51
|
Chaudhry C, Tebben A, Tokarski JS, Borzilleri R, Pitts WJ, Lippy J, Zhang L. An innovative kinome platform to accelerate small-molecule inhibitor discovery and optimization from hits to leads. Drug Discov Today 2021; 26:1115-1125. [PMID: 33497831 DOI: 10.1016/j.drudis.2021.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/23/2020] [Accepted: 01/18/2021] [Indexed: 01/09/2023]
Abstract
Kinases, accounting for 20% of the human genome, have been the focus of pharmaceutical drug discovery efforts for over three decades. Despite concerns surrounding the tractability of kinases as drug targets, it is evident that kinase drug discovery offers great potential, underscored by the US Food and Drug Administration (FDA) approval of 48 small-molecule kinase inhibitors. Despite these successes, it is challenging to identify novel kinome selective inhibitors with good pharmacokinetic/pharmacodynamic (PK/PD) properties, and resistance to kinase inhibitor treatment frequently arises. A new era of kinase drug discovery predicates the need for diverse and powerful tools to discover the next generation of kinase inhibitors. Here, we outline key tenets of the Bristol Meyers Squibb (BMS) kinase platform, to enable efficient generation of highly optimized kinase inhibitors.
Collapse
Affiliation(s)
- Charu Chaudhry
- Lead Discovery and Optimization, Bristol Myers Squibb, NJ, USA.
| | - Andrew Tebben
- Molecular Structure and Design, Molecular Discovery Technologies, Bristol Myers Squibb, NJ, USA
| | - John S Tokarski
- Molecular Structure and Design, Molecular Discovery Technologies, Bristol Myers Squibb, NJ, USA
| | | | - William J Pitts
- Immunosciences Discovery Chemistry, Bristol Myers Squibb, NJ, USA
| | - Jonathan Lippy
- Lead Discovery and Optimization, Bristol Myers Squibb, NJ, USA
| | - Litao Zhang
- Lead Discovery and Optimization, Bristol Myers Squibb, NJ, USA
| |
Collapse
|
52
|
Xie Z, Yang X, Duan Y, Han J, Liao C. Small-Molecule Kinase Inhibitors for the Treatment of Nononcologic Diseases. J Med Chem 2021; 64:1283-1345. [PMID: 33481605 DOI: 10.1021/acs.jmedchem.0c01511] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Great successes have been achieved in developing small-molecule kinase inhibitors as anticancer therapeutic agents. However, kinase deregulation plays essential roles not only in cancer but also in almost all major disease areas. Accumulating evidence has revealed that kinases are promising drug targets for different diseases, including cancer, autoimmune diseases, inflammatory diseases, cardiovascular diseases, central nervous system disorders, viral infections, and malaria. Indeed, the first small-molecule kinase inhibitor for treatment of a nononcologic disease was approved in 2011 by the U.S. FDA. To date, 10 such inhibitors have been approved, and more are in clinical trials for applications other than cancer. This Perspective discusses a number of kinases and their small-molecule inhibitors for the treatment of diseases in nononcologic therapeutic fields. The opportunities and challenges in developing such inhibitors are also highlighted.
Collapse
Affiliation(s)
- Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaoxiao Yang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yajun Duan
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jihong Han
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
53
|
Sun M, Chen W, Zhang T, Liu Z, Wei J, Xi N. 19F NMR spectroscopy as a tool to detect rotations in fluorine substituted phenyl compounds. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
54
|
Wang Q, He BL, Shackman JG. Measuring atropisomers of BMS-986142 using 2DLC as an enabling technology. J Pharm Biomed Anal 2020; 193:113730. [PMID: 33181427 DOI: 10.1016/j.jpba.2020.113730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
BMS-986142 has been developed as an innovative Bruton's tyrosine kinase inhibitor for treatment of several autoimmune diseases. The drug substance of BMS-986142 may contain three potential atropisomeric impurities due to its unique structural characteristics. Developing a single liquid chromatography (LC) method to separate all four highly structurally related atropisomers and other process impurities from each other turned out to be a daunting task. Two-dimensional LC (2DLC) was found to be an extremely powerful enabling technology for extracting purity information out of the complex sample impurity profile and facilitated process development before a final single dimension method was discovered. The off-the-shelf 2DLC instrument could be configured to allow injection of the targeted first dimension peak through either no-loss multiple heart-cutting fractions or as a large, single volume fraction with on-line dilution. Excellent precision (relative standard deviation of 0.3 %) and recovery (101.2 ± 0.2 %) was achieved for an atropisomer impurity at a 10 % monitoring level in the first configuration with sensitivity down to 0.2 % w/w. With the second instrument configuration, which eliminated the need for fraction recombination, similar figures of merit were maintained for the second dimension at the cost of losing the ability to collect and park multiple fractions.
Collapse
Affiliation(s)
- Qinggang Wang
- Chemical Process Development, Bristol Myers Squibb Company, 1 Squibb Drive, New Brunswick, NJ, 08903, USA
| | - Brian Lingfeng He
- Chemical Process Development, Bristol Myers Squibb Company, 1 Squibb Drive, New Brunswick, NJ, 08903, USA
| | - Jonathan G Shackman
- Chemical Process Development, Bristol Myers Squibb Company, 1 Squibb Drive, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
55
|
Potent, non-covalent reversible BTK inhibitors with 8-amino-imidazo[1,5-a]pyrazine core featuring 3-position bicyclic ring substitutes. Bioorg Med Chem Lett 2020; 30:127390. [DOI: 10.1016/j.bmcl.2020.127390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 11/21/2022]
|
56
|
Ma B, Bohnert T, Otipoby KL, Tien E, Arefayene M, Bai J, Bajrami B, Bame E, Chan TR, Humora M, MacPhee JM, Marcotte D, Mehta D, Metrick CM, Moniz G, Polack E, Poreci U, Prefontaine A, Sheikh S, Schroeder P, Smirnakis K, Zhang L, Zheng F, Hopkins BT. Discovery of BIIB068: A Selective, Potent, Reversible Bruton's Tyrosine Kinase Inhibitor as an Orally Efficacious Agent for Autoimmune Diseases. J Med Chem 2020; 63:12526-12541. [PMID: 32696648 DOI: 10.1021/acs.jmedchem.0c00702] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Autoreactive B cell-derived antibodies form immune complexes that likely play a pathogenic role in autoimmune diseases. In systemic lupus erythematosus (SLE), these antibodies bind Fc receptors on myeloid cells and induce proinflammatory cytokine production by monocytes and NETosis by neutrophils. Bruton's tyrosine kinase (BTK) is a non-receptor tyrosine kinase that signals downstream of Fc receptors and plays a transduction role in antibody expression following B cell activation. Given the roles of BTK in both the production and sensing of autoreactive antibodies, inhibitors of BTK kinase activity may provide therapeutic value to patients suffering from autoantibody-driven immune disorders. Starting from an in-house proprietary screening hit followed by structure-based rational design, we have identified a potent, reversible BTK inhibitor, BIIB068 (1), which demonstrated good kinome selectivity with good overall drug-like properties for oral dosing, was well tolerated across preclinical species at pharmacologically relevant doses with good ADME properties, and achieved >90% inhibition of BTK phosphorylation (pBTK) in humans.
Collapse
Affiliation(s)
- Bin Ma
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Tonika Bohnert
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Kevin L Otipoby
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Eric Tien
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Million Arefayene
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Judy Bai
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Bekim Bajrami
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Eris Bame
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Timothy R Chan
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Michael Humora
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - J Michael MacPhee
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Douglas Marcotte
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Devangi Mehta
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Claire M Metrick
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - George Moniz
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Evelyne Polack
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Urjana Poreci
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Annick Prefontaine
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Sarah Sheikh
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Patricia Schroeder
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Karen Smirnakis
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Lei Zhang
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Fengmei Zheng
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Brian T Hopkins
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
57
|
Advancing stereoisomeric separation of an atropisomeric Bruton's tyrosine kinase inhibitor by using sub-2 µm immobilized polysaccharide-based chiral columns in supercritical fluid chromatography. J Chromatogr A 2020; 1626:461320. [DOI: 10.1016/j.chroma.2020.461320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 11/30/2022]
|
58
|
Gataullina AR, Gataullin RR. Axial Chiral Metal Complexes, Carbo- and Heterocycles: Modern
Synthesis Strategies and Examples of the Effect of Atropoisomerism on the Structure of
Reaction Products. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220070130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
59
|
Bao X, Rodriguez J, Bonne D. Enantioselective Synthesis of Atropisomers with Multiple Stereogenic Axes. Angew Chem Int Ed Engl 2020; 59:12623-12634. [DOI: 10.1002/anie.202002518] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 China
| | - Jean Rodriguez
- Aix Marseille Université CNRS Centrale Marseille, iSm2 Marseille France
| | - Damien Bonne
- Aix Marseille Université CNRS Centrale Marseille, iSm2 Marseille France
| |
Collapse
|
60
|
Frey J, Malekafzali A, Delso I, Choppin S, Colobert F, Wencel-Delord J. Enantioselective Synthesis of N-C Axially Chiral Compounds by Cu-Catalyzed Atroposelective Aryl Amination. Angew Chem Int Ed Engl 2020; 59:8844-8848. [PMID: 32157781 DOI: 10.1002/anie.201914876] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/19/2020] [Indexed: 12/18/2022]
Abstract
N-C axially chiral compounds have emerged recently as appealing motifs for drug design. However, the enantioselective synthesis of such molecules is still poorly developed and surprisingly no metal-catalyzed atroposelective N-arylations have been described. Herein, we disclose an unprecedented Cu-catalyzed atroposelective N-C coupling that proceeds at room temperature. Such mild reaction conditions, which are a crucial parameter for atropostability of the newly generated products, are operative thanks to the use of hypervalent iodine reagents as a highly reactive coupling partners. A large panel of the N-C axially chiral compounds was afforded with very high enantioselectivity (up to >99 % ee) and good yields (up to 76 %). Post-modifications of thus accessed atropisomeric compounds allows further expansion of the diversity of these appealing compounds.
Collapse
Affiliation(s)
- Johanna Frey
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087, Strasbourg, France
| | - Alaleh Malekafzali
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087, Strasbourg, France
| | - Isabel Delso
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087, Strasbourg, France
| | - Sabine Choppin
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087, Strasbourg, France
| | - Françoise Colobert
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087, Strasbourg, France
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087, Strasbourg, France
| |
Collapse
|
61
|
Enantioselective Synthesis of N–C Axially Chiral Compounds by Cu‐Catalyzed Atroposelective Aryl Amination. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914876] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
62
|
Mancinelli M, Bencivenni G, Pecorari D, Mazzanti A. Stereochemistry and Recent Applications of Axially Chiral Organic Molecules. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901918] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Michele Mancinelli
- Department of Industrial Chemistry “Toso Montanari” University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Giorgio Bencivenni
- Department of Industrial Chemistry “Toso Montanari” University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Daniel Pecorari
- Department of Industrial Chemistry “Toso Montanari” University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Andrea Mazzanti
- Department of Industrial Chemistry “Toso Montanari” University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| |
Collapse
|
63
|
Angst D, Gessier F, Janser P, Vulpetti A, Wälchli R, Beerli C, Littlewood-Evans A, Dawson J, Nuesslein-Hildesheim B, Wieczorek G, Gutmann S, Scheufler C, Hinniger A, Zimmerlin A, Funhoff EG, Pulz R, Cenni B. Discovery of LOU064 (Remibrutinib), a Potent and Highly Selective Covalent Inhibitor of Bruton’s Tyrosine Kinase. J Med Chem 2020; 63:5102-5118. [DOI: 10.1021/acs.jmedchem.9b01916] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
64
|
Saha D, Kharbanda A, Yan W, Lakkaniga NR, Frett B, Li HY. The Exploration of Chirality for Improved Druggability within the Human Kinome. J Med Chem 2020; 63:441-469. [PMID: 31550151 PMCID: PMC10536157 DOI: 10.1021/acs.jmedchem.9b00640] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chirality is important in drug discovery because stereoselective drugs can ameliorate therapeutic difficulties including adverse toxicity and poor pharmacokinetic profiles. The human kinome, a major druggable enzyme class has been exploited to treat a wide range of diseases. However, many kinase inhibitors are planar and overlap in chemical space, which leads to selectivity and toxicity issues. By exploring chirality within the kinome, a new iteration of kinase inhibitors is being developed to better utilize the three-dimensional nature of the kinase active site. Exploration into novel chemical space, in turn, will also improve drug solubility and pharmacokinetic profiles. This perspective explores the role of chirality to improve kinome druggability and will serve as a resource for pioneering kinase inhibitor development to address current therapeutic needs.
Collapse
Affiliation(s)
- Debasmita Saha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Anupreet Kharbanda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| |
Collapse
|
65
|
Thakur A, Singh A, Kaur N, Ojha R, Nepali K. Steering the antitumor drug discovery campaign towards structurally diverse indolines. Bioorg Chem 2020; 94:103436. [DOI: 10.1016/j.bioorg.2019.103436] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022]
|
66
|
Ong LL, Vasta JD, Monereau L, Locke G, Ribeiro H, Pattoli MA, Skala S, Burke JR, Watterson SH, Tino JA, Meisenheimer PL, Arey B, Lippy J, Zhang L, Robers MB, Tebben A, Chaudhry C. A High-Throughput BRET Cellular Target Engagement Assay Links Biochemical to Cellular Activity for Bruton's Tyrosine Kinase. SLAS DISCOVERY 2019; 25:176-185. [PMID: 31709883 DOI: 10.1177/2472555219884881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein kinases are intensely studied mediators of cellular signaling. While traditional biochemical screens are capable of identifying compounds that modulate kinase activity, these assays are limited in their capability of predicting compound behavior in a cellular environment. Here, we aim to bridge target engagement and compound-cellular phenotypic behavior by utilizing a bioluminescence resonance energy transfer (BRET) assay to characterize target occupancy within living cells for Bruton's tyrosine kinase (BTK). Using a diverse chemical set of BTK inhibitors, we determine intracellular engagement affinity profiles and successfully correlate these measurements with BTK cellular functional readouts. In addition, we leveraged the kinetic capability of this technology to gain insight into in-cell target residence time and the duration of target engagement, and to explore a structural hypothesis.
Collapse
Affiliation(s)
- L L Ong
- Leads Discovery and Optimization, Bristol Myers Squibb, Princeton, NJ, USA
| | - J D Vasta
- Promega Corporation, Madison, WI, USA
| | - L Monereau
- Leads Discovery and Optimization, Bristol Myers Squibb, Princeton, NJ, USA
| | - G Locke
- Leads Discovery and Optimization, Bristol Myers Squibb, Princeton, NJ, USA
| | - H Ribeiro
- Leads Discovery and Optimization, Bristol Myers Squibb, Princeton, NJ, USA
| | - M A Pattoli
- Immunoscience Discovery Biology, Bristol Myers Squibb, Princeton, NJ, USA
| | - S Skala
- Immunoscience Discovery Biology, Bristol Myers Squibb, Princeton, NJ, USA
| | - J R Burke
- Immunoscience Discovery Biology, Bristol Myers Squibb, Princeton, NJ, USA
| | - S H Watterson
- Immunosciences Discovery Chemistry, Bristol Myers Squibb, Princeton, NJ, USA
| | - J A Tino
- Immunosciences Discovery Chemistry, Bristol Myers Squibb, Princeton, NJ, USA
| | | | - B Arey
- Leads Discovery and Optimization, Bristol Myers Squibb, Princeton, NJ, USA
| | - J Lippy
- Leads Discovery and Optimization, Bristol Myers Squibb, Princeton, NJ, USA
| | - L Zhang
- Leads Discovery and Optimization, Bristol Myers Squibb, Princeton, NJ, USA
| | | | - A Tebben
- Molecular Structure and Design, Molecular Discovery Technologies, Bristol Myers Squibb, Princeton, NJ, USA
| | - C Chaudhry
- Leads Discovery and Optimization, Bristol Myers Squibb, Princeton, NJ, USA
| |
Collapse
|
67
|
Toenjes ST, Garcia V, Maddox SM, Dawson GA, Ortiz MA, Piedrafita FJ, Gustafson JL. Leveraging Atropisomerism to Obtain a Selective Inhibitor of RET Kinase with Secondary Activities toward EGFR Mutants. ACS Chem Biol 2019; 14:1930-1939. [PMID: 31424197 DOI: 10.1021/acschembio.9b00407] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Unstable atropisomerism is innate in many common scaffolds in drug discovery, commonly existing as freely rotating aryl-aryl bonds. Such compounds can access the majority of dihedral conformations around the bond axis; however, most small molecules bind their target within a narrow range of these available conformations. The remaining accessible conformations can interact with other proteins leading to compound promiscuity. Herein, we leverage atropisomerism to restrict the accessible low-energy dihedral conformations available to a promiscuous kinase inhibitor and achieve highly selective and potent inhibitors of the oncogenic target rearranged during transfection (RET) kinase. We then evaluate our lead inhibitor against kinases that were predicted to bind compounds in a similar conformational window to RET, discovering a potent inhibitor of drug-resistant epidermal growth factor receptor (EGFR) mutants including L858R/T790M/C797S EGFR. Leveraging atropisomerism to restrict accessible conformational space should be a generally applicable strategy due to the prevalence of unstable atropisomerism in drug discovery.
Collapse
|
68
|
Diao Y, Fang X, Song P, Lai M, Tong L, Hao Y, Dou D, Liu Y, Ding J, Zhao Z, Xie H, Li H. Discovery and Biological evaluation of pyrimido[4,5-d]pyrimidine-2,4(1H,3H)-dione derivatives as potent Bruton’s tyrosine kinase inhibitors. Bioorg Med Chem 2019; 27:3390-3395. [DOI: 10.1016/j.bmc.2019.06.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022]
|
69
|
Yao X, Sun X, Jin S, Yang L, Xu H, Rao Y. Discovery of 4-Aminoquinoline-3-carboxamide Derivatives as Potent Reversible Bruton’s Tyrosine Kinase Inhibitors for the Treatment of Rheumatoid Arthritis. J Med Chem 2019; 62:6561-6574. [DOI: 10.1021/acs.jmedchem.9b00329] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xia Yao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Xiuyun Sun
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, P. R. China
| | - Shuyu Jin
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Ling Yang
- R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., LTD, Nanjing 210023, P. R. China
| | - Hongjiang Xu
- R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., LTD, Nanjing 210023, P. R. China
| | - Yu Rao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
70
|
Backus KM, Cao J, Maddox SM. Opportunities and challenges for the development of covalent chemical immunomodulators. Bioorg Med Chem 2019; 27:3421-3439. [PMID: 31204229 DOI: 10.1016/j.bmc.2019.05.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
Abstract
Compounds that react irreversibly with cysteines have reemerged as potent and selective tools for altering protein function, serving as chemical probes and even clinically approved drugs. The exquisite sensitivity of human immune cell signaling pathways to oxidative stress indicates the likely, yet still underexploited, general utility of covalent probes for selective chemical immunomodulation. Here, we provide an overview of immunomodulatory cysteines, including identification of electrophilic compounds available to label these residues. We focus our discussion on three protein classes essential for cell signaling, which span the 'druggability' spectrum from amenable to chemical probes (kinases), somewhat druggable (proteases), to inaccessible (phosphatases). Using existing inhibitors as a guide, we identify general strategies to guide the development of covalent probes for selected undruggable classes of proteins and propose the application of such compounds to alter immune cell functions.
Collapse
Affiliation(s)
- Keriann M Backus
- Departments of Biological Chemistry and Chemistry and Biochemistry, University of California Los Angeles, USA.
| | - Jian Cao
- Departments of Biological Chemistry and Chemistry and Biochemistry, University of California Los Angeles, USA
| | - Sean M Maddox
- Departments of Biological Chemistry and Chemistry and Biochemistry, University of California Los Angeles, USA
| |
Collapse
|
71
|
Hopkins BT, Bame E, Bell N, Bohnert T, Bowden-Verhoek JK, Bui M, Cancilla MT, Conlon P, Cullen P, Erlanson DA, Fan J, Fuchs-Knotts T, Hansen S, Heumann S, Jenkins TJ, Marcotte D, McDowell B, Mertsching E, Negrou E, Otipoby KL, Poreci U, Romanowski MJ, Scott D, Silvian L, Yang W, Zhong M. Optimization of novel reversible Bruton's tyrosine kinase inhibitors identified using Tethering-fragment-based screens. Bioorg Med Chem 2019; 27:2905-2913. [PMID: 31138459 DOI: 10.1016/j.bmc.2019.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 01/06/2023]
Abstract
Since the approval of ibrutinib for the treatment of B-cell malignancies in 2012, numerous clinical trials have been reported using covalent inhibitors to target Bruton's tyrosine kinase (BTK) for oncology indications. However, a formidable challenge for the pharmaceutical industry has been the identification of reversible, selective, potent molecules for inhibition of BTK. Herein, we report application of Tethering-fragment-based screens to identify low molecular weight fragments which were further optimized to improve on-target potency and ADME properties leading to the discovery of reversible, selective, potent BTK inhibitors suitable for pre-clinical proof-of-concept studies.
Collapse
Affiliation(s)
- Brian T Hopkins
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States.
| | - Eris Bame
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Noah Bell
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | - Tonika Bohnert
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | | | - Minna Bui
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | - Mark T Cancilla
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | - Patrick Conlon
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Patrick Cullen
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Daniel A Erlanson
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | - Junfa Fan
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | - Tarra Fuchs-Knotts
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | - Stig Hansen
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | - Stacey Heumann
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | - Tracy J Jenkins
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Douglas Marcotte
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Bob McDowell
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | | | - Ella Negrou
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Kevin L Otipoby
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Urjana Poreci
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Michael J Romanowski
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | - Daniel Scott
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Laura Silvian
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Wenjin Yang
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | - Min Zhong
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| |
Collapse
|
72
|
Mennen SM, Alhambra C, Allen CL, Barberis M, Berritt S, Brandt TA, Campbell AD, Castañón J, Cherney AH, Christensen M, Damon DB, Eugenio de Diego J, García-Cerrada S, García-Losada P, Haro R, Janey J, Leitch DC, Li L, Liu F, Lobben PC, MacMillan DWC, Magano J, McInturff E, Monfette S, Post RJ, Schultz D, Sitter BJ, Stevens JM, Strambeanu II, Twilton J, Wang K, Zajac MA. The Evolution of High-Throughput Experimentation in Pharmaceutical Development and Perspectives on the Future. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00140] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Steven M. Mennen
- Drug Substance Technologies, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Carolina Alhambra
- Centro de Investigación Lilly S. A., Avda. de la Industria 30, Alcobendas, Madrid 28108, Spain
| | - C. Liana Allen
- API Chemistry, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Mario Barberis
- Centro de Investigación Lilly S. A., Avda. de la Industria 30, Alcobendas, Madrid 28108, Spain
| | - Simon Berritt
- Internal Medicine, Applied Synthesis Technology, Pfizer Worldwide R&D, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Thomas A. Brandt
- Process Chemistry, Chemical R&D, Pfizer Worldwide R&D, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Andrew D. Campbell
- Pharmaceutical Technology and Development, AstraZeneca, Silk Road Business Park, Macclesfield, Cheshire SK10 2NA, United Kingdom
| | - Jesús Castañón
- Centro de Investigación Lilly S. A., Avda. de la Industria 30, Alcobendas, Madrid 28108, Spain
| | - Alan H. Cherney
- Drug Substance Technologies, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Melodie Christensen
- Process Research and Development, Merck & Co., Inc. Rahway, New Jersey 07065, United States
| | - David B. Damon
- Process Chemistry, Chemical R&D, Pfizer Worldwide R&D, Eastern Point Road, Groton, Connecticut 06340, United States
| | - J. Eugenio de Diego
- Centro de Investigación Lilly S. A., Avda. de la Industria 30, Alcobendas, Madrid 28108, Spain
| | - Susana García-Cerrada
- Centro de Investigación Lilly S. A., Avda. de la Industria 30, Alcobendas, Madrid 28108, Spain
| | - Pablo García-Losada
- Centro de Investigación Lilly S. A., Avda. de la Industria 30, Alcobendas, Madrid 28108, Spain
| | - Rubén Haro
- Centro de Investigación Lilly S. A., Avda. de la Industria 30, Alcobendas, Madrid 28108, Spain
| | - Jacob Janey
- Chemical and Synthetic Development, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - David C. Leitch
- API Chemistry, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Ling Li
- API Chemistry, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Fangfang Liu
- Pharmaceutical Sciences, Pfizer Global Supply Statistics, Pfizer Worldwide R&D, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Paul C. Lobben
- Chemical and Synthetic Development, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - David W. C. MacMillan
- Merck Center for Catalysis at Princeton University, Washington Road, Princeton, New Jersey 08544, United States
| | - Javier Magano
- Process Chemistry, Chemical R&D, Pfizer Worldwide R&D, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Emma McInturff
- Process Chemistry, Chemical R&D, Pfizer Worldwide R&D, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Sebastien Monfette
- Process Chemistry, Chemical R&D, Pfizer Worldwide R&D, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ronald J. Post
- Engineering Group, Chemical R&D, Pfizer Worldwide R&D, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Danielle Schultz
- Process Research and Development, Merck & Co., Inc. Rahway, New Jersey 07065, United States
| | - Barbara J. Sitter
- Process Chemistry, Chemical R&D, Pfizer Worldwide R&D, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jason M. Stevens
- Chemical and Synthetic Development, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Iulia I. Strambeanu
- API Chemistry, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Jack Twilton
- Merck Center for Catalysis at Princeton University, Washington Road, Princeton, New Jersey 08544, United States
| | - Ke Wang
- Pharmaceutical Sciences, Pfizer Global Supply Statistics, Pfizer Worldwide R&D, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Matthew A. Zajac
- API Chemistry, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
73
|
Design, synthesis and evaluation of novel 7H-pyrrolo[2,3-d]pyrimidin-4-amine derivatives as potent, selective and reversible Bruton's tyrosine kinase (BTK) inhibitors for the treatment of rheumatoid arthritis. Eur J Med Chem 2019; 169:121-143. [DOI: 10.1016/j.ejmech.2019.02.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 01/29/2023]
|
74
|
|
75
|
Watterson SH, Liu Q, Beaudoin Bertrand M, Batt DG, Li L, Pattoli MA, Skala S, Cheng L, Obermeier MT, Moore R, Yang Z, Vickery R, Elzinga PA, Discenza L, D’Arienzo C, Gillooly KM, Taylor TL, Pulicicchio C, Zhang Y, Heimrich E, McIntyre KW, Ruan Q, Westhouse RA, Catlett IM, Zheng N, Chaudhry C, Dai J, Galella MA, Tebben AJ, Pokross M, Li J, Zhao R, Smith D, Rampulla R, Allentoff A, Wallace MA, Mathur A, Salter-Cid L, Macor JE, Carter PH, Fura A, Burke JR, Tino JA. Discovery of Branebrutinib (BMS-986195): A Strategy for Identifying a Highly Potent and Selective Covalent Inhibitor Providing Rapid in Vivo Inactivation of Bruton’s Tyrosine Kinase (BTK). J Med Chem 2019; 62:3228-3250. [DOI: 10.1021/acs.jmedchem.9b00167] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Scott H. Watterson
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Qingjie Liu
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Myra Beaudoin Bertrand
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Douglas G. Batt
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Ling Li
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Mark A. Pattoli
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Stacey Skala
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Lihong Cheng
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Mary T. Obermeier
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Robin Moore
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Zheng Yang
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Rodney Vickery
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Paul A. Elzinga
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Lorell Discenza
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Celia D’Arienzo
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Kathleen M. Gillooly
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Tracy L. Taylor
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Claudine Pulicicchio
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Yifan Zhang
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Elizabeth Heimrich
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Kim W. McIntyre
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Qian Ruan
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Richard A. Westhouse
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Ian M. Catlett
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Naiyu Zheng
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Charu Chaudhry
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Jun Dai
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Michael A. Galella
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Andrew J. Tebben
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Matt Pokross
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Jianqing Li
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Rulin Zhao
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Daniel Smith
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Richard Rampulla
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Alban Allentoff
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Michael A. Wallace
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Arvind Mathur
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Luisa Salter-Cid
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - John E. Macor
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Percy H. Carter
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Aberra Fura
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - James R. Burke
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Joseph A. Tino
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| |
Collapse
|
76
|
Separation of Bruton’s tyrosine kinase inhibitor atropisomers by supercritical fluid chromatography. J Chromatogr A 2019; 1586:106-115. [DOI: 10.1016/j.chroma.2018.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/23/2018] [Accepted: 12/04/2018] [Indexed: 11/24/2022]
|
77
|
Yang C, Zhou D, Shen Z, Wilson DM, Renner M, Miner JN, Girardet JL, Lee CA. Characterization of Stereoselective Metabolism, Inhibitory Effect on Uric Acid Uptake Transporters, and Pharmacokinetics of Lesinurad Atropisomers. Drug Metab Dispos 2019; 47:104-113. [PMID: 30442650 DOI: 10.1124/dmd.118.080549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 11/02/2018] [Indexed: 11/22/2022] Open
Abstract
Lesinurad [Zurampic; 2-(5-bromo-4-(4-cyclopropylnaphthalen-1-yl)-4H-1,2,4-triazol-3-ylthio)], a selective inhibitor of uric acid reabsorption transporters approved for the treatment of gout, is a racemate of two atropisomers. The objective of this investigation was to evaluate the stereoselectivity of metabolism, the inhibitory potency on kidney uric acid reabsorption transporters (URAT1 and OAT4), and the clinical pharmacokinetics of the lesinurad atropisomers. Incubations with human liver microsomes (HLM), recombinant CYP2C9, and recombinant CYP3A4 were carried out to characterize the stereoselective formation of three metabolites: M3 (hydroxylation), M4 (a dihydrodiol metabolite), and M6 (S-dealkylation). The formation of M3 in HLM with atropisomer 1 was approximately twice as much as that with atropisomer 2, whereas formation of M4 with atropisomer 1 was 8- to 12-fold greater than that with atropisomer 2. There were no significant differences in the plasma protein binding among lesinurad and the atropisomers. Following oral administration of 400 mg lesinurad once daily for 14 days to healthy human volunteers, the systemic exposure (C max at steady state and area under the concentration-time curve from time zero to the time of dosing interval) of atropisomer 1 was approximately 30% lower than that of atropisomer 2, whereas renal clearance was similar. In vitro cell-based assays using HEK293 stable cells expressing URAT1 and OAT4 demonstrated that atropisomer 2 was approximately 4-fold more potent against URAT1 than atropisomer 1 and equally active against OAT4. In conclusion, lesinurad atropisomers showed stereoselectivity in clinical pharmacokinetics, metabolism, and inhibitory potency against URAT1.
Collapse
Affiliation(s)
- Chun Yang
- Preclinical and Clinical DMPK (C.Y., Z.S., C.A.L.), Bioanalytical (D.Z., D.M.W.), Biology (J.N.M.), and Chemistry (M.R., J.-L.G.) Departments, Ardea Biosciences, Inc., San Diego, California
| | - Dongmei Zhou
- Preclinical and Clinical DMPK (C.Y., Z.S., C.A.L.), Bioanalytical (D.Z., D.M.W.), Biology (J.N.M.), and Chemistry (M.R., J.-L.G.) Departments, Ardea Biosciences, Inc., San Diego, California
| | - Zancong Shen
- Preclinical and Clinical DMPK (C.Y., Z.S., C.A.L.), Bioanalytical (D.Z., D.M.W.), Biology (J.N.M.), and Chemistry (M.R., J.-L.G.) Departments, Ardea Biosciences, Inc., San Diego, California
| | - David M Wilson
- Preclinical and Clinical DMPK (C.Y., Z.S., C.A.L.), Bioanalytical (D.Z., D.M.W.), Biology (J.N.M.), and Chemistry (M.R., J.-L.G.) Departments, Ardea Biosciences, Inc., San Diego, California
| | - Matthew Renner
- Preclinical and Clinical DMPK (C.Y., Z.S., C.A.L.), Bioanalytical (D.Z., D.M.W.), Biology (J.N.M.), and Chemistry (M.R., J.-L.G.) Departments, Ardea Biosciences, Inc., San Diego, California
| | - Jeffrey N Miner
- Preclinical and Clinical DMPK (C.Y., Z.S., C.A.L.), Bioanalytical (D.Z., D.M.W.), Biology (J.N.M.), and Chemistry (M.R., J.-L.G.) Departments, Ardea Biosciences, Inc., San Diego, California
| | - Jean-Luc Girardet
- Preclinical and Clinical DMPK (C.Y., Z.S., C.A.L.), Bioanalytical (D.Z., D.M.W.), Biology (J.N.M.), and Chemistry (M.R., J.-L.G.) Departments, Ardea Biosciences, Inc., San Diego, California
| | - Caroline A Lee
- Preclinical and Clinical DMPK (C.Y., Z.S., C.A.L.), Bioanalytical (D.Z., D.M.W.), Biology (J.N.M.), and Chemistry (M.R., J.-L.G.) Departments, Ardea Biosciences, Inc., San Diego, California
| |
Collapse
|
78
|
Schnute ME, Benoit SE, Buchler IP, Caspers N, Grapperhaus ML, Han S, Hotchandani R, Huang N, Hughes RO, Juba BM, Kim KH, Liu E, McCarthy E, Messing D, Miyashiro JS, Mohan S, O’Connell TN, Ohren JF, Parikh MD, Schmidt M, Selness SR, Springer JR, Thanabal V, Trujillo JI, Walker DP, Wan ZK, Withka JM, Wittwer AJ, Wood NL, Xing L, Zapf CW, Douhan J. Aminopyrazole Carboxamide Bruton's Tyrosine Kinase Inhibitors. Irreversible to Reversible Covalent Reactive Group Tuning. ACS Med Chem Lett 2019; 10:80-85. [PMID: 30655951 DOI: 10.1021/acsmedchemlett.8b00461] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022] Open
Abstract
Potent covalent inhibitors of Bruton's tyrosine kinase (BTK) based on an aminopyrazole carboxamide scaffold have been identified. Compared to acrylamide-based covalent reactive groups leading to irreversible protein adducts, cyanamide-based reversible-covalent inhibitors provided the highest combined BTK potency and EGFR selectivity. The cyanamide covalent mechanism with BTK was confirmed through enzyme kinetic, NMR, MS, and X-ray crystallographic studies. The lead cyanamide-based inhibitors demonstrated excellent kinome selectivity and rat pharmacokinetic properties.
Collapse
Affiliation(s)
| | | | | | - Nicole Caspers
- Medicine Design, Pfizer, Groton, Connecticut 06340, United States
| | | | - Seungil Han
- Medicine Design, Pfizer, Groton, Connecticut 06340, United States
| | | | | | | | | | | | | | | | | | | | | | | | - Jeffrey F. Ohren
- Medicine Design, Pfizer, Groton, Connecticut 06340, United States
| | - Mihir D. Parikh
- Medicine Design, Pfizer, Groton, Connecticut 06340, United States
| | | | | | | | | | - John I. Trujillo
- Medicine Design, Pfizer, Groton, Connecticut 06340, United States
| | | | | | - Jane M. Withka
- Medicine Design, Pfizer, Groton, Connecticut 06340, United States
| | | | | | | | | | | |
Collapse
|
79
|
Wisniewski SR, Carrasquillo-Flores R, Lora Gonzalez F, Ramirez A, Casey M, Soumeillant M, Razler TM, Mack B. Adventures in Atropisomerism: Development of a Robust, Diastereoselective, Lithium-Catalyzed Atropisomer-Forming Active Pharmaceutical Ingredient Step. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Steven R. Wisniewski
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Ronald Carrasquillo-Flores
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Federico Lora Gonzalez
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Antonio Ramirez
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Matthew Casey
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Maxime Soumeillant
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Thomas M. Razler
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Brendan Mack
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
80
|
Coombs JR, Green RA, Roberts F, Simmons EM, Stevens JM, Wisniewski SR. Advances in Base-Metal Catalysis: Development of a Screening Platform for Nickel-Catalyzed Borylations of Aryl (Pseudo)halides with B2(OH)4. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00307] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- John R. Coombs
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Rebecca A. Green
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Frederick Roberts
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Eric M. Simmons
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Jason M. Stevens
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Steven R. Wisniewski
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
81
|
Dinh AN, Noorbehesht RR, Toenjes ST, Jackson AC, Saputra MA, Maddox SM, Gustafson JL. Towards a Catalytic Atroposelective Synthesis of Diaryl Ethers via C( sp 2)-H Alkylation Using Nitroalkanes. Synlett 2018; 29:2155-2160. [PMID: 31178629 DOI: 10.1055/s-0037-1609581] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein we report studies towards a small molecule catalytic approach to access atropisomeric diaryl ethers that proceeds via a C(sp 2)-H alkylation using nitroalkanes as the alkyl source. A quaternary ammonium salt derived from quinine containing a sterically hindered urea at the C-9 position was found to effect atroposelective C(sp 2)-H alkylation with moderate to good enantioselectivities across several naphthoquinone-containing diaryl ethers. Products can then be isolated in greater than 95:5 er after one round of trituration. For several substrates that were evaluated we observed a 'nitroethylated' product in similar yields and selectivities.
Collapse
Affiliation(s)
- Andrew N Dinh
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182-1030
| | - Ryan R Noorbehesht
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182-1030
| | - Sean T Toenjes
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182-1030
| | - Amy C Jackson
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182-1030
| | - Mirza A Saputra
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182-1030
| | - Sean M Maddox
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182-1030
| | - Jeffrey L Gustafson
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182-1030
| |
Collapse
|
82
|
Chandrasekhar J, Dick R, Van Veldhuizen J, Koditek D, Lepist EI, McGrath ME, Patel L, Phillips G, Sedillo K, Somoza JR, Therrien J, Till NA, Treiberg J, Villaseñor AG, Zherebina Y, Perreault S. Atropisomerism by Design: Discovery of a Selective and Stable Phosphoinositide 3-Kinase (PI3K) β Inhibitor. J Med Chem 2018; 61:6858-6868. [PMID: 30015489 DOI: 10.1021/acs.jmedchem.8b00797] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atropisomerism is a type of axial chirality in which enantiomers or diastereoisomers arise due to hindered rotation around a bond axis. In this manuscript, we report a case in which torsional scan studies guided the thoughtful creation of a restricted axis of rotation between two heteroaromatic systems of a phosphoinositide 3-kinase (PI3K) β inhibitor, generating a pair of atropisomeric compounds with significantly different pharmacological and pharmacokinetic profiles. Emblematic of these differences, the metabolism of inactive ( M)-28 is primarily due to the cytosolic enzyme aldehyde oxidase, while active ( P)-28 has lower affinity for aldehyde oxidase, resulting in substantially better metabolic stability. Additionally, we report torsional scan and experimental studies used to determine the barriers of rotation of this novel PI3Kβ inhibitor.
Collapse
Affiliation(s)
| | - Ryan Dick
- Gilead Sciences, Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Joshua Van Veldhuizen
- Gilead Sciences, Inc. , 199 East Blaine Street , Seattle , Washington 98102 , United States
| | - David Koditek
- Gilead Sciences, Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | | | - Mary E McGrath
- Gilead Sciences, Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Leena Patel
- Gilead Sciences, Inc. , 199 East Blaine Street , Seattle , Washington 98102 , United States
| | - Gary Phillips
- Gilead Sciences, Inc. , 199 East Blaine Street , Seattle , Washington 98102 , United States
| | - Kassandra Sedillo
- Gilead Sciences, Inc. , 199 East Blaine Street , Seattle , Washington 98102 , United States
| | - John R Somoza
- Gilead Sciences, Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Joseph Therrien
- Gilead Sciences, Inc. , 199 East Blaine Street , Seattle , Washington 98102 , United States
| | | | - Jennifer Treiberg
- Gilead Sciences, Inc. , 199 East Blaine Street , Seattle , Washington 98102 , United States
| | - Armando G Villaseñor
- Gilead Sciences, Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Yelena Zherebina
- Gilead Sciences, Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Stephane Perreault
- Gilead Sciences, Inc. , 199 East Blaine Street , Seattle , Washington 98102 , United States
| |
Collapse
|
83
|
Conversion of carbazole carboxamide based reversible inhibitors of Bruton's tyrosine kinase (BTK) into potent, selective irreversible inhibitors in the carbazole, tetrahydrocarbazole, and a new 2,3-dimethylindole series. Bioorg Med Chem Lett 2018; 28:3080-3084. [PMID: 30097367 DOI: 10.1016/j.bmcl.2018.07.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/17/2018] [Accepted: 07/29/2018] [Indexed: 11/22/2022]
Abstract
Incorporation of a suitably-placed electrophilic group transformed a series of reversible BTK inhibitors based on carbazole-1-carboxamide and tetrahydrocarbazole-1-carboxamide into potent, irreversible inhibitors. Removal of one ring from the core of these compounds provided a potent irreversible series of 2,3-dimethylindole-7-carboxamides having excellent potency and improved selectivity, with the additional advantages of reduced lipophilicity and molecular weight.
Collapse
|
84
|
Goess C, Harris CM, Murdock S, McCarthy RW, Sampson E, Twomey R, Mathieu S, Mario R, Perham M, Goedken ER, Long AJ. ABBV-105, a selective and irreversible inhibitor of Bruton's tyrosine kinase, is efficacious in multiple preclinical models of inflammation. Mod Rheumatol 2018; 29:510-522. [PMID: 29862859 DOI: 10.1080/14397595.2018.1484269] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Bruton's tyrosine kinase (BTK) is a non-receptor tyrosine kinase required for intracellular signaling downstream of multiple immunoreceptors. We evaluated ABBV-105, a covalent BTK inhibitor, using in vitro and in vivo assays to determine potency, selectivity, and efficacy to validate the therapeutic potential of ABBV-105 in inflammatory disease. METHODS ABBV-105 potency and selectivity were evaluated in enzymatic and cellular assays. The impact of ABBV-105 on B cell function in vivo was assessed using mechanistic models of antibody production. Efficacy of ABBV-105 in chronic inflammatory disease was evaluated in animal models of arthritis and lupus. Measurement of BTK occupancy was employed as a target engagement biomarker. RESULTS ABBV-105 irreversibly inhibits BTK, demonstrating superior kinome selectivity and is potent in B cell receptor, Fc receptor, and TLR-9-dependent cellular assays. Oral administration resulted in rapid clearance in plasma, but maintenance of BTK splenic occupancy. ABBV-105 inhibited antibody responses to thymus-independent and thymus-dependent antigens, paw swelling and bone destruction in rat collagen induced arthritis, and reduced disease in an IFNα-accelerated lupus nephritis model. BTK occupancy in disease models correlated with in vivo efficacy. CONCLUSION ABBV-105, a selective BTK inhibitor, demonstrates compelling efficacy in pre-clinical mechanistic models of antibody production and in models of rheumatoid arthritis and lupus.
Collapse
Affiliation(s)
| | | | - Sara Murdock
- a AbbVie Bioresearch Center , Worcester , MA , USA
| | | | - Erik Sampson
- a AbbVie Bioresearch Center , Worcester , MA , USA
| | | | | | - Regina Mario
- a AbbVie Bioresearch Center , Worcester , MA , USA
| | | | | | | |
Collapse
|
85
|
Brown DG, Boström J. Where Do Recent Small Molecule Clinical Development Candidates Come From? J Med Chem 2018; 61:9442-9468. [DOI: 10.1021/acs.jmedchem.8b00675] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Dean G. Brown
- Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Jonas Boström
- Medicinal Chemistry, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Gothenburg SE-431 83, Sweden
| |
Collapse
|
86
|
Beutner G, Carrasquillo R, Geng P, Hsiao Y, Huang EC, Janey J, Katipally K, Kolotuchin S, La Porte T, Lee A, Lobben P, Lora-Gonzalez F, Mack B, Mudryk B, Qiu Y, Qian X, Ramirez A, Razler TM, Rosner T, Shi Z, Simmons E, Stevens J, Wang J, Wei C, Wisniewski SR, Zhu Y. Adventures in Atropisomerism: Total Synthesis of a Complex Active Pharmaceutical Ingredient with Two Chirality Axes. Org Lett 2018; 20:3736-3740. [PMID: 29909639 DOI: 10.1021/acs.orglett.8b01218] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A strategy to prepare compounds with multiple chirality axes, which has led to a concise total synthesis of compound 1A with complete stereocontrol, is reported.
Collapse
Affiliation(s)
- Gregory Beutner
- Chemical & Synthetic Development , Bristol-Myers Squibb Company , 1 Squibb Drive , New Brunswick , New Jersey 08901 , United States
| | - Ronald Carrasquillo
- Chemical & Synthetic Development , Bristol-Myers Squibb Company , 1 Squibb Drive , New Brunswick , New Jersey 08901 , United States
| | - Peng Geng
- Chemical & Synthetic Development , Bristol-Myers Squibb Company , 1 Squibb Drive , New Brunswick , New Jersey 08901 , United States
| | - Yi Hsiao
- Chemical & Synthetic Development , Bristol-Myers Squibb Company , 1 Squibb Drive , New Brunswick , New Jersey 08901 , United States
| | - Eric C Huang
- Chemical & Synthetic Development , Bristol-Myers Squibb Company , 1 Squibb Drive , New Brunswick , New Jersey 08901 , United States
| | - Jacob Janey
- Chemical & Synthetic Development , Bristol-Myers Squibb Company , 1 Squibb Drive , New Brunswick , New Jersey 08901 , United States
| | - Kishta Katipally
- Chemical & Synthetic Development , Bristol-Myers Squibb Company , 1 Squibb Drive , New Brunswick , New Jersey 08901 , United States
| | - Sergei Kolotuchin
- Chemical & Synthetic Development , Bristol-Myers Squibb Company , 1 Squibb Drive , New Brunswick , New Jersey 08901 , United States
| | - Thomas La Porte
- Chemical & Synthetic Development , Bristol-Myers Squibb Company , 1 Squibb Drive , New Brunswick , New Jersey 08901 , United States
| | - Andrew Lee
- Chemical & Synthetic Development , Bristol-Myers Squibb Company , 1 Squibb Drive , New Brunswick , New Jersey 08901 , United States
| | - Paul Lobben
- Chemical & Synthetic Development , Bristol-Myers Squibb Company , 1 Squibb Drive , New Brunswick , New Jersey 08901 , United States
| | - Federico Lora-Gonzalez
- Chemical & Synthetic Development , Bristol-Myers Squibb Company , 1 Squibb Drive , New Brunswick , New Jersey 08901 , United States
| | - Brendan Mack
- Chemical & Synthetic Development , Bristol-Myers Squibb Company , 1 Squibb Drive , New Brunswick , New Jersey 08901 , United States
| | - Boguslaw Mudryk
- Chemical & Synthetic Development , Bristol-Myers Squibb Company , 1 Squibb Drive , New Brunswick , New Jersey 08901 , United States
| | - Yuping Qiu
- Chemical & Synthetic Development , Bristol-Myers Squibb Company , 1 Squibb Drive , New Brunswick , New Jersey 08901 , United States
| | - Xinhua Qian
- Chemical & Synthetic Development , Bristol-Myers Squibb Company , 1 Squibb Drive , New Brunswick , New Jersey 08901 , United States
| | - Antonio Ramirez
- Chemical & Synthetic Development , Bristol-Myers Squibb Company , 1 Squibb Drive , New Brunswick , New Jersey 08901 , United States
| | - Thomas M Razler
- Chemical & Synthetic Development , Bristol-Myers Squibb Company , 1 Squibb Drive , New Brunswick , New Jersey 08901 , United States
| | - Thorsten Rosner
- Chemical & Synthetic Development , Bristol-Myers Squibb Company , 1 Squibb Drive , New Brunswick , New Jersey 08901 , United States
| | - Zhongping Shi
- Chemical & Synthetic Development , Bristol-Myers Squibb Company , 1 Squibb Drive , New Brunswick , New Jersey 08901 , United States
| | - Eric Simmons
- Chemical & Synthetic Development , Bristol-Myers Squibb Company , 1 Squibb Drive , New Brunswick , New Jersey 08901 , United States
| | - Jason Stevens
- Chemical & Synthetic Development , Bristol-Myers Squibb Company , 1 Squibb Drive , New Brunswick , New Jersey 08901 , United States
| | - Jianji Wang
- Chemical & Synthetic Development , Bristol-Myers Squibb Company , 1 Squibb Drive , New Brunswick , New Jersey 08901 , United States
| | - Carolyn Wei
- Chemical & Synthetic Development , Bristol-Myers Squibb Company , 1 Squibb Drive , New Brunswick , New Jersey 08901 , United States
| | - Steven R Wisniewski
- Chemical & Synthetic Development , Bristol-Myers Squibb Company , 1 Squibb Drive , New Brunswick , New Jersey 08901 , United States
| | - Ye Zhu
- Chemical & Synthetic Development , Bristol-Myers Squibb Company , 1 Squibb Drive , New Brunswick , New Jersey 08901 , United States
| |
Collapse
|
87
|
Bryan MC, Rajapaksa NS. Kinase Inhibitors for the Treatment of Immunological Disorders: Recent Advances. J Med Chem 2018; 61:9030-9058. [DOI: 10.1021/acs.jmedchem.8b00667] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Marian C. Bryan
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Naomi S. Rajapaksa
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
88
|
Link A, Sparr C. Remote Central-to-Axial Chirality Conversion: Direct Atroposelective Ester to Biaryl Transformation. Angew Chem Int Ed Engl 2018; 57:7136-7139. [DOI: 10.1002/anie.201803472] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Achim Link
- Department of Chemistry; University of Basel; St. Johanns-Ring 19 4056 Basel Switzerland
| | - Christof Sparr
- Department of Chemistry; University of Basel; St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
89
|
Link A, Sparr C. Remote Central-to-Axial Chirality Conversion: Direct Atroposelective Ester to Biaryl Transformation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803472] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Achim Link
- Department of Chemistry; University of Basel; St. Johanns-Ring 19 4056 Basel Switzerland
| | - Christof Sparr
- Department of Chemistry; University of Basel; St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
90
|
Xue Y, Song P, Song Z, Wang A, Tong L, Geng M, Ding J, Liu Q, Sun L, Xie H, Zhang A. Discovery of 4,7-Diamino-5-(4-phenoxyphenyl)-6-methylene-pyrimido[5,4-b]pyrrolizines as Novel Bruton’s Tyrosine Kinase Inhibitors. J Med Chem 2018; 61:4608-4627. [DOI: 10.1021/acs.jmedchem.8b00441] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yu Xue
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Peiran Song
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | | | - Aoli Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | | | - Meiyu Geng
- College of Pharmacy, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jian Ding
- College of Pharmacy, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qingsong Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Liping Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Hua Xie
- College of Pharmacy, University of Chinese Academy of Sciences, Shanghai, China
| | - Ao Zhang
- College of Pharmacy, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
91
|
Molecular Modeling Studies on Carbazole Carboxamide Based BTK Inhibitors Using Docking and Structure-Based 3D-QSAR. Int J Mol Sci 2018; 19:ijms19041244. [PMID: 29671827 PMCID: PMC5979591 DOI: 10.3390/ijms19041244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 01/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is the second common rheumatic immune disease with chronic, invasive inflammatory characteristics. Non-steroidal anti-inflammatory drugs (NSAIDs), slow-acting anti-rheumatic drugs (SAARDs), or glucocorticoid drugs can improve RA patients’ symptoms, but fail to cure. Broton’s tyrosine kinase (BTK) inhibitors have been proven to be an efficacious target against autoimmune indications and B-cell malignancies. Among the current 11 clinical drugs, only BMS-986142, classified as a carbazole derivative, is used for treating RA. To design novel and highly potent carbazole inhibitors, molecular docking and three dimensional quantitative structure–activity relationship (3D-QSAR) were applied to explore a dataset of 132 new carbazole carboxamide derivatives. The established comparative molecular field analysis (CoMFA) (q2 = 0.761, r2 = 0.933) and comparative molecular similarity indices analysis (CoMSIA) (q2 = 0.891, r2 = 0.988) models obtained high predictive and satisfactory values. CoMFA/CoMSIA contour maps demonstrated that bulky substitutions and hydrogen-bond donors were preferred at R1 and 1-position, respectively, and introducing hydrophilic substitutions at R1 and R4 was important for improving BTK inhibitory activities. These results will contribute to the design of novel and highly potent BTK inhibitors.
Collapse
|
92
|
Cardenas MM, Toenjes ST, Nalbandian CJ, Gustafson JL. Enantioselective Synthesis of Pyrrolopyrimidine Scaffolds through Cation-Directed Nucleophilic Aromatic Substitution. Org Lett 2018; 20:2037-2041. [PMID: 29561161 DOI: 10.1021/acs.orglett.8b00579] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The catalytic enantioselective synthesis of 3-aryl-substituted pyrrolopyrimidines (PPYs), a common motif in drug discovery, is achieved through a kinetic resolution via quaternary ammonium salt-catalyzed nucleophilic aromatic substitution (SNAr). Both enantioenriched products and starting materials can be functionalized with no observed racemization to give enantiodivergent access to diverse chiral analogues of an important class of kinase inhibitor. One of the compounds was found to be a potent and selective inhibitor of breast tumor kinase.
Collapse
Affiliation(s)
- Mariel M Cardenas
- Department of Chemistry and Biochemistry , San Diego State University , 5500 Campanile Drive , San Diego , California 92182-1030 , United States
| | - Sean T Toenjes
- Department of Chemistry and Biochemistry , San Diego State University , 5500 Campanile Drive , San Diego , California 92182-1030 , United States
| | - Christopher J Nalbandian
- Department of Chemistry and Biochemistry , San Diego State University , 5500 Campanile Drive , San Diego , California 92182-1030 , United States
| | - Jeffrey L Gustafson
- Department of Chemistry and Biochemistry , San Diego State University , 5500 Campanile Drive , San Diego , California 92182-1030 , United States
| |
Collapse
|
93
|
Crawford JJ, Johnson AR, Misner DL, Belmont LD, Castanedo G, Choy R, Coraggio M, Dong L, Eigenbrot C, Erickson R, Ghilardi N, Hau J, Katewa A, Kohli PB, Lee W, Lubach JW, McKenzie BS, Ortwine DF, Schutt L, Tay S, Wei B, Reif K, Liu L, Wong H, Young WB. Discovery of GDC-0853: A Potent, Selective, and Noncovalent Bruton's Tyrosine Kinase Inhibitor in Early Clinical Development. J Med Chem 2018; 61:2227-2245. [PMID: 29457982 DOI: 10.1021/acs.jmedchem.7b01712] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bruton's tyrosine kinase (Btk) is a nonreceptor cytoplasmic tyrosine kinase involved in B-cell and myeloid cell activation, downstream of B-cell and Fcγ receptors, respectively. Preclinical studies have indicated that inhibition of Btk activity might offer a potential therapy in autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus. Here we disclose the discovery and preclinical characterization of a potent, selective, and noncovalent Btk inhibitor currently in clinical development. GDC-0853 (29) suppresses B cell- and myeloid cell-mediated components of disease and demonstrates dose-dependent activity in an in vivo rat model of inflammatory arthritis. It demonstrates highly favorable safety, pharmacokinetic (PK), and pharmacodynamic (PD) profiles in preclinical and Phase 2 studies ongoing in patients with rheumatoid arthritis, lupus, and chronic spontaneous urticaria. On the basis of its potency, selectivity, long target residence time, and noncovalent mode of inhibition, 29 has the potential to be a best-in-class Btk inhibitor for a wide range of immunological indications.
Collapse
Affiliation(s)
- James J Crawford
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Adam R Johnson
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Dinah L Misner
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Lisa D Belmont
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Georgette Castanedo
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Regina Choy
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Melis Coraggio
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Liming Dong
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Charles Eigenbrot
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Rebecca Erickson
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Nico Ghilardi
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Jonathan Hau
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Arna Katewa
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Pawan Bir Kohli
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Wendy Lee
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Joseph W Lubach
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Brent S McKenzie
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Daniel F Ortwine
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Leah Schutt
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Suzanne Tay
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - BinQing Wei
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Karin Reif
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Lichuan Liu
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Harvey Wong
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Wendy B Young
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| |
Collapse
|
94
|
Design, synthesis and biological evaluation of 7 H -pyrrolo[2,3- d ]pyrimidin-4-amine derivatives as selective Btk inhibitors with improved pharmacokinetic properties for the treatment of rheumatoid arthritis. Eur J Med Chem 2018; 145:96-112. [DOI: 10.1016/j.ejmech.2017.12.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 12/18/2022]
|
95
|
Abstract
Atropisomerism is a dynamic type of axial chirality that is ubiquitous in medicinal chemistry. There are several examples of stable atropisomeric US FDA-approved drugs and experimental compounds, and in each case the atropisomers of these compounds possess drastically different biological activities. Rapidly interconverting atropisomerism is even more prevalent, and while such compounds are typically considered achiral, they bind their protein targets in an atroposelective fashion, with the nonrelevant atropisomer contributing little to the desired activities. It has been recently demonstrated that various properties of an interconverting atropisomer can be modulated through the synthesis of atropisomer stable and pure analogs. Herein we discuss examples of atropisomerism in drug discovery as well as challenges and opportunities moving forward.
Collapse
|
96
|
Strategies to overcome resistance mutations of Bruton's tyrosine kinase inhibitor ibrutinib. Future Med Chem 2018; 10:343-356. [PMID: 29347836 DOI: 10.4155/fmc-2017-0145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ibrutinib, as the first Bruton's tyrosine kinase (Btk) inhibitor, has been shown to have clinically significant activity in leukemias and lymphomas. However, the initially responsive tumors will develop resistance during the process of treatment in few patients. Here, we summarized the mechanism of acquired resistance and suggested the next-generation Btk inhibitors that override the target resistance. Moreover, the development of combination of selective antagonists or inhibitors targeting to multiple protein kinases have increased therapeutic potency to reduce the risk of the emergence of kinases inhibitor resistance. Thus, the reported combination of therapeutic drugs as an alternative therapy to overcome ibrutinib collapse or reduce the risk of the emergence of Btk inhibitor resistance also has been reviewed.
Collapse
|
97
|
Yu S, Chen H, Xu X, Yuan W, Zhang X. Enatioselective Synthesis of Tetrahydrocarbazoles via
Chiral Phosphoric Acid Promoted Domino Friedel-Crafts-type Reaction of Indole-3-butanal with Indoles. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Shuowen Yu
- Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province; Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences; Chengdu 610041 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Hui Chen
- Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province; Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences; Chengdu 610041 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Xiaoying Xu
- Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province; Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences; Chengdu 610041 China
| | - Weicheng Yuan
- Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province; Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences; Chengdu 610041 China
| | - Xiaomei Zhang
- Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province; Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences; Chengdu 610041 China
| |
Collapse
|
98
|
Glunz PW. Recent encounters with atropisomerism in drug discovery. Bioorg Med Chem Lett 2018; 28:53-60. [DOI: 10.1016/j.bmcl.2017.11.050] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023]
|
99
|
Schuller M, Riedel K, Gibbs-Seymour I, Uth K, Sieg C, Gehring AP, Ahel I, Bracher F, Kessler BM, Elkins JM, Knapp S. Discovery of a Selective Allosteric Inhibitor Targeting Macrodomain 2 of Polyadenosine-Diphosphate-Ribose Polymerase 14. ACS Chem Biol 2017; 12:2866-2874. [PMID: 28991428 PMCID: PMC6089342 DOI: 10.1021/acschembio.7b00445] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Macrodomains are conserved protein interaction modules that can be found in all domains of life including in certain viruses. Macrodomains mediate recognition of sequence motifs harboring adenosine diphosphate ribose (ADPR) modifications, thereby regulating a variety of cellular processes. Due to their role in cancer or viral pathogenesis, macrodomains have emerged as potential therapeutic targets, but the unavailability of small molecule inhibitors has hampered target validation studies so far. Here, we describe an efficient screening strategy for identification of small molecule inhibitors that displace ADPR from macrodomains. We report the discovery and characterization of a macrodomain inhibitor, GeA-69, selectively targeting macrodomain 2 (MD2) of PARP14 with low micromolar affinity. Co-crystallization of a GeA-69 analogue with PARP14 MD2 revealed an allosteric binding mechanism explaining its selectivity over other human macrodomains. We show that GeA-69 engages PARP14 MD2 in intact cells and prevents its localization to sites of DNA damage.
Collapse
Affiliation(s)
- Marion Schuller
- Structural Genomics Consortium (SGC), Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Target Discovery Institute (TDI), Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Kerstin Riedel
- Department of Pharmacy – Center for Drug Research, Ludwig-Maximilians University of Munich, 81377 Munich, Germany
| | - Ian Gibbs-Seymour
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Kristin Uth
- Structural Genomics Consortium (SGC), Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Christian Sieg
- Structural Genomics Consortium (SGC), Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - André P. Gehring
- Department of Pharmacy – Center for Drug Research, Ludwig-Maximilians University of Munich, 81377 Munich, Germany
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Franz Bracher
- Department of Pharmacy – Center for Drug Research, Ludwig-Maximilians University of Munich, 81377 Munich, Germany
| | - Benedikt M. Kessler
- Target Discovery Institute (TDI), Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Jonathan M. Elkins
- Structural Genomics Consortium (SGC), Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Stefan Knapp
- Structural Genomics Consortium (SGC), Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Institute of Pharmaceutical Chemistry and Buchmann Institute for Molecular Life Sciences, Goethe University, 60439 Frankfurt, Germany
- German Cancer Network (DKTK), Frankfurt/Mainz site
| |
Collapse
|
100
|
Ge Y, Wang C, Song S, Huang J, Liu Z, Li Y, Meng Q, Zhang J, Yao J, Liu K, Ma X, Sun X. Identification of highly potent BTK and JAK3 dual inhibitors with improved activity for the treatment of B-cell lymphoma. Eur J Med Chem 2017; 143:1847-1857. [PMID: 29146136 DOI: 10.1016/j.ejmech.2017.10.080] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 01/05/2023]
Abstract
The BTK and JAK3 receptor tyrosine kinases are two validated and therapeutically amenable targets in the treatment of B-cell lymphomas. Here we report the identification of several classes of pyrimidine derivatives as potent BTK and JAK3 dual inhibitors. Among these molecules, approximately two thirds displayed strong inhibitory capacity at less than 10 nM concentration, and four compounds (7e, 7g, 7m and 7n) could significantly inhibit the phosphorylation of BTK and JAK3 enzymes at concentrations lower than 1 nM. Additionally, these pyrimidine derivatives also exhibited enhanced activity to block the proliferation of B-cell lymphoma cells compared with the representative BTK inhibitor ibrutinib. In particular, two structure-specific compounds 7b and 7e displayed stronger activity than reference agents in cell-based evaluation, with IC50 values lower than 10 μM. Further biological studies, including flow cytometric analysis, and a xenograft model for in vivo evaluation, also indicated their efficacy and low toxicity in the treatment of B-cell lymphoma. These findings provide a new insight for the development of novel anti-B-cell lymphoma drugs with multi-target actions.
Collapse
Affiliation(s)
- Yang Ge
- Department of Hematology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China; College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Changyuan Wang
- College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Shijie Song
- College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Jiaxin Huang
- College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Zhihao Liu
- College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Yongming Li
- College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Qiang Meng
- College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Jianbin Zhang
- College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Jihong Yao
- College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Kexin Liu
- College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Xiaodong Ma
- College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China.
| | - Xiuli Sun
- Department of Hematology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China.
| |
Collapse
|