51
|
Huang J, Huang Y, Xue Z, Zeng S. Tumor microenvironment responsive hollow mesoporous Co 9S 8@MnO 2-ICG/DOX intelligent nanoplatform for synergistically enhanced tumor multimodal therapy. Biomaterials 2020; 262:120346. [PMID: 32927232 DOI: 10.1016/j.biomaterials.2020.120346] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 08/06/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022]
Abstract
The development of multifunctional nanoplatform with combination of tumor microenvironment (TME)-responsive dual T1/T2 magnetic resonance (MR) imaging and synergistically self-enhanced photothermal/photodynamic/chemo-therapy is of significant importance for tumor theranostic, which still remains a great challenge. Herein, a novel hollow mesoporous double-shell Co9S8@MnO2 nanoplatform loaded with photodynamic agent of indocyanine green molecules (ICG) and chemotherapy drug of doxorubicin (DOX) was designed for TME responsive dual T1/T2 enhanced MR imaging and synergistically enhanced anti-tumor therapy. The designed nanoplatform with MnO2 shell can act as a TME-responsive oxygen self-supplied producer to alleviate tumor hypoxia and simultaneously improve photodynamic therapy (PDT) efficiency. Moreover, the TME-induced MnO2 dissolving and near-infrared (NIR) triggered photothermal nature from Co9S8 shell can further promote the tumor-targeted DOX release, leading to the synergistically improved anti-tumor efficacy. And the simultaneous enhancement in dual T1/T2 MR signal was achieved for highly specific tumor diagnosis. The in vivo and in vitro results confirmed that the designed TME-triggered nanoplatform with synergistic combination therapy presented good biocompatibility, and superior inhibition of tumor growth than monotherapy. This study provides the opportunities of designing intelligent TME-activated nanoplatform for highly specific tumor MR imaging and collaborative self-enhanced tumor therapy.
Collapse
Affiliation(s)
- Junqing Huang
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, PR China
| | - Yao Huang
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, PR China
| | - Zhenluan Xue
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, PR China
| | - Songjun Zeng
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, PR China.
| |
Collapse
|
52
|
Sun Y, Davis E. Bowl-Shaped Polydopamine Nanocapsules: Control of Morphology via Template-Free Synthesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9333-9342. [PMID: 32787131 DOI: 10.1021/acs.langmuir.0c00790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Synthesis of hollow polydopamine bowl-shaped nanoparticles (nanobowls), as small as 80 nm in diameter, via a one-pot template-free rapid method is reported. Addition of dopamine to a solution of 0.606 mg/mL tris(hydroxymethyl)aminomethane in an ethanol/water mixed solvent resulted in the formation of hollow spherical nanocapsules within 2 h. At longer reaction times, the formation of conventional solid nanospheres dominated the reaction. The wall thickness of the nanocapsules increased with increasing dopamine concentration in the reaction medium. Wall thickness was also influenced by oxygen availability during the reaction. Nanocapsules with thin walls were prone to collapse. When dried, over 90% of the nanocapsules with wall thickness on the order of 11 nm collapsed. Also, the degree of collapse of individual nanoparticles changed from complete to partial to no collapse as the wall thickness was increased. Varying the ethanol content affected the cavity size and overall dimension of the nanocapsules produced but did not result in a significant change to the wall thickness. A mechanism describing the formation of the nanocapsules and their subsequent collapse into nanobowls is presented. The shape-tunable nanobowls prepared through this green, rapid, and affordable method are expected to have applications in the biomedical, electrochemical, and catalytic fields.
Collapse
Affiliation(s)
- Yuzhe Sun
- Materials Research and Education Center, Auburn University, 274 Wilmore Labs, Auburn Alabama, Alabama 36849, United States
| | - Edward Davis
- Materials Research and Education Center, Auburn University, 274 Wilmore Labs, Auburn Alabama, Alabama 36849, United States
| |
Collapse
|
53
|
Ranjana R, Parushuram N, Harisha KS, Narayana B, Sangappa Y. Photo-Driven Synthesis of Anisotropic Gold Nanoparticles Using Silk Fibroin—Cell Viability Activities in Lymphocyte and Jurkat Cancer Cells. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00772-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
54
|
Fang T, Zhang J, Zuo T, Wu G, Xu Y, Yang Y, Yang J, Shen Q. Chemo-Photothermal Combination Cancer Therapy with ROS Scavenging, Extracellular Matrix Depletion, and Tumor Immune Activation by Telmisartan and Diselenide-Paclitaxel Prodrug Loaded Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31292-31308. [PMID: 32551473 DOI: 10.1021/acsami.0c10416] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Extracellular matrix (ECM) accumulating in the tumor microenvironment (TME) is generated by tumor-associated fibroblasts. It can elevate interstitial fluid pressure and form dense barriers in tumor tissues. Consequently, nanocarriers are hindered from permeating into deeper tumor sites. Thus, the programmed drug-releasing nanoparticles, G(TM)PPSP, were developed for TME remodeling and breast cancer therapy. Gelatin nanoparticles were linked with platinum nanoparticles (PtNPs) to obtain G(TM)PPSP with a size of 214.0 ± 5.0 nm. Telmisartan (TM) was loaded in gelatin nanoparticles. Paclitaxel (PTX) was attached to PtNPs via a dual redox responsive diselenide bond. TM release was mediated by MMP-2 because of gelatin degradation in TME, and then intracellular PTX was released because of diselenide linkage fracture triggered by ROS or glutathione. ECM was depleted owing to TGF-β downregulation by TM and direct ablation by the photothermal effect of PtNPs. 4T1 tumor progression was inhibited by PTX chemotherapy, intracellular ROS scavenging of PtNPs, and photothermal therapy (PTT). The tumor spheroid penetration assay proved G(TM)PPSP could permeate into deep tumor regions when MMP-2 existed. In vivo antitumor experiments implied G(TM)PPSP with PTT could inhibit tumor growth effectively and remodel TME via ECM depletion and immunity activation, indicating the potential of G(TM)PPSP-based chemo-photothermal combination therapy for breast cancer treatment.
Collapse
Affiliation(s)
- Tianxu Fang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jun Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Tiantian Zuo
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Guangyu Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200120, P. R. China
| | - Yingxin Xu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yifan Yang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jie Yang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Qi Shen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
55
|
Chandna S, Thakur NS, Kaur R, Bhaumik J. Lignin–Bimetallic Nanoconjugate Doped pH-Responsive Hydrogels for Laser-Assisted Antimicrobial Photodynamic Therapy. Biomacromolecules 2020; 21:3216-3230. [DOI: 10.1021/acs.biomac.0c00695] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sanjam Chandna
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India
- Department of Microbial Biotechnology, Panjab University, South Campus, Sector 25, Chandigarh 160036, India
| | - Neeraj S. Thakur
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India
| | - Ravneet Kaur
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India
- Department of Microbial Biotechnology, Panjab University, South Campus, Sector 25, Chandigarh 160036, India
| | - Jayeeta Bhaumik
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India
| |
Collapse
|
56
|
Gold nanorods/polydopamine-capped hollow hydroxyapatite microcapsules as remotely controllable multifunctional drug delivery platform. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
57
|
Darwish WM, Abdoon AS, Shata MS, Elmansy M. Vincristine-loaded polymeric corona around gold nanorods for combination (chemo-photothermal) therapy of oral squamous carcinoma. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
58
|
Dong Z, Ye Z, Zhang Z, Xia K, Zhang P. Chiral Nematic Liquid Crystal Behavior of Core-Shell Hybrid Rods Consisting of Chiral Cellulose Nanocrystals Dressed with Non-chiral Conformal Polymeric Skins. Biomacromolecules 2020; 21:2376-2390. [PMID: 32364722 DOI: 10.1021/acs.biomac.0c00320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The current work investigates how the nanoscale conformal coating layers of non-chiral polymeric materials can influence the chiral nematic liquid crystal (CLC) behaviors of the rodlike cellulose nanocrystals (CNCs), the bio-derived nanomaterials that have attracted significant attention. For this, we developed strategies to coat the CNC rods on the single-particle level with a homogeneous bioinspired polydopamine (PDA) layer, leading to well-defined core-shell CNC@PDA rods with various PDA coating thicknesses and excellent colloidal stability. Comprehensive investigation revealed that the CNC@PDA hybrid nanorods in concentrated suspensions form well-defined nematic liquid crystal phases with clear phase separation behavior that depend on the rod concentrations and ionic strengths, typical of charged rods. Most intriguingly, the nematic LC phases formed by the CNC@PDA rods with the PDA coating thickness achieved herein are indeed the perfect CLC phases, which form following the classic pathway of nucleation and coalesce of chiral tactoids and have colorful chiral fingerprints standing out from the dark suspensions. The pitches of the CLC phase increase sharply with increasing PDA coating thicknesses and are significantly larger than those of the pristine CNCs. Such observations can be attributed to the blurring effects of the PDA coating on the intrinsic surface chiral features of CNC of whatever origins that drive the formation of the CLC phases, resulting in weakening chiral interactions between CNC@PDA rods. Besides benefiting the understanding of the long-sought origin of the CLC phases of the pristine CNC, the current work demonstrates the possibility of controlling the CLC phase behaviors of CNC by tuning the thickness of the coating materials and also serves as the first example of directly transferring the unique chirality of CNC to other non-chiral materials.
Collapse
Affiliation(s)
- Ziyue Dong
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
| | - Zihan Ye
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
| | - Zhenkun Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
| | - Ke Xia
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
| | - Pengjiao Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
| |
Collapse
|
59
|
Liang J, Jin X, Chen B, Hu J, Huang Q, Wan J, Hu Z, Wang B. Doxorubicin-loaded pH-responsive nanoparticles coated with chlorin e6 for drug delivery and synergetic chemo-photodynamic therapy. NANOTECHNOLOGY 2020; 31:195103. [PMID: 31978912 DOI: 10.1088/1361-6528/ab6fd5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The integration of chemotherapy drugs and photosensitizers to form versatile nanoplatforms for achieving chemo-photodynamic synergetic therapy has shown great superiority in tumor theranostic applications. We constructed pH-responsive nanoparticles (DOX/PB NPs) encapsulating the chemotherapeutic drug doxorubicin (DOX) into the cores of PLGA NPs coated with bovine serum albumin (BSA) via a water-in-oil (W/O/W) emulsion method. A simple and efficient chemo-photodynamic synergetic nanoplatform (DOX/PB@Ce6 NPs) was obtained by the adsorption of photosensitizer chlorin e6 (Ce6) onto the surface of the DOX/PB NPs. With optimal size, pH-responsive drug release behavior and excellent singlet oxygen production, the DOX/PB@Ce6 NPs have the potential to enhance anti-tumor efficiency. The cellular uptake, cytotoxicity, chemo-photodynamic synergetic effect and biocompatibility of the NPs were evaluated based on HeLa cells via in vitro experiments. The in vitro chemo-photodynamic synergetic experiments indicated that the DOX/PB@Ce6 NPs had remarkable cancer cell killing efficiency under laser irradiation. Notably, by hemolysis assay, all the NPs displayed excellent blood compatibility and were expected to be applicable for intravenous injection. In summary, the designed DOX/PB@Ce6 NPs multifunctional theranostic nanoplatform had excellent reactive oxygen species generation and would be a potential therapeutic platform for chemo-photodynamic synergetic therapy.
Collapse
Affiliation(s)
- Junlong Liang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Hu Q, Huang Z, Duan Y, Fu Z, Bin Liu. Reprogramming Tumor Microenvironment with Photothermal Therapy. Bioconjug Chem 2020; 31:1268-1278. [PMID: 32271563 DOI: 10.1021/acs.bioconjchem.0c00135] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The tumor microenvironment significantly influences cancer progression and therapeutic response. Reprogramming of tumor microenvironment has emerged as a strategy to assist conventional cancer treatment. In recent years, photothermal therapy has received considerable attention owing to its noninvasiveness, high temporal-spatial resolution, and minimal drug resistance. Apart from ablating cancer cells by generating heat upon light irradiation, photothermal therapy can also affect the tumor microenvironment, such as disrupting the tumor extracellular matrix and tumor vasculature. Moreover, cancer cell death by hyperthermia could potentially activate the immune system to fight against tumor. In this topical review, we focus on the recent progress of photothermal therapy based on tumor microenvironment remodeling, aiming to better guide the design of nanoparticles for cancer photoimmunotherapy.
Collapse
Affiliation(s)
- Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zemin Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yukun Duan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| |
Collapse
|
61
|
Liu Y, Li Z, Yin Z, Zhang H, Gao Y, Huo G, Wu A, Zeng L. Amplified Photoacoustic Signal and Enhanced Photothermal Conversion of Polydopamine-Coated Gold Nanobipyramids for Phototheranostics and Synergistic Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14866-14875. [PMID: 32153178 DOI: 10.1021/acsami.9b22979] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Light-responsive nanoprobes were suffering from the threat of high-dose laser irradiation, and it was important for constructing new nanoprobes for safe and efficient phototheranostics. Here, polydopamine (PDA)-coated gold nanobipyramids (AuNBPs@PDA) were synthesized for amplified photoacoustic (PA) signal and enhanced photothermal conversion with low-dose laser irradiation and then doxorubicin (DOX)-loaded AuNBPs@PDA-DOX nanoprobes were constructed for PA imaging-guided synergistic photothermal therapy (PTT) and chemotherapy. The AuNBPs@PDA nanoparticles possessed higher photothermal conversion efficiency (42.07%) and stronger PA signal than those of AuNBP nanoparticles, and the AuNBPs@PDA-DOX nanoprobes showed dual-responsive DOX release of pH and photothermal stimulation. With low-dose laser irradiation (1.0 W/cm2) and low-concentration AuNBPs@PDA-DOX (60 μg/mL), the 4T1 cell viability was reduced to about 5%, owing to the combination of PTT and chemotherapy, compared with 42.3% of single chemotherapy and 25.3% of single PTT. Moreover, by modeling 4T1 tumor-bearing nude mice, in vivo PA imaging was achieved and the tumors were completely inhibited, demonstrating the excellent synergistic effect of PTT/chemotherapy. Therefore, the developed AuNBPs@PDA-DOX nanoprobes can be used for phototheranostics and synergistic chemotherapy, achieving low-dose laser irradiation and high-efficient visualized theranostics.
Collapse
Affiliation(s)
- Yanhong Liu
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Ziwei Li
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Zhibin Yin
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Hongxin Zhang
- Medical College, Hebei University, Baoding 071002, P. R. China
| | - Yang Gao
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, P. R. China
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Guoyan Huo
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Leyong Zeng
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
62
|
Shen H, Huang X, Min J, Le S, Wang Q, Wang X, Dogan AA, Liu X, Zhang P, Draz MS, Xiao J. Nanoparticle Delivery Systems for DNA/RNA and their Potential Applications in Nanomedicine. Curr Top Med Chem 2020; 19:2507-2523. [PMID: 31775591 DOI: 10.2174/1568026619666191024170212] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 10/06/2019] [Accepted: 10/07/2019] [Indexed: 02/04/2023]
Abstract
The rapid development of nanotechnology has a great influence on the fields of biology, physiology, and medicine. Over recent years, nanoparticles have been widely presented as nanocarriers to help the delivery of gene, drugs, and other therapeutic agents with cellular targeting ability. Advances in the understanding of gene delivery and RNA interference (RNAi)-based therapy have brought increasing attention to understanding and tackling complex genetically related diseases, such as cancer, cardiovascular and pulmonary diseases, autoimmune diseases and infections. The combination of nanocarriers and DNA/RNA delivery may potentially improve their safety and therapeutic efficacy. However, there still exist many challenges before this approach can be practiced in the clinic. In this review, we provide a comprehensive summary on the types of nanoparticle systems used as nanocarriers, highlight the current use of nanocarriers in recombinant DNA and RNAi molecules delivery, and the current landscape of gene-based nanomedicine-ranging from diagnosis to therapeutics. Finally, we briefly discuss the biosafety concerns and limitations in the preclinical and clinical development of nanoparticle gene systems.
Collapse
Affiliation(s)
- Hua Shen
- Department of Cardiothoracic Surgery, Changzheng Hospital, Second Military Medical University, Fengyang Road 415#, Shanghai 200003, China.,Department of Cardiovascular Surgery, Institute of Cardiac Surgery, PLA General Hospital, Beijing, China
| | - Xiaoyi Huang
- Department of Pathology, Changhai Hospital, Second Military Medical University, Changhai Road 168#, Shanghai 200433, China
| | - Jie Min
- Department of Cardiothoracic Surgery, Bethune International Peace Hospital, Shijiazhuang, China
| | - Shiguan Le
- Department of Cardiothoracic Surgery, Changzheng Hospital, Second Military Medical University, Fengyang Road 415#, Shanghai 200003, China
| | - Qing Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Second Military Medical University, Fengyang Road 415#, Shanghai 200003, China
| | - Xi Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Second Military Medical University, Fengyang Road 415#, Shanghai 200003, China
| | - Asli Aybike Dogan
- Department of Bioengineering, Graduate School of Natural and Applied Sciences, Ege University, 35100 Bornova-Izmir, Turkey
| | - Xiangsheng Liu
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Pengfei Zhang
- Department of Central Laboratory, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mohamed S Draz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, United States.,Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, MA 02138, United States.,Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Jian Xiao
- Department of Cardiothoracic Surgery, Changzheng Hospital, Second Military Medical University, Fengyang Road 415#, Shanghai 200003, China
| |
Collapse
|
63
|
An Y, Zheng H, Yu Z, Sun Y, Wang Y, Zhao C, Ding W. Functioned hollow glass microsphere as a self-floating adsorbent: Rapid and high-efficient removal of anionic dye. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:120971. [PMID: 31421555 DOI: 10.1016/j.jhazmat.2019.120971] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 05/26/2023]
Abstract
Rapid, high-efficient adsorbents with efficient solid-liquid separation ability has broad application prospects in the treatment of dye wastewater. In this study, polydopamine and methacryloyloxyethyltrimethyl ammonium chloride were grafted onto hollow glass microspheres to prepare the enhanced polydopamine shell structure adsorbent with self-floating ability. Furthermore, the adsorbent achieves high-efficiency surface solid-liquid separation, which overcomes the disadvantages of the traditional separation methods. Characterizations of the as-synthesized microspheres were performed using various techniques such as SEM, EDS, BET, XPS, FT-IR, TGA and XRD. The adsorbent achieved rapid and high-efficient adsorption of alizarin cyanine green F via the interactions of electrostatic attracting and π-π stacking, and under the optimal experimental conditions, the removal efficiency of 0.10 m mol L-1 dye solution reaches 94.51%, and the adsorption process reaches equilibrium within 60 min. Adsorption isotherms and kinetics data of the adsorbent were well fitted by Langmuir isotherm and pseudo-second-order kinetic models, respectively. The as-synthesized adsorbent has excellent recyclability, and its adsorption performance can be maintained after 5 cycles of reuse. The self-floating adsorbent has great potential for the removal of dissolved contaminants and cost-effective separation.
Collapse
Affiliation(s)
- Yanyan An
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Huaili Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China.
| | - Zhishuang Yu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yongjun Sun
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yili Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Chun Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China
| | - Wei Ding
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
64
|
A photosensitizer-loaded zinc oxide-polydopamine core-shell nanotherapeutic agent for photodynamic and photothermal synergistic therapy of cancer cells. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
65
|
A simple strategy for chemo-photothermal ablation of breast cancer cells by novel smart gold nanoparticles. Photodiagnosis Photodyn Ther 2019; 28:25-37. [DOI: 10.1016/j.pdpdt.2019.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/22/2019] [Accepted: 08/12/2019] [Indexed: 12/25/2022]
|
66
|
Zhu Y, Xin N, Qiao Z, Chen S, Zeng L, Zhang Y, Wei D, Sun J, Fan H. Novel Tumor-Microenvironment-Based Sequential Catalytic Therapy by Fe(II)-Engineered Polydopamine Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43018-43030. [PMID: 31660723 DOI: 10.1021/acsami.9b17951] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Traditional tumor treatments suffer from severe side effects on account of their invasive process and inefficient outcomes. Featuring a unique physical microenvironment, the tumor microenvironment (TME) provides a new research direction for designing more efficient and safer treatment paradigms. In this study, we fabricated a polydopamine (PDA)-based TME-responsive nanosystem, which successfully integrates glucose degradation, the Fenton reaction, and photothermal therapy for efficient cancer therapy. Through a convenient hydrothermal method, Fe2+-doped Fe(II)-PDA nanoparticles were successfully fabricated, which show an excellent photothermal effect and interesting reactivity for the Fenton reaction. Instead of introducing toxic anticancer agents, natural glucose oxidase (GOD) was grafted on Fe(II)-PDA, forming a cascade catalytic nanomedicine for a specific response to the glucose in TME. GOD grafted on Fe(II)-PDA-GOD is ought to catalyze abundant glucose in TME into gluconic acid and H2O2. The concomitant generation of H2O2 can enhance the efficiency of the sequential Fenton reaction, producing abundant hydroxyl radicals (•OH) for cancer therapy. Besides, the overconsumption of intratumoral glucose also could inhibit tumor growth by reducing the energy supply. Taken together, the in vitro and in vivo antitumor studies of such TME-based Fe(II)-PDA-GOD nanosystems displayed a favorable synergistic potency of glucose degradation, the Fenton reaction, and photothermal therapy against tumor growth. Our design expands the biological application of multifunctional PDA while providing novel strategies toward effective antitumor treatment with minimal side effects.
Collapse
Affiliation(s)
- Yuda Zhu
- National Engineering Research Center for Biomaterials , Sichuan University , Sichuan , Chengdu 610064 , P. R. China
| | - Nini Xin
- National Engineering Research Center for Biomaterials , Sichuan University , Sichuan , Chengdu 610064 , P. R. China
| | - Zi Qiao
- National Engineering Research Center for Biomaterials , Sichuan University , Sichuan , Chengdu 610064 , P. R. China
| | - Suping Chen
- National Engineering Research Center for Biomaterials , Sichuan University , Sichuan , Chengdu 610064 , P. R. China
| | - Lingwan Zeng
- National Engineering Research Center for Biomaterials , Sichuan University , Sichuan , Chengdu 610064 , P. R. China
| | - Yusheng Zhang
- National Engineering Research Center for Biomaterials , Sichuan University , Sichuan , Chengdu 610064 , P. R. China
| | - Dan Wei
- National Engineering Research Center for Biomaterials , Sichuan University , Sichuan , Chengdu 610064 , P. R. China
| | - Jing Sun
- National Engineering Research Center for Biomaterials , Sichuan University , Sichuan , Chengdu 610064 , P. R. China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials , Sichuan University , Sichuan , Chengdu 610064 , P. R. China
| |
Collapse
|
67
|
Liang J, Chen B, Hu J, Huang Q, Zhang D, Wan J, Hu Z, Wang B. pH and Thermal Dual-Responsive Graphene Oxide Nanocomplexes for Targeted Drug Delivery and Photothermal-Chemo/Photodynamic Synergetic Therapy. ACS APPLIED BIO MATERIALS 2019; 2:5859-5871. [DOI: 10.1021/acsabm.9b00835] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | | | - Dianbo Zhang
- Shandong Non-metallic Materials Institute, Jinan 250031, China
| | | | | | | |
Collapse
|
68
|
Wang J, Zhang W, Li S, Miao D, Qian G, Su G. Engineering of Porous Silica Coated Gold Nanorods by Surface-Protected Etching and Their Applications in Drug Loading and Combined Cancer Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14238-14247. [PMID: 31600438 DOI: 10.1021/acs.langmuir.9b01891] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Core-shell nanostructures, specifically gold nanorods coated with porous silica (GNR@p-SiO2), were successfully fabricated by surface-protected etching. The nanostructures, photothermal effects, drug loading and drug release behaviors, cellular uptake, and combined chemo-photothermal therapy were investigated. The results showed that the as-prepared GNR@p-SiO2 had a uniform porous silica outer layer. Etching process could be modulated by adjusting the etching time, concentrations of etching agents, and concentrations of protective agents. With doxorubicin (DOX) as the model drug, the drug loading capacity reached 18.9%, which was dependent on the DOX concentrations. The drug release profiles were dual stimulus-responsive to pH and laser irradiation. In addition, the GNR@p-SiO2 nanoparticles were biocompatible and effectively internalized by cancer cells. Compared with chemotherapy or photothermal therapy administered individually, combined chemo-photothermal therapy using GNR@p-SiO2 exhibited higher efficiency in killing cancer cells both in vitro and in vivo. Therefore, surface-protected etching is a powerful method for preparing core-shell nanostructures capped with mesoporous silica for combined cancer chemo-photothermal therapy.
Collapse
Affiliation(s)
- Jinli Wang
- Department of Pharmacy , Affiliated Hospital of Nantong University , Nantong 226001 , P. R. China
| | - Wei Zhang
- School of Pharmacy , Nantong University , Nantong 226001 , P. R. China
| | - Shuhuan Li
- Department of Food Science and Engineering , Shandong Agriculture and Engineering University , Jinan 251100 , P. R. China
| | - Dandan Miao
- School of Pharmacy , Nantong University , Nantong 226001 , P. R. China
| | - Guopei Qian
- School of Pharmacy , Nantong University , Nantong 226001 , P. R. China
| | - Gaoxing Su
- School of Pharmacy , Nantong University , Nantong 226001 , P. R. China
| |
Collapse
|
69
|
Wang S, Liu J, Goh CC, Ng LG, Liu B. NIR-II-Excited Intravital Two-Photon Microscopy Distinguishes Deep Cerebral and Tumor Vasculatures with an Ultrabright NIR-I AIE Luminogen. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904447. [PMID: 31523869 DOI: 10.1002/adma.201904447] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/29/2019] [Indexed: 05/26/2023]
Abstract
Intravital fluorescence imaging of vasculature morphology and dynamics in the brain and in tumors with large penetration depth and high signal-to-background ratio (SBR) is highly desirable for the study and theranostics of vascular-related diseases and cancers. Herein, a highly bright fluorophore (BTPETQ) with long-wavelength absorption and aggregation-induced near-infrared (NIR) emission (maximum at ≈700 nm) is designed for intravital two-photon fluorescence (2PF) imaging of a mouse brain and tumor vasculatures under NIR-II light (1200 nm) excitation. BTPETQ dots fabricated via nanoprecipitation show uniform size of around 42 nm and a high quantum yield of 19 ± 1% in aqueous media. The 2PF imaging of the mouse brain vasculatures labeled by BTPETQ dots reveals a 3D blood vessel network with an ultradeep depth of 924 µm. In addition, BTPETQ dots show enhanced 2PF in tumor vasculatures due to their unique leaky structures, which facilitates the differentiation of normal blood vessels from tumor vessels with high SBR in deep tumor tissues. Moreover, the extravasation and accumulation of BTPETQ dots in deep tumor (more than 900 µm) is visualized under NIR-II excitation. This study highlights the importance of developing NIR-II light excitable efficient NIR fluorophores for in vivo deep tissue and high contrast tumor imaging.
Collapse
Affiliation(s)
- Shaowei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Jie Liu
- Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211800, China
| | - Chi Ching Goh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
70
|
Zhi X, Jiang Y, Xie L, Li Y, Fang CJ. Gold Nanorods Functionalized with Cathepsin B Targeting Peptide and Doxorubicin for Combinatorial Therapy against Multidrug Resistance. ACS APPLIED BIO MATERIALS 2019; 2:5697-5706. [DOI: 10.1021/acsabm.9b00755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaomin Zhi
- School of Pharmaceutics, Capital Medical University, Beijing 100069, China
| | - Yuqian Jiang
- School of Pharmaceutics, Capital Medical University, Beijing 100069, China
| | - Linlin Xie
- School of Pharmaceutics, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Chen-Jie Fang
- School of Pharmaceutics, Capital Medical University, Beijing 100069, China
| |
Collapse
|
71
|
Liu X, Liao G, Zou L, Zheng Y, Yang X, Wang Q, Geng X, Li S, Liu Y, Wang K. Construction of Bio/Nanointerfaces: Stable Gold Nanoparticle Bioconjugates in Complex Systems. ACS APPLIED MATERIALS & INTERFACES 2019; 11:40817-40825. [PMID: 31556587 DOI: 10.1021/acsami.9b13659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The real application of DNA-functionalized gold nanoparticles (DNA-Au NPs) was limited by decreased stability and irreversible aggregation in high-ionic strength solutions and complex systems. Therefore, exploring a kind of DNA-Au NPs with excellent stability in high-ionic strength solutions and complex systems is challenging and significant. Herein, a novel universal bioconjugate strategy for constructing ultrastable DNA-Au NPs was designed based on the combination of polydopamine (PDA) shell and DNA linker. The obtained DNA-linked Au@polydopamine nanoparticles (DNA-Au@PDA NPs) showed colloidal stability in high-ionic strength solution and complex systems (such as human serum and cell culture supernatant). Moreover, the nanoparticles still maintained good dispersion after multiple freeze-thaw cycles. The high stability of DNA-Au@PDA NPs may be attributed to increasing the electrostatic and steric repulsions among nanoparticles through the effect of both PDA shell and DNA linker on Au@PDA NPs. For investigating the application of such nanoparticles, a highly sensitive assay for miRNA 141 detection was developed using DNA-Au@PDA NPs coupled with dynamic light scattering (DLS). Comparing with the regular DNA-Au NPs, DNA-Au@PDA NPs could detect as low as 50 pM miRNA 141 even in human whole serum. Taken together, the features of Bio/Nanointerface make the nanoparticle suitable for various applications in harsh biological and environmental conditions due to the stability. This work may provide a universal modification method for obtaining stable nanoparticles.
Collapse
Affiliation(s)
- Xiaofeng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha 410082 , China
| | - Guofu Liao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha 410082 , China
| | - Liyuan Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha 410082 , China
| | - Yan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha 410082 , China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha 410082 , China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha 410082 , China
| | - Xiuhua Geng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha 410082 , China
| | - Shaoyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha 410082 , China
| | - Yaqin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha 410082 , China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha 410082 , China
| |
Collapse
|
72
|
Ambekar RS, Kandasubramanian B. A polydopamine-based platform for anti-cancer drug delivery. Biomater Sci 2019; 7:1776-1793. [PMID: 30838354 DOI: 10.1039/c8bm01642a] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cancer is the second leading cause of death in the world with around 9.6 million deaths in 2018, approximately 70% of which occurred in the middle- and low-income countries; moreover, the economic impact of cancer is significant and escalating day by day. The total annual economic cost of cancer treatment in 2010 was estimated at approximately US$ 1.16 trillion. Researchers have explored cancer mitigation therapies such as chemo-thermal therapy, chemo-photothermal therapy and photodynamic-photothermal therapy. These combinational therapies facilitate better control on the tunability of the carrier for effectively diminishing cancer cells than individual therapies such as chemotherapy, photothermal therapy and targeted therapy. All these therapies come under novel drug delivery systems in which anti-cancer drugs attack the cancerous cells due to various stimuli (e.g. pH, thermal, UV, IR, acoustic and magnetic)-responsive properties of the anti-cancer drug carriers. Compared to conventional drug delivery systems, the novel drug delivery systems have several advantages such as targeted drug release, sustained and consistent blood levels within the therapeutic window, and decreased dosing frequency. Among the numerous polymeric carriers developed for drug delivery, polydopamine has been found to be more suitable as a carrier for these drug delivery functions due to its easy and cost-effective fabrication, excellent biocompatibility, multi-drug carrier capacity and stimuli sensitivity. Therefore, in this review, we have explored polydopamine-based carriers for anti-cancer drug delivery systems to mitigate cancer and simultaneously discussed basic synthesis routes for polydopamine.
Collapse
Affiliation(s)
- Rushikesh S Ambekar
- Rapid Prototype & Electrospinning Lab, Department of Metallurgical and Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune-411025, India.
| | | |
Collapse
|
73
|
Mbalaha Z, Edwards PR, Birch DJ, Chen Y. Synthesis of Small Gold Nanorods and Their Subsequent Functionalization with Hairpin Single Stranded DNA. ACS OMEGA 2019; 4:13740-13746. [PMID: 31497691 PMCID: PMC6714599 DOI: 10.1021/acsomega.9b01200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Small gold nanorods have a significantly large absorption/scattering ratio and are especially beneficial in exploiting photothermal effects, for example in photothermal therapy and remote drug release. This work systematically investigates the influence of growth conditions on the size, growth yield, and stability of small gold nanorods. The silver-assisted seed-mediated growth method was optimized to synthesize stable small gold nanorods with a high growth yield (>85%). Further study on the influence of silver ions on the growth facilitates the growth of small gold nanorods with tunable longitudinal surface plasmon resonance from 613 to 912 nm, with average dimensions of 13-25 nm in length and 5-6 nm in diameter. Moreover, the small gold nanorods were successfully functionalized with thiol-modified hairpin oligonucleotides (hpDNA) labeled with Cy5. Fluorescence intensity measurements show an increase in the presence of target DNA and an enhanced signal/background ratio when the longitudinal surface plasmon resonance of small gold nanorods overlaps with the excitation and emission wavelength of Cy5. This coincides with a reduced fluorescence lifetime of Cy5 in the hairpin structure, indicating surface plasmon resonance-enhanced energy transfer to the small gold nanorods. This study may provide insight on the synthesis and functionalization of small gold nanorods in biomedical sensing and therapy.
Collapse
Affiliation(s)
- Zendesha
S. Mbalaha
- Department of Physics, Scottish Universities
Physics Alliance, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, U.K.
| | - Paul R. Edwards
- Department of Physics, Scottish Universities
Physics Alliance, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, U.K.
| | - David J.S. Birch
- Department of Physics, Scottish Universities
Physics Alliance, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, U.K.
| | - Yu Chen
- Department of Physics, Scottish Universities
Physics Alliance, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, U.K.
| |
Collapse
|
74
|
Yan S, Huang Q, Chen J, Song X, Chen Z, Huang M, Xu P, Zhang J. Tumor-targeting photodynamic therapy based on folate-modified polydopamine nanoparticles. Int J Nanomedicine 2019; 14:6799-6812. [PMID: 31692522 PMCID: PMC6711554 DOI: 10.2147/ijn.s216194] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/27/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Photodynamic therapy (PDT), a clinical anticancer therapeutic modality, has a long history in clinical cancer treatments since the 1970s. However, PDT has not been widely used largely because of metabolic problems and off-target phototoxicities of the current clinical photosensitizers. PURPOSE The objective of the study is to develop a high-efficiency and high-specificity carrier to precisely deliver photosensitizers to tumor sites, aiming at addressing metabolic problems, as well as the systemic damages current clinical photosensitizers are known to cause. METHODS We synthesized a polydopamine (PDA)-based carrier with the modification of folic acid (FA), which is to target the overexpressed folate receptors on tumor surfaces. We used this carrier to load a cationic phthalocyanine-type photosensitizer (Pc) and generated a PDA-FA-Pc nanomedicine. We determined the antitumor effects and the specificity to tumor cell lines in vitro. In addition, we established human cancer-xenografted mice models to evaluate the tumor-targeting property and anticancer efficacies in vivo. RESULTS Our PDA-FA-Pc nanomedicine demonstrated a high stability in normal physiological conditions, however, could specifically release photosensitizers in acidic conditions, eg, tumor microenvironment and lysosomes in cancer cells. Additionally, PDA-FA-Pc nanomedicine demonstrated a much higher cellular uptake and phototoxicity in cancer cell lines than in healthy cell lines. Moreover, the in vivo imaging data indicated excellent tumor-targeting properties of PDA-FA-Pc nanomedicine in human cancer-xenografted mice. Lastly, PDA-FA-Pc nanomedicine was found to significantly suppress tumor growth within two human cancer-xenografted mice models. CONCLUSION Our current study not only demonstrates PDA-FA-Pc nanomedicine as a highly potent and specific anticancer agent, but also suggests a strategy to address the metabolic and specificity problems of clinical photosensitizers.
Collapse
Affiliation(s)
- Shufeng Yan
- Medical Plant Exploitation and Utilization Engineering Research Center, Sanming University, Sanming, Fujian365004, People’s Republic of China
| | - Qingqing Huang
- Medical Plant Exploitation and Utilization Engineering Research Center, Sanming University, Sanming, Fujian365004, People’s Republic of China
| | - Jincan Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian350002, People’s Republic of China
| | - Xiaorong Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian350002, People’s Republic of China
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian350002, People’s Republic of China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian350116, People’s Republic of China
| | - Peng Xu
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore138673, Singapore
| | - Juncheng Zhang
- Medical Plant Exploitation and Utilization Engineering Research Center, Sanming University, Sanming, Fujian365004, People’s Republic of China
| |
Collapse
|
75
|
Feng Z, Yu X, Jiang M, Zhu L, Zhang Y, Yang W, Xi W, Li G, Qian J. Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor. Theranostics 2019; 9:5706-5719. [PMID: 31534513 PMCID: PMC6735390 DOI: 10.7150/thno.31332] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 06/16/2019] [Indexed: 02/07/2023] Open
Abstract
Rationale: Cerebrovascular diseases, together with malignancies, still pose a huge threat to human health nowadays. With the advantages of its high spatial resolution and large penetration depth, fluorescence bioimaging in the second near-infrared spectral region (NIR-II, 900-1700 nm) and its related imaging-guided therapy based on biocompatible fluorescence dyes have become a promising theranostics method. Methods: The biocompatibility of IR-820 we used in NIR-II fluorescence bioimaging was verified by long-term observation. The model of the mouse with a cranial window, the mouse model of middle cerebral artery occlusion (MCAO) and a subcutaneous xenograft mouse model of bladder tumor were established. NIR-II fluorescence cerebrovascular functional imaging was carried out by IR-820 assisted NIR-II fluorescence microscopy. Bladder tumor was treated by NIR-II fluorescence imaging-guided photothermal therapy. Results: We have found that IR-820 has considerable NIR-II fluorescence intensity, and shows increased brightness in serum than in water. Herein, we achieved real time and in vivo cerebrovascular functional imaging of mice with high spatial resolution and large penetration depth, based on IR-820 assisted NIR-II fluorescence microscopy. In addition, IR-820 was successfully employed for NIR-II fluorescence imaging and photothermal therapy of tumor in vivo, and the subcutaneous tumors were inhibited obviously or eradicated completely. Conclusion: Due to the considerable fluorescence intensity in NIR-II spectral region and the good photothermal effect, biocompatible and excretable IR-820 holds great potentials for functional angiography and cancer theranostics in clinical practice.
Collapse
Affiliation(s)
- Zhe Feng
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research; JORCEP (Sino-Swedish Joint Research Center of Photonics), Zhejiang University, Hangzhou, 310058, China
| | - Xiaoming Yu
- Department of Urology, Sir Run-Run Shaw Hospital College of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Minxiao Jiang
- Department of Urology, Sir Run-Run Shaw Hospital College of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Liang Zhu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), Zhejiang University, Hangzhou, 310058, China
| | - Yi Zhang
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Yang
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wang Xi
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), Zhejiang University, Hangzhou, 310058, China
| | - Gonghui Li
- Department of Urology, Sir Run-Run Shaw Hospital College of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research; JORCEP (Sino-Swedish Joint Research Center of Photonics), Zhejiang University, Hangzhou, 310058, China
- Department of Urology, Sir Run-Run Shaw Hospital College of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
76
|
Zeng J, Shi D, Gu Y, Kaneko T, Zhang L, Zhang H, Kaneko D, Chen M. Injectable and Near-Infrared-Responsive Hydrogels Encapsulating Dopamine-Stabilized Gold Nanorods with Long Photothermal Activity Controlled for Tumor Therapy. Biomacromolecules 2019; 20:3375-3384. [DOI: 10.1021/acs.biomac.9b00600] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jinfeng Zeng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Dongjian Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yanglin Gu
- The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Tatsuo Kaneko
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Li Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Hongji Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Daisaku Kaneko
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Mingqing Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
77
|
Xiong Y, Xu Z, Li Z. Polydopamine-Based Nanocarriers for Photosensitizer Delivery. Front Chem 2019; 7:471. [PMID: 31355178 PMCID: PMC6639787 DOI: 10.3389/fchem.2019.00471] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/19/2019] [Indexed: 01/08/2023] Open
Abstract
Photodynamic therapy (PDT) has emerged as a non-invasive modality for treating tumors while a photosensitizer (PS) plays an indispensable role in PDT. Nevertheless, free PSs are limited by their low light stability, rapid blood clearance, and poor water solubility. Constructing a nanocarrier delivering PSs is an appealing and potential way to solve these issues. As a melanin-like biopolymer, polydopamine (PDA) is widely utilized in biomedical applications (drug delivery, tissue engineering, and cancer therapy) for its prominent properties, including favorable biocompatibility, easy preparation, and versatile functionality. PDA-based nanocarriers are thus leveraged to overcome the inherent shortcomings of free PSs. In this Mini-Review, we will firstly present an overview on the recent developments of PDA nanocarriers delivering PSs. Then, we introduce three distinctive strategies developed to combine PSs with PDA nanocarriers. The advantages and disadvantages of each strategy will be discussed. Finally, the current challenges and future opportunities of PDA-based PS nanocarriers will also be addressed.
Collapse
Affiliation(s)
- Yuxuan Xiong
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education, Hubei University, Wuhan, China
| | - Zushun Xu
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education, Hubei University, Wuhan, China
| | - Zifu Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Institute of Biotechnology, East Lake High Tech Zone, Wuhan, China
| |
Collapse
|
78
|
Wang Y, Wu W, Liu J, Manghnani PN, Hu F, Ma D, Teh C, Wang B, Liu B. Cancer-Cell-Activated Photodynamic Therapy Assisted by Cu(II)-Based Metal-Organic Framework. ACS NANO 2019; 13:6879-6890. [PMID: 31194910 DOI: 10.1021/acsnano.9b01665] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Activation of photosensitizers (PSs) in targeted lesion and minimization of reactive oxygen species (ROS) depletion by endogenous antioxidants constitute promising approaches to perform highly effective image-guided photodynamic therapy (PDT) with minimal non-specific phototoxicity. Traditional strategies to fabricate controllable PS platforms rely on molecular design, which requires specific modification of each PS before PDT. Therefore, construction of a general tumor-responsive PDT platform with minimum ROS loss from endogenous antioxidant, typically glutathione (GSH), is highly desirable. Herein, MOF-199, a Cu(II) carboxylate-based metal-organic framework (MOF), is selected to serve as an inert carrier to load PSs with prohibited photosensitization during delivery. After cellular uptake, Cu (II) in the MOFs effectively scavenges endogenous GSH, concomitantly induces decomposition of MOF-199 to release the encapsulated PSs, and recovers their ROS generation. In vitro and in vivo experiments demonstrate highly effective cancer cell ablation and anticancer PDT with diminished normal cell phototoxicity. This strategy is generally applicable to PSs with both aggregation-induced emission and aggregation-caused quenching to implement activatable and enhanced image-guided PDT.
Collapse
Affiliation(s)
- Yuanbo Wang
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| | - Wenbo Wu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| | - Jingjing Liu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| | - Purnima Naresh Manghnani
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| | - Fang Hu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| | - Dou Ma
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , 5 South Zhongguancun Street , Beijing 100081 , P. R. China
| | - Cathleen Teh
- Institute of Molecular and Cell Biology , 61 Biopolis Drive , Singapore 138673 , Singapore
| | - Bo Wang
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , 5 South Zhongguancun Street , Beijing 100081 , P. R. China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| |
Collapse
|
79
|
Sotoma S, Harada Y. Polydopamine Coating as a Scaffold for Ring-Opening Chemistry To Functionalize Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8357-8362. [PMID: 31194560 DOI: 10.1021/acs.langmuir.9b00762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gold nanoparticles (GNPs) are promising nanomaterials for various biomedical applications owing to their remarkable optical properties and biocompatibility. However, their interfacial properties require modification for practical use in such applications. Herein, a simple method for modifying the surface of GNPs with polydopamine (PDA) to serve as a scaffold for the subsequent polymerization of hyperbranched polyglycerol (HPG) is reported. GNPs were first coated with PDA (GNP-PDA), and then ring-opening chemistry was used at this interface to modify GNP-PDA with HPG (GNP-PDA-HPG). The produced GNP-PDA-HPG shows not only excellent dispersibility in a salt-containing solution but also strong resistance to aggregation in high- and low-pH solutions, even after 10 days. Moreover, we demonstrate a one-pot method for functionalizing GNP-PDA with HPG and either COOH or trimethylammonium. Finally, we conjugated the trimethylammonium-functionalized GNP-PDA-HPG with fluorescent nanodiamonds to investigate the photothermal ability of the functional GNPs.
Collapse
Affiliation(s)
- Shingo Sotoma
- Japan Society for the Promotion of Science (JSPS) , 5-3-1 Chiyoda , Tokyo 102-0083 , Japan
| | | |
Collapse
|
80
|
You YH, Lin YF, Nirosha B, Chang HT, Huang YF. Polydopamine-coated gold nanostar for combined antitumor and antiangiogenic therapy in multidrug-resistant breast cancer. Nanotheranostics 2019; 3:266-283. [PMID: 31263658 PMCID: PMC6584135 DOI: 10.7150/ntno.36842] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/25/2019] [Indexed: 01/19/2023] Open
Abstract
Cancer combination therapy can improve treatment efficacy and is widely utilized in the biomedical field. In this paper, we propose a facile strategy to develop a polydopamine (PDA)-coated Au nanostar (NS@PPFA) as a multifunctional nanoplatform for cancer targeting and combination therapy. The Au nanostar demonstrated high photothermal conversion efficiency because of the tip-enhanced plasmonic effect. Modification of PDA and folic acid on the NS surface improved its drug-loading efficiency and targeting capability. In vitro, compared with nontargeted cells, targeted breast cancer MCF-7 cells demonstrated efficient uptake of chemodrug-loaded NS-D@PPFA through the receptor-mediated endocytosis pathway. In combination with the photothermal effect induced by near-infrared laser irradiation, controlled payload release could be activated in response to both internal (acid) and external (photothermal) stimuli, leading to an efficient chemo-photothermal action against MCF-7 cells and drug-resistant MCF-7/ADR cells. By contrast, cellular damage was less obvious in normal HaCaT (human skin keratinocytes) and NIH-3T3 cells (murine fibroblasts). In addition, payload-free NS@PPFA exhibited a high binding affinity (Kd = 2.68 × 10-10 M) toward vascular endothelial growth factor (VEGF-A165), which was at least two orders of magnitude stronger than that of highly abundant plasma proteins, such as human serum albumin. Furthermore, in vitro study showed that NS@PPFA could effectively inhibit VEGF-A165-induced proliferation, migration, and tube formation of human umbilical vein endothelial cells, resulting in additional therapeutic benefits for eradicating tumors through a simultaneous antiangiogenic action in chemo-photothermal treatment. The combined treatment also exhibited the lowest microvessel density, leading to a potent antitumor effect in vivo. Overall, our “all-in-one” nanoplatform is highly promising for tumor therapy, enabling effective treatment against multidrug-resistant cancers.
Collapse
Affiliation(s)
- You-Hong You
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Yu-Feng Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC.,Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Bhanu Nirosha
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Yu-Fen Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| |
Collapse
|
81
|
Liang J, Huang Q, Hua C, Hu J, Chen B, Wan J, Hu Z, Wang B. pH‐Responsive Nanoparticles Loaded with Graphene Quantum Dots and Doxorubicin for Intracellular Imaging, Drug Delivery and Efficient Cancer Therapy. ChemistrySelect 2019. [DOI: 10.1002/slct.201803807] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Junlong Liang
- Department of Polymer MaterialsZhejiang Sci-Tech University Hangzhou 310018 China
| | - Qianwei Huang
- Department of Polymer MaterialsZhejiang Sci-Tech University Hangzhou 310018 China
| | - Chenxiang Hua
- Department of Polymer MaterialsZhejiang Sci-Tech University Hangzhou 310018 China
| | - Jinhua Hu
- Department of Polymer MaterialsZhejiang Sci-Tech University Hangzhou 310018 China
| | - Biling Chen
- Department of Polymer MaterialsZhejiang Sci-Tech University Hangzhou 310018 China
| | - Junmin Wan
- Key Laboratory of Advanced Textile Materials and Manufacturing TechnologyMinistry of EducationZhejiang Sci-Tech University Hangzhou 310018 China
| | - Zhiwen Hu
- Key Laboratory of Advanced Textile Materials and Manufacturing TechnologyMinistry of EducationZhejiang Sci-Tech University Hangzhou 310018 China
| | - Bing Wang
- Department of Polymer MaterialsZhejiang Sci-Tech University Hangzhou 310018 China
| |
Collapse
|
82
|
Li B, Wang Y, He J. Gold Nanorods-Based Smart Nanoplatforms for Synergic Thermotherapy and Chemotherapy of Tumor Metastasis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7800-7811. [PMID: 30720270 DOI: 10.1021/acsami.8b21784] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The combination therapy of photothermal therapy and chemotherapy as a promising strategy has drawn extensive attention by overcoming the limitations of conventional treatments in tumor therapy. Gold nanorods-based nanoplatforms were herein designed by integrating doxorubicin (DOX)- and polydopamine-coated gold nanorods (GNRs@PDA) for tumor metastasis inhibition and multifunctional drug delivery. The GNRs@PDA-poly(ethylene glycol) (PEG)-DOX nanocomplex showed robust stability and excellent near-infrared (NIR) photothermal conversion efficiency under laser irradiation. The release of loaded DOX from GNRs@PDA-PEG-DOX nanocomposites was improved in tumor microenvironments. Furthermore, the PDA-functionalized GNR nanocomposites were expected to be potential photoacoustic imaging agents for imaging-guided tumor therapy. Upon NIR laser irradiation, the efficiency of tumor inhibition of GNRs@PDA-PEG-DOX is greater than that of the other group in vitro and in vivo, which was confirmed by immunohistochemistry staining, demonstrating a promising strategy for suppression of tumor metastasis and low long-term systemic toxicity. These results illustrated a promising strategy of tailor-made GNRs@PDA-PEG-DOX nanoplatforms for ablation of tumor and suppression of tumor metastasis in clinical application.
Collapse
Affiliation(s)
- Bin Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences , Nanjing University , Nanjing , Jiangsu Province 210093 , China
| | - Yiqing Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences , Nanjing University , Nanjing , Jiangsu Province 210093 , China
| | - Jian He
- Department of Radiology, Nanjing Drum Tower Hospital , The Affiliated Hospital of Nanjing University Medical School , No. 321 Zhongshan Road , Nanjing 210008 , China
| |
Collapse
|
83
|
Zhang Z, Ji Y. Mesoporous Manganese Dioxide Coated Gold Nanorods as a Multiresponsive Nanoplatform for Drug Delivery. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05331] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zheng Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, People’s Republic of China
| | - Yuanhui Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, People’s Republic of China
| |
Collapse
|
84
|
Miao Y, Zhao X, Qiu Y, Liu Z, Yang W, Jia X. Metal–Organic Framework-Assisted Nanoplatform with Hydrogen Peroxide/Glutathione Dual-Sensitive On-Demand Drug Release for Targeting Tumors and Their Microenvironment. ACS APPLIED BIO MATERIALS 2019; 2:895-905. [DOI: 10.1021/acsabm.8b00741] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yalei Miao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xubo Zhao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yudian Qiu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhongyi Liu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjing Yang
- Department of Anesthesiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450002, China
| | - Xu Jia
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| |
Collapse
|
85
|
Khlebtsov BN, Burov AM, Pylaev TE, Khlebtsov NG. Polydopamine-coated Au nanorods for targeted fluorescent cell imaging and photothermal therapy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:794-803. [PMID: 31019866 PMCID: PMC6466791 DOI: 10.3762/bjnano.10.79] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/07/2019] [Indexed: 05/06/2023]
Abstract
Au nanorods (AuNRs) have attracted a great interest as a platform for constructing various composite core/shell nanoparticles for theranostics applications. However, the development of robust methods for coating AuNRs with a biocompatible shell of high loading capacity and with functional groups still remains challenging. Here, we coated AuNRs with a polydopamine (PDA) shell and functionalized AuNR-PDA particles with folic acid and rhodamine 123 (R123) to fabricate AuNR-PDA-R123-folate nanocomposites. To the best of our knowledge, such AuNR-PDA-based composites combining fluorescent imaging and plasmonic phothothermal abilities have not been reported previously. The multifunctional nanoparticles were stable in cell buffer, nontoxic and suitable for targeted fluorescent imaging and photothermal therapy of cancer cells. We demonstrate the enhanced accumulation of folate-functionalized nanoparticles in folate-positive HeLa cells in contrast to the folate-negative HEK 293 cells using fluorescent microscopy. The replacement of folic acid with polyethylene glycol (PEG) leads to a decrease in nanoparticle uptake by both folate-positive and folate-negative cells. We performed NIR light-mediated targeted phototherapy using AuNR-PDA-R123-folate and obtained a remarkable cancer cell killing efficiency in vitro in comparison with only weak-efficient nontargeted PEGylated nanoparticles. Our work illustrates that AuNR-PDA could be a promising nanoplatform for multifunctional tumor theranostics in the future.
Collapse
Affiliation(s)
- Boris Nikolayevich Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia
- Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410026, Russia
| | - Andrey Mikhailovich Burov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Timofey Evgenevich Pylaev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Nikolai G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia
- Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410026, Russia
| |
Collapse
|
86
|
Gold Nanorods as Theranostic Nanoparticles for Cancer Therapy. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
87
|
Sun Y, Davis EW. Facile fabrication of polydopamine nanotubes for combined chemo-photothermal therapy. J Mater Chem B 2019; 7:6828-6839. [DOI: 10.1039/c9tb01338e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polydopamine nanoparticles with higher drug loading capacity and enhanced photothermal behavior.
Collapse
Affiliation(s)
- Yuzhe Sun
- Materials Engineering Program
- Auburn University
- Auburn
- USA
| | | |
Collapse
|
88
|
Chen X, Yi Z, Chen G, Ma X, Su W, Cui X, Li X. DOX-assisted functionalization of green tea polyphenol nanoparticles for effective chemo-photothermal cancer therapy. J Mater Chem B 2019. [DOI: 10.1039/c9tb00751b] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Green tea polyphenol nanoparticles with chemotherapeutic and photothermal performance exhibited effective anti-tumor effects in vivo with intravenous injection.
Collapse
Affiliation(s)
- Xiangyu Chen
- Engineering Research Center in Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
- National Engineering Research Center for Biomaterials
| | - Zeng Yi
- Engineering Research Center in Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
- National Engineering Research Center for Biomaterials
| | - Guangcan Chen
- Engineering Research Center in Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
- National Engineering Research Center for Biomaterials
| | - Xiaomin Ma
- Engineering Research Center in Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
- National Engineering Research Center for Biomaterials
| | - Wen Su
- Engineering Research Center in Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
- National Engineering Research Center for Biomaterials
| | - Xinxing Cui
- Engineering Research Center in Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
- National Engineering Research Center for Biomaterials
| | - Xudong Li
- Engineering Research Center in Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
- National Engineering Research Center for Biomaterials
| |
Collapse
|
89
|
Shao N, Qi Y, Lu H, He D, Li B, Huang Y. Photostability Highly Improved Nanoparticles Based on IR-780 and Negative Charged Copolymer for Enhanced Photothermal Therapy. ACS Biomater Sci Eng 2018; 5:795-804. [DOI: 10.1021/acsbiomaterials.8b01558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nannan Shao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yanxin Qi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Hongtong Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Dongyun He
- Department of Gynaecology and Obstetrics, China-Japan Union Hospital of Jilin University, Changchun 130022, P.R. China
| | - Bin Li
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
90
|
Tan F, Yang Y, Xie X, Wang L, Deng K, Xia X, Yang X, Huang H. Prompting peroxidase-like activity of gold nanorod composites by localized surface plasmon resonance for fast colorimetric detection of prostate specific antigen. Analyst 2018; 143:5038-5045. [PMID: 30234206 DOI: 10.1039/c8an00664d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The interaction between incident light and surface electrons in conductive nanoparticles produces localized plasmon oscillations with a resonant frequency that strongly depends on the composition, size, geometry, and dielectric environment. Hybrid heterostructure materials combining two or more materials in one structure represent a powerful way to achieve unique properties and multifunctionality compared to those of the individual nanoparticle components. Hybrid gold nanorods and gold nanoclusters (GNR/AuNCs) heterostructures prepared by intimate integration of GNRs with AuNCs exhibit both localized surface plasmon resonance (LSPR) property and peroxidase-like activity. It is found that the catalytic activity of the AuNC/GNR heterostructure could be remarkably enhanced by LSPR induced by photon-plasmon coupling in the visible to near-infrared (NIR) region. Meanwhile, the catalytic activity of enzyme-like AuNC/GNRs may be regulated by immunoreactions to realize specific recognition of a target analyte. Accordingly, a fast colorimetric assay within 5 min for the detection of prostate specific antigen (PSA) was developed based on a AuNC/GNRs heterostructure mask regulated by the target molecule under photon-plasmon coupling. The color intensity is inversely proportional to the PSA concentration, and quantitative analysis may be achieved in a range of 10 and 200 pg mL-1. This sensor was practically applied to detect PSA levels in prostate cancer serum samples and the determined values agreed well with those measured by the hospital using standard methods. This indicates that the AuNC/GNRs heterostructure-based assay has high accuracy for the analysis of practical samples. Moreover, the new method has the advantages of very fast determination and low sample volume requirements.
Collapse
Affiliation(s)
- Fang Tan
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Tumor Photothermal Therapy Employing Photothermal Inorganic Nanoparticles/Polymers Nanocomposites. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-019-2193-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
92
|
Patchable micro/nanodevices interacting with skin. Biosens Bioelectron 2018; 122:189-204. [DOI: 10.1016/j.bios.2018.09.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/09/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022]
|
93
|
Alifu N, Zebibula A, Qi J, Zhang H, Sun C, Yu X, Xue D, Lam JWY, Li G, Qian J, Tang BZ. Single-Molecular Near-Infrared-II Theranostic Systems: Ultrastable Aggregation-Induced Emission Nanoparticles for Long-Term Tracing and Efficient Photothermal Therapy. ACS NANO 2018; 12:11282-11293. [PMID: 30345739 DOI: 10.1021/acsnano.8b05937] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Second near-infrared (NIR-II, 1000-1700 nm) fluorescence bioimaging has attracted tremendous scientific interest and already been used in many biomedical studies. However, reports on organic NIR-II fluorescent probes for in vivo photoinduced imaging and simultaneous therapy, as well as the long-term tracing of specific biological objects, are still very rare. Herein we designed a single-molecular and NIR-II-emissive theranostic system by encapsulating a kind of aggregation-induced emission luminogen (AIEgen, named BPN-BBTD) with amphiphilic polymer. The ultra-stable BPN-BBTD nanoparticles were employed for the NIR-II fluorescence imaging and photothermal therapy of bladder tumors in vivo. The 785 nm excitation triggered photothermal therapy could completely eradicate the subcutaneous tumor and inhibit the growth of orthotopic tumors. Furthermore, BPN-BBTD nanoparticles were capable of monitoring subcutaneous and orthotopic tumors for a long time (32 days). Single-molecular and NIR-II-emitted aggregation-induced emission nanoparticles hold potential for the diagnosis, precise treatment, and metastasis monitoring of tumors in the future.
Collapse
Affiliation(s)
- Nuernisha Alifu
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310058 , China
| | - Abudureheman Zebibula
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310058 , China
- Department of Urology, Sir Run-Run Shaw Hospital College of Medicine, Innovation Center for Minimally Invasive Technique and Device , Zhejiang University , Hangzhou 310016 , China
| | - Ji Qi
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China
| | - Hequn Zhang
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310058 , China
| | - Chaowei Sun
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310058 , China
| | - Xiaoming Yu
- Department of Urology, Sir Run-Run Shaw Hospital College of Medicine, Innovation Center for Minimally Invasive Technique and Device , Zhejiang University , Hangzhou 310016 , China
| | - Dingwei Xue
- Department of Urology, Sir Run-Run Shaw Hospital College of Medicine, Innovation Center for Minimally Invasive Technique and Device , Zhejiang University , Hangzhou 310016 , China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China
| | - Gonghui Li
- Department of Urology, Sir Run-Run Shaw Hospital College of Medicine, Innovation Center for Minimally Invasive Technique and Device , Zhejiang University , Hangzhou 310016 , China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310058 , China
- Department of Urology, Sir Run-Run Shaw Hospital College of Medicine, Innovation Center for Minimally Invasive Technique and Device , Zhejiang University , Hangzhou 310016 , China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China
- NSFC Centre for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
94
|
Gold-nanobranched-shell based drug vehicles with ultrahigh photothermal efficiency for chemo-photothermal therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 18:303-314. [PMID: 30326275 DOI: 10.1016/j.nano.2018.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/11/2018] [Accepted: 09/24/2018] [Indexed: 12/22/2022]
Abstract
Development of combined chemo-photothermal nanoplatform is of great interest for enhancing antitumor efficacy. Herein, a multifunctional drug delivery system was synthesized based on gold-nanobranched coated betulinic acid liposomes (GNBS-BA-Lips) for chemo-photothermal synergistic therapy. In this system, GNBS-BA-Lips exhibited broad near-infrared (NIR) absorption, preferable photothermal response and good photostability under NIR irradiation. Importantly, the gold-nanobranched nanostructure possessed high photothermal conversion efficiency (η = 55.7%), and the temperature change (ΔT) reached 43.2 °C after laser irradiation for 5 min. Upon NIR irradiation, the nanocarriers apparently endowed higher cell uptake, resulting in an enhanced intracellular drug accumulation. Furthermore, the tumor growth inhibition ratio achieved from chemo-photothermal therapy of GNBS-BA-Lips was 86.9 ± 1.1%, which was higher than that of the chemotherapy or photothermal therapy alone, showing an outstanding synergistic anticancer effect. Our data suggested that the nanoplatform should be considered as a critical platform in the development of cancer multi-mode therapies.
Collapse
|
95
|
Amin DR, Higginson CJ, Korpusik AB, Gonthier AR, Messersmith PB. Untemplated Resveratrol-Mediated Polydopamine Nanocapsule Formation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34792-34801. [PMID: 30230809 PMCID: PMC6320237 DOI: 10.1021/acsami.8b14128] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanocapsules can be designed for applications including drug delivery, catalysis, and biological imaging. The mussel-inspired material polydopamine is a promising shell layer for nanocapsules because of its free radical scavenging capacity, ability to react with a broad range of functional molecules, lack of toxicity, and biodegradability. Previous reports of polydopamine nanocapsule formation have relied on a templating approach. Herein, we report a template-free approach to polydopamine nanocapsule formation in the presence of resveratrol, a naturally occurring anti-inflammatory and antioxidant compound found in red wine and grapes. Synthesis of nanocapsules occurs spontaneously in an ethanolic resveratrol/dopamine·HCl solution at pH 8.5. UV-vis absorbance spectroscopy and X-ray photoelectron spectroscopy indicate that resveratrol is incorporated into the nanocapsules. We also observed the formation of a soluble fluorescent dopamine-resveratrol adduct during synthesis, which was identified by high-performance liquid chromatography, UV-vis spectroscopy, and electrospray ionization mass spectrometry. Using transmission electron microscopy and dynamic light scattering, we studied the influence of solvent composition, dopamine concentration, and resveratrol/dopamine ratio on the nanocapsule diameter and shell thickness. The resulting nanocapsules have excellent free radical scavenging activity as measured by a 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay. Our work provides a convenient pathway by which resveratrol, and possibly other hydrophobic bioactive compounds, may be encapsulated within polydopamine nanocapsules.
Collapse
Affiliation(s)
- Devang R. Amin
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, 210 Hearst Mining Building, Berkeley, CA 94720 United States
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208 United States
| | - Cody J. Higginson
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, 210 Hearst Mining Building, Berkeley, CA 94720 United States
| | - Angie B. Korpusik
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, 210 Hearst Mining Building, Berkeley, CA 94720 United States
| | - Alyse R. Gonthier
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, 210 Hearst Mining Building, Berkeley, CA 94720 United States
| | - Phillip B. Messersmith
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, 210 Hearst Mining Building, Berkeley, CA 94720 United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 United States
| |
Collapse
|
96
|
Wang Z, Duan Y, Duan Y. Application of polydopamine in tumor targeted drug delivery system and its drug release behavior. J Control Release 2018; 290:56-74. [PMID: 30312718 DOI: 10.1016/j.jconrel.2018.10.009] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 12/13/2022]
Abstract
Inspired by the bionics of marine mussels, polydopamine (PDA), a new polymer with unique physicochemical properties was discovered. Due to its simple preparation, good biocompatibility, unique drug-loading methods, PDA has attracted tremendous attentions in field of drug delivery and imaging, and the combination of chemotherapy and other therapies or diagnostic methods, such as photothermotherapy (PTT), photoacoustic imaging (PAI), magnetic resonance imaging (MRI), etc. As an excellent drug carrier in tumor targeted drug delivery system, the drug release behavior of drug-loaded PDA-based nanoparticles is also an important factor to be considered in the establishment of drug delivery systems. Therefore, the purpose of this review is to provide a comprehensive overview of the various applications of PDA in tumor targeted drug delivery systems and to gain insight into the release behavior of the drug-loaded PDA-based nanocarriers. A sufficient understanding and discussion of these aspects is expected to provide a better way to design more rational and effective PDA-based tumor nano-targeted delivery systems. Apart from this, the prospects for the future application of PDA in this field and some unique insights are listed at the end of the article.
Collapse
Affiliation(s)
- Zhe Wang
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China.
| | - Yaou Duan
- Moores Cancer Center and Institute for Genomic Medicine, University of California, San Diego, CA 92093, USA
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China; Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410011, China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, China.
| |
Collapse
|
97
|
Yin T, Zhang X, Luo L, Li L, Bian K, Liu H, Niu K, He Y, Gao D. Multistimuli-responsive drug vehicles based on gold nanoflowers for chemophotothermal synergistic cancer therapy. Nanomedicine (Lond) 2018; 13:1967-1983. [PMID: 30226398 DOI: 10.2217/nnm-2018-0067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AIM To design and synthesize a novel multistimuli-responsive drug vehicle based on gold nanoflowers (AuNFs) for chemophotothermal synergistic cancer therapy. MATERIALS & METHODS Multistimuli-responsive drug-delivery system based on doxorubicin (DOX)/polydopamine (PDA)-functionalized AuNFs (Lan-AuNFs@PDA/DOX) was prepared. The structural characteristics, photothermal properties and stimuli-responsive drug release properties of Lan-AuNFs@PDA/DOX were evaluated. Antitumor studies in vivo and in vitro were performed. RESULTS Lan-AuNFs@PDA/DOX exhibited uniform morphology, excellent biocompatibility and photothermal conversion efficiency, which could also respond to stimulus including near infrared light and pH to trigger on demand drug release. The excellent synergistic therapeutic efficacy was confirmed both in vitro and in vivo. CONCLUSION Lan-AuNFs@PDA/DOX would be a promising drug carrier, endowing a great potential for multistimuli-responsive chemophotothermal synergistic cancer therapy.
Collapse
Affiliation(s)
- Tian Yin
- Applied Chemistry Key Lab of Hebei Province, Department of Bioengineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Xuwu Zhang
- Applied Chemistry Key Lab of Hebei Province, Department of Bioengineering, Yanshan University, Qinhuangdao 066004, PR China.,State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, PR China
| | - Liyao Luo
- Applied Chemistry Key Lab of Hebei Province, Department of Bioengineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Lei Li
- Applied Chemistry Key Lab of Hebei Province, Department of Bioengineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Kexin Bian
- Applied Chemistry Key Lab of Hebei Province, Department of Bioengineering, Yanshan University, Qinhuangdao 066004, PR China.,Asparagus Industry Technology Research Institute of Hebei Province, Qinhuangdao 066004, PR China
| | - Huan Liu
- Applied Chemistry Key Lab of Hebei Province, Department of Bioengineering, Yanshan University, Qinhuangdao 066004, PR China.,Asparagus Industry Technology Research Institute of Hebei Province, Qinhuangdao 066004, PR China
| | - Kang Niu
- Applied Chemistry Key Lab of Hebei Province, Department of Bioengineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Yuchu He
- Applied Chemistry Key Lab of Hebei Province, Department of Bioengineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Dawei Gao
- Applied Chemistry Key Lab of Hebei Province, Department of Bioengineering, Yanshan University, Qinhuangdao 066004, PR China.,State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, PR China.,Asparagus Industry Technology Research Institute of Hebei Province, Qinhuangdao 066004, PR China
| |
Collapse
|
98
|
Khan FA, Almohazey D, Alomari M, Almofty SA. Impact of nanoparticles on neuron biology: current research trends. Int J Nanomedicine 2018; 13:2767-2776. [PMID: 29780247 PMCID: PMC5951135 DOI: 10.2147/ijn.s165675] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles have enormous applications in textiles, cosmetics, electronics, and pharmaceuticals. But due to their exceptional physical and chemical properties, particularly antimicrobial, anticancer, antibacterial, anti-inflammatory properties, nanoparticles have many potential applications in diagnosis as well as in the treatment of various diseases. Over the past few years, nanoparticles have been extensively used to investigate their response on the neuronal cells. These nanoparticles cause stem cells to differentiate into neuronal cells and promote neuronal cell survivability and neuronal cell growth and expansion. The nanoparticles have been tested both in in vitro and in vivo models. The nanoparticles with various shapes, sizes, and chemical compositions mostly produced stimulatory effects on neuronal cells, but there are few that can cause inhibitory effects on the neuronal cells. In this review, we discuss stimulatory and inhibitory effects of various nanoparticles on the neuronal cells. The aim of this review was to summarize different effects of nanoparticles on the neuronal cells and try to understand the differential response of various nanoparticles. This review provides a bird's eye view approach on the effects of various nanoparticles on neuronal differentiation, neuronal survivability, neuronal growth, neuronal cell adhesion, and functional and behavioral recovery. Finally, this review helps the researchers to understand the different roles of nanoparticles (stimulatory and inhibitory) in neuronal cells to develop effective therapeutic and diagnostic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Dana Almohazey
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Munthar Alomari
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sarah Ameen Almofty
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| |
Collapse
|
99
|
Wang Y, Pang X, Wang J, Cheng Y, Song Y, Sun Q, You Q, Tan F, Li J, Li N. Magnetically-targeted and near infrared fluorescence/magnetic resonance/photoacoustic imaging-guided combinational anti-tumor phototherapy based on polydopamine-capped magnetic Prussian blue nanoparticles. J Mater Chem B 2018; 6:2460-2473. [PMID: 32254463 DOI: 10.1039/c8tb00483h] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, Prussian blue (PB)-based nanoagents have become a new platform in photothermal cancer treatment. However, there is little research for PB-based nanoagents to achieve synergistic phototherapy guided by multimodal imaging diagnosis and monitoring. Herein, a novel single wavelength near infrared (NIR) laser-induced magnetically targeted theranostic nanoplatform has been successfully designed and synthesized for the first time based on polydopamine (PDA)/aluminum phthalocyanine (AlPc)/bovine serum albumin (BSA) coated magnetic Prussian blue nanoparticles (Fe3O4@PB NPs) for multiple imaging-guided combinatorial cancer therapy. The resultant multifunctional Fe3O4@PB@PDA/AlPc/BSA nanocomposites show excellent stability and superparamagnetism, facilitating them to achieve superior photothermal therapy in physiological environments under magnetic guidance. In addition, the delivery vehicles can remarkably increase tumor accumulation of AlPc, thus leading to an enhanced photodynamic therapy efficacy. Furthermore, Fe3O4@PB@PDA/AlPc/BSA can be utilized as a multimodality nanoprobe for simultaneous diversified imaging, including near-infrared fluorescence imaging (NIRFI), magnetic resonance imaging (MRI), and photoacoustic imaging (PAI). Most importantly, without noticeable dark toxicity, the obtained Fe3O4@PB@PDA/AlPc/BSA nanocomposites are able to significantly suppress tumor growth via combined photothermal and photodynamic therapies upon a single 660 nm laser irradiation, achieving a superior synergetic manner compared to monotherapy both in vitro and in vivo. Therefore, our strategy provides Fe3O4@PB@PDA/AlPc/BSA nanocomposites for trimodality cancer imaging-guided synergistic therapy, with a great potential for new generation theranostics nanoagents.
Collapse
Affiliation(s)
- Yidan Wang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Ji F, Sun H, Qin Z, Zhang E, Cui J, Wang J, Li S, Yao F. Engineering Polyzwitterion and Polydopamine Decorated Doxorubicin-Loaded Mesoporous Silica Nanoparticles as a pH-Sensitive Drug Delivery. Polymers (Basel) 2018; 10:E326. [PMID: 30966361 PMCID: PMC6415439 DOI: 10.3390/polym10030326] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 01/15/2023] Open
Abstract
Multifunctional drug carriers have great applications in biomedical field. In this study, we introduced both polydopamine (PDA) and zwitterionic polymer of poly(3-(3-methacrylamidopropyl-(dimethyl)-ammonio)propane-1-sulfonate) (PSPP) onto the surface of mesoporous silica nanoparticles (MSNs) to develop a novel nanoparticle (MSNs@PDA-PSPP), which was employed as a new kind of drug carrier for the delivery of doxorubicin (DOX). The PDA coating, as a gatekeeper, could endow the drug carrier with pH-sensitive drug release performance. The outermost PSPP layer would make the drug carrier possess protein resistance performance. The chemical structure and properties were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), dynamic light scattering (DLS) and thermogravimetric analysis (TGA). MSNs@PDA-PSPP could keep good colloidal stability within 72 h in phosphate buffered saline (PBS) and protein solutions. Meanwhile, MSNs@PDA-PSPP exhibited a high drug loading for DOX. In vitro drug release experiments suggested MSNs-DOX@PDA-PSPP exhibited pH-dependent drug release behaviors. Besides, MSNs@PDA-PSPP had no cytotoxicity to human hepatocellular carcinoma cells (HepG2 cells) even at a concentration of 125 µg/mL. More importantly, cellular uptake and in vitro anticancer activity tests suggested that MSNs-DOX@PDA-PSPP could be taken up by HepG2 cells and DOX could be successfully released and delivered into the cell nuclei. Taken together, MSNs@PDA-PSPP have great potential in the biomedical field.
Collapse
Affiliation(s)
- Feng Ji
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Hong Sun
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063000, China.
| | - Zhihui Qin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Ershuai Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Jing Cui
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063000, China.
| | - Jinmei Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University (SYSU), 135 Xingang Xi Road, Guangzhou 510275, China.
| | - Shuofeng Li
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063000, China.
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China.
| |
Collapse
|