51
|
Discrimination of Stereoisomers by Their Enantioselective Interactions with Chiral Cholesterol-Containing Membranes. Molecules 2017; 23:molecules23010049. [PMID: 29295605 PMCID: PMC5943951 DOI: 10.3390/molecules23010049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 12/02/2022] Open
Abstract
Discrimination between enantiomers is an important subject in medicinal and biological chemistry because they exhibit markedly different bioactivity and toxicity. Although stereoisomers should vary in the mechanistic interactions with chiral targets, their discrimination associated with the mode of action on membrane lipids is scarce. The aim of this study is to reveal whether enantiomers selectively act on chiral lipid membranes. Different classes of stereoisomers were subjected at 5–200 μM to reactions with biomimetic phospholipid membranes containing ~40 mol % cholesterol to endow the lipid bilayers with chirality and their membrane interactions were comparatively evaluated by measuring fluorescence polarization. All of the tested compounds interacted with cholesterol-containing membranes to modify their physicochemical property with different potencies between enantiomers, correlating to those of their experimental and clinical effects. The rank order of membrane interactivity was reversed by changing cholesterol to C3-epimeric α-cholesterol. The same selectivity was also obtained from membranes prepared with 5α-cholestan-3β-ol and 5β-cholestan-3α-ol diastereomers. The opposite configuration allows molecules to interact with chiral sterol-containing membranes enantioselectively, and the specific β configuration of cholesterol’s 3-hydroxyl group is responsible for such selectivity. The enantioselective membrane interaction has medicinal implications for the characterization of the stereostructures with higher bioactivity and lower toxicity.
Collapse
|
52
|
Basu S, Paul A, Chattopadhyay A. Zinc-Coordinated Hierarchical Organization of Ligand-Stabilized Gold Nanoclusters for Chiral Recognition and Separation. Chemistry 2017; 23:9137-9143. [DOI: 10.1002/chem.201701128] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Srestha Basu
- Department of Chemistry; Indian Institute of Technology, Guwahati; Assam 781039 India
| | - Anumita Paul
- Department of Chemistry; Indian Institute of Technology, Guwahati; Assam 781039 India
| | - Arun Chattopadhyay
- Department of Chemistry; Indian Institute of Technology, Guwahati; Assam 781039 India
- Centre for Nanotechnology; Indian Institute of Technology, Guwahati, Guwahati; Assam 781039 India
| |
Collapse
|
53
|
Iwasaki F, Suga K, Okamoto Y, Umakoshi H. Enantioselective C-C Bond Formation Enhanced by Self-Assembly of Achiral Surfactants. ACS OMEGA 2017; 2:1447-1453. [PMID: 31457516 PMCID: PMC6641137 DOI: 10.1021/acsomega.7b00034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/30/2017] [Indexed: 05/12/2023]
Abstract
The use of achiral surfactant assemblies as a reaction platform for an alkylation reaction resulted in a high enantiomeric excess. Dilauryldimethylammonium bromide (DDAB) vesicles were modified with cholesterol to promote alkylation of N-(diphenylmethylene)glycine tert-butyl ester (DMGBE) with benzyl bromide, resulting in high conversion (∼90%) and high enantioselectivity (up to 80%). The R-enantiomer was formed on using the DDAB vesicles, whereas the use of phospholipid liposomes prepared from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) produced an excess of the S-enantiomer. Considering the chemical structures of the reaction substrates and amphiphiles as well as the membrane structures and properties of DDAB vesicles and DOPC liposomes, it is suggested that the enantiomeric excesses result from the location of the quaternary amine of the amphiphiles and the DMGBE at the outer surface of the membrane. We show that the enantioselective reaction at the surface of the self-assembly could be regulated by adjusting the chemical structures and resulting membrane properties of the self-assembly.
Collapse
|
54
|
Suga K, Tauchi A, Ishigami T, Okamoto Y, Umakoshi H. Preferential Adsorption of l-Histidine onto DOPC/Sphingomyelin/3β-[N-(N',N'-dimethylaminoethane)carbamoyl]cholesterol Liposomes in the Presence of Chiral Organic Acids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3831-3838. [PMID: 28272888 DOI: 10.1021/acs.langmuir.6b03264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We investigated the effect of organic acids such as mandelic acid (MA) and tartaric acid (TA) on the adsorption behavior of both histidine (His) and propranolol (PPL) onto liposomes. A cationic and heterogeneous liposome prepared using 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/sphingomyelin (SM)/3β-[N-(N',N'-dimethylaminoethane)carbamoyl]cholesterol (DC-Ch) in a ratio of (4/3/3) showed the highest adsorption efficiency of MA and TA independent of chirality, while neutral liposome DOPC/SM/cholesterol = (4/3/3) showed low efficiency. As expected, electrostatic interactions were dominant in MA or TA adsorption onto DOPC/SM/DC-Ch = (4/3/3) liposomes, suggesting that organic acids had adsorbed onto SM/DC-Ch-enriched domains. The adsorption behaviors of organic acids onto DOPC/SM/DC-Ch = (4/3/3) were governed by Langmuir adsorption isotherms. For adsorption, the membrane polarities slightly decreased (i.e., membrane surface was hydrophilic), but no alterations in membrane fluidity were observed. In the presence of organic acids that had been preincubated with DOPC/SM/DC-Ch = (4/3/3), the adsorption of l- and d-His onto those liposomes was examined. Preferential l-His adsorption was dramatically prevented only in the presence of l-MA, suggesting that the adsorption sites for l-His and l-MA on DOPC/SM/DC-Ch = (4/3/3) liposomes are competitive, while those for l-His and d-MA, l-TA, and d-TA are isolated.
Collapse
Affiliation(s)
- Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Atsushi Tauchi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Takaaki Ishigami
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Yukihiro Okamoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
55
|
Okamoto Y, Kishi Y, Suga K, Umakoshi H. Induction of Chiral Recognition with Lipid Nanodomains Produced by Polymerization. Biomacromolecules 2017; 18:1180-1188. [DOI: 10.1021/acs.biomac.6b01859] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yukihiro Okamoto
- Division of Chemical Engineering,
Graduate School of Engineering Science, Osaka University, 1-3
Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Yusuke Kishi
- Division of Chemical Engineering,
Graduate School of Engineering Science, Osaka University, 1-3
Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Keishi Suga
- Division of Chemical Engineering,
Graduate School of Engineering Science, Osaka University, 1-3
Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering,
Graduate School of Engineering Science, Osaka University, 1-3
Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
56
|
Iwasaki F, Luginbühl S, Suga K, Walde P, Umakoshi H. Fluorescent Probe Study of AOT Vesicle Membranes and Their Alteration upon Addition of Aniline or the Aniline Dimer p-Aminodiphenylamine (PADPA). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1984-1994. [PMID: 28161960 DOI: 10.1021/acs.langmuir.6b04480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Artificial vesicles formed from sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in aqueous solution are used successfully as additives for enzymatic oligomerizations or polymerizations of aniline or the aniline dimer p-aminodiphenylamine (PADPA) under slightly acidic conditions (e.g., pH 4.3 with horseradish peroxidase and hydrogen peroxide as oxidants). In these systems, the reactions occur membrane surface-confined. Therefore, (i) the physicochemical properties of the vesicle membrane and (ii) the interaction of aniline or PADPA with the AOT membrane play crucial roles in the progress and final outcome of the reactions. For this reason, the properties of AOT vesicles with and without added aniline or PADPA were investigated by using two fluorescent membrane probes: 1,6-diphenyl-1,3,5-hexatriene (DPH) and 6-lauroyl-2-dimethylaminonaphthalene (Laurdan). DPH and Laurdan were used as "sensors" of the membrane fluidity, surface polarity, and membrane phase state. Moreover, the effect of hexanol, alone or in combination with aniline or PADPA, as a possible modifier of the AOT membrane, was also studied with the aim of evaluating whether the membrane fluidity and surface polarity is altered significantly by hexanol, which, in turn, may have an influence on the mentioned types of reactions. The data obtained indicate that the AOT vesicle membrane at room temperature and pH 4.3 (0.1 M NaH2PO4) is more fluid and has a more polar surface than in the case of fluid phospholipid vesicle membranes formed from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). Furthermore, the fluorescence measurements indicate that mixed AOT-hexanol membranes are less fluid than pure AOT membranes and that they have a lower surface polarity than pure AOT membranes. PADPA strongly binds to AOT and to mixed AOT/hexanol membranes and leads to drastic changes in the membrane properties (decrease in fluidity and surface polarity), resulting in Laurdan fluorescence spectra, which are characteristic for intramembrane phase separations (coexistence of ordered and disordered domains). This means that highly fluid AOT membranes transform upon the addition of PADPA into membranes that have ordered domains. Although the relevance of this finding for the enzymatic oligomerization of PADPA is not yet clear, it is also of interest if one likes to use heterogeneous vesicle membranes as additives for carrying out membrane surface-confined reactions that do not necessarily involve PADPA as a reactant.
Collapse
Affiliation(s)
- Fumihiko Iwasaki
- Bio-Inspired Chemical Engineering Lab, Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Sandra Luginbühl
- Laboratory of Polymer Chemistry, Department of Materials, ETH Zürich , Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Keishi Suga
- Bio-Inspired Chemical Engineering Lab, Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Peter Walde
- Laboratory of Polymer Chemistry, Department of Materials, ETH Zürich , Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Hiroshi Umakoshi
- Bio-Inspired Chemical Engineering Lab, Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
57
|
Zhao W, Hao J. Colloidal chirality in wormlike micellar systems exclusively originated from achiral species: Role of secondary assembly and stimulus responsivity. J Colloid Interface Sci 2016; 478:303-10. [DOI: 10.1016/j.jcis.2016.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/03/2016] [Accepted: 06/04/2016] [Indexed: 10/21/2022]
|
58
|
Suga K, Kondo D, Otsuka Y, Okamoto Y, Umakoshi H. Characterization of Aqueous Oleic Acid/Oleate Dispersions by Fluorescent Probes and Raman Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7606-7612. [PMID: 27404017 DOI: 10.1021/acs.langmuir.6b02257] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Oleic acid (OA) and oleates form self-assembled structures dispersible in aqueous media. Herein, the physicochemical properties of OA/oleate assemblies were characterized using fluorescent probes and Raman spectroscopy, under relatively high dilution (<100 mM of total amphiphile) at 25 °C. Anisotropy analysis using 1,6-diphenyl-1,3,5-hexatriene showed that the microviscosity of the OA/oleate assembly was highest at pH 7.5 (the pH range of 6.9-10.6 was investigated). The fluorescence spectra of 6-lauroyl-2-dimethylaminonaphthalene revealed the dehydrated environments on membrane surfaces at pH < 7.7. The pH-dependent Raman peak intensity ratios, chain torsion (S = I1124/I1096) and chain packing (R = I2850/I2930), showed local maxima, indicating the occurrence of metastable phases, such as dispersed cubic phase (pH = 7.5), vesicle (pH = 8.5), and dispersed cylindrical micelle (pH = 9.7). These results suggest that large-scale OA/oleate assemblies could possess particular membrane properties in a narrow pH region, e.g., at pH 7.5, and 9.7.
Collapse
Affiliation(s)
- Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Dai Kondo
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Yoko Otsuka
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Yukihiro Okamoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
59
|
Bui TT, Suga K, Umakoshi H. Roles of Sterol Derivatives in Regulating the Properties of Phospholipid Bilayer Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6176-84. [PMID: 27158923 DOI: 10.1021/acs.langmuir.5b04343] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Liposomes are considered an ideal biomimetic environment and are potential functional carriers for important molecules such as steroids and sterols. With respect to the regulation of self-assembly via sterol insertion, several pathways such as the sterol biosynthesis pathway are affected by the physicochemical properties of the membranes. However, the behavior of steroid or sterol molecules (except cholesterol (Chl)) in the self-assembled membranes has not been thoroughly investigated. In this study, to analyze the fundamental behavior of steroid molecules in fluid membranes, Chl, lanosterol, and ergosterol were used as representative sterols in order to clarify how they regulate the physicochemical properties of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes. Membrane properties such as surface membrane fluidity, hydrophobicity, surface membrane polarity, inner membrane polarity, and inner membrane fluidity were investigated using fluorescent probes, including 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene, 8-anilino-1-naphthalenesulfonic acid, 6-propionyl-2-(dimethylamino) naphthalene, 6-dodecanoyl-2-dimethylaminonaphthalene, and 1,6-diphenyl-1,3,5-hexatriene. The results indicated that each sterol derivative could regulate the membrane properties in different ways. Specifically, Chl successfully increased the packing of the DOPC/Chl membrane proportional to its concentration, and lanosterol and ergosterol showed lower efficiencies in ordering the membrane in hydrophobic regions. Given the different binding positions of the probes in the membranes, the differences in membrane properties reflected the relationship between sterol derivatives and their locations in the membrane.
Collapse
Affiliation(s)
- Tham Thi Bui
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
60
|
Ishigami T, Tauchi A, Suga K, Umakoshi H. Effect of Boundary Edge in DOPC/DPPC/Cholesterol Liposomes on Acceleration of l-Histidine Preferential Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6011-6019. [PMID: 27232976 DOI: 10.1021/acs.langmuir.5b04626] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In order to investigate the interaction of hydrophilic molecules with liposomal membranes, we employed 1-(4-(trimethylamino)phenyl)-6-phenyl-1,3,5-hexatriene and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(5-dimethylamino-1-naphthalenesulfonyl) as fluorescent probes to monitor the surface regions of the membrane, and the results for various liposomes were plotted in correlation diagrams. According to the formation of a variety of phase states, different tendencies of decreasing surface hydrophobicity were observed in the liposomes that were modified with high concentrations of cholesterol or in the liposomes that were composed of ternary components. These liposomes, with hydrophobic surfaces, also showed preferential adsorption of l-histidine (l-His), and the hydrophobicity of the liposomal membrane at the surface changed during l-His adsorption regardless of the initial liposomal properties. Furthermore, we revealed that accelerated adsorption of l-His and preferential binding was induced in ternary liposomes forming boundaries between two separate phases.
Collapse
Affiliation(s)
- Takaaki Ishigami
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Atsushi Tauchi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
61
|
Scriba GKE. Chiral recognition in separation science - an update. J Chromatogr A 2016; 1467:56-78. [PMID: 27318504 DOI: 10.1016/j.chroma.2016.05.061] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 12/26/2022]
Abstract
Stereospecific recognition of chiral molecules is an important issue in various aspects of life sciences and chemistry including analytical separation sciences. The basis of analytical enantioseparations is the formation of transient diastereomeric complexes driven by hydrogen bonds or ionic, ion-dipole, dipole-dipole, van der Waals as well as π-π interactions. Recently, halogen bonding was also described to contribute to selector-selectand complexation. Besides structure-separation relationships, spectroscopic techniques, especially NMR spectroscopy, as well as X-ray crystallography have contributed to the understanding of the structure of the diastereomeric complexes. Molecular modeling has provided the tool for the visualization of the structures. The present review highlights recent contributions to the understanding of the binding mechanism between chiral selectors and selectands in analytical enantioseparations dating between 2012 and early 2016 including polysaccharide derivatives, cyclodextrins, cyclofructans, macrocyclic glycopeptides, proteins, brush-type selectors, ion-exchangers, polymers, crown ethers, ligand-exchangers, molecular micelles, ionic liquids, metal-organic frameworks and nucleotide-derived selectors. A systematic compilation of all published literature on the various chiral selectors has not been attempted.
Collapse
Affiliation(s)
- Gerhard K E Scriba
- Friedrich Schiller University Jena, Department of Pharmaceutical/Medicinal Chemistry, Philosophenweg 14, 07743 Jena, Germany.
| |
Collapse
|
62
|
Licsandru E, Kocsis I, Shen YX, Murail S, Legrand YM, van der Lee A, Tsai D, Baaden M, Kumar M, Barboiu M. Salt-Excluding Artificial Water Channels Exhibiting Enhanced Dipolar Water and Proton Translocation. J Am Chem Soc 2016; 138:5403-9. [DOI: 10.1021/jacs.6b01811] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Erol Licsandru
- Adaptive
Supramolecular Nanosystems Group, Institut Europeen des Membranes, ENSCM-UMII-UMR CNRS 5635, Place Eugene Bataillon CC047, Montpellier, F-34095, France
| | - Istvan Kocsis
- Adaptive
Supramolecular Nanosystems Group, Institut Europeen des Membranes, ENSCM-UMII-UMR CNRS 5635, Place Eugene Bataillon CC047, Montpellier, F-34095, France
| | - Yue-xiao Shen
- Department
of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Samuel Murail
- Laboratoire de Biochimie
Théorique, CNRS UPR 9080, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, F-75005 Paris, France
| | - Yves-Marie Legrand
- Adaptive
Supramolecular Nanosystems Group, Institut Europeen des Membranes, ENSCM-UMII-UMR CNRS 5635, Place Eugene Bataillon CC047, Montpellier, F-34095, France
| | - Arie van der Lee
- Adaptive
Supramolecular Nanosystems Group, Institut Europeen des Membranes, ENSCM-UMII-UMR CNRS 5635, Place Eugene Bataillon CC047, Montpellier, F-34095, France
| | - Daniel Tsai
- Department
of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Marc Baaden
- Laboratoire de Biochimie
Théorique, CNRS UPR 9080, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, F-75005 Paris, France
| | - Manish Kumar
- Department
of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mihail Barboiu
- Adaptive
Supramolecular Nanosystems Group, Institut Europeen des Membranes, ENSCM-UMII-UMR CNRS 5635, Place Eugene Bataillon CC047, Montpellier, F-34095, France
| |
Collapse
|
63
|
Okamoto Y, Kishi Y, Ishigami T, Suga K, Umakoshi H. Chiral Selective Adsorption of Ibuprofen on a Liposome Membrane. J Phys Chem B 2016; 120:2790-5. [DOI: 10.1021/acs.jpcb.6b00840] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yukihiro Okamoto
- Division
of Chemical Engineering,
Graduate School of Engineering Science, Osaka University, 1-3
Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Yusuke Kishi
- Division
of Chemical Engineering,
Graduate School of Engineering Science, Osaka University, 1-3
Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Takaaki Ishigami
- Division
of Chemical Engineering,
Graduate School of Engineering Science, Osaka University, 1-3
Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Keishi Suga
- Division
of Chemical Engineering,
Graduate School of Engineering Science, Osaka University, 1-3
Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Umakoshi
- Division
of Chemical Engineering,
Graduate School of Engineering Science, Osaka University, 1-3
Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
64
|
Hirose M, Ishigami T, Suga K, Umakoshi H. Liposome Membrane as a Platform for the L-Pro-Catalyzed Michael Addition of trans-β-Nitrostyrene and Acetone. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:12968-12974. [PMID: 26549731 DOI: 10.1021/acs.langmuir.5b03439] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Herein, we show that the L-proline (L-Pro)-catalyzed Michael addition of trans-β-nitrostyrene and acetone can proceed in "water" using liposome membranes and that the membrane fluidity and polarity are major controlling factors for this reaction. The highest conversion and rate constant of the reaction within the liposomes was achieved with the 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dipalmitoyl-3-trimethylammoniumpropane (DPTAP) system. The catalytic activity of L-Pro in the liposome suspension was found to be comparable to that in a DMSO system. The reaction rate constant was found to be controlled by both the phase state of the liposome membrane and the surface charge on the membrane. Greater enantioselectivity was achieved in the presence of the liposomes than in DMSO solution, with corresponding enantiomeric excess values of 97.6% for the DOPC/DPTAP liposome system and 10% in DMSO. The hydrophobic region of the liposome membrane, which is a relatively stable self-organizing system, can serve as an effective "platform" for molecular recognition and selective conversion in aqueous media.
Collapse
Affiliation(s)
- Masanori Hirose
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Takaaki Ishigami
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|