51
|
Schiffrer ES, Proj M, Gobec M, Rejc L, Šterman A, Mravljak J, Gobec S, Sosič I. Synthesis and Biochemical Evaluation of Warhead-Decorated Psoralens as (Immuno)Proteasome Inhibitors. Molecules 2021; 26:molecules26020356. [PMID: 33445542 PMCID: PMC7826781 DOI: 10.3390/molecules26020356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/03/2021] [Accepted: 01/09/2021] [Indexed: 02/07/2023] Open
Abstract
The immunoproteasome is a multicatalytic protease that is predominantly expressed in cells of hematopoietic origin. Its elevated expression has been associated with autoimmune diseases, various types of cancer, and inflammatory diseases. Selective inhibition of its catalytic activities is therefore a viable approach for the treatment of these diseases. However, the development of immunoproteasome-selective inhibitors with non-peptidic scaffolds remains a challenging task. We previously reported 7H-furo[3,2-g]chromen-7-one (psoralen)-based compounds with an oxathiazolone warhead as selective inhibitors of the chymotrypsin-like (β5i) subunit of immunoproteasome. Here, we describe the influence of the electrophilic warhead variations at position 3 of the psoralen core on the inhibitory potencies. Despite mapping the chemical space with different warheads, all compounds showed decreased inhibition of the β5i subunit of immunoproteasome in comparison to the parent oxathiazolone-based compound. Although suboptimal, these results provide crucial information about structure–activity relationships that will serve as guidance for the further design of (immuno)proteasome inhibitors.
Collapse
Affiliation(s)
- Eva Shannon Schiffrer
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (E.S.S.); (M.P.); (M.G.); (A.Š.); (J.M.); (S.G.)
| | - Matic Proj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (E.S.S.); (M.P.); (M.G.); (A.Š.); (J.M.); (S.G.)
| | - Martina Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (E.S.S.); (M.P.); (M.G.); (A.Š.); (J.M.); (S.G.)
| | - Luka Rejc
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia;
| | - Andrej Šterman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (E.S.S.); (M.P.); (M.G.); (A.Š.); (J.M.); (S.G.)
| | - Janez Mravljak
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (E.S.S.); (M.P.); (M.G.); (A.Š.); (J.M.); (S.G.)
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (E.S.S.); (M.P.); (M.G.); (A.Š.); (J.M.); (S.G.)
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (E.S.S.); (M.P.); (M.G.); (A.Š.); (J.M.); (S.G.)
- Correspondence: ; Tel.: +386-1-4769-569
| |
Collapse
|
52
|
Tang J, Chen L, Zhang L, Ni G, Yu J, Wang H, Zhang F, Yuan S, Feng M, Chen S. Structure-guided evolution of a ketoreductase for efficient and stereoselective bioreduction of bulky α-amino β-keto esters. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01032h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chiral vicinal amino alcohols were generated with excellent stereoselectivity and high conversion from bulky α-amino β-keto esters by an engineered ketoreductase called M30.
Collapse
Affiliation(s)
- Jiawei Tang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, P. R. China
| | - Liuqing Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Luwen Zhang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, P. R. China
| | - Guowei Ni
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, P. R. China
| | - Jun Yu
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, P. R. China
| | - Hongyi Wang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, P. R. China
| | - Fuli Zhang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, P. R. China
| | - Shuguang Yuan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Meiqing Feng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, P. R. China
| | - Shaoxin Chen
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, P. R. China
| |
Collapse
|
53
|
Cao Y, Zhu H, He R, Kong L, Shao J, Zhuang R, Xi J, Zhang J. Proteasome, a Promising Therapeutic Target for Multiple Diseases Beyond Cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4327-4342. [PMID: 33116419 PMCID: PMC7585272 DOI: 10.2147/dddt.s265793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Proteasome is vital for intracellular protein homeostasis as it eliminates misfolded and damaged protein. Inhibition of proteasome has been validated as a powerful strategy for anti-cancer therapy, and several drugs have been approved for treatment of multiple myeloma. Recent studies indicate that proteasome has potent therapeutic effects on a variety of diseases besides cancer, including parasite infectious diseases, bacterial/fungal infections diseases, neurodegenerative diseases and autoimmune diseases. In this review, recent developments of proteasome inhibitors for various diseases and related structure activity relationships are going to be summarized.
Collapse
Affiliation(s)
- Yu Cao
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, 310015, People's Republic of China
| | - Huajian Zhu
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, 310015, People's Republic of China
| | - Ruoyu He
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, 310023 People's Republic of China
| | - Limin Kong
- Department of Pharmacy, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China
| | - Jiaan Shao
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, 310015, People's Republic of China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, 310023 People's Republic of China
| | - Jianjun Xi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, 310023 People's Republic of China
| | - Jiankang Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, 310015, People's Republic of China
| |
Collapse
|
54
|
Recent insights how combined inhibition of immuno/proteasome subunits enables therapeutic efficacy. Genes Immun 2020; 21:273-287. [PMID: 32839530 DOI: 10.1038/s41435-020-00109-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
The proteasome is a multicatalytic protease in the cytosol and nucleus of all eukaryotic cells that controls numerous cellular processes through regulated protein degradation. Proteasome inhibitors have significantly improved the survival of multiple myeloma patients. However, clinically approved proteasome inhibitors have failed to show efficacy against solid tumors, neither alone nor in combination with other therapies. Targeting the immunoproteasome with selective inhibitors has been therapeutically effective in preclinical models for several autoimmune diseases and colon cancer. Moreover, immunoproteasome inhibitors prevented the chronic rejection of allogeneic organ transplants. In recent years, it has become apparent that inhibition of one single active center of the proteasome is insufficient to achieve therapeutic benefits. In this review we summarize the latest insights how targeting multiple catalytically active proteasome subunits can interfere with disease progression in autoimmunity, growth of solid tumors, and allograft rejection.
Collapse
|
55
|
Abstract
INTRODUCTION Currently, there are no proven drugs that are FDA approved for the treatment of dermatomyositis (DM), even though multiple clinical trials are ongoing to evaluate safety and efficacy of novel therapeutics in DM. The purpose of this review is to highlight the biological plausibility, existing clinical evidence as well as completed and ongoing clinical trials for various drugs in pipeline for development for use in dermatomyositis. AREAS COVERED The drugs with the strongest evidence have been included in this review with a focus on the mechanism of their action pertaining to the disease process, clinical studies including completed and ongoing trials. With better understanding of the underlying pathophysiologic process, there are new molecular targets that have been identified that can be targeted by these novel drugs, predominantly biologic drugs. EXPERT OPINION There are various drugs being evaluated in phase II/III clinical trials that hold promise in DM. At the forefront of these are immunoglobulin, Lenabasum, and Abatacept for which phase III clinical trials are ongoing. In addition, promising clinical studies are ongoing or reported for KZR-616, anti-B cell therapy, anti-interferon drugs, and Repository Corticotrophin Injection (RCI).
Collapse
Affiliation(s)
- Tanya Chandra
- Internal Medicine Residency Program, University of Connecticut , Farmington, CT, USA
| | - Rohit Aggarwal
- Department of Medicine, Rheumatology and Clinical Immunology, University of Pittsburgh , Pittsburgh, PA, USA
| |
Collapse
|
56
|
Zhang X, Linder S, Bazzaro M. Drug Development Targeting the Ubiquitin-Proteasome System (UPS) for the Treatment of Human Cancers. Cancers (Basel) 2020; 12:cancers12040902. [PMID: 32272746 PMCID: PMC7226376 DOI: 10.3390/cancers12040902] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cells are characterized by a higher rate of protein turnover and greater demand for protein homeostasis compared to normal cells. In this scenario, the ubiquitin-proteasome system (UPS), which is responsible for the degradation of over 80% of cellular proteins within mammalian cells, becomes vital to cancer cells, making the UPS a critical target for the discovery of novel cancer therapeutics. This review systematically categorizes all current reported small molecule inhibitors of the various essential components of the UPS, including ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s), ubiquitin ligases (E3s), the 20S proteasome catalytic core particle (20S CP) and the 19S proteasome regulatory particles (19S RP), as well as their mechanism/s of action and limitations. We also discuss the immunoproteasome which is considered as a prospective therapeutic target of the next generation of proteasome inhibitors in cancer therapies.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Department of Immunology, Genetics, and Pathology, Uppsala University, 751 05 Uppsala, Sweden
| | - Stig Linder
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Department of Medical and Health Sciences, Linköping University, SE-58183 Linköping, Sweden
| | - Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence:
| |
Collapse
|
57
|
Bhattarai D, Lee MJ, Baek A, Yeo IJ, Miller Z, Baek YM, Lee S, Kim DE, Hong JT, Kim KB. LMP2 Inhibitors as a Potential Treatment for Alzheimer’s Disease. J Med Chem 2020; 63:3763-3783. [DOI: 10.1021/acs.jmedchem.0c00416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Deepak Bhattarai
- Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone, Lexington, Kentucky 40536-0596, United States
| | - Min Jae Lee
- Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone, Lexington, Kentucky 40536-0596, United States
| | - Ahruem Baek
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - In Jun Yeo
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28160, Republic of Korea
| | - Zachary Miller
- Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone, Lexington, Kentucky 40536-0596, United States
| | - Yu Mi Baek
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Sukyeong Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28160, Republic of Korea
| | - Kyung Bo Kim
- Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
58
|
Pawar A, Basler M, Goebel H, Alvarez Salinas GO, Groettrup M, Böttcher T. Competitive Metabolite Profiling of Natural Products Reveals Subunit Specific Inhibitors of the 20S Proteasome. ACS CENTRAL SCIENCE 2020; 6:241-246. [PMID: 32123742 PMCID: PMC7047272 DOI: 10.1021/acscentsci.9b01170] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Indexed: 05/11/2023]
Abstract
We have developed a syringolin-based chemical probe and explored its utility for the profiling of metabolite extracts as potent inhibitors of the 20S proteasome. Activity-guided fractionation by competitive labeling allowed us to isolate and identify glidobactin A and C as well as luminmycin A from a Burkholderiales strain. The natural products exhibited unique subunit specificities for the proteolytic subunits of human and mouse constitutive and immunoproteasome in the lower nanomolar range. In particular, glidobactin C displayed an unprecedented β2/β5 coinhibition profile with single-digit nanomolar potency in combination with sufficiently high cell permeability. These properties render glidobactin C a promising live cell proteasome inhibitor with potent activity against human breast cancer cell lines and comparably low immunotoxicity.
Collapse
Affiliation(s)
- Atul Pawar
- Department
of Chemistry, Zukunftskolleg, Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Michael Basler
- Division
of Immunology, Department of Biology, University
of Konstanz, 78457 Konstanz, Germany
- Biotechnology
Institute Thurgau, 8280 Kreuzlingen, Switzerland
| | - Heike Goebel
- Division
of Immunology, Department of Biology, University
of Konstanz, 78457 Konstanz, Germany
- Biotechnology
Institute Thurgau, 8280 Kreuzlingen, Switzerland
| | - Gerardo Omar Alvarez Salinas
- Division
of Immunology, Department of Biology, University
of Konstanz, 78457 Konstanz, Germany
- Biotechnology
Institute Thurgau, 8280 Kreuzlingen, Switzerland
| | - Marcus Groettrup
- Division
of Immunology, Department of Biology, University
of Konstanz, 78457 Konstanz, Germany
- Biotechnology
Institute Thurgau, 8280 Kreuzlingen, Switzerland
| | - Thomas Böttcher
- Department
of Chemistry, Zukunftskolleg, Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
59
|
Proteasome Inhibitors: Harnessing Proteostasis to Combat Disease. Molecules 2020; 25:molecules25030671. [PMID: 32033280 PMCID: PMC7037493 DOI: 10.3390/molecules25030671] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
The proteasome is the central component of the main cellular protein degradation pathway. During the past four decades, the critical function of the proteasome in numerous physiological processes has been revealed, and proteasome activity has been linked to various human diseases. The proteasome prevents the accumulation of misfolded proteins, controls the cell cycle, and regulates the immune response, to name a few important roles for this macromolecular "machine." As a therapeutic target, proteasome inhibitors have been approved for the treatment of multiple myeloma and mantle cell lymphoma. However, inability to sufficiently inhibit proteasome activity at tolerated doses has hampered efforts to expand the scope of proteasome inhibitor-based therapies. With emerging new modalities in myeloma, it might seem challenging to develop additional proteasome-based therapies. However, the constant development of new applications for proteasome inhibitors and deeper insights into the intricacies of protein homeostasis suggest that proteasome inhibitors might have novel therapeutic applications. Herein, we summarize the latest advances in proteasome inhibitor development and discuss the future of proteasome inhibitors and other proteasome-based therapies in combating human diseases.
Collapse
|
60
|
|
61
|
KONG L, LU J, ZHU H, ZHANG J. [Research progress on selective immunoproteasome inhibitors]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:688-694. [PMID: 31955545 PMCID: PMC8800774 DOI: 10.3785/j.issn.1008-9292.2019.12.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/26/2019] [Indexed: 06/10/2023]
Abstract
Immunoproteasome is associated with various diseases such as hematologic malignancies, inflammatory, autoimmune and central nervous system diseases, and over expression of immunoproteasome is observed in all of these diseases. Immunoproteasome inhibitors can reduce the expression of immunoproteasome by inhibiting the production of related cell-inducing factors and the activity of T lymphocyte for treating related diseases. In order to achieve good efficacy and reduce the toxic effects, key for development of selective immunoproteasome inhibitors is the high selectivity and potent activity of the three active subunits of the proteasome. This review summarizes the structure and functions of immunoproteasome and the associated diseases. Besides, structure, activity and status of selective immunoproteasome inhibitors are also been highlighted.
Collapse
Affiliation(s)
| | | | | | - Jiankang ZHANG
- 张建康(1987-), 男, 博士, 讲师, 硕士生导师, 主要从事抗肿瘤药物研发工作, E-mail:
;
https://orcid.org/0000-0003-0365-7238
| |
Collapse
|
62
|
A dual inhibitor of the proteasome catalytic subunits LMP2 and Y attenuates disease progression in mouse models of Alzheimer's disease. Sci Rep 2019; 9:18393. [PMID: 31804556 PMCID: PMC6895163 DOI: 10.1038/s41598-019-54846-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022] Open
Abstract
The immunoproteasome (iP) is a variant of the constitutive proteasome (cP) that is abundantly expressed in immune cells which can also be induced in somatic cells by cytokines such as TNF-α or IFN-γ. Accumulating evidence support that the iP is closely linked to multiple facets of inflammatory response, eventually leading to the development of several iP inhibitors as potential therapeutic agents for autoimmune diseases. Recent studies also found that the iP is upregulated in reactive glial cells surrounding amyloid β (Aβ) deposits in brains of Alzheimer’s disease (AD) patients, but the role it plays in the pathogenesis of AD remains unclear. In this study, we investigated the effects of several proteasome inhibitors on cognitive function in AD mouse models and found that YU102, a dual inhibitor of the iP catalytic subunit LMP2 and the cP catalytic subunit Y, ameliorates cognitive impairments in AD mouse models without affecting Aβ deposition. The data obtained from our investigation revealed that YU102 suppresses the secretion of inflammatory cytokines from microglial cells. Overall, this study indicates that there may exist a potential link between LMP2/Y and microglia-mediated neuroinflammation and that inhibition of these subunits may offer a new therapeutic strategy for AD.
Collapse
|
63
|
Zerfas BL, Maresh ME, Trader DJ. The Immunoproteasome: An Emerging Target in Cancer and Autoimmune and Neurological Disorders. J Med Chem 2019; 63:1841-1858. [PMID: 31670954 DOI: 10.1021/acs.jmedchem.9b01226] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The immunoproteasome (iCP) is an isoform of the 20S proteasome that is expressed when cells are stressed or receive an inflammatory signal. The primary role of the iCP is to hydrolyze proteins into peptides that are compatible with being loaded into a MHC-I complex. When the activity of the iCP is dysregulated or highly expressed, it can lead to unwanted cell death. Some cancer types express the iCP rather than the standard proteasome, and selective inhibitors have been developed to exploit this difference. Here, we describe diseases known to be influenced by iCP activity and the current status for targeting the iCP to elicit a therapeutic response. We also describe a variety of chemical tools that have been developed to monitor the activity of the iCP in cells. Finally, we present the future outlook for targeting the iCP in a variety of disease types and with mechanisms besides inhibition.
Collapse
Affiliation(s)
- Breanna L Zerfas
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Marianne E Maresh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Darci J Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
64
|
Schiffrer ES, Sosič I, Šterman A, Mravljak J, Raščan IM, Gobec S, Gobec M. A focused structure-activity relationship study of psoralen-based immunoproteasome inhibitors. MEDCHEMCOMM 2019; 10:1958-1965. [PMID: 32952997 PMCID: PMC7478164 DOI: 10.1039/c9md00365g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/08/2019] [Indexed: 12/22/2022]
Abstract
The immunoproteasome is a multicatalytic protease that is predominantly expressed in cells of hematopoietic origin. Its elevated expression has been associated with autoimmune diseases, various types of cancer, and inflammatory diseases. The development of immunoproteasome-selective inhibitors with non-peptidic scaffolds remains a challenging task. Here, we describe a focused series of psoralen-based inhibitors of the β5i subunit of the immunoproteasome with different substituents placed at position 4'. The most promising compound was further evaluated through changes at position 3 of the psoralen ring. Despite a small decrease in the inhibitory potency in comparison with the parent compound, we were able to improve the selectivity against other subunits of both the immunoproteasome and the constitutive proteasome. The most potent compounds discriminated between both proteasome types in cell lysates and also showed a decrease in cytokine secretion in peripheral blood mononuclear cells.
Collapse
Affiliation(s)
- Eva Shannon Schiffrer
- Faculty of Pharmacy , Chair of Pharmaceutical Chemistry , University of Ljubljana , Aškerčeva 7 , 1000 Ljubljana , Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy , Chair of Pharmaceutical Chemistry , University of Ljubljana , Aškerčeva 7 , 1000 Ljubljana , Slovenia
| | - Andrej Šterman
- Faculty of Pharmacy , Chair of Pharmaceutical Chemistry , University of Ljubljana , Aškerčeva 7 , 1000 Ljubljana , Slovenia
| | - Janez Mravljak
- Faculty of Pharmacy , Chair of Pharmaceutical Chemistry , University of Ljubljana , Aškerčeva 7 , 1000 Ljubljana , Slovenia
| | - Irena Mlinarič Raščan
- Faculty of Pharmacy , Chair of Clinical Biochemistry , University of Ljubljana , Aškerčeva 7 , 1000 Ljubljana , Slovenia . ; Tel: +386 1 476 9636
| | - Stanislav Gobec
- Faculty of Pharmacy , Chair of Pharmaceutical Chemistry , University of Ljubljana , Aškerčeva 7 , 1000 Ljubljana , Slovenia
| | - Martina Gobec
- Faculty of Pharmacy , Chair of Clinical Biochemistry , University of Ljubljana , Aškerčeva 7 , 1000 Ljubljana , Slovenia . ; Tel: +386 1 476 9636
| |
Collapse
|
65
|
Basler M, Claus M, Klawitter M, Goebel H, Groettrup M. Immunoproteasome Inhibition Selectively Kills Human CD14 + Monocytes and as a Result Dampens IL-23 Secretion. THE JOURNAL OF IMMUNOLOGY 2019; 203:1776-1785. [PMID: 31484727 DOI: 10.4049/jimmunol.1900182] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
MECL-1 (β2i), LMP2 (β1i), and LMP7 (β5i) are the proteolytically active subunits of the immunoproteasome (IP), a special type of proteasome mainly expressed in hematopoietic cells. Targeting the IP in autoimmune diseases proved to be therapeutically effective in preclinical mouse models. In endotoxin-stimulated human PBMCs, IP inhibition reduces the secretion of several proinflammatory cytokines, with the suppression of IL-23 being the most prominent. In this study, we investigated why the production of IL-23, a key mediator of inflammation in autoimmunity, is blocked when the IP is inhibited in LPS-stimulated human PBMCs. CD14+ monocytes could be identified as the main producers of IL-23 in LPS-stimulated PBMCs. We found that IP inhibition with the irreversible LMP7/LMP2 inhibitor ONX 0914 induced apoptosis in CD14+ monocytes, whereas CD4+, CD3+, CD19+, and CD56+ cells remained unaffected. A high expression of IPs renders monocytes susceptible to IP inhibition, leading to an accumulation of polyubiquitylated proteins and the induction of the unfolded protein response. Similar to IP inhibition, inducers of the unfolded protein response selectively kill CD14+ monocytes in human PBMCs. The blockage of the translation in CD14+ monocytes protects these cells from ONX 0914-induced cell death, indicating that the IP is required to maintain protein turnover in monocytes. Taken together, our data reveal why IP inhibition is particularly effective in the suppression of IL-23-driven autoimmunity.
Collapse
Affiliation(s)
- Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; and .,Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland
| | - Meike Claus
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; and
| | - Moritz Klawitter
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; and
| | - Heike Goebel
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; and
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; and.,Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland
| |
Collapse
|
66
|
Xi J, Zhuang R, Kong L, He R, Zhu H, Zhang J. Immunoproteasome-selective inhibitors: An overview of recent developments as potential drugs for hematologic malignancies and autoimmune diseases. Eur J Med Chem 2019; 182:111646. [PMID: 31521028 DOI: 10.1016/j.ejmech.2019.111646] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/24/2019] [Accepted: 08/25/2019] [Indexed: 12/23/2022]
Abstract
The immunoproteasome, a specialized form of proteasome, is mainly expressed in lymphocytes and monocytes of jawed vertebrates and responsible for the generation of antigenic peptides for cell-mediated immunity. Overexpression of immunoproteasome have been detected in a wide range of diseases including malignancies, autoimmune and inflammatory diseases. Following the successful approval of constitutive proteasome inhibitors bortezomib, carfilzomib and Ixazomib, and with the clarification of immunoproteasome crystal structure and functions, a variety of immunoproteasome inhibitors were discovered or rationally developed. Not only the inhibitory activities, the selectivities for immunoproteasome over constitutive proteasome are essential for the clinical potential of these analogues, which has been validated by the clinical evaluation of immunoproteasome-selective inhibitor KZR-616 for the treatment of systemic lupus erythematosus. In this review, structure, function as well as the current developments of various inhibitors against immunoproteasome are going to be summarized, which help to fully understand the target for drug discovery.
Collapse
Affiliation(s)
- Jianjun Xi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China
| | - Limin Kong
- Department of Pharmacy, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
| | - Ruoyu He
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China
| | - Huajian Zhu
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, Zhejiang Province, China
| | - Jiankang Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, Zhejiang Province, China.
| |
Collapse
|
67
|
Discovery of Immunoproteasome Inhibitors Using Large-Scale Covalent Virtual Screening. Molecules 2019; 24:molecules24142590. [PMID: 31315311 PMCID: PMC6680723 DOI: 10.3390/molecules24142590] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022] Open
Abstract
Large-scale virtual screening of boronic acid derivatives was performed to identify nonpeptidic covalent inhibitors of the β5i subunit of the immunoproteasome. A hierarchical virtual screening cascade including noncovalent and covalent docking steps was applied to a virtual library of over 104,000 compounds. Then, 32 virtual hits were selected, out of which five were experimentally confirmed. Biophysical and biochemical tests showed micromolar binding affinity and time-dependent inhibitory potency for two compounds. These results validate the computational protocol that allows the screening of large compound collections. One of the lead-like boronic acid derivatives identified as a covalent immunoproteasome inhibitor is a suitable starting point for chemical optimization.
Collapse
|
68
|
Ettari R, Cerchia C, Maiorana S, Guccione M, Novellino E, Bitto A, Grasso S, Lavecchia A, Zappalà M. Development of Novel Amides as Noncovalent Inhibitors of Immunoproteasomes. ChemMedChem 2019; 14:842-852. [PMID: 30829448 DOI: 10.1002/cmdc.201900028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/04/2019] [Indexed: 01/02/2023]
Abstract
The development of immunoproteasome-selective inhibitors is a promising strategy for treating hematologic malignancies, autoimmune and inflammatory diseases. In this context, we report the design, synthesis, and biological evaluation of a new series of amide derivatives as immunoproteasome inhibitors. Notably, the designed compounds act as noncovalent inhibitors, which might be a promising therapeutic option because of the lack of drawbacks and side effects associated with irreversible inhibition. Among the synthesized compounds, we identified a panel of active inhibitors with Ki values in the low micromolar or sub-micromolar ranges toward the β5i and/or β1i subunits of immunoproteasomes. One of the active compounds was shown to be the most potent and selective inhibitor with a Ki value of 21 nm against the single β1i subunit. Docking studies allowed us to determine the mode of binding of the molecules in the catalytic site of immunoproteasome subunits.
Collapse
Affiliation(s)
- Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168, Messina, Italy
| | - Carmen Cerchia
- Department of Pharmacy, Drug Discovery Laboratory, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Santina Maiorana
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168, Messina, Italy
| | - Manuela Guccione
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168, Messina, Italy
| | - Ettore Novellino
- Department of Pharmacy, Drug Discovery Laboratory, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125, Messina, Italy
| | - Silvana Grasso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168, Messina, Italy
| | - Antonio Lavecchia
- Department of Pharmacy, Drug Discovery Laboratory, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168, Messina, Italy
| |
Collapse
|
69
|
Xin BT, Huber EM, de Bruin G, Heinemeyer W, Maurits E, Espinal C, Du Y, Janssens M, Weyburne ES, Kisselev AF, Florea BI, Driessen C, van der Marel GA, Groll M, Overkleeft HS. Structure-Based Design of Inhibitors Selective for Human Proteasome β2c or β2i Subunits. J Med Chem 2019; 62:1626-1642. [PMID: 30657666 PMCID: PMC6378654 DOI: 10.1021/acs.jmedchem.8b01884] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Subunit-selective
proteasome inhibitors are valuable tools to assess
the biological and medicinal relevance of individual proteasome active
sites. Whereas the inhibitors for the β1c, β1i, β5c,
and β5i subunits exploit the differences in the substrate-binding
channels identified by X-ray crystallography, compounds selectively
targeting β2c or β2i could not yet be rationally designed
because of the high structural similarity of these two subunits. Here,
we report the development, chemical synthesis, and biological screening
of a compound library that led to the identification of the β2c-
and β2i-selective compounds LU-002c (4; IC50 β2c: 8 nM, IC50 β2i/β2c: 40-fold)
and LU-002i (5; IC50 β2i: 220 nM, IC50 β2c/β2i: 45-fold), respectively. Co-crystal
structures with β2 humanized yeast proteasomes visualize protein–ligand
interactions crucial for subunit specificity. Altogether, organic
syntheses, activity-based protein profiling, yeast mutagenesis, and
structural biology allowed us to decipher significant differences
of β2 substrate-binding channels and to complete the set of
subunit-selective proteasome inhibitors.
Collapse
Affiliation(s)
- Bo-Tao Xin
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Eva M Huber
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie , Technische Universität München , 85748 Garching , Germany
| | - Gerjan de Bruin
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Wolfgang Heinemeyer
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie , Technische Universität München , 85748 Garching , Germany
| | - Elmer Maurits
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Christofer Espinal
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Yimeng Du
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Marissa Janssens
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Emily S Weyburne
- Department of Molecular and Systems Biology and Norris Cotton Cancer Center , Geisel School of Medicine at Dartmouth , 1 Medical Centre Drive HB7936 , Lebanon , New Hampshire 03756 , United States
| | - Alexei F Kisselev
- Department of Molecular and Systems Biology and Norris Cotton Cancer Center , Geisel School of Medicine at Dartmouth , 1 Medical Centre Drive HB7936 , Lebanon , New Hampshire 03756 , United States
| | - Bogdan I Florea
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Christoph Driessen
- Department of Hematology and Oncology , Kantonsspital St. Gallen , 9007 St. Gallen , Switzerland
| | - Gijsbert A van der Marel
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Michael Groll
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie , Technische Universität München , 85748 Garching , Germany
| | - Herman S Overkleeft
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| |
Collapse
|