51
|
Zhao W, Yuan Y, Du P, Zhu M, Yin S, Guo S. Multi‐shelled Hollow Nanospheres of SnO
2
/Sn@TiO
2
@C Composite as High‐performance Anode for Lithium‐Ion Batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202100613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wencai Zhao
- College of Machinery and Automation Zhejiang Sci-Tech University 310018 Hangzhou China
| | - Yongfeng Yuan
- College of Machinery and Automation Zhejiang Sci-Tech University 310018 Hangzhou China
| | - Pingfan Du
- College of Textile Science and Engineering Zhejiang Sci-Tech University 310018 Hangzhou China
| | - Min Zhu
- College of Machinery and Automation Zhejiang Sci-Tech University 310018 Hangzhou China
| | - Simin Yin
- College of Machinery and Automation Zhejiang Sci-Tech University 310018 Hangzhou China
| | - Shaoyi Guo
- College of Machinery and Automation Zhejiang Sci-Tech University 310018 Hangzhou China
| |
Collapse
|
52
|
Metal–organic frameworks (MOFs) based electrochemical biosensors for early cancer diagnosis in vitro. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213948] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
53
|
Lv SW, Zhao N, Liu JM, Yang FE, Li CY, Wang S. Newly Constructed NiCo 2O 4 Derived from ZIF-67 with Dual Mimic Enzyme Properties for Colorimetric Detection of Biomolecules and Metal Ions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25044-25052. [PMID: 34019375 DOI: 10.1021/acsami.1c06705] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Integration of novel bio-/nanostructures as effective sensing platforms is still of great significance for robust and rapid analysis. Herein, a novel metal-organic framework-derived NiCo2O4 was synthesized via a feasible templating method. Significantly, redox couples of both Ni3+/Ni2+ and Co3+/Co2+ provided richer oxidation-reduction reactions, thereby leading to an enhanced catalytic activity. Furthermore, NiCo2O4 as an enzyme mimic with peroxidase-like activity and oxidase-like activity could oxidize colorless thylbenzidine (TMB) to blue oxTMB in the absence of H2O2. Thus, a sensitive chromogenic sensing platform for detecting Fe2+, thiourea, cysteine (Cys), and epigallocatechin-3-gallate (EGCG) was proposed. The colorimetric detection methods exhibited great features of low limit of detection (LOD) and broad linear range. Owing to the complexation reaction, the chromogenic sensing system of TMB + NiCo2O4 + Cys achieved effective detection of Cu2+ and Mn2+ with the LODs of 0.0022 and 0.0181 mM, respectively. Developed detection methods with wide linear ranges of 0.008-0.1 mM for Cu2+ and 0.08-1 mM for Mn2+ had excellent practical potential. Similarly, the reaction system of TMB + NiCo2O4 + EGCG could achieve the colorimetric detection of Cu2+ and Fe3+. The great chromogenic sensing performance for detecting Cu2+ and Fe3+ with a broad linear range and a low LOD could be also realized.
Collapse
Affiliation(s)
- Shi-Wen Lv
- College of Environmental Science and Engineering, Nankai University, No.94 Weijin Road, Tianjin300071, China
| | - Ning Zhao
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No.94 Weijin Road, Tianjin300071, China
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No.94 Weijin Road, Tianjin300071, China
| | - Fei-Er Yang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No.94 Weijin Road, Tianjin300071, China
| | - Chun-Yang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No.94 Weijin Road, Tianjin300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No.94 Weijin Road, Tianjin300071, China
- College of Environmental Science and Engineering, Nankai University, No.94 Weijin Road, Tianjin300071, China
| |
Collapse
|
54
|
Li Z, Mi H, Ji C, Guo F, Qiu P, Ma K, He S, Wu D, Cui H, Yang N. Phosphate-modified Co-Ni phosphide heterostructure formed by interfacial and electronic tuning for boosted faradaic properties. Dalton Trans 2021; 50:5036-5043. [PMID: 33877201 DOI: 10.1039/d1dt00817j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rational structural and compositional modulation endows electrode materials with unique physicochemical characteristics due to their adjustable electronic properties. Herein, a phosphate-modified hierarchical nanoarray consisting of a heterojunction with a well-aligned cobalt phosphide nanowire core and nickel phosphide nanosheet shell on flexible carbon cloth (denoted as CoP@Ni2P-CC) is engineered. The phosphate-modulated heterogeneous phosphide with a tuned electronic structure, additional heterojunction interfaces, and high degree of covalency in the chemical bonds accelerates the reaction kinetics and enhances the energy storage performance. Due to these reasons, the as-obtained phosphide-based heterostructured CoP@Ni2P-CC electrode delivers a capacity of 475.9 C g-1 at 0.5 A g-1 with a satisfying rate capability, which is greatly superior to that of its transition metal counterparts (sulfide, selenide, and oxide). After being assembled into a flexible hybrid supercapacitor (FHSC), a wide operating voltage (1.8 V), high energy/power densities (49.8 W h kg-1/8.6 kW kg-1), and long-term stability (85.1% capacity retention after 10 000 cycles) were achieved. This work may provide a general method from multiple strategies for designing reliable pseudocapacitive materials for flexible electronics.
Collapse
Affiliation(s)
- Zhan Li
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Zhang F, Zhang J, Ma J, Zhao X, Li Y, Li R. Polyvinylpyrrolidone (PVP) assisted in-situ construction of vertical metal-organic frameworks nanoplate arrays with enhanced electrochemical performance for hybrid supercapacitors. J Colloid Interface Sci 2021; 593:32-40. [PMID: 33735831 DOI: 10.1016/j.jcis.2021.02.101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Construction of two-dimensional (2D) metal-organic frameworks (MOFs) for energy storage and conversion has attracted great attention due to the synergistic advantages of 2D nanostructures and MOFs. Herein, a Co-MOF material with different 2D morphologies of vertical nanoplate arrays and faveolate nanosheets are in-situ fabricated on Ni foam with and without using polyvinylpyrrolidone (PVP) as a regulator. Toward the application in energy storage, both of two morphologies of the Co-MOF exhibit good electrochemical properties. In particular, the vertical Co-MOF nanoplate arrays deliver a high areal capacity of 8.56 C/cm2 at the current density of 5 mA/cm2, which is much higher than that of faveolate Co-MOF nanosheets (2.39 C/cm2 at 5 mA/cm2). Moreover, a hybrid supercapacitor (HSC) device using the Co-MOF nanoplate arrays positive electrode and activated carbon (AC) negative electrode is assembled, which delivers a volumetric capacitance of 17.9 F/cm3 at 10 mA/cm2, a high energy density of 7.2 mW h cm-3 and a good cyclic stability (retaining over 88.0% of initial capacitance after 3000 cycles). These findings demonstrate that the as-fabricated 2D Co-MOFs possess a huge potential in energy storage.
Collapse
Affiliation(s)
- Feng Zhang
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Junli Zhang
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Jinjin Ma
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Xiangyang Zhao
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Yaoyao Li
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Rongqiang Li
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| |
Collapse
|
56
|
Wang Y, Wang T, Lei J, Chen KJ. Optimization of metal–organic framework derived transition metal hydroxide hierarchical arrays for high performance hybrid supercapacitors and alkaline Zn-ion batteries. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00191d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Setaria viridis-like hierarchical A-Co(OH)2@NiCo-LDH nanoarray has been fabricated and it possesses the advantages of large surface area and stable microstructure, leading to excellent energy storage performances of HSC and AZIB.
Collapse
Affiliation(s)
- You Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology
- Xi'an Key Laboratory of Functional Organic Porous Materials
- Department of Chemistry
- School of Chemistry and Chemical Engineering
- Northwestern Polytechnical University
| | - Teng Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology
- Xi'an Key Laboratory of Functional Organic Porous Materials
- Department of Chemistry
- School of Chemistry and Chemical Engineering
- Northwestern Polytechnical University
| | - Jiaqi Lei
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology
- Xi'an Key Laboratory of Functional Organic Porous Materials
- Department of Chemistry
- School of Chemistry and Chemical Engineering
- Northwestern Polytechnical University
| | - Kai-Jie Chen
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology
- Xi'an Key Laboratory of Functional Organic Porous Materials
- Department of Chemistry
- School of Chemistry and Chemical Engineering
- Northwestern Polytechnical University
| |
Collapse
|
57
|
Pan J, Li S, Li F, Yu T, Liu Y, Zhang L, Ma L, Sun M, Tian X. The NiFe2O4/NiCo2O4/GO composites electrode material derived from dual-MOF for high performance solid-state hybrid supercapacitors. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125650] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
58
|
Bi Q, Ma Q, Tao K, Han L. Hierarchical core-shell 2D MOF nanosheet hybrid arrays for high-performance hybrid supercapacitors. Dalton Trans 2021; 50:8179-8188. [PMID: 34031679 DOI: 10.1039/d1dt00866h] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional (2D) metal-organic frameworks (MOFs) with large surface area, ordered pores and ultrathin thickness have recently emerged as ideal electrode materials for supercapacitors (SCs). However, their straightforward applications are restricted by the drawbacks of self-stacking and unsatisfactory electrical conductivity. Herein, ultrathin Ni-MOF nanosheets have been grafted on zeolite imidazolate framework (ZIF-L)-derived porous Co3O4 nanosheets to form hierarchical core-shell Co3O4@Ni-MOF 2D nanosheet hybrid arrays. The porous Co3O4 "core" acts as a conductive skeleton for anchoring Ni-MOF and provides shortened ion diffusion paths. The Ni-MOF "shell" can expose large active sites. Benefiting from these merits and the synergic effects of the "core and "shell", the Co3O4@Ni-MOF/NF shows a high specific capacity (capacitance) of 225.6 mA h g-1 (1980.7 F g-1) at 1 A g-1 with decent capacitance retention (82.2% after 2000 cycles). The asymmetric two-electrode cell assembled from Co3O4@Ni-MOF/NF exhibits an energy density of 37.05 W h kg-1 at a power density of 800 W kg-1 with good long-term durability (75% capacitance retention after 10 000 cycles). Moreover, two charged cells can power a red light-emitting diode (LED) for up to 16 min, manifesting the great promise of Co3O4@Ni-MOF/NF for real energy storage devices.
Collapse
Affiliation(s)
- Qiong Bi
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Qingxiang Ma
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Kai Tao
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China. and State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China. and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Lei Han
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China. and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
59
|
Song WW, Wang B, Cao XM, Chen Q, Han ZB. ZIF-67-derived NiCo 2O 4@Co 2P/Ni 2P honeycomb nanosheets on carbon cloth for high-performance asymmetric supercapacitors. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00934f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
NiCo2O4@Co2P/Ni2P-CC, for the first time, was prepared using ZIF-67 as sacrificial templates through 4 steps procedure. Based on honeycomb structures, NiCo2O4@Co2P/Ni2P-CC electrode shows high areal capacitance and excellent cycle stability.
Collapse
Affiliation(s)
- Wen-wei Song
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Bing Wang
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Xiao-man Cao
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, P.R. China
| | - Qiang Chen
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Zheng-bo Han
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| |
Collapse
|
60
|
Wang Y, Li B, Zhang B, Tian S, Yang X, Ye H, Xia Z, Zheng G. Application of MOFs-derived mixed metal oxides in energy storage. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114576] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
61
|
Sun P, Wang L, Zhang J, Huang J, Wang P, Hou J, Zhang J, Li C, Yao Z, Yang Y, Xiong J. Metal-organic frameworks derived copper doped cobalt phosphide nanosheet arrays with boosted electrochemical performance for hybrid supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
62
|
Sun Z, Wu X, Qu K, Huang Z, Liu S, Dong M, Guo Z. Bimetallic metal-organic frameworks anchored corncob-derived porous carbon photocatalysts for synergistic degradation of organic pollutants. CHEMOSPHERE 2020; 259:127389. [PMID: 32590175 DOI: 10.1016/j.chemosphere.2020.127389] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Metal-organic frameworks (MOFs) are promising for photocatalysis owing to their excellent structure and performance. Unfortunately, poor stability in both aqueous solutions and high temperatures and lack of adsorption centers during reactions limit their practical applications. Herein, a bimetallic MOF anchored corncob calcined derived activated carbon (CCAC) was successfully prepared by a one-step solvothermal method. Benefiting from unique structures and synergetic effect, the porous carbon provided a high specific surface area for stable MOF support and served as an organic pollutant buffer-reservoir, which was advantageous for efficient photocatalytic degradation of organic pollutants. The optimized MOF/CCAC-5 samples possessed excellent visible light degradation rate, i.e., 100% for Rh B, more than 96% for six mixed dyes, and 98% for tetracycline. This prominent photocatalytic activity was caused by active species, including photoelectrons (e-), photo-holes (h+) and superoxide free radicals (•O2-). The transient photocurrent response and electrochemical impedance tests showed that MOF/CCAC-5 exhibited a relatively high charge separation and low carrier recombination rate. Cyclic and simulation experiments indicated high reusability, stability and universality of the composite photocatalysts. These exciting results provide new pathways for the fabrication of MOFs anchored porous carbon materials.
Collapse
Affiliation(s)
- Zhe Sun
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin, 150040, China
| | - Xiaoliang Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Keqi Qu
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin, 150040, China
| | - Zhanhua Huang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin, 150040, China.
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin, 150040, China
| | - Mengyao Dong
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China; Integrated Composites Laboratory (ICL), Department of Chemical and Bimolecular Engineering, University of Tennessee, Knoxville, TN, 37996, United States
| | - Zhanhua Guo
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
63
|
Chen Q, Yuan YF, Yin SM, Zhu M, Cai GS. Pomegranate-like C@TiO 2 mesoporous honeycomb spheres for high performance lithium ion batteries. NANOTECHNOLOGY 2020; 31:435410. [PMID: 32629434 DOI: 10.1088/1361-6528/aba302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pomegranate-like C@TiO2 mesoporous honeycomb spheres have been synthesized through two simple steps: formation of TiO2 mesoporous honeycomb spheres and the coating of polypyrrole followed by carbonization. TiO2 mesoporous honeycomb spheres are of large specific surface area of 153 m2 g-1 and contain abundant mesopores, which leads to high electrochemical activity and good kinetic performance of TiO2. A layer of amorphous carbon shell with the thickness of 30-40 nm tightly encapsulates a TiO2 mesoporous honeycomb sphere, forming a novel pomegranate-like small sphere, which significantly improves electronic conductivity and structural stability of TiO2. Benefiting from the unique pomegranate-like structure, C@TiO2 mesoporous honeycomb spheres exhibit high specific capacity, stable long-term cycling performance and good rate capability as an anode material for lithium ion batteries (LIBs). After 500 cycles at 1 C, the discharge capacity still reaches 184 mAh g-1. The electrochemical performance is superior to pure TiO2 mesoporous honeycomb spheres and most of the reported high-performance TiO2-based composites. This work provides a new high-performance TiO2-carbon-based composite material for LIBs as well as a new valuable research strategy.
Collapse
Affiliation(s)
- Q Chen
- College of Machinery and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | | | | | | | | |
Collapse
|
64
|
Zhou D, Wang F, Zhao X, Yang J, Lu H, Lin LY, Fan LZ. Self-Chargeable Flexible Solid-State Supercapacitors for Wearable Electronics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44883-44891. [PMID: 32924429 DOI: 10.1021/acsami.0c14426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Flexible supercapacitors (SCs) always face the charging issue when they are used in some special situations (e.g., wilderness island) that cannot provide electricity, which would limit the continuous energy supply for the attached wearable electronics. Herein, a self-chargeable flexible solid-state supercapacitor (FSSSC) was creatively constructed by sandwiching a piezoelectric polyvinyl alcohol/potassium hydroxide/barium titanate electrolyte between symmetric NiCo2O4@activated carbon cloth electrodes. By virtue of the efficient synergy of each component in the FSSSC, the device exhibits integrated merits with excellent flexibility, satisfactory electrochemical properties, and considerable self-charging capability through synchronously collecting and converting mechanical energy (e.g., repeated bending) into storable electrochemical energy in a persistent way. When the devices are serially connected and self-charged, they can be used to drive typical electronics with normal working. Such a unique material and device design enables the FSSSC with combined capabilities such as energy-harvesting and conversion and storage device for self-powered wearable electronics.
Collapse
Affiliation(s)
- Dan Zhou
- Center for Green Innovation, School of Mathematics and Physics & Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, China
| | - Fengyi Wang
- Center for Green Innovation, School of Mathematics and Physics & Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, China
| | - Xudong Zhao
- Center for Green Innovation, School of Mathematics and Physics & Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiaqi Yang
- Office of Educational Administration, Shenyang Open University, Shenyang 110003, China
| | - Haoran Lu
- China Institute of Nuclear Information & Economics, Beijing 100048, China
| | - Lu-Yin Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1 Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
| | - Li-Zhen Fan
- Center for Green Innovation, School of Mathematics and Physics & Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
65
|
Zhou Y, Huang Z, Li J, Liao H, Wang H, Wang Y, Wu G. D-ribose directed one-step fabrication of modifier-free C/NiCo2O4 nanowires with advanced electrochemical performance. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
66
|
Tomboc GM, Tesfaye Gadisa B, Jun M, Chaudhari NK, Kim H, Lee K. Carbon Transition-metal Oxide Electrodes: Understanding the Role of Surface Engineering for High Energy Density Supercapacitors. Chem Asian J 2020; 15:1628-1647. [PMID: 32301268 DOI: 10.1002/asia.202000324] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Indexed: 12/28/2022]
Abstract
Supercapacitors store electrical energy by ion adsorption at the interface of the electrode-electrolyte (electric double layer capacitance, EDLC) or through faradaic process involving direct transfer of electrons via oxidation/reduction reactions at one electrode to the other (pseudocapacitance). The present minireview describes the recent developments and progress of carbon-transition metal oxides (C-TMO) hybrid materials that show great promise as an efficient electrode towards supercapacitors among various material types. The review describes the synthetic methods and electrode preparation techniques along with the changes in the physical and chemical properties of each component in the hybrid materials. The critical factors in deriving both EDLC and pseudocapacitance storage mechanisms are also identified in the hope of pointing to the successful hybrid design principles. For example, a robust carbon-metal oxide interaction was identified as most important in facilitating the charge transfer process and activating high energy storage mechanism, and thus methodologies to establish a strong carbon-metal oxide contact are discussed. Finally, this article concludes with suggestions for the future development of the fabrication of high-performance C-TMO hybrid supercapacitor electrodes.
Collapse
Affiliation(s)
- Gracita M Tomboc
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Bekelcha Tesfaye Gadisa
- Department of Energy Science and Technology Smart Living Innovation Technology Center, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Minki Jun
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Nitin K Chaudhari
- Department of Science School of Technology, Pandit Deendayal Petroleum University, Gandhinagar, 382007, Gujarat, India
| | - Hern Kim
- Department of Energy Science and Technology Smart Living Innovation Technology Center, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
67
|
Cheng P, Wang C, Kaneti YV, Eguchi M, Lin J, Yamauchi Y, Na J. Practical MOF Nanoarchitectonics: New Strategies for Enhancing the Processability of MOFs for Practical Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4231-4249. [PMID: 32293183 DOI: 10.1021/acs.langmuir.0c00236] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Over the past decades, the development of porous materials has directly or indirectly affected industrial production methods. Metal-organic frameworks (MOFs) as an emerging class of porous materials exhibit some unique advantages, including controllable composition, a large surface area, high porosity, and so on. These attractive characteristics of MOFs have led to their potential applications in energy storage and conversion devices, drug delivery, adsorption and storage, sensors, and other areas. However, powdered MOFs have limited practical applications owing to poor processability, safety hazards from dust formation, and poor recyclability. In addition, the inherent micro/mesoporosities of MOFs also reduce the accessibility and diffusion kinetics for large molecules. To improve their processability for practical applications, MOFs are often deposited as MOF layers or films (i.e., MOF-coated composites) on supporting materials or are formed into 3D structured composites, such as aerogels and hydrogels. In this article, we review recent researches on these MOF composites, including their synthetic methods and potential applications in energy storage devices, heavy metal ion adsorption, and water purification. Finally, the future outlook and challenges associated with the large-scale fabrication of MOF-based composites for practical applications are discussed.
Collapse
Affiliation(s)
| | - Chaohai Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Yusuf Valentino Kaneti
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Miharu Eguchi
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jianjian Lin
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yusuke Yamauchi
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Plant and Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| | - Jongbeom Na
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
68
|
Zhai M, Li A, Hu J. CuO nanorods grown vertically on graphene nanosheets as a battery-type material for high-performance supercapacitor electrodes. RSC Adv 2020; 10:36554-36561. [PMID: 35517950 PMCID: PMC9057026 DOI: 10.1039/d0ra06758j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022] Open
Abstract
This work reports the preparation and characterization of the CuO nanorods grown vertically on graphene nanosheets, denoted as CuO/rGO@NF. Graphene is deposited by electrostatic attraction showing the morphology of folded nanosheets, which improves the electrical conductivity of the electrode, while CuO is modified by filtered cathodic vacuum arc technology and subsequent electrochemical oxidation presenting the morphology of nanorods, which increases the contact area of active sites and shortens the ion and electronic diffusion path. The results show that the CuO/rGO@NF electrode deliver an ultrahigh specific capacity (2.51 C cm−2 at 2 mA cm−2), remarkable rate performance (64.6%) and improved conductivity. A symmetrical supercapacitor is assembled by two identical electrodes, presenting the maximum energy density of 38.35 W h kg−1 at a power density of 187.5 W kg−1. Therefore, the CuO/rGO@NF electrode can be used as a prospective electrode for energy storage devices. In addition, the whole electrode preparation process is short in time, safe and environmentally friendly, which provides a new idea for the preparation of other electrode materials. The CuO/rGO@NF electrode is prepared by a simple and time-saving method, which has ultrahigh area capacity and excellent rate performance.![]()
Collapse
Affiliation(s)
- Miaomiao Zhai
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Ang Li
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Jingbo Hu
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| |
Collapse
|
69
|
Tan X, Wu Y, Lin X, Zeb A, Xu X, Luo Y, Liu J. Application of MOF-derived transition metal oxides and composites as anodes for lithium-ion batteries. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00929f] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Research progress of MOF-derived metal oxides and composites in lithium ion batteries has been presented based on different organic linkers.
Collapse
Affiliation(s)
- Xiaohong Tan
- School of Chemistry
- South China Normal University
- Guangzhou
- P. R. China
| | - Yongbo Wu
- School of Physics and Telecom Engineering
- South China Normal University
- Guangzhou
- P. R. China
| | - Xiaoming Lin
- School of Chemistry
- South China Normal University
- Guangzhou
- P. R. China
| | - Akif Zeb
- School of Chemistry
- South China Normal University
- Guangzhou
- P. R. China
| | - Xuan Xu
- School of Chemistry
- South China Normal University
- Guangzhou
- P. R. China
| | - Yifan Luo
- School of Chemistry
- South China Normal University
- Guangzhou
- P. R. China
| | | |
Collapse
|