Oregon, Eugene, OR, 97403, USA
| | - Andrea K Steiger
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, and Materials Science Institute, University of Oregon, Eugene, OR, 97403, USA
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, and Materials Science Institute, University of Oregon, Eugene, OR, 97403, USA
| |
Collapse
|
56
|
Powell CR, Dillon KM, Matson JB. A review of hydrogen sulfide (H 2S) donors: Chemistry and potential therapeutic applications. Biochem Pharmacol 2018; 149:110-123. [PMID: 29175421 PMCID: PMC5866188 DOI: 10.1016/j.bcp.2017.11.014] [Citation(s) in RCA: 375] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 12/11/2022]
Abstract
Hydrogen sulfide (H2S) is a ubiquitous small gaseous signaling molecule, playing an important role in many physiological processes and joining nitric oxide and carbon monoxide in the group of signaling agents termed gasotransmitters. Endogenous concentrations of H2S are generally low, making it difficult to discern precise biological functions. As such, probing the physiological roles of H2S is aided by exogenous delivery of the gas in cell and animal studies. This need for an exogenous source of H2S provides a unique challenge for chemists to develop chemical tools that facilitate the study of H2S under biological conditions. Compounds that degrade in response to a specific trigger to release H2S, termed H2S donors, include a wide variety of functional groups and delivery systems, some of which mimic the tightly controlled endogenous production in response to specific, biologically relevant conditions. This review examines a variety of H2S donor systems classified by their H2S-releasing trigger as well as their H2S release profiles, byproducts, and potential therapeutic applications.
Collapse
Affiliation(s)
- Chadwick R Powell
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Kearsley M Dillon
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - John B Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
57
|
Hartle MD, Pluth MD. A practical guide to working with H 2S at the interface of chemistry and biology. Chem Soc Rev 2018; 45:6108-6117. [PMID: 27167579 DOI: 10.1039/c6cs00212a] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hydrogen sulfide (H2S) is the most recently accepted endogenously produced gasotransmitter and is now implicated in a variety of physiological functions. In this tutorial review, our goal is to provide researchers new to the field of H2S chemical biology with practical considerations, pitfalls, and best practices to enable smooth entry into investigations focused on biological H2S. We present practical handling and safety considerations for working with this reactive biomolecule, and cover basic roles of H2S biogenesis and action. Experimental methods for modulating H2S levels, including enzymatic knockout, RNA silencing, enzymatic inhibition, and use of small molecule H2S donors are highlighted. Complementing H2S modulation techniques, we also highlight current strategies for H2S detection and quantification.
Collapse
Affiliation(s)
- Matthew D Hartle
- Department of Chemistry and Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
58
|
Karwi QG, Bice JS, Baxter GF. Pre- and postconditioning the heart with hydrogen sulfide (H 2S) against ischemia/reperfusion injury in vivo: a systematic review and meta-analysis. Basic Res Cardiol 2018; 113:6. [PMID: 29242986 PMCID: PMC5730622 DOI: 10.1007/s00395-017-0664-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023]
Abstract
Conditioning-like infarct limitation by enhanced level of hydrogen sulfide (H2S) has been demonstrated in many animal models of myocardial ischemia/reperfusion injury (MIRI) in vivo. We sought to evaluate the effect of H2S on myocardial infarction across in vivo pre-clinical studies of MIRI using a comprehensive systematic review followed by meta-analysis. Embase, Pubmed and Web of Science were searched for pre-clinical investigation of the effect of H2S on MIRI in vivo. Retained records (6031) were subjected to our pre-defined inclusion criteria then were objectively critiqued. Thirty-two reports were considered eligible to be included in this study and were grouped, based on the time of H2S application, into preconditioning and postconditioning groups. Data were pooled using random effect meta-analysis. We also investigated the possible impact of different experimental variables and the risk of bias on the observed effect size. Preconditioning with H2S (n = 23) caused a significant infarct limitation of - 20.25% (95% CI - 25.02, - 15.47). Similarly, postconditioning with H2S (n = 40) also limited infarct size by - 21.61% (95% CI - 24.17, - 19.05). This cardioprotection was also robust and consistent following sensitivity analyses where none of the pre-defined experimental variables had a significant effect on the observed infarct limitation. H2S shows a significant infarct limitation across in vivo pre-clinical studies of MIRI which include data from 825 animals. This infarct-sparing effect is robust and consistent when H2S is applied before ischemia or at reperfusion, independently on animal size or sulfide source. Validating this infarct limitation using large animals from standard medical therapy background and with co-morbidities should be the way forward.
Collapse
Affiliation(s)
- Qutuba G Karwi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, UK.
- Department of Pharmacology, College of Medicine, University of Diyala, Diyala, Iraq.
| | - Justin S Bice
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Gary F Baxter
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| |
Collapse
|
59
|
Severino B, Corvino A, Fiorino F, Luciano P, Frecentese F, Magli E, Saccone I, Di Vaio P, Citi V, Calderone V, Servillo L, Casale R, Cirino G, Vellecco V, Bucci M, Perissutti E, Santagada V, Caliendo G. 1,2,4-Thiadiazolidin-3,5-diones as novel hydrogen sulfide donors. Eur J Med Chem 2018; 143:1677-1686. [DOI: 10.1016/j.ejmech.2017.10.068] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/03/2017] [Accepted: 10/24/2017] [Indexed: 11/29/2022]
|
60
|
Lin L, Qin H, Huang J, Liang H, Quan D, Lu J. Design and synthesis of an AIE-active polymeric H2S-donor with capacity for self-tracking. Polym Chem 2018. [DOI: 10.1039/c8py00548f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Poly(3-formyl-4-hydroxybenzyl methacrylate) (PFHMA) was reacted sequentially with PEG-ONH2, hydrazine and S-benzoylthiohydroxylamine to yield a self-fluorescent polymeric H2S-donor.
Collapse
Affiliation(s)
- Lvhuan Lin
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Resin-based Composites
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Herong Qin
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Resin-based Composites
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Jianbing Huang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Resin-based Composites
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Hui Liang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Resin-based Composites
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Daping Quan
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Resin-based Composites
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Jiang Lu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Resin-based Composites
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| |
Collapse
|
61
|
Bibli SI, Szabo C, Chatzianastasiou A, Luck B, Zukunft S, Fleming I, Papapetropoulos A. Hydrogen Sulfide Preserves Endothelial Nitric Oxide Synthase Function by Inhibiting Proline-Rich Kinase 2: Implications for Cardiomyocyte Survival and Cardioprotection. Mol Pharmacol 2017; 92:718-730. [PMID: 29030392 DOI: 10.1124/mol.117.109645] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/11/2017] [Indexed: 12/14/2022] Open
Abstract
Hydrogen sulfide (H2S) exhibits beneficial effects in the cardiovascular system, many of which depend on nitric oxide (NO). Proline-rich tyrosine kinase 2 (PYK2), a redox-sensitive tyrosine kinase, directly phosphorylates and inhibits endothelial NO synthase (eNOS). We investigated the ability of H2S to relieve PYK2-mediated eNOS inhibition and evaluated the importance of the H2S/PYK2/eNOS axis on cardiomyocyte injury in vitro and in vivo. Exposure of H9c2 cardiomyocytes to H2O2 or pharmacologic inhibition of H2S production increased PYK2 (Y402) and eNOS (Y656) phosphorylation. These effects were blocked by treatment with Na2S or by overexpression of cystathionine γ-lyase (CSE). In addition, PYK2 overexpression reduced eNOS activity in a H2S-reversible manner. The viability of cardiomyocytes exposed to Η2Ο2 was reduced and declined further after the inhibition of H2S production. PYK2 downregulation, l-cysteine supplementation, or CSE overexpression alleviated the effects of H2O2 on H9c2 cardiomyocyte survival. Moreover, H2S promoted PYK2 sulfhydration and inhibited its activity. In vivo, H2S administration reduced reactive oxygen species levels, as well as PYK2 (Y402) and eNOS (Y656) phosphorylation. Pharmacologic blockade of PYK2 or inhibition of PYK2 activation by Na2S reduced myocardial infarct size in mice. Coadministration of a PYK2 inhibitor and Na2S did not result in additive effects on infarct size. We conclude that H2S relieves the inhibitory effect of PYK2 on eNOS, allowing the latter to produce greater amounts of NO, thereby affording cardioprotection. Our results unravel the existence of a novel H2S-NO interaction and identify PYK2 as a crucial target for the protective effects of H2S under conditions of oxidative stress.
Collapse
Affiliation(s)
- Sofia-Iris Bibli
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (S.-I.B., A.P.); Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany (S.-I.B., B.L., S.Z., I.F.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); "George P. Livanos and Marianthi Simou" Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Csaba Szabo
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (S.-I.B., A.P.); Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany (S.-I.B., B.L., S.Z., I.F.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); "George P. Livanos and Marianthi Simou" Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Athanasia Chatzianastasiou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (S.-I.B., A.P.); Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany (S.-I.B., B.L., S.Z., I.F.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); "George P. Livanos and Marianthi Simou" Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Bert Luck
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (S.-I.B., A.P.); Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany (S.-I.B., B.L., S.Z., I.F.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); "George P. Livanos and Marianthi Simou" Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Sven Zukunft
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (S.-I.B., A.P.); Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany (S.-I.B., B.L., S.Z., I.F.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); "George P. Livanos and Marianthi Simou" Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Ingrid Fleming
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (S.-I.B., A.P.); Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany (S.-I.B., B.L., S.Z., I.F.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); "George P. Livanos and Marianthi Simou" Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (S.-I.B., A.P.); Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany (S.-I.B., B.L., S.Z., I.F.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); "George P. Livanos and Marianthi Simou" Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| |
Collapse
|
62
|
Zhao Y, Henthorn HA, Pluth MD. Kinetic Insights into Hydrogen Sulfide Delivery from Caged-Carbonyl Sulfide Isomeric Donor Platforms. J Am Chem Soc 2017; 139:16365-16376. [PMID: 29056039 PMCID: PMC6022369 DOI: 10.1021/jacs.7b09527] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hydrogen sulfide (H2S) is a biologically important small gaseous molecule that exhibits promising protective effects against a variety of physiological and pathological processes. To investigate the expanding roles of H2S in biology, researchers often use H2S donors to mimic enzymatic H2S synthesis or to provide increased H2S levels under specific circumstances. Aligned with the need for new broad and easily modifiable platforms for H2S donation, we report here the preparation and H2S release kinetics from a series of isomeric caged-carbonyl sulfide (COS) compounds, including thiocarbamates, thiocarbonates, and dithiocarbonates, all of which release COS that is quickly converted to H2S by the ubiquitous enzyme carbonic anhydrase. Each donor is designed to release COS/H2S after the activation of a trigger by activation by hydrogen peroxide (H2O2). In addition to providing a broad palette of new, H2O2-responsive donor motifs, we also demonstrate the H2O2 dose-dependent COS/H2S release from each donor core, establish that release profiles can be modified by structural modifications, and compare COS/H2S release rates and efficiencies from isomeric core structures. Supporting our experimental investigations, we also provide computational insights into the potential energy surfaces for COS/H2S release from each platform. In addition, we also report initial investigations into dithiocarbamate cores, which release H2S directly upon H2O2-mediated activation. As a whole, the insights on COS/H2S release gained from these investigations provide a foundation for the expansion of the emerging area of responsive COS/H2S donor systems.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Hillary A. Henthorn
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
63
|
Szabo C, Papapetropoulos A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H 2S Levels: H 2S Donors and H 2S Biosynthesis Inhibitors. Pharmacol Rev 2017; 69:497-564. [PMID: 28978633 PMCID: PMC5629631 DOI: 10.1124/pr.117.014050] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last decade, hydrogen sulfide (H2S) has emerged as an important endogenous gasotransmitter in mammalian cells and tissues. Similar to the previously characterized gasotransmitters nitric oxide and carbon monoxide, H2S is produced by various enzymatic reactions and regulates a host of physiologic and pathophysiological processes in various cells and tissues. H2S levels are decreased in a number of conditions (e.g., diabetes mellitus, ischemia, and aging) and are increased in other states (e.g., inflammation, critical illness, and cancer). Over the last decades, multiple approaches have been identified for the therapeutic exploitation of H2S, either based on H2S donation or inhibition of H2S biosynthesis. H2S donation can be achieved through the inhalation of H2S gas and/or the parenteral or enteral administration of so-called fast-releasing H2S donors (salts of H2S such as NaHS and Na2S) or slow-releasing H2S donors (GYY4137 being the prototypical compound used in hundreds of studies in vitro and in vivo). Recent work also identifies various donors with regulated H2S release profiles, including oxidant-triggered donors, pH-dependent donors, esterase-activated donors, and organelle-targeted (e.g., mitochondrial) compounds. There are also approaches where existing, clinically approved drugs of various classes (e.g., nonsteroidal anti-inflammatories) are coupled with H2S-donating groups (the most advanced compound in clinical trials is ATB-346, an H2S-donating derivative of the non-steroidal anti-inflammatory compound naproxen). For pharmacological inhibition of H2S synthesis, there are now several small molecule compounds targeting each of the three H2S-producing enzymes cystathionine-β-synthase (CBS), cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase. Although many of these compounds have their limitations (potency, selectivity), these molecules, especially in combination with genetic approaches, can be instrumental for the delineation of the biologic processes involving endogenous H2S production. Moreover, some of these compounds (e.g., cell-permeable prodrugs of the CBS inhibitor aminooxyacetate, or benserazide, a potentially repurposable CBS inhibitor) may serve as starting points for future clinical translation. The present article overviews the currently known H2S donors and H2S biosynthesis inhibitors, delineates their mode of action, and offers examples for their biologic effects and potential therapeutic utility.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Andreas Papapetropoulos
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| |
Collapse
|
64
|
Yang CT, Chen L, Xu S, Day JJ, Li X, Xian M. Recent Development of Hydrogen Sulfide Releasing/Stimulating Reagents and Their Potential Applications in Cancer and Glycometabolic Disorders. Front Pharmacol 2017; 8:664. [PMID: 29018341 PMCID: PMC5623001 DOI: 10.3389/fphar.2017.00664] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/06/2017] [Indexed: 12/24/2022] Open
Abstract
As an important endogenous gaseous signaling molecule, hydrogen sulfide (H2S) exerts various effects in the body. A variety of pathological changes, such as cancer, glycometabolic disorders, and diabetes, are associated with altered endogenous levels of H2S, especially decreased. Therefore, the supplement of H2S is of great significance for the treatment of diseases containing the above pathological changes. At present, many efforts have been made to increase the in vivo levels of H2S by administration of gaseous H2S, simple inorganic sulfide salts, sophisticated synthetic slow-releasing controllable H2S donors or materials, and using H2S stimulating agents. In this article, we reviewed the recent development of H2S releasing/stimulating reagents and their potential applications in two common pathological processes including cancer and glycometabolic disorders.
Collapse
Affiliation(s)
- Chun-Tao Yang
- Affiliated Cancer Hospital and Institute, Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Chemistry, Washington State University, Pullman, WA, United States
| | - Li Chen
- Affiliated Cancer Hospital and Institute, Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shi Xu
- Department of Chemistry, Washington State University, Pullman, WA, United States
| | - Jacob J Day
- Department of Chemistry, Washington State University, Pullman, WA, United States
| | - Xiang Li
- Affiliated Cancer Hospital and Institute, Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, WA, United States
| |
Collapse
|
65
|
Dominguez-Rodriguez M, Drobny H, Boehm S, Salzer I. Electrophysiological Investigation of the Subcellular Fine Tuning of Sympathetic Neurons by Hydrogen Sulfide. Front Pharmacol 2017; 8:522. [PMID: 28824437 PMCID: PMC5543101 DOI: 10.3389/fphar.2017.00522] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/25/2017] [Indexed: 11/20/2022] Open
Abstract
H2S is well-known as hypotensive agent, whether it is synthetized endogenously or administered systemically. Moreover, the H2S donor NaHS has been shown to inhibit vasopressor responses triggered by stimulation of preganglionic sympathetic fibers. In contradiction with this latter result, NaHS has been reported to facilitate transmission within sympathetic ganglia. To resolve this inconsistency, H2S and NaHS were applied to primary cultures of dissociated sympathetic ganglia to reveal how this gasotransmitter might act at different subcellular compartments of such neurons. At the somatodendritic region of ganglionic neurons, NaHS raised the frequency, but not the amplitudes, of cholinergic miniature postsynaptic currents via a presynaptic site of action. In addition, the H2S donor as well as H2S itself caused membrane hyperpolarization and decreased action potential firing in response to current injection. Submillimolar NaHS concentrations did not affect currents through Kυ7 channels, but did evoke currents through KATP channels. Similarly to NaHS, the KATP channel activator diazoxide led to hyperpolarization and decreased membrane excitability; the effects of both, NaHS and diazoxide, were prevented by the KATP channel blocker tolbutamide. At postganglionic sympathetic nerve terminals, H2S and NaHS enhanced noradrenaline release due to a direct action at the level of vesicle exocytosis. Taken together, H2S may facilitate transmitter release within sympathetic ganglia and at sympatho-effector junctions, but causes hyperpolarization and reduced membrane excitability in ganglionic neurons. As this latter action was due to KATP channel gating, this channel family is hereby established as another previously unrecognized determinant in the function of sympathetic ganglia.
Collapse
Affiliation(s)
- Manuel Dominguez-Rodriguez
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of ViennaVienna, Austria
| | - Helmut Drobny
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of ViennaVienna, Austria
| | - Stefan Boehm
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of ViennaVienna, Austria
| | - Isabella Salzer
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of ViennaVienna, Austria
| |
Collapse
|
66
|
Dyson A, Dal-Pizzol F, Sabbatini G, Lach AB, Galfo F, dos Santos Cardoso J, Pescador Mendonça B, Hargreaves I, Bollen Pinto B, Bromage DI, Martin JF, Moore KP, Feelisch M, Singer M. Ammonium tetrathiomolybdate following ischemia/reperfusion injury: Chemistry, pharmacology, and impact of a new class of sulfide donor in preclinical injury models. PLoS Med 2017; 14:e1002310. [PMID: 28678794 PMCID: PMC5497958 DOI: 10.1371/journal.pmed.1002310] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/26/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Early revascularization of ischemic organs is key to improving outcomes, yet consequent reperfusion injury may be harmful. Reperfusion injury is largely attributed to excess mitochondrial production of reactive oxygen species (ROS). Sulfide inhibits mitochondria and reduces ROS production. Ammonium tetrathiomolybdate (ATTM), a copper chelator, releases sulfide in a controlled and novel manner, and may offer potential therapeutic utility. METHODS AND FINDINGS In vitro, ATTM releases sulfide in a time-, pH-, temperature-, and thiol-dependent manner. Controlled sulfide release from ATTM reduces metabolism (measured as oxygen consumption) both in vivo in awake rats and ex vivo in skeletal muscle tissue, with a superior safety profile compared to standard sulfide generators. Given intravenously at reperfusion/resuscitation to rats, ATTM significantly reduced infarct size following either myocardial or cerebral ischemia, and conferred survival benefit following severe hemorrhage. Mechanistic studies (in vitro anoxia/reoxygenation) demonstrated a mitochondrial site of action (decreased MitoSOX fluorescence), where the majority of damaging ROS is produced. CONCLUSIONS The inorganic thiometallate ATTM represents a new class of sulfide-releasing drugs. Our findings provide impetus for further investigation of this compound as a novel adjunct therapy for reperfusion injury.
Collapse
Affiliation(s)
- Alex Dyson
- Bloomsbury Institute for Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
- Magnus Oxygen, London, United Kingdom
| | - Felipe Dal-Pizzol
- Bloomsbury Institute for Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
- Laboratory of Experimental Pathophysiology, University of Southern Santa Catarina, Criciúma, Brazil
| | - Giovanni Sabbatini
- Bloomsbury Institute for Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Anna B. Lach
- Bloomsbury Institute for Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
- Magnus Oxygen, London, United Kingdom
| | - Federica Galfo
- Bloomsbury Institute for Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Bruna Pescador Mendonça
- Laboratory of Experimental Pathophysiology, University of Southern Santa Catarina, Criciúma, Brazil
| | - Iain Hargreaves
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Bernardo Bollen Pinto
- Bloomsbury Institute for Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Daniel I. Bromage
- Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - John F. Martin
- Bloomsbury Institute for Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
- Magnus Oxygen, London, United Kingdom
| | - Kevin P. Moore
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Mervyn Singer
- Bloomsbury Institute for Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
- Magnus Oxygen, London, United Kingdom
| |
Collapse
|
67
|
Tkacheva NI, Morozov SV, Lomivorotov BB, Grigor’ev IA. Organic Hydrogen Sulfide Donor Compounds with Cardioprotective Properties (Review). Pharm Chem J 2017. [DOI: 10.1007/s11094-017-1576-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
68
|
Li M, Li J, Zhang T, Zhao Q, Cheng J, Liu B, Wang Z, Zhao L, Wang C. Syntheses, toxicities and anti-inflammation of H 2S-donors based on non-steroidal anti-inflammatory drugs. Eur J Med Chem 2017. [PMID: 28646655 DOI: 10.1016/j.ejmech.2017.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Three series of H2S donors based on NSAIDs were synthesized and characterized by 1H-NMR, IR and ESI-HRMS. The H2S-release abilities of all compounds were evaluated in the presence of TECP or cysteine. The results show all compounds were fast H2S-releasers, and their half-lives were in range of 0-20 min. Under the same condition, H2S released from compound 9 was more than any other compounds. In cytotoxicity aspect, all compounds but 1 and 2 displayed much lower toxicities to both LO2 and HepG2 cell lines, and the IC50 values of most compounds were over 800 μM. Compounds 1 and 2 had a stronger anti-proliferative activity to both cell lines, but they displayed lower toxicities to LO2 than to HepG2. Based on the cytotoxicity, the developmental toxicities of the compounds were assessed using zebrafish embryos. The results show all tested compounds 2, 9 and 15 had effects on the mortality, hatching rate and spontaneous movements of zebrafish embryos, and caused embryos teratogenesis; and the compounds had dose-dependent toxicities to both embryonic and larval zebrafish. In addition, all compounds had a better anti-inflammatory activity. In the test of anti-inflammatory activities, the tested compounds all reduced the levels of intracellular nitrite and pro-inflammatory cytokines (TNF-α, COX-2), increased the levels of anti-inflammatory cytokines (IL-10, HO-1). All these suggest these H2S donors based on NSAIDs have a potential to be a candidate medicine.
Collapse
Affiliation(s)
- Meng Li
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Jili Li
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Taofeng Zhang
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Quanyi Zhao
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China.
| | - Jie Cheng
- GLP Lab Centre, School of Basic Medicine of Lanzhou University, Lanzhou 730000, China
| | - Bin Liu
- School of Stomatology of Lanzhou University, Lanzhou 730000, China
| | - Zhen Wang
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Libo Zhao
- School of Stomatology of Lanzhou University, Lanzhou 730000, China
| | - Chenwei Wang
- School of Stomatology of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
69
|
Abstract
The size of the myocardial infarction remains an important therapeutic target, because heart attack size correlates with mortality and heart failure. In this era, myocardial infarct size is reduced primarily by timely reperfusion of the infarct related coronary artery. Whereas numerous pre-clinical studies have shown that certain pharmacologic agents and therapeutic maneuvers reduce myocardial infarction size greater than reperfusion alone, very few of these therapies have translated to successful clinical trials or standard clinical use. In this review we discuss both the recent successes as well as recent disappointments, and describe some of the newer potential therapies from the preclinical literature that have not yet been tested in clinical trials.
Collapse
|
70
|
Donnarumma E, Trivedi RK, Lefer DJ. Protective Actions of H2S in Acute Myocardial Infarction and Heart Failure. Compr Physiol 2017; 7:583-602. [PMID: 28333381 DOI: 10.1002/cphy.c160023] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen sulfide (H2S) was identified as the third gasotransmitter in 1996 following the discoveries of the biological importance of nitric oxide and carbon monoxide. Although H2S has long been considered a highly toxic gas, the discovery of its presence and enzymatic production in mammalian tissues supports a critical role for this physiological signaling molecule. H2S is synthesized endogenously by three enzymes: cystathionine β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase. H2S plays a pivotal role in the regulation of cardiovascular function as H2S has been shown to modulate: vasodilation, angiogenesis, inflammation, oxidative stress, and apoptosis. Perturbation of endogenous production of H2S has been associated with many pathological conditions of the cardiovascular system such as diabetes, heart failure, and hypertension. As such, modulation of the endogenous H2S signaling pathway or administration of exogenous H2S has been shown to be cytoprotective. This review article will provide a summary of the current body of evidence on the role of H2S signaling in the setting of myocardial ischemia and heart failure. © 2017 American Physiological Society. Compr Physiol 7:583-602, 2017.
Collapse
Affiliation(s)
- Erminia Donnarumma
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Rishi K Trivedi
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - David J Lefer
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
71
|
Zheng Y, Yu B, De La Cruz LK, Roy Choudhury M, Anifowose A, Wang B. Toward Hydrogen Sulfide Based Therapeutics: Critical Drug Delivery and Developability Issues. Med Res Rev 2017; 38:57-100. [PMID: 28240384 DOI: 10.1002/med.21433] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/10/2016] [Accepted: 11/29/2016] [Indexed: 12/16/2022]
Abstract
Hydrogen sulfide (H2 S), together with nitric oxide (NO) and carbon monoxide (CO), belongs to the gasotransmitter family and plays important roles in mammals as a signaling molecule. Many studies have also shown the various therapeutic effects of H2 S, which include protection against myocardial ischemia injury, cytoprotection against oxidative stress, mediation of neurotransmission, inhibition of insulin signaling, regulation of inflammation, inhibition of the hypoxia-inducible pathway, and dilation of blood vessels. One major challenge in the development of H2 S-based therapeutics is its delivery. In this manuscript, we assess the various drug delivery strategies in the context of being used research tools and eventual developability as therapeutic agents.
Collapse
Affiliation(s)
- Yueqin Zheng
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Bingchen Yu
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | | | | | | | - Binghe Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| |
Collapse
|
72
|
Feng W, Novera W, Peh K, Neo D, Ramanujulu PM, Moore PK, Deng LW, Dymock BW. Discovery of medium ring thiophosphorus based heterocycles as antiproliferative agents. Bioorg Med Chem Lett 2017; 27:967-972. [DOI: 10.1016/j.bmcl.2016.12.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/21/2016] [Accepted: 12/29/2016] [Indexed: 02/09/2023]
|
73
|
Zhao Y, Pluth MD. Hydrogen Sulfide Donors Activated by Reactive Oxygen Species. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608052] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yu Zhao
- Department of Chemistry and Biochemistry; Institute of Molecular Biology, and Materials Science Institute; University of Oregon; Eugene OR 97403 USA
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry; Institute of Molecular Biology, and Materials Science Institute; University of Oregon; Eugene OR 97403 USA
| |
Collapse
|
74
|
Zhao Y, Pluth MD. Hydrogen Sulfide Donors Activated by Reactive Oxygen Species. Angew Chem Int Ed Engl 2016; 55:14638-14642. [PMID: 27774732 DOI: 10.1002/anie.201608052] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/21/2016] [Indexed: 11/09/2022]
Abstract
Hydrogen sulfide (H2 S) exhibits promising protective effects in many (patho)physiological processes, as evidenced by recent reports using synthetic H2 S donors in different biological models. Herein, we report the design and evaluation of compounds denoted PeroxyTCM, which are the first class of reactive oxygen species (ROS)-triggered H2 S donors. These donors are engineered to release carbonyl sulfide (COS) upon activation, which is quickly hydrolyzed to H2 S by the ubiquitous enzyme carbonic anhydrase (CA). The donors are stable in aqueous solution and do not release H2 S until triggered by ROS, such as hydrogen peroxide (H2 O2 ), superoxide (O2- ), and peroxynitrite (ONOO- ). We demonstrate ROS-triggered H2 S donation in live cells and also demonstrate that PeroxyTCM-1 provides protection against H2 O2 -induced oxidative damage, suggesting potential future applications of PeroxyTCM and similar scaffolds in H2 S-related therapies.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, and Materials Science Institute, University of Oregon, Eugene, OR, 97403, USA
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, and Materials Science Institute, University of Oregon, Eugene, OR, 97403, USA
| |
Collapse
|
75
|
Donnarumma E, Ali MJ, Rushing AM, Scarborough AL, Bradley JM, Organ CL, Islam KN, Polhemus DJ, Evangelista S, Cirino G, Jenkins JS, Patel RAG, Lefer DJ, Goodchild TT. Zofenopril Protects Against Myocardial Ischemia-Reperfusion Injury by Increasing Nitric Oxide and Hydrogen Sulfide Bioavailability. J Am Heart Assoc 2016; 5:JAHA.116.003531. [PMID: 27381758 PMCID: PMC5015391 DOI: 10.1161/jaha.116.003531] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Zofenopril, a sulfhydrylated angiotensin‐converting enzyme inhibitor (ACEI), reduces mortality and morbidity in infarcted patients to a greater extent than do other ACEIs. Zofenopril is a unique ACEI that has been shown to increase hydrogen sulfide (H2S) bioavailability and nitric oxide (NO) levels via bradykinin‐dependent signaling. Both H2S and NO exert cytoprotective and antioxidant effects. We examined zofenopril effects on H2S and NO bioavailability and cardiac damage in murine and swine models of myocardial ischemia/reperfusion (I/R) injury. Methods and Results Zofenopril (10 mg/kg PO) was administered for 1, 8, and 24 hours to establish optimal dosing in mice. Myocardial and plasma H2S and NO levels were measured along with the levels of H2S and NO enzymes (cystathionine β‐synthase, cystathionine γ‐lyase, 3‐mercaptopyruvate sulfur transferase, and endothelial nitric oxide synthase). Mice received 8 hours of zofenopril or vehicle pretreatment followed by 45 minutes of ischemia and 24 hours of reperfusion. Pigs received placebo or zofenopril (30 mg/daily orally) 7 days before 75 minutes of ischemia and 48 hours of reperfusion. Zofenopril significantly augmented both plasma and myocardial H2S and NO levels in mice and plasma H2S (sulfane sulfur) in pigs. Cystathionine β‐synthase, cystathionine γ‐lyase, 3‐mercaptopyruvate sulfur transferase, and total endothelial nitric oxide synthase levels were unaltered, while phospho‐endothelial nitric oxide synthase1177 was significantly increased in mice. Pretreatment with zofenopril significantly reduced myocardial infarct size and cardiac troponin I levels after I/R injury in both mice and swine. Zofenopril also significantly preserved ischemic zone endocardial blood flow at reperfusion in pigs after I/R. Conclusions Zofenopril‐mediated cardioprotection during I/R is associated with an increase in H2S and NO signaling.
Collapse
Affiliation(s)
- Erminia Donnarumma
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Murtuza J Ali
- Department of Cardiology, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Amanda M Rushing
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Amy L Scarborough
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Jessica M Bradley
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Chelsea L Organ
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Kazi N Islam
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | - David J Polhemus
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | | | - Giuseppe Cirino
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | | | | | - David J Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Traci T Goodchild
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| |
Collapse
|
76
|
Chatzianastasiou A, Bibli SI, Andreadou I, Efentakis P, Kaludercic N, Wood ME, Whiteman M, Di Lisa F, Daiber A, Manolopoulos VG, Szabó C, Papapetropoulos A. Cardioprotection by H2S Donors: Nitric Oxide-Dependent and ‑Independent Mechanisms. J Pharmacol Exp Ther 2016; 358:431-40. [PMID: 27342567 DOI: 10.1124/jpet.116.235119] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/21/2016] [Indexed: 12/27/2022] Open
Abstract
Hydrogen sulfide (H2S) is a signaling molecule with protective effects in the cardiovascular system. To harness the therapeutic potential of H2S, a number of donors have been developed. The present study compares the cardioprotective actions of representative H2S donors from different classes and studies their mechanisms of action in myocardial injury in vitro and in vivo. Exposure of cardiomyocytes to H2O2 led to significant cytotoxicity, which was inhibited by sodium sulfide (Na2S), thiovaline (TV), GYY4137 [morpholin-4-ium 4 methoxyphenyl(morpholino) phosphinodithioate], and AP39 [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol5yl)phenoxy)decyl) triphenylphospho-nium bromide]. Inhibition of nitric oxide (NO) synthesis prevented the cytoprotective effects of Na2S and TV, but not GYY4137 and AP39, against H2O2-induced cardiomyocyte injury. Mice subjected to left anterior descending coronary ligation were protected from ischemia-reperfusion injury by the H2S donors tested. Inhibition of nitric oxide synthase (NOS) in vivo blocked only the beneficial effect of Na2S. Moreover, Na2S, but not AP39, administration enhanced the phosphorylation of endothelial NOS and vasodilator-associated phosphoprotein. Both Na2S and AP39 reduced infarct size in mice lacking cyclophilin-D (CypD), a modulator of the mitochondrial permeability transition pore (PTP). Nevertheless, only AP39 displayed a direct effect on mitochondria by increasing the mitochondrial Ca(2+) retention capacity, which is evidence of decreased propensity to undergo permeability transition. We conclude that although all the H2S donors we tested limited infarct size, the pathways involved were not conserved. Na2S had no direct effects on PTP opening, and its action was nitric oxide dependent. In contrast, the cardioprotection exhibited by AP39 could result from a direct inhibitory effect on PTP acting at a site different than CypD.
Collapse
Affiliation(s)
- Athanasia Chatzianastasiou
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Sofia-Iris Bibli
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Ioanna Andreadou
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Panagiotis Efentakis
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Nina Kaludercic
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Mark E Wood
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Matthew Whiteman
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Fabio Di Lisa
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Andreas Daiber
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Vangelis G Manolopoulos
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Csaba Szabó
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Andreas Papapetropoulos
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| |
Collapse
|
77
|
Xu S, Yang CT, Meng FH, Pacheco A, Chen L, Xian M. Ammonium tetrathiomolybdate as a water-soluble and slow-release hydrogen sulfide donor. Bioorg Med Chem Lett 2016; 26:1585-1588. [PMID: 26898812 PMCID: PMC4775341 DOI: 10.1016/j.bmcl.2016.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 01/12/2023]
Abstract
Ammonium tetrathiomolybdate (TTM) was found to be a slow hydrogen sulfide (H2S) releasing agent. Its H2S generation capability in aqueous solutions was confirmed by UV-vis and fluorescence assays. TTM also showed H2S-like cytoprotective effects in hydrogen peroxide (H2O2)-induced oxidative damage in HaCaT cells.
Collapse
Affiliation(s)
- Shi Xu
- Department of Chemistry, Washington State University, Pullman, WA 99164, United States
| | - Chun-Tao Yang
- Department of Physiology, Guangzhou Medical University, Guangzhou 511436, China
| | - Fu-Hui Meng
- Department of Physiology, Guangzhou Medical University, Guangzhou 511436, China
| | - Armando Pacheco
- Department of Chemistry, Washington State University, Pullman, WA 99164, United States
| | - Li Chen
- Department of Physiology, Guangzhou Medical University, Guangzhou 511436, China
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, WA 99164, United States.
| |
Collapse
|