51
|
Liu S, Li X, Han L. Recent developments in stimuli‐responsive hydrogels for biomedical applications. BIOSURFACE AND BIOTRIBOLOGY 2022. [DOI: 10.1049/bsb2.12050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Shuyun Liu
- School of Medicine and Pharmaceutics Laboratory for Marine Drugs and Bioproducts Pilot National Laboratory for Marine Science and Technology Ocean University of China Qingdao Shandong China
| | - Xiaozhuang Li
- School of Medicine and Pharmaceutics Laboratory for Marine Drugs and Bioproducts Pilot National Laboratory for Marine Science and Technology Ocean University of China Qingdao Shandong China
| | - Lu Han
- School of Medicine and Pharmaceutics Laboratory for Marine Drugs and Bioproducts Pilot National Laboratory for Marine Science and Technology Ocean University of China Qingdao Shandong China
| |
Collapse
|
52
|
Luo Y, Zhou X, Liu C, Lu R, Jia M, Li P, Zhang S. Scavenging ROS and inflammation produced during treatment to enhance the wound repair efficacy of photothermal injectable hydrogel. BIOMATERIALS ADVANCES 2022; 141:213096. [PMID: 36067644 DOI: 10.1016/j.bioadv.2022.213096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/30/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Injectable hydrogels with near infrared (NIR) photothermal ability show attractive application prospects in the treatment of wound infection and promoting skin defect repair. Nevertheless, excess reactive oxygen species (ROS) and inflammatory responses caused by bacterial infection and photothermal therapy (PTT) would delay tissue regeneration and wound healing. In this study, a novel NIR photothermal injectable hydrogel with anti-oxidation and anti-inflammation by incorporating α-lipoic acid modified palladium nanoparticles into calcium ions crosslinked sodium alginate hydrogel was developed. The resulting hydrogel facilitated to fill perfectly various irregular wounds, and could convert NIR light into local high-heat to kill >80 % of Escherichia coli and Staphylococcus aureus. Remarkably, the hydrogel exhibited excellent anti-oxidant and anti-inflammatory activity, which could scavenge >60 % of ROS in cells and decrease the relative expression level of tumor necrosis factor-alpha and interleukin-1β genes by 52.9 % and 53.3 % respectively. It was found that the NIR photothermal injectable hydrogel with anti-oxidation and anti-inflammation could effectively reduce ROS and inflammation caused by bacterial infection and PPT. Additionally, it could also enhance wound repair efficiency. The hydrogel is expected to be a potential wound dressing for the treatment of clinical skin defects.
Collapse
Affiliation(s)
- Yadong Luo
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Xiaodong Zhou
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Caikun Liu
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Ruilin Lu
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Mengqi Jia
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Pengfei Li
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Shiyong Zhang
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| |
Collapse
|
53
|
Yang W, Yue H, Lu G, Wang W, Deng Y, Ma G, Wei W. Advances in Delivering Oxidative Modulators for Disease Therapy. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9897464. [PMID: 39070608 PMCID: PMC11278358 DOI: 10.34133/2022/9897464] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/17/2022] [Indexed: 07/30/2024]
Abstract
Oxidation modulators regarding antioxidants and reactive oxygen species (ROS) inducers have been used for the treatment of many diseases. However, a systematic review that refers to delivery system for divergent modulation of oxidative level within the biomedical scope is lacking. To provide a comprehensive summarization and analysis, we review pilot designs for delivering the oxidative modulators and the main applications for inflammatory treatment and tumor therapy. On the one hand, the antioxidants based delivery system can be employed to downregulate ROS levels at inflammatory sites to treat inflammatory diseases (e.g., skin repair, bone-related diseases, organ dysfunction, and neurodegenerative diseases). On the other hand, the ROS inducers based delivery system can be employed to upregulate ROS levels at the tumor site to kill tumor cells (e.g., disrupt the endogenous oxidative balance and induce lethal levels of ROS). Besides the current designs of delivery systems for oxidative modulators and the main application cases, prospects for future research are also provided to identify intelligent strategies and inspire new concepts for delivering oxidative modulators.
Collapse
Affiliation(s)
- Wei Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Guihong Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Wenjing Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yuan Deng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Department of Orthopedics, Fourth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
54
|
Huang J, Wang S, Wang X, Zhu J, Wang Z, Zhang X, Cai K, Zhang J. Combination wound healing using polymer entangled porous nanoadhesive hybrids with robust ROS scavenging and angiogenesis properties. Acta Biomater 2022; 152:171-185. [PMID: 36084921 DOI: 10.1016/j.actbio.2022.08.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 11/01/2022]
Abstract
Nanoadhesives can achieve tight wound closure by connecting biomacromolecules from both sides. However, previously developed adhesive systems suffered from suboptimal wound healing efficiency due to the lack of interparticle cohesion, sufficient reactive oxygen species (ROS)-scavenging sites, and angiogenesis consideration. Herein, we developed a polymer entangled porous nanoadhesive system to address the above challenge by synergy of three functional components. Firstly, hybrid mesoporous silica nanoparticles with highly integrated polydopamine (MS-PDA) were prepared by templated synthesis. The entangling between PVA polymer and MS-PDA contributed to much stronger cohesion between nanoparticles, which led to 75% larger adhesion strength. As confirmed by in vitro and in vivo evaluations, the highly exposed catechol groups boosted the scavenging activity of ROS (1.8-4.1 fold enhancement as compared with nonporous counterpart). Consequently, more macrophages exhibited anti-inflammatory phenotype, leading to 2-2.6 fold lower pro-inflammatory cytokine levels. Moreover, the sustained release of bioactive SiO44- by the disintegration of nanoparticles contributed to ∼3-fold higher expression of VEGF and enhanced new blood vessel formation, as well as better wound repair. This platform can provide a new paradigm for developing multifunctional nanoadhesive systems in treating skin wounds. STATEMENT OF SIGNIFICANCE: PVA polymer entangled mesoporous nanoadhesives of polydopamine (PDA)/silica hybrids with the combination of excellent wound closure effect, boosted ROS-scavenging activity, and significant angiogenesis ability were developed for improving the suboptimal skin wound healing efficiency. This strategy not only greatly advances our ability to rationally integrate repairing elements in nanoadhesives for manipulating combined processes of interfacial events during wound healing, but also offers general implications toward application of polymers to reinforce the adhesion strength in nanoadhesive systems. In addition, our findings on the impacts of pore effects mediated ROS species conversion and polymer entanglement may also trigger great interests and facilitate the development/broad application of therapeutic adhesives.
Collapse
Affiliation(s)
- Jixi Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Shuai Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Xiaoping Wang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401174, China
| | - Jing Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Zhenqiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Ximu Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401174, China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
| |
Collapse
|
55
|
Liu T, Li B, Chen G, Ye X, Zhang Y. Nano tantalum-coated 3D printed porous polylactic acid/beta-tricalcium phosphate scaffolds with enhanced biological properties for guided bone regeneration. Int J Biol Macromol 2022; 221:371-380. [PMID: 36067849 DOI: 10.1016/j.ijbiomac.2022.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022]
Abstract
Bone defects caused by tumors section, traffic accidents, and surgery remain a challenge in clinical. The drawbacks of traditional autografts and allografts limit their clinical application. 3D printed porous scaffolds have monumental potential to repair bone defects but still cannot effectively promote bone formation. Nano tantalum (Ta) has been reported with effective osteogenesis capability. Herein, we fabricated 3D printed PLA/β-TCP scaffold by using the fused deposition modeling (FDM) technique. Ta was doped on the surface of scaffolds utilizing the surface adhesion ability of polydopamine to improve its properties. The constructed PLA/β-TCP/PDA/Ta had good physical properties. In vitro studies demonstrated that the PLA/β-TCP/PDA/Ta scaffolds considerably promote cell proliferation and migration, and it additionally has osteogenic properties. Therefore, Ta doped 3D printed PLA/β-TCP/PDA/Ta scaffold could incontestably improve surface bioactivity and lead to better osteogenesis, which may provide a unique strategy to develop bioactive bespoke implants in orthopedic applications.
Collapse
Affiliation(s)
- Tao Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, PR China; Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, Guangdong, PR China; Department of Trauma Orthopedics, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, Guangdong, PR China.
| | - Binglin Li
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, Guangdong, PR China; Department of Trauma Orthopedics, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, Guangdong, PR China
| | - Gang Chen
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, Jiangxi, PR China
| | - Xiangling Ye
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, Jiangxi, PR China.
| | - Ying Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, PR China; Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, Guangdong, PR China; Department of Trauma Orthopedics, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, Guangdong, PR China.
| |
Collapse
|
56
|
Wang L, Zhang T, Xing Y, Wang Z, Xie X, Zhang J, Cai K. Interfacially responsive electron transfer and matter conversion by polydopamine-mediated nanoplatforms for advancing disease theranostics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1805. [PMID: 35474610 DOI: 10.1002/wnan.1805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Polydopamine (PDA) is an artificial melanin polymer that has been spotlighted due to its extraordinary optoelectronic characteristics and advance theranosctic applications in biomaterial fields. Moreover, interactions on the nano-bio interface interplay whereby substances exchange in response to endogenous or exogenous stimuli, and electron transfer driven by light, energy-level transitions, or electric field greatly affect the functional performance of PDA-modified nanoparticles. The full utilization of potential in PDA's interfacial activities, optoelectrical properties and related responsiveness is therefore an attractive means to construct advanced nanostructures for regulating biological processes and metabolic pathways. Herein, we strive to summarize recent advances in the construction of functional PDA-based nanomaterials with state-of-the-art architectures prepared for modulation of photoelectric sensing and redox reversibility, as well as manipulation of photo-activated therapeutics. Meanwhile, contributions of interfacial electron transfer and matter conversion are highlighted by discussing the structure-property-function relationships and the biological effects in their featured applications including disease theranostics, antibacterial activities, tissue repair, and combined therapy. Finally, the current challenges and future perspectives in this emerging research field will also be outlined. Recent advances on polydopamine-based nanotherapeutics with an emphasis on their interfacial activities, optoelectrical properties and related responsiveness are reviewed for providing insightful guidance to the rational design of integrated theranostic nanoplatforms with high performance in the biomedical fields. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Tingting Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yuxin Xing
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Zhenqiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xiyue Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
57
|
Zeng H, Liu X, Zhang Z, Song X, Quan J, Zheng J, Shen Z, Ni Y, Liu C, Zhang Y, Hu G. Self-healing, injectable hydrogel based on dual dynamic covalent cross-linking against postoperative abdominal cavity adhesion. Acta Biomater 2022; 151:210-222. [PMID: 35995405 DOI: 10.1016/j.actbio.2022.08.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 11/01/2022]
Abstract
Clinically, increasing the peritoneal barrier is an effective adjunct to reducing postoperative peritoneal adhesion. This study presents a facile template for preparing a supramolecular hybrid hydrogel through dynamic covalent cross-linking between carboxymethyl chitosan (CMCS), 2-formylphenylboronic acid (2-FPBA), and quercetin (Que). The as-prepared complex CMCS/2-FPBA/Que (CFQ) hydrogel exhibited favorable antibacterial, anti-inflammatory, and antioxidant effects. A L929 cytotoxicity evaluation confirmed the favorable cytocompatibility of the CFQ hydrogel. The postoperative anti-adhesion ability of the CFQ hydrogel was further evaluated in rats with lateral wall defects and cecal abrasions. Compared with control groups, the tissue adhesion rate was significantly reduced by increasing the Que concentration in all the hydrogel-treated groups. Additionally, the sustained-release time of the C3F0.8Q0.08 hydrogel can exceed 14 days, which is highly desirable for clinical wound treatment. STATEMENT OF SIGNIFICANCE: Postoperative adhesions are a very common postoperative complication that seriously affects the quality of life of patients. The currently commonly used methods for preventing adhesion mainly use degradable barrier materials for physical separation. In this study, we prepared a dual dynamic covalently cross-linked CFQ hydrogel, which is not only degradable and injectable, but also has multiple properties such as antibacterial, antioxidant and anti-inflammatory, which can effectively prevent postoperative adhesion and promote wound healing.
Collapse
Affiliation(s)
- Huihui Zeng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xi Liu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, Hunan 410013, P. R. China
| | - Zequn Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, Hunan 410013, P. R. China
| | - Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jun Quan
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, Hunan 410013, P. R. China
| | - Jun Zheng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhaolong Shen
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, Hunan 410013, P. R. China
| | - Yaqiong Ni
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Chuntai Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Gui Hu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, Hunan 410013, P. R. China.
| |
Collapse
|
58
|
Zhou L, Min T, Bian X, Dong Y, Zhang P, Wen Y. Rational Design of Intelligent and Multifunctional Dressing to Promote Acute/Chronic Wound Healing. ACS APPLIED BIO MATERIALS 2022; 5:4055-4085. [PMID: 35980356 DOI: 10.1021/acsabm.2c00500] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Currently, the clinic's treatment of acute/chronic wounds is still unsatisfactory due to the lack of functional and appropriate wound dressings. Intelligent and multifunctional dressings are considered the most advanced wound treatment modalities. It is essential to design and develop wound dressings with required functions according to the wound microenvironment in the clinical treatment. This work summarizes microenvironment characteristics of various common wounds, such as acute wound, diabetic wound, burns wound, scalded wound, mucosal wound, and ulcers wound. Furthermore, the factors of transformation from acute wounds to chronic wounds were analyzed. Then we focused on summarizing how researchers fully and thoroughly combined the complex microenvironment with modern advanced technology to ensure the usability and value of the dressing, such as photothermal-sensitive dressings, microenvironment dressing (pH-sensitive dressings, ROS-sensitive dressings, and osmotic pressure dressings), hemostatic dressing, guiding tissue regeneration dressing, microneedle dressings, and 3D/4D printing dressings. Finally, the revolutionary development of wound dressings and how to transform the existing advanced functional dressings into clinical needs as soon as possible have carried out a reasonable and meaningful outlook.
Collapse
Affiliation(s)
- Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Department of Orthopaedics and Trauma, Key Laboratory of Trauma and Neural Regeneration, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Tiantian Min
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaochun Bian
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | | | - Peixun Zhang
- Department of Orthopaedics and Trauma, Key Laboratory of Trauma and Neural Regeneration, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
59
|
Cao W, Peng S, Yao Y, Xie J, Li S, Tu C, Gao C. A nanofibrous membrane loaded with doxycycline and printed with conductive hydrogel strips promotes diabetic wound healing in vivo. Acta Biomater 2022; 152:60-73. [DOI: 10.1016/j.actbio.2022.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/01/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
|
60
|
Yang M, Fei X, Tian J, Xu L, Wang Y, Li Y. A starch-regulated adhesive hydrogel dressing with controllable separation properties for painless dressing change. J Mater Chem B 2022; 10:6026-6037. [PMID: 35894134 DOI: 10.1039/d2tb01021f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of hydrogel dressings provides unprecedented opportunities for clinical medicine. However, the traditional hydrogel dressings cannot achieve controllable adhesion and separation, which often brings unbearable pain and secondary damage to patients during removal. In this work, a starch-regulated adhesive hydrogel dressing with controllable separation properties is reported. This hydrogel dressing can achieve rapid separation through the dissociation competition mechanism of polar small molecules, which will not cause any damage or discomfort to the skin or tissues, and greatly facilitate dressing replacement. The adhesive strength of the hydrogel reaches 0.06 MPa, and remains relatively stable after repeated utilization. Meanwhile, the inhibition rate of the hydrogel for E. coli, S. aureus and C. albicans is more than 99.9%. At the same time, the hydrogel also has good swelling properties, mechanical properties and biocompatibility, and exhibits a high healing efficiency (95.01 ± 3.76%) in a rat full-thickness skin defect model. This novel hydrogel dressing with controllable separation properties provides a facile and effective method for wound management and treatment, and has great promise for long-term application of wound dressings.
Collapse
Affiliation(s)
- Minwei Yang
- Instrumental Analysis Center, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian 116034, P. R. China. .,School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian 116034, P. R. China.
| | - Xu Fei
- Instrumental Analysis Center, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian 116034, P. R. China.
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Longquan Xu
- Instrumental Analysis Center, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian 116034, P. R. China.
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yao Li
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian 116034, P. R. China.
| |
Collapse
|
61
|
Intraarticularly injectable silk hydrogel microspheres with enhanced mechanical and structural stability to attenuate osteoarthritis. Biomaterials 2022; 286:121611. [PMID: 35660867 DOI: 10.1016/j.biomaterials.2022.121611] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/22/2022] [Accepted: 05/29/2022] [Indexed: 12/18/2022]
Abstract
A silk fibroin (silk) hydrogel was prepared by using diglycidyl ether (BDDE), a chemical crosslinker commonly used to generate Food and Drug Administration (FDA)-approved hyaluronic acid (HA) medical products. The silk/BDDE hydrogels exhibited high elasticity (compressive modulus of 166 ± 15.0 kPa), anti-fatigue properties, and stable structure and mechanical strength in aqueous solution. Chemical crosslinking was conducted in a high concentration (9.3 M) of lithium bromide (LiBr) solution, a salt that is commonly used to dissolve degummed silk fibers during silk solubilization. The unfolded and extended structure of silk molecules with these reaction conditions, as well as the unique ionic environment provided by LiBr facilitated a high degree of crosslinking in the hydrogel. Similar hydrogels were not obtained when the silk was dissolved in other silk fiber-dissolving reagents (e.g., Ajisawa's, formic acid (FA)/LiBr, FA/CaCl2 solutions), likely because partially folded silk structures and the ionic conditions with these reagents were less favorable for the crosslinking reaction. Based on these findings, silk/BDDE hydrogel spheres were prepared using an oil/water (o/w) emulsification method and biocompatibility and biodegradation were evaluated in vivo, along with other silk gel control systems (e.g., enzyme-catalyzed di-tyrosine and pulverized silk/BDDE gel particles with irregular shapes). Histological and immunohistochemical analyses demonstrated that the silk/BDDE hydrogel spheres were biocompatible and served as a bio-lubricant to treat osteoarthritis (OA). The intra-articular injection of the gel spheres reduced pain as measured with OA rats, reduced cartilage damage and resisted the digestive environment in the articular cavity for extended time frames (>4 weeks), suggesting utility for pain relief and sustained drug release for future OA treatments.
Collapse
|
62
|
Jiang Y, Zhang X, Zhang W, Wang M, Yan L, Wang K, Han L, Lu X. Infant Skin Friendly Adhesive Hydrogel Patch Activated at Body Temperature for Bioelectronics Securing and Diabetic Wound Healing. ACS NANO 2022; 16:8662-8676. [PMID: 35549213 DOI: 10.1021/acsnano.2c00662] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Adhesive-caused injury is a great threat for infants with premature skin or diabetic patients with fragile skin because extra-strong adhesion might incur pain, inflammation, and exacerbate trauma upon removal. Herein, we present a skin-friendly adhesive hydrogel patch based on protein-polyphenol complexation strategy, which leads to a thermoresponsive network sensitive to body temperature. The adhesion of the hydrogel is smartly activated after contacting with warm skin, whereas the painless detachment is easily realized by placing an ice bag on the surface of the hydrogel. The hydrogel exhibits an immunomodulatory performance that prevents irritation and allergic reactions during long-period contact with the skin. Thus, the hydrogel patch works as a conformable and nonirritating interface to guarantee nondestructively securing bioelectronics on infant skin for healthcare. Furthermore, the hydrogel patch provides gentle adhesion to wounded skin and provides a favorable environment to speed up the healing process for managing diabetic wounds.
Collapse
Affiliation(s)
- Yanan Jiang
- School of Materials Science and Engineering, Key Lab of Advanced Technologies of Materials, Ministry of Education, Yibin Institute of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Xin Zhang
- School of Materials Science and Engineering, Key Lab of Advanced Technologies of Materials, Ministry of Education, Yibin Institute of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Wei Zhang
- School of Materials Science and Engineering, Key Lab of Advanced Technologies of Materials, Ministry of Education, Yibin Institute of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Menghao Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Liwei Yan
- School of Materials Science and Engineering, Key Lab of Advanced Technologies of Materials, Ministry of Education, Yibin Institute of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Lu Han
- School of Medicine and Pharmaceutics, Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Ocean University of China, Qingdao 266003, Shandong, China
| | - Xiong Lu
- School of Materials Science and Engineering, Key Lab of Advanced Technologies of Materials, Ministry of Education, Yibin Institute of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| |
Collapse
|
63
|
Yazdi MK, Zare M, Khodadadi A, Seidi F, Sajadi SM, Zarrintaj P, Arefi A, Saeb MR, Mozafari M. Polydopamine Biomaterials for Skin Regeneration. ACS Biomater Sci Eng 2022; 8:2196-2219. [PMID: 35649119 DOI: 10.1021/acsbiomaterials.1c01436] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Designing biomaterials capable of biomimicking wound healing and skin regeneration has been receiving increasing attention recently. Some biopolymers behave similarly to the extracellular matrix (ECM), supporting biointerfacial adhesion and intrinsic cellular interactions. Polydopamine (PDA) is a natural bioadhesive and bioactive polymer that endows high chemical versatility, making it an exciting candidate for a wide range of biomedical applications. Moreover, biomaterials based on PDA and its derivatives have near-infrared (NIR) absorption, excellent biocompatibility, intrinsic antioxidative activity, antibacterial activity, and cell affinity. PDA can regulate cell behavior by controlling signal transduction pathways. It governs the focal adhesion behavior of cells at the biomaterials interface. These features make melanin-like PDA a fascinating biomaterial for wound healing and skin regeneration. This paper overviews PDA-based biomaterials' synthesis, properties, and interactions with biological entities. Furthermore, the utilization of PDA nano- and microstructures as a constituent of wound-dressing formulations is highlighted.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mehrak Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran 141663-4793, Iran
| | - Ali Khodadadi
- Department of Internal Medicine, School of Medicine, Gonabad University of Medical Sciences, Gonabad 96914, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University─Erbil, Erbil, Kurdistan Region 44001, Iraq.,Department of Phytochemistry, SRC, Soran University, Soran, Kurdistan Regional Government 44008, Iraq
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Oklahoma 74078, United States
| | - Ahmad Arefi
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences,Tehran 144961-4535, Iran
| |
Collapse
|
64
|
Wang Y, Chen L, Ren DY, Feng ZX, Zhang LY, Zhong YF, Jin MY, Xu FW, Feng CY, Du YZ, Tan WQ. Mussel-inspired collagen-hyaluronic acid composite scaffold with excellent antioxidant properties and sustained release of a growth factor for enhancing diabetic wound healing. Mater Today Bio 2022; 15:100320. [PMID: 35757026 PMCID: PMC9218585 DOI: 10.1016/j.mtbio.2022.100320] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 01/13/2023]
Abstract
Long-term non-healing diabetic wounds are always a serious challenge and a global healthcare burden that needs to be resolved urgently in the clinic. Prolonged inflammation and impaired angiogenesis are the main direct causes of diabetic wounds. With the development of polymer biomaterials, various wound dressings have been created, but a few of them have been applied to the clinical management of diabetic wounds. Here, we developed a mussel-inspired bioactive scaffold consisting mainly of collagen and hyaluronic acid, which are natural biopolymer materials contained in human tissues. First, we fabricated different polydopamine modified lyophilized collagen hyaluronic acid scaffolds under different concentrations of dopamine alkaline solutions, 0.5, 1, 2 mg/mL, so named CHS-PDA-0.5, CHS-PDA-1, CHS-PDA-2. After testing their physical and chemical properties, antioxidant effect, inflammation regulation, as well as drug loading and release capabilities, we obtained a bioactive endothelial growth factor (EGF)-loaded wound dressing, CHS-PDA-2@EGF, which can resist reactive oxygen species (ROS) and promote the regeneration of chronic wounds in diabetic rats by reducing inflammation. In addition, the scaffold showed excellent swelling ability, a certain coagulation effect and reasonable degradation. Therefore, the scaffold has great potential to be used in clinical diabetic wound treatment as a low-cost and easily available wound dressing to accelerate chronic wound healing.
Collapse
Affiliation(s)
- Yong Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, PR China
| | - Li Chen
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, PR China
| | - Dan-Yang Ren
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, PR China
| | - Zi-Xuan Feng
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, PR China
| | - Li-Yun Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, PR China
| | - Yu-Fan Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, PR China
| | - Ming-Yuan Jin
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, PR China
| | - Fa-Wei Xu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, PR China
| | - Chun-Yan Feng
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, PR China
| | - Yong-Zhong Du
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, PR China.,Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, PR China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, PR China
| |
Collapse
|
65
|
Zhao G, Zhou H, Jin G, Jin B, Geng S, Luo Z, Ge Z, Xu F. Rational Design of Electrically Conductive Biomaterials toward Excitable Tissues Regeneration. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
66
|
Xue H, Zhang Z, Lin Z, Su J, Panayi AC, Xiong Y, Hu L, Hu Y, Chen L, Yan C, Xie X, Shi Y, Zhou W, Mi B, Liu G. Enhanced tissue regeneration through immunomodulation of angiogenesis and osteogenesis with a multifaceted nanohybrid modified bioactive scaffold. Bioact Mater 2022; 18:552-568. [PMID: 35845319 PMCID: PMC9256949 DOI: 10.1016/j.bioactmat.2022.05.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/14/2022] [Accepted: 05/14/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Hang Xue
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Zhenhe Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ze Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jin Su
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Adriana C. Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Liangcong Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yiqiang Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Lang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Chenchen Yan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Xudong Xie
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yusheng Shi
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
- Corresponding author. Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
- Corresponding author. Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
67
|
Zha Z, Chen Q, Xiao D, Pan C, Xu W, Shen L, Shen J, Chen W. Mussel-Inspired Microgel Encapsulated NLRP3 Inhibitor as a Synergistic Strategy Against Dry Eye. Front Bioeng Biotechnol 2022; 10:913648. [PMID: 35721850 PMCID: PMC9198461 DOI: 10.3389/fbioe.2022.913648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
The inflammatory response mediated by oxidative stress is the main pathogenesis of dry eye, but clinical observations have shown that scavenging oxygen-free radicals alone has limited therapeutic effect. Moreover, the unique anatomy and physiology of the ocular surface result in low bioavailability of drugs, and higher concentration is required to achieve the desired efficacy, which, however, may bring systemic side effects. These problems pose a challenge, but the revelation of the ROS-NLRP3-IL-1β signaling axis opens up new possibilities. In this investigation, an NLRP3 inhibitor was successfully encapsulated in polydopamine-based microgels and used for dry eye treatment. It was demonstrated that the well-designed microgels exhibited good biocompatibility, prolonged drug retention time on the ocular surface, and effective inhibition of corneal epithelial damage and cell apoptosis. In addition, due to the synergistic effect, the NLRP3 inhibitor–loaded microgels could exert enhanced oxygen radical scavenging and inflammation-inhibiting effects at a lower dose than monotherapy. These findings suggest that polydopamine-based microgels have advantages as ocular surface drug delivery platforms and have promising applications in oxidative damage–related inflammatory diseases in synergy with anti-inflammatory drugs.
Collapse
Affiliation(s)
- Zhiwei Zha
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Qiumeng Chen
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Decheng Xiao
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Chengjie Pan
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Wei Xu
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Liangliang Shen
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Liangliang Shen, ; Jianliang Shen, ; Wei Chen,
| | - Jianliang Shen
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
- *Correspondence: Liangliang Shen, ; Jianliang Shen, ; Wei Chen,
| | - Wei Chen
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Liangliang Shen, ; Jianliang Shen, ; Wei Chen,
| |
Collapse
|
68
|
Yu M, Tang P, Tang Y, Wei C, Wang Z, Zhang H. Breathable, Moisturizing, Anti-Oxidation SSD-PG-PVA/KGM Fibrous Membranes for Accelerating Diabetic Wound Tissue Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:2894-2901. [PMID: 35593099 DOI: 10.1021/acsabm.2c00255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Diabetic wound tissue repair and regeneration is a multi-step process that includes cell proliferation and migration, gas and moisture management, and inflammatory responses. However, current wound dressing designs lack consideration of the wound microenvironment of diabetic patients, making diabetic wound tissue repair a challenge. Here, we report a wound dressing (SSD-PG-PVA/KGM) with a porous structure and anti-oxidant properties for promoting diabetic wound tissue repair. First, the porous structure created by electrospinning technology encourages cell proliferation and migration in the wound while also providing breathability and moisture retention. Second, adding natural polyphenols (PG) and saikosaponins (SSDs) to the wound reduced reactive oxygen species levels and oxide stress. In vitro cell experiments showed that SSD-PG-PVA/KGM had good biocompatibility. Due to the biocompatibility, anti-oxidation ability, breathability, and moisturizing, SSD-PG-PVA/KGM could effectively promote the repair of diabetic wound tissue (the wound closure rate was 95.6% at 14 days).
Collapse
Affiliation(s)
- Ma Yu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Pengfei Tang
- State Key Laboratory of Environmentally Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Youhong Tang
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Tonsley, South Australia 5042, Australia
| | - Cheng Wei
- State Key Laboratory of Environmentally Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Zhenming Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hongping Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.,State Key Laboratory of Environmentally Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| |
Collapse
|
69
|
Muñoz-González PU, Lona-Ramos MC, Gutiérrez-Verdín LD, Luévano-Colmenero GH, Tenorio-Rocha F, García-Contreras R, González-García G, Rosillo-de la Torre A, Delgado J, Castellano LE, Mendoza-Novelo B. Gel dressing based on type I collagen modified with oligourethane and silica for skin wound healing. Biomed Mater 2022; 17. [PMID: 35483345 DOI: 10.1088/1748-605x/ac6b70] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/28/2022] [Indexed: 11/12/2022]
Abstract
Cutaneous wound healing is a complex process that leads the skin reparation with the formation of scar tissue that typically lacks skin appendages. This fact drives us to find new strategies to improve regenerative healing of the skin. This study outlines, the contribution of colloidal silica particles and oligourethane crosslinking on the collagen material properties and the effect on skin wound healing in rats. We characterized the gel properties that are key forin-situgelation, which is accomplished by the latent reactivity of oligourethane bearing blocked isocyanate groups to crosslink collagen while entrapping silica particles. The swelling/degradation behavior and the elastic modulus of the composite gel were consistent with the modification of collagen type I with oligourethane and silica. On the other hand, these gels were characterized as scaffold for murine macrophages and human stem cells. The application of a composite gel dressing on cutaneous wounds showed a histological appearance of the recovered skin as intact skin; featured by the epidermis, hair follicles, sebaceous glands, subcutaneous adipose layer, and dermis. The results suggest that the collagen-based composite dressings are promising modulators in skin wound healing to achieve a regenerative skin closure with satisfactory functional and aesthetic scars.
Collapse
Affiliation(s)
- Pedro U Muñoz-González
- Science and Engineering Division, University of Guanajuato. Loma del bosque # 103, Col. Lomas del campestre, C.P. 37150 León, GTO, México.,Natural and Exact Sciences Division, University of Guanajuato. Noria alta S/N, Col. Noria alta, C.P. 36050 Guanajuato, GTO, México
| | - María C Lona-Ramos
- Science and Engineering Division, University of Guanajuato. Loma del bosque # 103, Col. Lomas del campestre, C.P. 37150 León, GTO, México
| | - Luis D Gutiérrez-Verdín
- Science and Engineering Division, University of Guanajuato. Loma del bosque # 103, Col. Lomas del campestre, C.P. 37150 León, GTO, México.,Interdisciplinary Professional Engineering Unit Campus Guanajuato, National Polytechnic Institute. Mineral de Valenciana # 200, Col. Fraccionamiento industrial puerto interior, C.P. 36275 Silao de la Victoria, GTO, México
| | - Guadalupe H Luévano-Colmenero
- Interdisciplinary Professional Engineering Unit Campus Guanajuato, National Polytechnic Institute. Mineral de Valenciana # 200, Col. Fraccionamiento industrial puerto interior, C.P. 36275 Silao de la Victoria, GTO, México
| | - Fernando Tenorio-Rocha
- ENES León, National University Autonomous of Mexico, Boulevard UNAM #2011, Col. Predio el saucillo y el potrero, C.P. 37689 León, GTO, México
| | - René García-Contreras
- ENES León, National University Autonomous of Mexico, Boulevard UNAM #2011, Col. Predio el saucillo y el potrero, C.P. 37689 León, GTO, México
| | - Gerardo González-García
- Natural and Exact Sciences Division, University of Guanajuato. Noria alta S/N, Col. Noria alta, C.P. 36050 Guanajuato, GTO, México
| | - Argelia Rosillo-de la Torre
- Science and Engineering Division, University of Guanajuato. Loma del bosque # 103, Col. Lomas del campestre, C.P. 37150 León, GTO, México
| | - Jorge Delgado
- Science and Engineering Division, University of Guanajuato. Loma del bosque # 103, Col. Lomas del campestre, C.P. 37150 León, GTO, México
| | - Laura E Castellano
- Science and Engineering Division, University of Guanajuato. Loma del bosque # 103, Col. Lomas del campestre, C.P. 37150 León, GTO, México
| | - Birzabith Mendoza-Novelo
- Science and Engineering Division, University of Guanajuato. Loma del bosque # 103, Col. Lomas del campestre, C.P. 37150 León, GTO, México
| |
Collapse
|
70
|
Yu R, Li M, Li Z, Pan G, Liang Y, Guo B. Supramolecular Thermo-Contracting Adhesive Hydrogel with Self-Removability Simultaneously Enhancing Noninvasive Wound Closure and MRSA-Infected Wound Healing. Adv Healthc Mater 2022; 11:e2102749. [PMID: 35426232 DOI: 10.1002/adhm.202102749] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/18/2022] [Indexed: 01/06/2023]
Abstract
Conventional wound closure and dressing are two crucial, time-consuming but isolated principles in wound care. Even though tissue adhesive opens a new era for wound closure, the method and biomaterial that can simultaneously achieve noninvasive wound closure and promote wound healing are highly appreciated. Herein, a novel supramolecular poly(N-isopropylacrylamide) hybrid hydrogel dressing composed of quaternized chitosan-graft-β-cyclodextrin, adenine, and polypyrrole nanotubes via host-guest interaction and hydrogen bonds is developed. The hydrogel demonstrates thermal contraction of 47% remaining area after 2 h at 37 ℃ and tissue adhesion of 5.74 kPa, which are essential for noninvasive wound closure, and multiple mechanical and biological properties including suitable mechanical properties, self-healing, on-demand removal, antioxidant, hemostasis, and photothermal/intrinsic antibacterial activity (higher 99% killing ratio within 5 min after irradiation). In both full-thickness skin incision and excision wound models, the hydrogel reveals significant wound closure after 24 h post-surgery. In acute and methicillin-resistant Staphylococcus aureus-infected wound and photothermal/intrinsic antibacterial activity assays, wounds treated with the hydrogel demonstrate enhanced wound healing with rapid wound closure rate, mild inflammatory response, advanced angiogenesis, and well-arranged collagen fibers. Altogether, the results indicate the hydrogel is promising in synchronously noninvasive wound closure and enhanced wound healing.
Collapse
Affiliation(s)
- Rui Yu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi'an Jiaotong University Xi'an 710049 China
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 China
| | - Meng Li
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 China
| | - Zhenlong Li
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 China
| | - Guoying Pan
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 China
| | - Yuqing Liang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi'an Jiaotong University Xi'an 710049 China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi'an Jiaotong University Xi'an 710049 China
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 China
| |
Collapse
|
71
|
He R, Li J, Chen M, Zhang S, Cheng Y, Ning X, Wang N. Tailoring moisture electroactive Ag/Zn@cotton coupled with electrospun PVDF/PS nanofibers for antimicrobial face masks. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128239. [PMID: 35030485 DOI: 10.1016/j.jhazmat.2022.128239] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 05/18/2023]
Abstract
Face mask has become an essential and effective apparatus to protect human beings from air pollution, especially the air-borne pathogens. However, most commercial face masks can hardly achieve good particulate matters (PMs) and high bactericidal efficacy concurrently. Herein, a bilayer structured composite filter medium with built-in antimicrobial activities was constructed by combining cotton woven modified by magnetron sputtered Ag/Zn coatings and electrospun poly(vinylidene fluoride)/polystyrene (PVDF/PS) nanofibers. With the benefit of external moisture, an electrical stimulation was generated inside the composite fabric and thus endowed the fabric antimicrobial function. The resultant composite fabric presented conspicuous performance for integrated air pollution control, high filtration performance towards PM0.3 (99.1%, 79.2 Pa) and exceptional interception ratio against Escherichia coli (99.64%) and Staphylococcus aureus (98.75%) within 20 min contact. The high efficiency contact sterilization function of the bilayer fabric could further potentially promote disinfection and reuse of the filter media. This work may provide a new perspective on designing high-performance face mask media for public health protection.
Collapse
Affiliation(s)
- Ruidong He
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Jiwei Li
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; Shandong Center for Engineered Nonwovens, Qingdao University, Qingdao 266071, China
| | - Meng Chen
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Shaohua Zhang
- Department of Pediatrics, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yixin Cheng
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Xin Ning
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; Shandong Center for Engineered Nonwovens, Qingdao University, Qingdao 266071, China
| | - Na Wang
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; Shandong Center for Engineered Nonwovens, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
72
|
Ali F, Khan I, Chen J, Akhtar K, Bakhsh EM, Khan SB. Emerging Fabrication Strategies of Hydrogels and Its Applications. Gels 2022; 8:gels8040205. [PMID: 35448106 PMCID: PMC9024659 DOI: 10.3390/gels8040205] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022] Open
Abstract
Recently, hydrogels have been investigated for the controlled release of bioactive molecules, such as for living cell encapsulation and matrices. Due to their remote controllability and quick response, hydrogels are widely used for various applications, including drug delivery. The rate and extent to which the drugs reach their targets are highly dependent on the carriers used in drug delivery systems; therefore the demand for biodegradable and intelligent carriers is progressively increasing. The biodegradable nature of hydrogel has created much interest for its use in drug delivery systems. The first part of this review focuses on emerging fabrication strategies of hydrogel, including physical and chemical cross-linking, as well as radiation cross-linking. The second part describes the applications of hydrogels in various fields, including drug delivery systems. In the end, an overview of the application of hydrogels prepared from several natural polymers in drug delivery is presented.
Collapse
Affiliation(s)
- Fayaz Ali
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
- Centre of Excellence for Advance Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology Avenida Wai Long, Taipa, Macau 999078, China;
| | - Jianmin Chen
- School of Pharmacy and Medical Technology, Putian University, No. 1133 Xueyuan Zhong Jie, Putian 351100, China
- Correspondence: (J.C.); (S.B.K.)
| | - Kalsoom Akhtar
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
| | - Esraa M. Bakhsh
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
| | - Sher Bahadar Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
- Centre of Excellence for Advance Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Correspondence: (J.C.); (S.B.K.)
| |
Collapse
|
73
|
Xiong F, Wei S, Sheng H, Han X, Jiang W, Zhang Z, Li B, Xuan H, Xue Y, Yuan H. In situ polydopamine functionalized poly-L-lactic acid nanofibers with near-infrared-triggered antibacterial and reactive oxygen species scavenging capability. Int J Biol Macromol 2022; 201:338-350. [PMID: 35032490 DOI: 10.1016/j.ijbiomac.2022.01.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/19/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022]
Abstract
The development of a new multi-functional poly(L)-lactide (PLLA) nanofibrous scaffold with excellent antibacterial and reactive oxygen species (ROS) scavenging capability is quite important in tissue engineering. In this study, polydopamine (PDA)/PLLA nanofibers were prepared by combining electrospinning and post in-situ polymerization. The post in-situ polymerization of PDA on the PLLA nanofiber enable PDA uniformly distribute on PLLA nanofiber surface. PDA/PLLA nanofibrous composites also achieved stronger mechanical strength, hydrophilicity, good oxidation resistance and enhanced near-infrared photothermal effect. The near-infrared photothermal effect from PDA made the PDA/PLLA a good antibacterial material. The in vitro ROS scavenging ability of the PDA made PDA/PLLA be beneficial to damaged tissue repair. These results indicate that PDA/PLLA nanofibrous scaffold can be used as a tissue engineering scaffold material with versatile biomedical applications.
Collapse
Affiliation(s)
- Feng Xiong
- School of Life Sciences, Nantong University, 226019 Nantong, China
| | - Shuo Wei
- School of Life Sciences, Nantong University, 226019 Nantong, China
| | - Han Sheng
- School of Life Sciences, Nantong University, 226019 Nantong, China
| | - Xiang Han
- School of Life Sciences, Nantong University, 226019 Nantong, China
| | - Wei Jiang
- School of Life Sciences, Nantong University, 226019 Nantong, China
| | - Zhuojun Zhang
- School of Life Sciences, Nantong University, 226019 Nantong, China
| | - Biyun Li
- School of Life Sciences, Nantong University, 226019 Nantong, China
| | - Hongyun Xuan
- School of Life Sciences, Nantong University, 226019 Nantong, China
| | - Ye Xue
- School of Life Sciences, Nantong University, 226019 Nantong, China.
| | - Huihua Yuan
- School of Life Sciences, Nantong University, 226019 Nantong, China.
| |
Collapse
|
74
|
Progress in the Development of Graphene-Based Biomaterials for Tissue Engineering and Regeneration. MATERIALS 2022; 15:ma15062164. [PMID: 35329615 PMCID: PMC8955908 DOI: 10.3390/ma15062164] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022]
Abstract
Over the last few decades, tissue engineering has become an important technology for repairing and rebuilding damaged tissues and organs. The scaffold plays an important role and has become a hot pot in the field of tissue engineering. It has sufficient mechanical and biochemical properties and simulates the structure and function of natural tissue to promote the growth of cells inward. Therefore, graphene-based nanomaterials (GBNs), such as graphene and graphene oxide (GO), have attracted wide attention in the field of biomedical tissue engineering because of their unique structure, large specific surface area, good photo-thermal effect, pH response and broad-spectrum antibacterial properties. In this review, the structure and properties of typical GBNs are summarized, the progress made in the development of GBNs in soft tissue engineering (including skin, muscle, nerve and blood vessel) are highlighted, the challenges and prospects of the application of GBNs in soft tissue engineering have prospected.
Collapse
|
75
|
Cheng S, Wang H, Pan X, Zhang C, Zhang K, Chen Z, Dong W, Xie A, Qi X. Dendritic Hydrogels with Robust Inherent Antibacterial Properties for Promoting Bacteria-Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11144-11155. [PMID: 35195389 DOI: 10.1021/acsami.1c25014] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bacterial infections are a common problem associated with wound treatment that imposes a significant burden on healthcare systems and patients. As a result, healthcare providers urgently need new treatment strategies to protect people. Hydrogel biomaterials with inherent antimicrobial properties offer an attractive and viable solution to this issue. Here, for the first time, we have developed a new efficient synthetic strategy to prepare cationic hydrogels (PHCI) with intrinsically efficient antimicrobial properties by chemically cross-linking trans-1,4-cyclohexanediamine with 1,3-dibromo-2-propanol using a condensation reaction without the use of toxic cross-linking agents. As expected, the prepared PHCI hydrogel possessed an inherent antibacterial ability that can adsorb and kill Staphylococcus aureus and Escherichia coli electrostatically. Notably, in vivo experiments on normal and diabetic rat models confirmed that the PHCI hydrogel can quickly stop bleeding, efficiently kill bacteria, promote the conversion of macrophages from the proinflammatory M1 phenotype to the repaired M2 phenotype, and accelerate collagen deposition and blood vessel formation, thereby achieving rapid wound healing. Overall, this work presents an effective antibacterial dressing that might provide a facile but effective approach for clinical wound management.
Collapse
Affiliation(s)
- Siyao Cheng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Hao Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Xihao Pan
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated Hospital, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, and Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Cheng Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Kexin Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Zelin Chen
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Wei Dong
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Aming Xie
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Xiaoliang Qi
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
76
|
Recent progress of collagen, chitosan, alginate and other hydrogels in skin repair and wound dressing applications. Int J Biol Macromol 2022; 208:400-408. [PMID: 35248609 DOI: 10.1016/j.ijbiomac.2022.03.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023]
Abstract
Human understanding of skin is constantly ongoing. Great progress has been made in skin repair, wound dressing regeneration biomaterials research in recent years. This review introduced the clinical research and guiding principles of skin repair, wound dressing biomaterials at home and abroad, introduced the classification of various skin repair and wound dressing, listed the composition and performance of different dressing biomaterials, including traditional, natural, synthetic, tissue-engineered dressing materials were extensively reviewed. The biological molecular structures and biological function characteristics of different dressing biomaterials are comprehensively reviewed. Collagen, chitosan, alginate hydrogels et al. as the most popular biological macromolecules in skin repair and wound dressing applications were reviewed. The future development direction is also prospected. This paper reviews the research progress of advanced functional skin repair and wound dressing, which provides a reference for the modifications and applications of wound dressings.
Collapse
|
77
|
Wang W, Sheng H, Cao D, Zhang F, Zhang W, Yan F, Ding D, Cheng N. S-nitrosoglutathione functionalized polydopamine nanoparticles incorporated into chitosan/gelatin hydrogel films with NIR-controlled photothermal/NO-releasing therapy for enhanced wound healing. Int J Biol Macromol 2022; 200:77-86. [PMID: 34973982 DOI: 10.1016/j.ijbiomac.2021.12.125] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 01/21/2023]
Abstract
Nitric oxide (NO) has aroused wide interest in the treating infected wounds due to its characteristic functionalities. However, its utilization is limited due to its volatile properties, high reactivity, direct potential toxicity, and byproducts of NO donors limited its application. Herein, endogenously NO donor S-nitrosoglutathione (GSNO) was connected covalently to polydopamine nanoparticles (PDA-GSNO NPs) to minimize the loss of NO in aqueous medium. Meanwhile, near-infrared (NIR)-controlled NO release and photothermal therapy (PTT) was obtained through the photothermal conversion by PDA. Then chitosan (CS)/gelatin (GE) biocomposite hydrogel films with preferable biocompatibility, surface hydrophilicity, hydroabsorptivity, and mechanical adhesive properties were constructed. By embedding PDA-GSNO NPs into the films, a multifunctional wound dressing was fabricated. Under NIR light irradiation, the combination of PTT, NO-releasing, and CS antibacterial agents can strengthen the in vitro antimicrobial efficacy and in vivo wound healing activities. Meanwhile, the obtained wound dressing presented good biocompatibility. This work outlines an approach for combating bacterial infections and demonstrating the possibility for synergistic NO-releasing wound healing.
Collapse
Affiliation(s)
- Wenyu Wang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Huan Sheng
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Daihong Cao
- Department of Pathophysiology, Weifang Medical University, Weifang, Shangdong 261053, PR China
| | - Fenglian Zhang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Weifen Zhang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Fang Yan
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China.
| | - Dejun Ding
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China.
| | - Ni Cheng
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China.
| |
Collapse
|
78
|
Liang Y, Li M, Yang Y, Qiao L, Xu H, Guo B. pH/Glucose Dual Responsive Metformin Release Hydrogel Dressings with Adhesion and Self-Healing via Dual-Dynamic Bonding for Athletic Diabetic Foot Wound Healing. ACS NANO 2022; 16:3194-3207. [PMID: 35099927 DOI: 10.1021/acsnano.1c11040] [Citation(s) in RCA: 300] [Impact Index Per Article: 150.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In view of the lack of a specific drug-sustained release system that is responsive to chronic wounds of the type II diabetic foot, and the demands for frequent movement at the foot wound, pH/glucose dual-responsive metformin-released adhesion-enhanced self-healing easy-removable antibacterial antioxidant conductive hemostasis multifunctional phenylboronic acid and benzaldehyde bifunctional polyethylene glycol-co-poly(glycerol sebacic acid)/dihydrocaffeic acid and l-arginine cografted chitosan (PEGS-PBA-BA/CS-DA-LAG, denoted as PC) hydrogel dressings were constructed based on the double dynamic bond of the Schiff-base and phenylboronate ester. It was further demonstrated that the PC hydrogel promotes wound healing by reducing inflammation and enhancing angiogenesis in a rat type II diabetic foot model. In addition, the addition of metformin (Met) and graphene oxide (GO), as well as their synergy, were confirmed to better promote wound repair in vivo. In summary, adhesion-enhanced self-healing multifunctional PC/GO/Met hydrogels with stimuli-responsive metformin release ability and easy removability have shown a promoting effect on the healing of chronic athletic diabetic wounds and provide a local-specific drug dual-response release strategy for the treatment of type II diabetic feet.
Collapse
Affiliation(s)
- Yongping Liang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Meng Li
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yutong Yang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lipeng Qiao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huiru Xu
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
79
|
Gasparotto M, Bellet P, Scapin G, Busetto R, Rampazzo C, Vitiello L, Shah DI, Filippini F. 3D Printed Graphene-PLA Scaffolds Promote Cell Alignment and Differentiation. Int J Mol Sci 2022; 23:ijms23031736. [PMID: 35163657 PMCID: PMC8836229 DOI: 10.3390/ijms23031736] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 12/21/2022] Open
Abstract
Traumas and chronic damages can hamper the regenerative power of nervous, muscle, and connective tissues. Tissue engineering approaches are promising therapeutic tools, aiming to develop reliable, reproducible, and economically affordable synthetic scaffolds which could provide sufficient biomimetic cues to promote the desired cell behaviour without triggering graft rejection and transplant failure. Here, we used 3D-printing to develop 3D-printed scaffolds based on either PLA or graphene@PLA with a defined pattern. Multiple regeneration strategies require a specific orientation of implanted and recruited cells to perform their function correctly. We tested our scaffolds with induced pluripotent stem cells (iPSC), neuronal-like cells, immortalised fibroblasts and myoblasts. Our results demonstrated that the specific “lines and ridges” 100 µm-scaffold topography is sufficient to promote myoblast and fibroblast cell alignment and orient neurites along with the scaffolds line pattern. Conversely, graphene is critical to promote cells differentiation, as seen by the iPSC commitment to neuroectoderm, and myoblast fusions into multinuclear myotubes achieved by the 100 µm scaffolds containing graphene. This work shows the development of a reliable and economical 3D-printed scaffold with the potential of being used in multiple tissue engineering applications and elucidates how scaffold micro-topography and graphene properties synergistically control cell differentiation.
Collapse
Affiliation(s)
- Matteo Gasparotto
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, 35131 Padua, Italy; (M.G.); (P.B.); (R.B.)
| | - Pietro Bellet
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, 35131 Padua, Italy; (M.G.); (P.B.); (R.B.)
| | - Giorgia Scapin
- Garuda Therapeutics, Cambridge, MA 02142, USA;
- Correspondence: (G.S.); (F.F.)
| | - Rebecca Busetto
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, 35131 Padua, Italy; (M.G.); (P.B.); (R.B.)
| | - Chiara Rampazzo
- Department of Biology, University of Padua, 35131 Padua, Italy; (C.R.); (L.V.)
| | - Libero Vitiello
- Department of Biology, University of Padua, 35131 Padua, Italy; (C.R.); (L.V.)
- Interuniversity Institute of Myology (IIM), Administrative headquarters University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
- Inter-Departmental Research Center for Myology (CIR-Myo), University of Padua, 35131 Padua, Italy
| | | | - Francesco Filippini
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, 35131 Padua, Italy; (M.G.); (P.B.); (R.B.)
- Correspondence: (G.S.); (F.F.)
| |
Collapse
|
80
|
Ghorbani F, Ghalandari B, Liu C. A Facile Method to Synthesize 3D Pomegranate-like Polydopamine Microspheres. Front Bioeng Biotechnol 2022; 9:737074. [PMID: 34993182 PMCID: PMC8724573 DOI: 10.3389/fbioe.2021.737074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022] Open
Abstract
Nanospheres have found versatile applications in the biomedical field; however, their possible harmful effects on immune and inflammatory systems are also a crucial concern. Inspired by a pomegranate structure, we demonstrated a novel structure for the nanostructured microspheres to overcome the drawbacks of nanospheres without compromising their merits. In this study, 3D pomegranate-like polydopamine microspheres (PDAMS) were synthesized by self-oxidative polymerization of dopamine hydrochloride. Herein, controlling the pH during polymerization led to synthesizing homogeneous agglomerated nano-sized spheres (400–2000 nm) and finally forming tunable and monodisperse micron-sized particles (21 µm) with uniform spherical shape porous microstructure. PDAMS interaction with the potential targets, Bone morphogenetic protein-2 (BMP2), Decorin, and Matrilin-1, was investigated via molecular calculations. Theoretical energy analysis revealed that PDAMS interaction with BMP2, Decorin, and Matrilin-1 is spontaneous, so that a protein layer formation on the PDAMS surface suggests application in bone and cartilage repair. It was also observed that PDAMS presented in-vitro degradation within 4 weeks. Here, disappearance of the UV-VIS spectrum peak at 280 nm is accompanied by the degradation of catechol groups. Pomegranate-like PDAMS support the biomimetic formation of hydroxyapatite-like layers, making them appropriate candidates for hard tissue applications. Herein, the appearance of peaks in XRD spectrum at 31.37, 39.57, 45.21, and 50.13° attributed to hydroxyapatite-like layers formation. All these results demonstrated that self-oxidative polymerization under a controllable pH can be a green and straightforward technique for preparing the pomegranate-like PDAMS and providing an innovative basis for further pre-clinical and clinical investigations.
Collapse
Affiliation(s)
- Farnaz Ghorbani
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chaozong Liu
- Institute of Orthopaedic and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London, United Kingdom
| |
Collapse
|
81
|
Zeng Z, Jiang G, Sun Y, Aharodnikau UE, Gao X, Liu T, Yunusov KE, Solomevich SO. Rational design of flexible microneedles coupled with CaO2@PDA-loaded nanofiber films for skin wound healing on diabetic rats. Biomater Sci 2022; 10:5326-5339. [DOI: 10.1039/d2bm00861k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Skin ulcers is one of the complications of diabetes. At present, the treatment of diabetic skin wound is still not satisfactory, and the efficiency of drug delivery is limited by the depth...
Collapse
|
82
|
Ren L, He G, Zhou Y, Dai J, Miao W, Ouyang C, Liu J, Chen G. Hydrogel based on nanocellulose/polydopamine/gelatin are used for the treatment of MRSA infected wound with broad-spectrum antibacterial, antioxidant property and tissue suitability. Biomater Sci 2022; 10:3174-3187. [DOI: 10.1039/d2bm00157h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Most wound dressings have a series of problems when dealing with bacterial infection of wounds, for example, for lack of sufficient antibacterial and antioxidant capacity, comfort and mechanical properties are...
Collapse
|
83
|
Liu N, Ren P, Saleem A, Feng W, Huo J, Ma H, Li S, Li P, Huang W. Simultaneous Efficient Decontamination of Bacteria and Heavy Metals via Capacitive Deionization Using Polydopamine/Polyhexamethylene Guanidine Co-deposited Activated Carbon Electrodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61669-61680. [PMID: 34915703 DOI: 10.1021/acsami.1c20145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The contamination of pathogenic micro-organisms and heavy metals in drinking water sources poses a serious threat to human health, which raises the demand for efficient water treatments. Herein, multi-functional capacitive deionization (CDI) electrodes were developed for the simultaneous decontamination of bacteria and heavy metal contaminants. Polyhexamethylene guanidine (PHMG), an antibacterial polymer, was deposited on the surface of the activated carbon (AC) electrode with the assistance of mussel-inspired polydopamine (PDA) chemistry. The main characterization results proved successful co-deposition of PDA and PHMG on the AC electrode, forming a hydrophilic coating layer in one step. Electrochemical analyses indicated that the AC-PDA/PHMG electrodes presented satisfactory capacitive behaviors, with outstanding salt adsorption capacity and cycling stability. The modified electrodes also exhibit excellent disinfection performance and heavy metal adsorption performance. The bacterial elimination rate of co-deposited electrodes grew along with the increase in the PHMG content. Particularly, AC-PDA/PHMG2 electrodes successfully removed and deactivated 99.11% Escherichia coli and 98.67% Pseudomonas aeruginosa (104 CFU mL-1) in water within 60 min. Furthermore, three flow cells made by AC-PDA/PHMG2 electrodes connected in series achieved efficient removal of salt, heavy metals such as lead and cadmium, and bacteria simultaneously, which indicated that the adsorption performance is significantly improved compared with pristine AC electrodes. These results denote the enormous potential of this one-step prepared multi-functional electrodes for facile and effective water purification using CDI technology.
Collapse
Affiliation(s)
- Nian Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Panyu Ren
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Atif Saleem
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Wei Feng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jingjing Huo
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Huifang Ma
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Sheng Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
84
|
Yu R, Zhang H, Guo B. Conductive Biomaterials as Bioactive Wound Dressing for Wound Healing and Skin Tissue Engineering. NANO-MICRO LETTERS 2021; 14:1. [PMID: 34859323 PMCID: PMC8639891 DOI: 10.1007/s40820-021-00751-y] [Citation(s) in RCA: 259] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/29/2021] [Indexed: 05/06/2023]
Abstract
Conductive biomaterials based on conductive polymers, carbon nanomaterials, or conductive inorganic nanomaterials demonstrate great potential in wound healing and skin tissue engineering, owing to the similar conductivity to human skin, good antioxidant and antibacterial activities, electrically controlled drug delivery, and photothermal effect. However, a review highlights the design and application of conductive biomaterials for wound healing and skin tissue engineering is lacking. In this review, the design and fabrication methods of conductive biomaterials with various structural forms including film, nanofiber, membrane, hydrogel, sponge, foam, and acellular dermal matrix for applications in wound healing and skin tissue engineering and the corresponding mechanism in promoting the healing process were summarized. The approaches that conductive biomaterials realize their great value in healing wounds via three main strategies (electrotherapy, wound dressing, and wound assessment) were reviewed. The application of conductive biomaterials as wound dressing when facing different wounds including acute wound and chronic wound (infected wound and diabetic wound) and for wound monitoring is discussed in detail. The challenges and perspectives in designing and developing multifunctional conductive biomaterials are proposed as well.
Collapse
Affiliation(s)
- Rui Yu
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Hualei Zhang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
85
|
Xu L, Ma F, Leung FKL, Qin C, Lu WW, Tang B. Chitosan-strontium chondroitin sulfate scaffolds for reconstruction of bone defects in aged rats. Carbohydr Polym 2021; 273:118532. [PMID: 34560945 DOI: 10.1016/j.carbpol.2021.118532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/14/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022]
Abstract
Bone defects caused by trauma have become increasingly common in aged populations. Clinically, because of the relatively decreased bone healing capacity compared with the youth adults, bone defect repair in the elderly remains challenging. The development of effective biomaterials targeted at bone defects in the elderly is a key component of bone-tissue engineering strategies. However, little attention has been paid to bone regeneration in the elderly. Here, we developed a new scaffold chitosan-Strontium chondroitin sulfate (CH-SrCS) and evaluated its effect on improving bone regeneration. We find that the CH-SrCS scaffold displayed positive effects on downregulation of inflammation and osteoclastogenesis related mRNA expressions while demonstrating a significant increase in the expression level of BMP2. Finally, we show that the bone defects healing effects as assessed using an aged rats' bone defects model. Ultimately, this work also provides insights into the design of effective biomaterials targeted at bone defects in the elderly.
Collapse
Affiliation(s)
- Lei Xu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China; Department of Orthopeadics and Traumatology, LKS Faculty of Medicine, the University of Hong Kong, HK SAR, PR China; Department of Orthopeadics and Traumatology, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China
| | - Fenbo Ma
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Frankie K L Leung
- Department of Orthopeadics and Traumatology, LKS Faculty of Medicine, the University of Hong Kong, HK SAR, PR China
| | - Chenghe Qin
- Department of Orthopeadics and Traumatology, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China.
| | - William W Lu
- Department of Orthopeadics and Traumatology, LKS Faculty of Medicine, the University of Hong Kong, HK SAR, PR China.
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, PR China; Shenzhen Key Laboratory of Cell Microenvironment, PR China.
| |
Collapse
|
86
|
Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101472] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
87
|
Abe Y, Nishizawa M. Electrical aspects of skin as a pathway to engineering skin devices. APL Bioeng 2021; 5:041509. [PMID: 34849444 PMCID: PMC8604566 DOI: 10.1063/5.0064529] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Skin is one of the indispensable organs for life. The epidermis at the outermost surface provides a permeability barrier to infectious agents, chemicals, and excessive loss of water, while the dermis and subcutaneous tissue mechanically support the structure of the skin and appendages, including hairs and secretory glands. The integrity of the integumentary system is a key for general health, and many techniques have been developed to measure and control this protective function. In contrast, the effective skin barrier is the major obstacle for transdermal delivery and detection. Changes in the electrical properties of skin, such as impedance and ionic activity, is a practical indicator that reflects the structures and functions of the skin. For example, the impedance that reflects the hydration of the skin is measured for quantitative assessment in skincare, and the current generated across a wound is used for the evaluation and control of wound healing. Furthermore, the electrically charged structure of the skin enables transdermal drug delivery and chemical extraction. This paper provides an overview of the electrical aspects of the skin and summarizes current advances in the development of devices based on these features.
Collapse
Affiliation(s)
- Yuina Abe
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Matsuhiko Nishizawa
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
88
|
Feng J, Niu Y, Zhang Y, Zuo H, Wang S, Liu X. Ficus carica extract impregnated amphiphilic polymer scaffold for diabetic wound tissue regenerations. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:219-229. [PMID: 33666536 DOI: 10.1080/21691401.2021.1890610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/24/2021] [Indexed: 12/25/2022]
Abstract
Diabetes associated injury healing and other tissue irregularities are viewed as a significant concern. The purpose of the study is to design the wound regeneration activity of Ficus carica extract (FFE) loaded amphiphilic polymeric scaffold of poly(xylitol-g-adipate-co-glutamide) (PXAG)-polyhydroxybutyrate (PHB) for potential diabetic affected wound regeneration. The PXAG copolymer was prepared by the condensation method, and the polymeric scaffolds of PXAG-PHB, PXAG-PHB/FFE were developed through the ultra-sonication process and magnetic stirrer processes. The chemical structure, crystalline nature, thermal stability, size, surface charge and surface morphology of PXAG-PHB and PXAG-PHB/FFE polymeric scaffolds were investigated. The PXAG-PHB/FFE exhibits 99.0% free radical scavenging activity which was determined by the DPPH method. The inhibition zones by the PXAG-PHB/FFE indicate it had a higher antibacterial activity with the Escherichia coli (gram-negative) and Staphylococcus aureus (gram-positive) pathogens. The PXAG, PXAG-PHB and PXAG-PHB/FFE polymeric scaffolds exhibited good viability against diabetic induced wound cells (WS1) in 100 μg/mL concentrations up to 72 h incubation. Since the synthesized PXAG-PHB/FFE polymeric scaffolds possess excellent thermal stability, bioactivity, biocompatibility and antioxidant activity along with potent antimicrobial activity, they play a potential role in diabetic wound tissue regenerations.
Collapse
Affiliation(s)
- Jia Feng
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Endocrinology, Ninth Hospital of Xi'an, Xi'an, China
| | - Yu Niu
- Department of Endocrinology, Ninth Hospital of Xi'an, Xi'an, China
| | - Yi Zhang
- Department of Endocrinology, Ninth Hospital of Xi'an, Xi'an, China
| | - Hong Zuo
- Department of Endocrinology, Ninth Hospital of Xi'an, Xi'an, China
| | - Shujin Wang
- Department of Endocrinology, Ninth Hospital of Xi'an, Xi'an, China
| | - Xufeng Liu
- Department of Endocrinology, Ninth Hospital of Xi'an, Xi'an, China
| |
Collapse
|
89
|
Fallah N, Rasouli M, Amini MR. The current and advanced therapeutic modalities for wound healing management. J Diabetes Metab Disord 2021; 20:1883-1899. [PMID: 34900831 PMCID: PMC8630293 DOI: 10.1007/s40200-021-00868-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022]
Abstract
Ever-increasing demands on improving efficiencies of wound healing procedures are a strong driving force for the development of replacement approaches. This review focuses on wound healing management from the point of formation to the point of healing procedures. The most important usual healing modality with key characteristic is explained and their limitations are discussed. Novel interesting approaches are presented with a concentration of the unique features and action mechanisms. Special attention is paid to gas plasma and nanotechnology impact on wound healing management from fundamental processes to beneficial outcomes. Challenges and opportunities for the future trend that combined common protocols and emerging technologies are discussed.
Collapse
Affiliation(s)
- Nadia Fallah
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Milad Rasouli
- Plasma Medicine Group, Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Plasma Research and Department of Physics, Kharazmi University, Tehran, Iran
| | - Mohammad Reza Amini
- Plasma Medicine Group, Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
90
|
Yuan R, Yang N, Fan S, Huang Y, You D, Wang J, Zhang Q, Chu C, Chen Z, Liu L, Ge L. Biomechanical Motion-Activated Endogenous Wound Healing through LBL Self-Powered Nanocomposite Repairer with pH-Responsive Anti-Inflammatory Effect. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103997. [PMID: 34713581 DOI: 10.1002/smll.202103997] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/02/2021] [Indexed: 05/27/2023]
Abstract
Wound care is still worthy of concern, and effective measures such as electrical stimulating therapy (EST) have sparked compellingly for wound repair. Especially, portable and point-of-care EST devices get extremely desired but these are often limited by inevitable external power sources, lack of biological functions, and mechanical properties conforming to skin tissue. Herein, a dress-on-person self-powered nanocomposite bioactive repairer of wound is designed. As such, the cooperation of the film prepared by layer-by-layer self-assembling 2-hydroxypropyltrimethyl ammonium chloride chitosan (HTCC), alginate (ALG), and poly-dopamine/Fe3+ nanoparticles (PFNs), with a self-powered nanogenerator (SN) driven by motion into a nanocomposite repairer (HAP/SN-NR) is conducted. The HAP/SN-NR not only guides cell behavior (proliferation and migration rate ≈61.7%, ≈52.3%), but also facilitates neovascularization (enhanced CD31 expression >4-fold) through its self-powered EST, and the endogenous wound closure with no inflammatory in rats owing to reactive oxygen species (ROS)-clearance of HAP/SN-NR in vitro/vivo through responsively releasing poly-dopamine nanoparticles at wound pH. Enormous efforts illustrate that the repairer is endowed with high self-adhesion to tissue, self-healing, and biodegradation, accelerating wound healing (50% closure ≈5 days). This strategy sheds light on novel multifunctional portable sensor-type dressings and propels the development of intelligent medical devices.
Collapse
Affiliation(s)
- Renqiang Yuan
- State Key Laboratory of Bioelectronics & National Demonstration Centre for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Ning Yang
- State Key Laboratory of Bioelectronics & National Demonstration Centre for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Shanwen Fan
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Yueru Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Dan You
- State Key Laboratory of Bioelectronics & National Demonstration Centre for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
- Anhui Huaneng Cable Group Co., LTD Bawan Industrial Zone, Gaogou Town, Wuwei City, Wuhu, 341400, P. R. China
| | - Jieran Wang
- Anhui Huaneng Cable Group Co., LTD Bawan Industrial Zone, Gaogou Town, Wuwei City, Wuhu, 341400, P. R. China
| | - Qianli Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Cuilin Chu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics & National Demonstration Centre for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Liqin Ge
- State Key Laboratory of Bioelectronics & National Demonstration Centre for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
91
|
Huang H, Feng W, Chen Y. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chem Soc Rev 2021; 50:11381-11485. [PMID: 34661206 DOI: 10.1039/d0cs01138j] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To date, nanotechnology has increasingly been identified as a promising and efficient means to address a number of challenges associated with public health. In the past decade, two-dimensional (2D) biomaterials, as a unique nanoplatform with planar topology, have attracted explosive interest in various fields such as biomedicine due to their unique morphology, physicochemical properties and biological effect. Motivated by the progress of graphene in biomedicine, dozens of types of ultrathin 2D biomaterials have found versatile bio-applications, including biosensing, biomedical imaging, delivery of therapeutic agents, cancer theranostics, tissue engineering, as well as others. The effective utilization of 2D biomaterials stems from the in-depth knowledge of structure-property-bioactivity-biosafety-application-performance relationships. A comprehensive summary of 2D biomaterials for biomedicine is still lacking. In this comprehensive review, we aim to concentrate on the state-of-the-art 2D biomaterials with a particular focus on their versatile biomedical applications. In particular, we discuss the design, fabrication and functionalization of 2D biomaterials used for diverse biomedical applications based on the up-to-date progress. Furthermore, the interactions between 2D biomaterials and biological systems on the spatial-temporal scale are highlighted, which will deepen the understanding of the underlying action mechanism of 2D biomaterials aiding their design with improved functionalities. Finally, taking the bench-to-bedside as a focus, we conclude this review by proposing the current crucial issues/challenges and presenting the future development directions to advance the clinical translation of these emerging 2D biomaterials.
Collapse
Affiliation(s)
- Hui Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.,Wenzhou Institute of Shanghai University, Wenzhou, 325000, P. R. China.,School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
92
|
Shen S, Chen X, Shen Z, Chen H. Marine Polysaccharides for Wound Dressings Application: An Overview. Pharmaceutics 2021; 13:1666. [PMID: 34683959 PMCID: PMC8541487 DOI: 10.3390/pharmaceutics13101666] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 01/11/2023] Open
Abstract
Wound dressings have become a crucial treatment for wound healing due to their convenience, low cost, and prolonged wound management. As cutting-edge biomaterials, marine polysaccharides are divided from most marine organisms. It possesses various bioactivities, which allowing them to be processed into various forms of wound dressings. Therefore, a comprehensive understanding of the application of marine polysaccharides in wound dressings is particularly important for the studies of wound therapy. In this review, we first introduce the wound healing process and describe the characteristics of modern commonly used dressings. Then, the properties of various marine polysaccharides and their application in wound dressing development are outlined. Finally, strategies for developing and enhancing marine polysaccharide wound dressings are described, and an outlook of these dressings is given. The diverse bioactivities of marine polysaccharides including antibacterial, anti-inflammatory, haemostatic properties, etc., providing excellent wound management and accelerate wound healing. Meanwhile, these biomaterials have higher biocompatibility and biodegradability compared to synthetic ones. On the other hand, marine polysaccharides can be combined with copolymers and active substances to prepare various forms of dressings. Among them, emerging types of dressings such as nanofibers, smart hydrogels and injectable hydrogels are at the research frontier of their development. Therefore, marine polysaccharides are essential materials in wound dressings fabrication and have a promising future.
Collapse
Affiliation(s)
- Shenghai Shen
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (S.S.); (X.C.)
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China
| | - Xiaowen Chen
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (S.S.); (X.C.)
| | - Zhewen Shen
- School of Humanities, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor, Malaysia;
| | - Hao Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China
| |
Collapse
|
93
|
Wu K, Wu X, Guo J, Jiao Y, Zhou C. Facile Polyphenol-Europium Assembly Enabled Functional Poly(l-Lactic Acid) Nanofiber Mats with Enhanced Antioxidation and Angiogenesis for Accelerated Wound Healing. Adv Healthc Mater 2021; 10:e2100793. [PMID: 34346184 DOI: 10.1002/adhm.202100793] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Burns, trauma, surgery and chronic diabetic ulcers are the most common reasons causing skin wounds in clinic. Thus, developing a functional wound dressing has been an imperative issue. Herein, functional wound dressing (poly(l-lactic acid) PLLA-((tanic acid (TA)/europium (Eu))n ) is fabricated through a facile polyphenol-europium ion assembly to ameliorate wound microenvironment via scavenging excessive reactive oxygen species (ROS) and promoting angiogenesis. The physicochemical characterization indicates that the multicycle assembled TA/Eu is uniformly deposited on PLLA-(TA/Eu)n nanofiber mats surface. In vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) antioxidant tests display good antioxidant ability by scavenging more than 75% ROS, and significantly increasing the antioxidant enzyme levels in vivo. Cytocompatibility experiments illustrate that PLLA-(TA/Eu)n nanofiber mats can promote the adhesion and proliferation of human umbilical vein endothelial cells (HUVECs) and L929 cells. Meanwhile, real-time quantitative polymerase chain reaction (PCR) (RT-qPCR) and western blot assays illustrate that it can stimulate proangiogenesis by elevating the expression of angiogenesis-related genes and proteins. In vivo Sprague-Dawley (SD) rats experiments indicate that PLLA-(TA/Eu)n nanofiber mats can significantly promote wound healing by improving both angiogenesis and antioxidant activity. Taken together, the functional PLLA-(TA/Eu)n nanofiber mats can offer significant promise as wound dressing for accelerated wound healing.
Collapse
Affiliation(s)
- Keke Wu
- Department of Materials Science and Engineering Jinan University Guangzhou 510632 China
- Department of Histology and Embryology School of Basic Medical Sciences Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases The Third Affiliated Hospital of Southern Medical University Southern Medical University Guangzhou 510515 China
| | - Xiaoxian Wu
- Instrumental Analysis and Research Center South China Agricultural University Guangzhou 510642 China
| | - Jinshan Guo
- Department of Histology and Embryology School of Basic Medical Sciences Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases The Third Affiliated Hospital of Southern Medical University Southern Medical University Guangzhou 510515 China
| | - Yanpeng Jiao
- Department of Materials Science and Engineering Jinan University Guangzhou 510632 China
| | - Changren Zhou
- Department of Materials Science and Engineering Jinan University Guangzhou 510632 China
| |
Collapse
|
94
|
Zheng D, Huang C, Zhu X, Huang H, Xu C. Performance of Polydopamine Complex and Mechanisms in Wound Healing. Int J Mol Sci 2021; 22:10563. [PMID: 34638906 PMCID: PMC8508909 DOI: 10.3390/ijms221910563] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Polydopamine (PDA) has been gradually applied in wound healing of various types in the last three years. Due to its rich phenol groups and unique structure, it can be combined with a variety of materials to form wound dressings that can be used for chronic infection, tissue repair in vivo and serious wound healing. PDA complex has excellent mechanical properties and self-healing properties, and it is a stable material that can be used for a long period of time. Unlike other dressings, PDA complexes can achieve both photothermal therapy and electro activity. In this paper, wound healing is divided into four stages: antibacterial, anti-inflammatory, cell adhesion and proliferation, and re-epithelialization. Photothermal therapy can improve the bacteriostatic rate and remove reactive oxygen species to inhibit inflammation. Electrical signals can stimulate cell proliferation and directional migration. With low reactive oxygen species (ROS) levels, inflammatory factors are down-regulated and growth factors are up-regulated, forming regular collagen fibers and accelerating wound healing. Finally, five potential development directions are proposed, including increasing drug loading capacity, optimization of drug delivery platforms, improvement of photothermal conversion efficiency, intelligent electroactive materials and combined 3D printing.
Collapse
Affiliation(s)
| | - Chongxing Huang
- School of Light Industry & Food Engineering, Guangxi University, Daxue Road 100, Nanning 530000, China; (D.Z.); (X.Z.); (H.H.); (C.X.)
| | | | | | | |
Collapse
|
95
|
Zeng Q, Qian Y, Huang Y, Ding F, Qi X, Shen J. Polydopamine nanoparticle-dotted food gum hydrogel with excellent antibacterial activity and rapid shape adaptability for accelerated bacteria-infected wound healing. Bioact Mater 2021; 6:2647-2657. [PMID: 33665497 PMCID: PMC7890098 DOI: 10.1016/j.bioactmat.2021.01.035] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 01/09/2023] Open
Abstract
Most commonly used wound dressings have severe problems, such as an inability to adapt to wound shape or a lack of antibacterial capacity, affecting their ability to meet the requirements of clinical applications. Here, a nanocomposite hydrogel (XKP) is developed by introducing polydopamine nanoparticles (PDA NPs) into a food gum matrix (XK, consisting of xanthan gum and konjac glucomannan, both FDA-approved food thickening agents) for skin wound healing. In this system, the embedded PDA NPs not only interact with the food gum matrix to form a hydrogel with excellent mechanical strength, but also act as photothermal transduction agents to convert near-infrared laser radiation to heat, thereby triggering bacterial death. Moreover, the XKP hydrogel has high elasticity and tunable water content, enabling it to adapt to the shape of the wound and insulate it, providing a moist environment suitable for healing. In-vivo skin wound healing results clearly demonstrate that XKP can significantly accelerate the healing of wounds by reducing the inflammatory response and promoting vascular reconstruction. In summary, this strategy provides a simple and practical method to overcome the drawbacks of traditional wound dressings, and provides further options when choosing suitable wound healing materials for clinical applications.
Collapse
Affiliation(s)
- Qiankun Zeng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Yuna Qian
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Yijing Huang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Feng Ding
- Department of Microbiology & Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoliang Qi
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
96
|
Staneva AD, Dimitrov DK, Gospodinova DN, Vladkova TG. Antibiofouling Activity of Graphene Materials and Graphene-Based Antimicrobial Coatings. Microorganisms 2021; 9:1839. [PMID: 34576733 PMCID: PMC8472838 DOI: 10.3390/microorganisms9091839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 12/19/2022] Open
Abstract
Microbial adhesion and biofilm formation is a common, nondesirable phenomenon at any living or nonliving material surface in contact with microbial species. Despite the enormous efforts made so far, the protection of material surfaces against microbial adhesion and biofilm formation remains a significant challenge. Deposition of antimicrobial coatings is one approach to mitigate the problem. Examples of such are those based on heparin, cationic polymers, antimicrobial peptides, drug-delivering systems, and other coatings, each one with its advantages and shortcomings. The increasing microbial resistance to the conventional antimicrobial treatments leads to an increasing necessity for new antimicrobial agents, among which is a variety of carbon nanomaterials. The current review paper presents the last 5 years' progress in the development of graphene antimicrobial materials and graphene-based antimicrobial coatings that are among the most studied. Brief information about the significance of the biofouling, as well as the general mode of development and composition of microbial biofilms, are included. Preparation, antibacterial activity, and bactericidal mechanisms of new graphene materials, deposition techniques, characterization, and parameters influencing the biological activity of graphene-based coatings are focused upon. It is expected that this review will raise some ideas for perfecting the composition, structure, antimicrobial activity, and deposition techniques of graphene materials and coatings in order to provide better antimicrobial protection of medical devices.
Collapse
Affiliation(s)
- Anna D. Staneva
- Laboratory for Advanced Materials Research (LAMAR), University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd, 1756 Sofia, Bulgaria; (A.D.S.); (D.K.D.)
| | - Dimitar K. Dimitrov
- Laboratory for Advanced Materials Research (LAMAR), University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd, 1756 Sofia, Bulgaria; (A.D.S.); (D.K.D.)
| | - Dilyana N. Gospodinova
- Faculty of Electrical Engineering, Technical University-Sofia, 8 Kliment Ohridski Blvd, 1756 Sofia, Bulgaria;
| | - Todorka G. Vladkova
- Laboratory for Advanced Materials Research (LAMAR), University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd, 1756 Sofia, Bulgaria; (A.D.S.); (D.K.D.)
| |
Collapse
|
97
|
Abstract
Hydrogels, due to their excellent biochemical and mechnical property, have shown attractive advantages in the field of wound dressings. However, a comprehensive review of the functional hydrogel as a wound dressing is still lacking. This work first summarizes the skin wound healing process and relates evaluation parameters and then reviews the advanced functions of hydrogel dressings such as antimicrobial property, adhesion and hemostasis, anti-inflammatory and anti-oxidation, substance delivery, self-healing, stimulus response, conductivity, and the recently emerged wound monitoring feature, and the strategies adopted to achieve these functions are all classified and discussed. Furthermore, applications of hydrogel wound dressing for the treatment of different types of wounds such as incisional wound and the excisional wound are summarized. Chronic wounds are also mentioned, and the focus of attention on infected wounds, burn wounds, and diabetic wounds is discussed. Finally, the future directions of hydrogel wound dressings for wound healing are further proposed.
Collapse
Affiliation(s)
- Yongping Liang
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiahui He
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baolin Guo
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
98
|
Wang P, Pu Y, Ren Y, Liu S, Yang R, Tan X, Zhang W, Shi T, Li S, Chi B. Bio-inspired hydrogel-based bandage with robust adhesive and antibacterial abilities for skin closure. SCIENCE CHINA MATERIALS 2021; 65:246-254. [PMID: 34413988 PMCID: PMC8362644 DOI: 10.1007/s40843-021-1724-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/31/2021] [Indexed: 05/30/2023]
Abstract
UNLABELLED Although conventional suturing techniques are commonly used in assisting wound closure, they do pose limited conduciveness and may lead to secondary injury to wound tissues. Inspired by marine organism mussels, we designed and manufactured a bio-inspired hydrogel-based bandage with tough wet tissue adhesion to substitute traditional surgical suture, accelerate wound healing and avoid infection. Poly(γ-glutamic acid) was modified with 3,4-dihydroxyphenylalanine and glycidyl methacylate, then introduced into the acrylic acid-co-acrylamide hydrogel matrix with robust mechanical properties. The hydrogel bandage showed strong chemical linkage adhesion (70 ± 2.1 kPa), which is 2.8 times that of commercial tissue adhesive fibrin glue (25 ± 2.2 kPa). The hydrogel bandage can not only maintain the self-stability, but is also capable of self-tuning adhesive strength in the range of 14-70 kPa to achieve different adhesion effects by tuning constituent ratio. The bandage has desirable compression properties (0.7 ± 0.11 MPa) and tensile elongation (about 25 times), which ensures its resistance to damages, especially in joint spaces. Secondly, the bandage was endowed with antioxidant and endogenous broad-spectrum antibacterial properties with its catechol structure. Results also demonstrated excellent cell compatibility and blood compatibility, certifying its eligible biological safety profile. In a rat full-thickness cutaneous deficiency model, we can clearly observe that the bandage possesses the ability to promote wound healing (only need 6 days). Above all, this research provides a new strategy for the emergency treatment of liver hemostasis and myocardial repair during disaster rescue. SUPPLEMENTARY INFORMATION Experimental details and supporting data are available in the online version of the paper10.1007/s40843-021-1724-8.
Collapse
Affiliation(s)
- Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816 China
| | - Yajie Pu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816 China
| | - Yanhan Ren
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064 USA
| | - Shuai Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816 China
| | - Xiaoyan Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816 China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816 China
| | - Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816 China
| | - Tianqi Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816 China
| | - Shuang Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816 China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816 China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816 China
| |
Collapse
|
99
|
Zhou Y, Liu G, Huang H, Wu J. Advances and impact of arginine-based materials in wound healing. J Mater Chem B 2021; 9:6738-6750. [PMID: 34346479 DOI: 10.1039/d1tb00958c] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In studies on wound-dressing materials, bioactive materials have been developed rapidly to accelerate wound healing. In recent years, scientists have studied arginine as a bioactive component due to its excellent biosafety, antimicrobial properties and therapeutic effects on wound healing. Surprisingly, arginine therapy is also used under specific pathological conditions, such as diabetes and trauma/hemorrhagic shock. Due to the broad utilization of arginine-assisted therapy, we present the unique properties of arginine for healing lesions of damaged tissue and examined multiple arginine-based systems for the application of wound healing. This review shows that arginine-based therapy can be separated in two categories: direct supplemental approaches of free arginine, and indirect approaches based on arginine derivatives in which modified arginine can be released after biodegradation. Using these two pathways, arginine-based therapy may prove to be a promising strategy in the development of wound curative treatments.
Collapse
Affiliation(s)
- Yang Zhou
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | | | | | | |
Collapse
|
100
|
Zhang X, Xiao L, Ding Z, Lu Q, Kaplan DL. Fragile-Tough Mechanical Reversion of Silk Materials via Tuning Supramolecular Assembly. ACS Biomater Sci Eng 2021; 7:2337-2345. [PMID: 33835795 DOI: 10.1021/acsbiomaterials.1c00181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Regenerated silk nanofibers are interesting as protein-based material building blocks due to their unique structure and biological origin. Here, a new strategy based on control of supramolecular assembly was developed to regulate interactions among silk nanofibers by changing the solvent, achieving tough mechanical features for silk films. Formic acid was used to replace water related to charge repulsion of silk nanofibers in solution, inducing interactions among the nanofibers. The films formed under these conditions had an elastic modulus of 3.4 ± 0.3 GPa, an ultimate tensile strength of 76.9 ± 1.6 MPa, and an elongation at break of 3.5 ± 0.1%, while the materials formed from aqueous solutions remained fragile. The mechanical performance of the formic acid-derived nanofiber films was further improved through post-stretching or via the addition of graphene. In addition, the silk nanofiber films could be functionalized with various bioactive ingredients such as curcumin. These new silk nanofiber films with a unique combination of mechanical properties and functions provide new biomaterials achieved using traditional solvents and processes through insight and control of their assembly mechanisms in solution.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Liying Xiao
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|