51
|
Ma J, Xing F, Nakaya Y, Shimizu KI, Furukawa S. Nickel-Based High-Entropy Intermetallic as a Highly Active and Selective Catalyst for Acetylene Semihydrogenation. Angew Chem Int Ed Engl 2022; 61:e202200889. [PMID: 35470948 DOI: 10.1002/anie.202200889] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 11/07/2022]
Abstract
Acetylene semihydrogenation is a key technology for producing polymer-grade ethylene from crude ethylene. Ni-based catalysts are promising alternatives to noble-metals for this process. However, achieving high catalytic activity and selectivity remains a big challenge. We report a novel catalyst design based on high-entropy intermetallics (HEI), which provide thermally stable isolated Ni without excess counterpart metals and achieve exceptionally high performance. Intermetallic NiGa was multi-metalized to a (NiFeCu)(GaGe), where the Ni and Ga sites were partially substituted with Fe/Cu and Ge, respectively, without altering the parent CsCl-type structure. The NiFeCuGaGe/SiO2 HEI catalyst completely inhibited ethylene overhydrogenation even at complete acetylene conversion, and exhibited five-times higher activity than other 3d-transition-metal-based catalysts. The DFT study showed that the surface energy decreased by multi-metallization, which drastically weakened ethylene adsorption.
Collapse
Affiliation(s)
- Jiamin Ma
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan
| | - Feilong Xing
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan
| | - Yuki Nakaya
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan
| | - Shinya Furukawa
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan
- Department of Research Promotion, Japan Science and Technology Agency, Chiyoda, Tokyo 102-0076, Japan
| |
Collapse
|
52
|
Extension of Inducing Effect of Support Coordination on Ni-based Ordered Alloys Catalyst for Selective Hydrogenation. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
53
|
Zhang M, Duan X, Zhu Y, Yan Y, Zhao T, Liu M, Jiang L. Highly Selective Semihydrogenation via a Wettability-Regulated Mass Transfer Process. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Minghui Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yunbo Zhu
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Yaming Yan
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Tianyi Zhao
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Mingjie Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
54
|
Hong W, Swann WA, Yadav V, Li CW. Haptophilicity and Substrate-Directed Reactivity in Diastereoselective Heterogeneous Hydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Hong
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - William A. Swann
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Vamakshi Yadav
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christina W. Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
55
|
Feng H, Ding H, Wang S, Liang Y, Deng Y, Yang Y, Wei M, Zhang X. Machine-Learning-Assisted Catalytic Performance Predictions of Single-Atom Alloys for Acetylene Semihydrogenation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25288-25296. [PMID: 35622997 DOI: 10.1021/acsami.2c02317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Selective semihydrogenation of acetylene for the production of polymer-grade ethylene is a significant chemical industrial process. Facile activization of acetylene and weak adsorption of ethylene are critical requirements for high-performance catalysis. Single-atom alloys (SAAs) have strong binding effect on acetylene and weak effect on ethylene, which have been regarded as the superior catalysts for acetylene semihydrogenation. Herein, we established a pioneering machine learning (ML) assisted approach to investigate the reaction activity and selectivity of 70 SAA catalysts for acetylene semihydrogenation. As the most desirable ML model, the gradient boosting regression (GBR) algorithm has been extended to predict the energy barrier of *C2Hn (n = 2-4) hydrogenation with a root-mean-square error (RMSE) of only 0.02 eV. Notably, five candidate SAAs with excellent activity and selectivity for acetylene semihydrogenation are screened out via accessible descriptors. These data of ML prediction have been verified by DFT calculation with a high-accuracy (error less than 0.07 eV). This work demonstrates the potential of ML-assisted approach for predicting the energy barrier of transition state and simultaneously provides a convenient approach for the rational design of efficient catalysts.
Collapse
Affiliation(s)
- Haisong Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hu Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Si Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yujie Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yuan Deng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yusen Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
56
|
The effect of coordination environment on the activity and selectivity of single-atom catalysts. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214493] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
57
|
Aireddy D, Yu H, Cullen DA, Ding K. Elucidating the Roles of Amorphous Alumina Overcoat in Palladium-Catalyzed Selective Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24290-24298. [PMID: 35584363 PMCID: PMC9164194 DOI: 10.1021/acsami.2c02132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Amorphous alumina overcoats generated by atomic layer deposition (ALD) have been shown to improve the selectivity and durability of supported metal catalysts in many reactions. Several mechanisms have been proposed to explain the enhanced catalytic performance, but the accessibilities of reactants through the amorphous overcoats remain elusive, which is crucial for understanding reaction mechanisms. Here, we show that an AlOx ALD overcoat is able to improve the alkene product selectivity of a supported Pd catalyst in acetylene (C2H2) hydrogenation. We further demonstrate that the AlOx ALD overcoat blocks the access of C2H2 (kinetic diameter of 0.33 nm), O2 (0.35 nm), and CO (0.38 nm) but allows H2 (0.29 nm) to access Pd surfaces. A H-D exchange experiment suggests that H2 might dissociate heterolytically at the Pd-AlOx interface. These findings are in favor of a hydrogen spillover mechanism.
Collapse
Affiliation(s)
- Divakar
R. Aireddy
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Haoran Yu
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - David A. Cullen
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kunlun Ding
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
58
|
Zhang Z, Li H, Wu D, Zhang L, Li J, Xu J, Lin S, Datye AK, Xiong H. Coordination structure at work: Atomically dispersed heterogeneous catalysts. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
59
|
Guo Y, Huang Y, Zeng B, Han B, Akri M, Shi M, Zhao Y, Li Q, Su Y, Li L, Jiang Q, Cui YT, Li L, Li R, Qiao B, Zhang T. Photo-thermo semi-hydrogenation of acetylene on Pd 1/TiO 2 single-atom catalyst. Nat Commun 2022; 13:2648. [PMID: 35551203 PMCID: PMC9098498 DOI: 10.1038/s41467-022-30291-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Semi-hydrogenation of acetylene in excess ethylene is a key industrial process for ethylene purification. Supported Pd catalysts have attracted most attention due to their superior intrinsic activity but often suffer from low selectivity. Pd single-atom catalysts (SACs) are promising to significantly improve the selectivity, but the activity needs to be improved and the feasible preparation of Pd SACs remains a grand challenge. Here, we report a simple strategy to construct Pd1/TiO2 SACs by selectively encapsulating the co-existed small amount of Pd nanoclusters/nanoparticles based on their different strong metal-support interaction (SMSI) occurrence conditions. In addition, photo-thermo catalysis has been applied to this process where a much-improved catalytic activity was obtained. Detailed characterization combined with DFT calculation suggests that photo-induced electrons transferred from TiO2 to the adjacent Pd atoms facilitate the activation of acetylene. This work offers an opportunity to develop highly stable Pd SACs for efficient catalytic semi-hydrogenation process. Semi-hydrogenation of acetylene in excess ethylene is a key industrial process for ethylene purification. Here the authors develop highly stable Pd1/TiO2 single-atom catalyst for photo-thermo semi-hydrogenation of acetylene.
Collapse
Affiliation(s)
- Yalin Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yike Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bin Zeng
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Bing Han
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mohcin Akri
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Ming Shi
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yue Zhao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qinghe Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yang Su
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Lin Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qike Jiang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yi-Tao Cui
- SANKA High Technology Co. Ltd. 90-1, Tatsuno, Hyogo, Japan
| | - Lei Li
- Synchrotron Radiation Research Center, Hyogo Science and Technology Association, Hyogo, Japan
| | - Rengui Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Botao Qiao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
60
|
Ma J, Xing F, Nakaya Y, Shimizu K, Furukawa S. Nickel‐Based High‐Entropy Intermetallic as a Highly Active and Selective Catalyst for Acetylene Semihydrogenation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiamin Ma
- Institute for Catalysis Hokkaido University N-21, W-10 Sapporo 001-0021 Japan
| | - Feilong Xing
- Institute for Catalysis Hokkaido University N-21, W-10 Sapporo 001-0021 Japan
| | - Yuki Nakaya
- Institute for Catalysis Hokkaido University N-21, W-10 Sapporo 001-0021 Japan
| | - Ken‐ichi Shimizu
- Institute for Catalysis Hokkaido University N-21, W-10 Sapporo 001-0021 Japan
| | - Shinya Furukawa
- Institute for Catalysis Hokkaido University N-21, W-10 Sapporo 001-0021 Japan
- Department of Research Promotion Japan Science and Technology Agency Chiyoda Tokyo 102-0076 Japan
| |
Collapse
|
61
|
Nayl AA, Abd-Elhamid AI, Aly AA, Bräse S. Recent progress in the applications of silica-based nanoparticles. RSC Adv 2022; 12:13706-13726. [PMID: 35530394 PMCID: PMC9073631 DOI: 10.1039/d2ra01587k] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
Functionalized silica nanoparticles (SiO2 NPs) have attracted great attention due to their promising distinctive, versatile, and privileged physiochemical characteristics. These enhanced properties make this type of functionalized nanoparticles particularly appropriate for different applications. A lack of reviews that summarizes the fabrications of such nanomaterials and their different applications in the same work has been observed in the literature. Therefore, in this work, we will discuss the recent signs of progress in the fabrication of functionalized silica nanoparticles and their attractive applications that have been extensively highlighted (advanced catalysis, drug-delivery, biomedical applications, environmental remediation applications, and wastewater treatment). These applications have been selected for demonstrating the role of the surface modification step on the various properties of the silica surface. In addition, the current challenges in the applications of functionalized silica nanoparticles and corresponding strategies to discuss these issues and future perspectives for additional improvement have been addressed.
Collapse
Affiliation(s)
- A A Nayl
- Department of Chemistry, College of Science, Jouf University Sakaka Aljouf 72341 Saudi Arabia
| | - A I Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City) New Borg Al-Arab Alexandria 21934 Egypt
| | - Ashraf A Aly
- Chemistry Department, Faculty of Science, Organic Division, Minia University 61519-El-Minia Egypt
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76133 Karlsruhe Germany
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Director Hermann-von-Helmholtz-Platz 1 Eggenstein-Leopoldshafen D-76344 Germany
| |
Collapse
|
62
|
Zhu K, Ma J, Chen L, Wu F, Xu X, Xu M, Ye W, Wang Y, Gao P, Xiong Y. Unraveling the Role of Interfacial Water Structure in Electrochemical Semihydrogenation of Alkynes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00430] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Kaili Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Jun Ma
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Liang Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Fangfang Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Xudong Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Mengqiu Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Wei Ye
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yao Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Peng Gao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yujie Xiong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
63
|
Lee JD, Miller JB, Shneidman AV, Sun L, Weaver JF, Aizenberg J, Biener J, Boscoboinik JA, Foucher AC, Frenkel AI, van der Hoeven JES, Kozinsky B, Marcella N, Montemore MM, Ngan HT, O'Connor CR, Owen CJ, Stacchiola DJ, Stach EA, Madix RJ, Sautet P, Friend CM. Dilute Alloys Based on Au, Ag, or Cu for Efficient Catalysis: From Synthesis to Active Sites. Chem Rev 2022; 122:8758-8808. [PMID: 35254051 DOI: 10.1021/acs.chemrev.1c00967] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of new catalyst materials for energy-efficient chemical synthesis is critical as over 80% of industrial processes rely on catalysts, with many of the most energy-intensive processes specifically using heterogeneous catalysis. Catalytic performance is a complex interplay of phenomena involving temperature, pressure, gas composition, surface composition, and structure over multiple length and time scales. In response to this complexity, the integrated approach to heterogeneous dilute alloy catalysis reviewed here brings together materials synthesis, mechanistic surface chemistry, reaction kinetics, in situ and operando characterization, and theoretical calculations in a coordinated effort to develop design principles to predict and improve catalytic selectivity. Dilute alloy catalysts─in which isolated atoms or small ensembles of the minority metal on the host metal lead to enhanced reactivity while retaining selectivity─are particularly promising as selective catalysts. Several dilute alloy materials using Au, Ag, and Cu as the majority host element, including more recently introduced support-free nanoporous metals and oxide-supported nanoparticle "raspberry colloid templated (RCT)" materials, are reviewed for selective oxidation and hydrogenation reactions. Progress in understanding how such dilute alloy catalysts can be used to enhance selectivity of key synthetic reactions is reviewed, including quantitative scaling from model studies to catalytic conditions. The dynamic evolution of catalyst structure and composition studied in surface science and catalytic conditions and their relationship to catalytic function are also discussed, followed by advanced characterization and theoretical modeling that have been developed to determine the distribution of minority metal atoms at or near the surface. The integrated approach demonstrates the success of bridging the divide between fundamental knowledge and design of catalytic processes in complex catalytic systems, which can accelerate the development of new and efficient catalytic processes.
Collapse
Affiliation(s)
- Jennifer D Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jeffrey B Miller
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Anna V Shneidman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Lixin Sun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jason F Weaver
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Juergen Biener
- Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - J Anibal Boscoboinik
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States.,Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jessi E S van der Hoeven
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Boris Kozinsky
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Nicholas Marcella
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Matthew M Montemore
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Hio Tong Ngan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Christopher R O'Connor
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Cameron J Owen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Dario J Stacchiola
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert J Madix
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Cynthia M Friend
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
64
|
Li J, Yue MF, Wei YM, Li JF. Synthetic strategies of single-atoms catalysts and applications in electrocatalysis. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
65
|
|
66
|
Gou G, Che C, Wen H, Qin J, Cao X, Han W, Zhang F, Long Y, Ma J. θ-Al2O3/FeO1.25 possessing a special ring complex of FeII---HO===FeIII for the efficient catalytic semi-hydrogenation of acetylene under front–end conditions. J Catal 2022. [DOI: 10.1016/j.jcat.2022.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
67
|
Oberhauser W, Frediani M, Mohammadi Dehcheshmeh I, Evangelisti C, Poggini L, Capozzoli L, Najafi Moghadam P. Selective Alkyne Semi‐Hydrogenation by PdCu Nanoparticles Immobilized on Stereocomplexed Poly(lactic acid). ChemCatChem 2022. [DOI: 10.1002/cctc.202101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Werner Oberhauser
- Istituto di Chimica dei Composti Organometallici (CNR-ICCOM) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
| | - Marco Frediani
- Department of Chemistry University of Florence Via della Lastruccia, 3–13 50019 Sesto Fiorentino Italy
| | - Iman Mohammadi Dehcheshmeh
- Department of Chemistry University of Florence Via della Lastruccia, 3–13 50019 Sesto Fiorentino Italy
- Department of Organic Chemistry Faculty of Chemistry Urmia University 57153-165 Urmia Iran
| | - Claudio Evangelisti
- Istituto di Chimica dei Composti Organometallici (CNR-ICCOM) U.O.S. di Pisa Via Moruzzi 1 56124 Pisa Italy
| | - Lorenzo Poggini
- Istituto di Chimica dei Composti Organometallici (CNR-ICCOM) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
| | - Laura Capozzoli
- Istituto di Chimica dei Composti Organometallici (CNR-ICCOM) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
| | - Peyman Najafi Moghadam
- Department of Organic Chemistry Faculty of Chemistry Urmia University 57153-165 Urmia Iran
| |
Collapse
|
68
|
Xu Z, Ao Z, Yang M, Wang S. Recent progress in single-atom alloys: Synthesis, properties, and applications in environmental catalysis. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127427. [PMID: 34678562 DOI: 10.1016/j.jhazmat.2021.127427] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/19/2021] [Accepted: 10/01/2021] [Indexed: 05/14/2023]
Abstract
Heterogeneous catalysts have made outstanding advancements in pollutants elimination as well as energy and materials production over the past decades. Single-atom alloys (SAAs) are novel environmental catalysts prepared by dispersing single metal atoms on other metals. Integrating the advantages of single atom and alloys, SAAs can maximize atom utilization, reduce the use of noble metals and enhance catalytic performances. The synergistic, electronic and geometric effects of SAAs are effective to modulate the activation energy and adsorption strength, consequently breaking linear scaling relationship as well as offering an excellent catalytic activity and selectivity. Moreover, SAAs possess clear atomic structure, active sites and reaction mechanisms, providing an opportunity to tailor catalytic properties and develop effective environmental catalysts. In this review, we provide the recent progress on synthetic strategies, catalytic properties and catalyst design of SAAs. Furthermore, the applications of SAAs in environmental catalysis are introduced towards catalytic conversion and elimination of different air pollutants in many important reactions including (electrochemical) oxidation of volatile organic compounds (VOCs), dehydrogenation of VOCs, CO2 conversion, NOx reduction, CO oxidation, SO3 decomposition, etc. Finally, challenges and opportunities of SAAs in a broad environmental field are proposed.
Collapse
Affiliation(s)
- Zhiling Xu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; SINOPEC Maoming Petrochemical Company, Maoming 525011, China
| | - Zhimin Ao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Mei Yang
- SINOPEC Maoming Petrochemical Company, Maoming 525011, China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
69
|
Luo Q, Wang H, Wang L, Xiao FS. Alloyed PdCu Nanoparticles within Siliceous Zeolite Crystals for Catalytic Semihydrogenation. ACS MATERIALS AU 2022; 2:313-320. [PMID: 36855384 PMCID: PMC9888633 DOI: 10.1021/acsmaterialsau.1c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selective hydrogenation of acetylene to ethylene is an industrially important process to purify the raw ethylene stream for producing high-grade polyethylene. The supported Pd catalyst exhibits superior activity for acetylene hydrogenation but suffers from poor ethylene selectivity because of the easy overhydrogenation to produce ethane. Here, we report that the PdCu alloy nanoparticles within siliceous zeolite crystals effectively tuned Pd-catalyzed overhydrogenation into semihydrogenation. This catalyst displayed an ethylene selectivity of 92.9% with a full conversion of acetylene. Mechanism studies reveal that the zeolite fixation stabilized the alloyed structure, where the electron-enriched Pd surface benefits the rapid ethylene desorption to hinder the deep hydrogenation. This work provides an efficient strategy for a rational design of bimetallic metal catalysts for selective hydrogenations.
Collapse
|
70
|
Zuo LJ, Xu SL, Wang A, Yin P, Zhao S, Liang HW. High-Temperature Synthesis of Carbon-Supported Bimetallic Nanocluster Catalysts by Enlarging the Interparticle Distance. Inorg Chem 2022; 61:2719-2723. [PMID: 35108014 DOI: 10.1021/acs.inorgchem.1c03965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Supported bimetallic nanoparticle catalysts with small size have attracted wide research attention in catalysis but are difficult to synthesize because high-temperature annealing required for alloying inevitably accelerates metal sintering and leads to larger particles. Here, we report a simple and scalable "critical interparticle distance" method for the synthesis of a family of bimetallic nanocluster catalysts with an average particle size of only 1.5 nm by using large-surface-area carbon black supports at high temperatures, which consist of 12 diverse combinations of 3 noble metals (Pt, Ru, and Rh) and 4 other metals (Cr, Fe, Zr, and Sn). In this strategy, high-temperature treatments ensure the formation of alloyed bimetallic nanoparticles and enlargement of the interparticle distance on high-surface-area supports significantly suppresses metal sintering. The prepared ultrafine Pt2Sn and RuSn nanocluster catalysts exhibited enhanced performance in catalyzing the synthesis of aromatic secondary amines and the selective hydrogenation of furfural, respectively.
Collapse
Affiliation(s)
- Lu-Jie Zuo
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shi-Long Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ao Wang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Peng Yin
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shuai Zhao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hai-Wei Liang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
71
|
Uzunidis G, Behrens S. Pd/Ag Nanoparticles Prepared in Ionic Liquids as Model Catalysts for the Hydrogenation of Diphenylacetylene. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202100163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Georgios Uzunidis
- Karlsruhe Institute of Technology Institute of Catalysis Research and Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Silke Behrens
- Karlsruhe Institute of Technology Institute of Catalysis Research and Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
72
|
Hua M, Tian X, Li S, Zhang X, Shao A, Song L, Lin X. A casting combined quenching strategy to prepare PdAg single atom alloys designed using the cluster expansion combined Monte Carlo method. Phys Chem Chem Phys 2022; 24:2251-2264. [PMID: 35014663 DOI: 10.1039/d1cp05046j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, the surface structure of a PdAg alloy is investigated by cluster expansion (CE) combined Monte Carlo (MC) simulations. All systems with different component proportions show an obvious component segregation corresponding to the depth from the surface. A significant amount of Ag is observed on the first layer, and Pd is concentrated significantly on the second layer. The Pd distribution on the PdAg surfaces is closely related to the temperature and composition ascribed to the concentration and configurational entropy effects, which are explicitly treated in MC simulations. The vacancies mainly distribute separately. The simulation results show good agreement with the experimental evidence. Moreover, we demonstrated a general and highly effective casting combined quenching strategy for controlling the ensemble size and chemical composition of alloy surfaces which could successfully be applied to the large-scale production of SAA.
Collapse
Affiliation(s)
- Minghao Hua
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, 250061, Jinan, China.
| | - Xuelei Tian
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, 250061, Jinan, China.
| | - Shuo Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, 250061, Jinan, China.
| | - Xiaofu Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, 250061, Jinan, China. .,School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Anchen Shao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, 250061, Jinan, China.
| | - Lin Song
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, 250061, Jinan, China. .,Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai, Shandong Province, 2640000, China
| | - Xiaohang Lin
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, 250061, Jinan, China.
| |
Collapse
|
73
|
Zhao X, Chang Y, Chen WJ, Wu Q, Pan X, Chen K, Weng B. Recent Progress in Pd-Based Nanocatalysts for Selective Hydrogenation. ACS OMEGA 2022; 7:17-31. [PMID: 35036674 PMCID: PMC8756445 DOI: 10.1021/acsomega.1c06244] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Selective hydrogenation plays an important role in the chemical industry and has a wide range of applications, including the production of fine chemicals and petrochemicals, pharmaceutical synthesis, healthcare product development, and the synthesis of agrochemicals. Pd-based catalysts have been widely applied for selective hydrogenation due to their unique electronic structure and ability to adsorb and activate hydrogen and unsaturated substrates. However, the exclusive and comprehensive summarization of the size, composition, and surface and interface effect of metal Pd on the performance for selective hydrogenation is still lacking. In this perspective, the research progress on selective hydrogenation using Pd-based catalysts is summarized. The strategies for improving the catalytic hydrogenation performance over Pd-based catalysts are investigated. Specifically, the effects of the size, composition, and surface and interfacial structure of Pd-based catalysts, which could influence the dissociation mode of hydrogen, the adsorption, and the reaction mode of the catalytic substrate, on the performance have been systemically reviewed. Then, the progress on Pd-based catalysts for selective hydrogenation of unsaturated alkynes, aldehydes, ketones, and nitroaromatic hydrocarbons is revealed based on the fundamental principles of selective hydrogenation. Finally, perspectives on the further development of strategies for chemical selective hydrogenation are provided. It is hoped that this perspective would provide an instructive guideline for constructing efficient heterogeneous Pd-based catalysts for various selective hydrogenation reactions.
Collapse
Affiliation(s)
- Xiaojing Zhao
- College
of Chemical Engineering and Materials, Quanzhou
Normal University, Quanzhou 362000, China
| | - Yandong Chang
- College
of Chemical Engineering and Materials, Quanzhou
Normal University, Quanzhou 362000, China
- College
of Materials Science and Engineering, Fuzhou
University, Fuzhou 350108, China
| | - Wen-Jie Chen
- College
of Chemical Engineering and Materials, Quanzhou
Normal University, Quanzhou 362000, China
| | - Qingshi Wu
- College
of Chemical Engineering and Materials, Quanzhou
Normal University, Quanzhou 362000, China
| | - Xiaoyang Pan
- College
of Chemical Engineering and Materials, Quanzhou
Normal University, Quanzhou 362000, China
| | - Kongfa Chen
- College
of Materials Science and Engineering, Fuzhou
University, Fuzhou 350108, China
| | - Bo Weng
- cMACS,
Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
74
|
Shittu TD, Ayodele OB. Catalysis of semihydrogenation of acetylene to ethylene: current trends, challenges, and outlook. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-021-2113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
75
|
Lopes DS, Vono LLR, Miranda EV, Ando RA, Corio P. Inhibition of p‐nitrothiophenol catalytic hydrogenation on Ag‐containing AgAu/Pd/TiO2 plasmonic catalysts probed in situ by SERS. ChemCatChem 2022. [DOI: 10.1002/cctc.202101943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Douglas S. Lopes
- University of Sao Paulo: Universidade de Sao Paulo Chemistry Av. Prof. Lineu Prestes, 748 005508900 São Paulo BRAZIL
| | - Lucas L. R. Vono
- University of Sao Paulo: Universidade de Sao Paulo Chemistry BRAZIL
| | - Ester V. Miranda
- University of Sao Paulo: Universidade de Sao Paulo Chemistry BRAZIL
| | - Rômulo A. Ando
- University of Sao Paulo: Universidade de Sao Paulo Chemistry BRAZIL
| | - Paola Corio
- University of Sao Paulo Institute of Chemistry Av. Prof. Lineu Prestes, 748 05508000 Sao Paulo BRAZIL
| |
Collapse
|
76
|
In-situ facile synthesis novel N-doped thin graphene layer encapsulated Pd@N/C catalyst for semi-hydrogenation of alkynes. J Catal 2022. [DOI: 10.1016/j.jcat.2021.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
77
|
Hua M, Tian X, Li S, Shao A, Lin X. Theoretical design of platinum-sliver single atom alloy catalyst with CO adsorbate-induced surface structures. Phys Chem Chem Phys 2022; 24:19488-19501. [DOI: 10.1039/d2cp02107b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, by combining density functional theory calculations and Monte Carlo simulations with cluster expansion Hamiltonian methods, we investigate the surface aggregation of Pt atoms on the Pt/Ag(111) surface...
Collapse
|
78
|
Ru W, Liu Y, Fu B, Fu F, Feng J, Li D. Control of Local Electronic Structure of Pd Single Atom Catalyst by Adsorbate Induction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103852. [PMID: 34766728 DOI: 10.1002/smll.202103852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Aiming at regulating and controlling the localized electronic states while maintaining the metal atoms in the isolation form, an in situ adsorbate induced strategy is proposed at a programmed temperature to activate Zr-based metal-organic framework (MOF) supported single Pd atom catalyst. It is discovered that in situ treatment environments trigger the change of lattice parameters in MOF materials by reaction heat effect, observed by in situ X-ray diffraction, spherical aberration-corrected electron microscope, and X-ray adsorption fine structure (XAFS). The as-obtained electron-deficient Pd single atoms are critical to the high intrinsic activity (turnover frequency of 0.132 s-1 ) and selectivity of 93% with the long-term stability in the semihydrogenation of acetylene, which can be comparable to the state-of-the-art Pd catalysts. This superior catalytic behavior correlates with the reduced C2 H4 desorption energy and the activation barriers for the hydrogenation, confirmed by density functional theory calculation.
Collapse
Affiliation(s)
- Wei Ru
- State Key Laboratory of Chemical Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanan Liu
- State Key Laboratory of Chemical Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Baoai Fu
- State Key Laboratory of Chemical Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fengzhi Fu
- State Key Laboratory of Chemical Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junting Feng
- State Key Laboratory of Chemical Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dianqing Li
- State Key Laboratory of Chemical Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
79
|
Wei P, Zheng J, Li Q, Qin Y, Guan H, Tan D, Song L. The modulation mechanism of geometric and electronic structures of bimetallic catalysts: Pd 13−mAg m ( m=0–13) clusters for acetylene semi-hydrogenation. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01222g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The modulation mechanism of the second metal in bimetallic catalysts is examined by taking acetylene semi-hydrogenation over Pd13−mAgm clusters, in which a metastable Pd6Ag7 structure exhibits excellent activity/selectivity to ethylene.
Collapse
Affiliation(s)
- Panpeng Wei
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, Shandong 266580, China
| | - Jian Zheng
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, Shandong 266580, China
| | - Qiang Li
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Province, Liaoning Petrochemical University, Fushun, Liaoning 113001, China
| | - Yucai Qin
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Province, Liaoning Petrochemical University, Fushun, Liaoning 113001, China
| | - Huimin Guan
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Province, Liaoning Petrochemical University, Fushun, Liaoning 113001, China
| | - Duping Tan
- Lanzhou Petrochemical Research Center, Petrochemical Research Institute, Petrochina, Lanzhou 730060, China
| | - Lijuan Song
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, Shandong 266580, China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Province, Liaoning Petrochemical University, Fushun, Liaoning 113001, China
| |
Collapse
|
80
|
Kim H, Yoo TY, Bootharaju MS, Kim JH, Chung DY, Hyeon T. Noble Metal-Based Multimetallic Nanoparticles for Electrocatalytic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104054. [PMID: 34791823 PMCID: PMC8728832 DOI: 10.1002/advs.202104054] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/13/2021] [Indexed: 05/08/2023]
Abstract
Noble metal-based multimetallic nanoparticles (NMMNs) have attracted great attention for their multifunctional and synergistic effects, which offer numerous catalytic applications. Combined experimental and theoretical studies have enabled formulation of various design principles for tuning the electrocatalytic performance through controlling size, composition, morphology, and crystal structure of the nanoparticles. Despite significant advancements in the field, the chemical synthesis of NMMNs with ideal characteristics for catalysis, including high activity, stability, product-selectivity, and scalability is still challenging. This review provides an overview on structure-based classification and the general synthesis of NMMN electrocatalysts. Furthermore, postsynthetic treatments, such as the removal of surfactants to optimize the activity, and utilization of NMMNs onto suitable support for practical electrocatalytic applications are highlighted. In the end, future direction and challenges associated with the electrocatalysis of NMMNs are covered.
Collapse
Affiliation(s)
- Hyunjoong Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Tae Yong Yoo
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Megalamane S. Bootharaju
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Dong Young Chung
- Department of ChemistryGwangju Institute of Science and Technology (GIST)Gwangju61005Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|
81
|
Influence of Pd deposition pH value on the performance of Pd-CuO/SiO2 catalyst for semi-hydrogenation of 2-methyl-3-butyn-2-ol (MBY). CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
82
|
Noonikara-Poyil A, Ridlen SG, Fernández I, Dias HVR. Isolable acetylene complexes of copper and silver. Chem Sci 2022; 13:7190-7203. [PMID: 35799825 PMCID: PMC9214850 DOI: 10.1039/d2sc02377f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 12/02/2022] Open
Abstract
Copper and silver play important roles in acetylene transformations but isolable molecules with acetylene bonded to Cu(i) and Ag(i) ions are scarce. This report describes the stabilization of π-acetylene complexes of such metal ions supported by fluorinated and non-fluorinated, pyrazole-based chelators. These Cu(i) and Ag(i) complexes were formed readily in solutions under an atmosphere of excess acetylene and the appropriate ligand supported metal precursor, and could be isolated as crystalline solids, enabling complete characterization using multiple tools including X-ray crystallography. Molecules that display κ2-or κ3-ligand coordination modes and trigonal planar or tetrahedral metal centers have been observed. Different trends in coordination shifts of the acetylenic carbon resonance were revealed by 13C NMR spectroscopy for the Cu(i) and Ag(i) complexes. The reduction in acetylene
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C due to metal ion coordination is relatively large for copper adducts. Computational tools were also used to quantitatively understand in detail the bonding situation in these species. It is found that the interaction between the transition metal fragment and the acetylene ligand is significantly stronger in the copper complexes, which is consistent with the experimental findings. The CC distance of these copper and silver acetylene complexes resulting from routine X-ray models suffers due to incomplete deconvolution of thermal smearing and anisotropy of the electron density in acetylene, and is shorter than expected. A method to estimate the CC distance of these metal complexes based on their experimental CC is also presented. Gaseous acetylene can be trapped on copper(i) and silver(i) sites supported by pyrazole-based scorpionates to produce isolable molecules for detailed investigations and the study of metal-acetylene bonding.![]()
Collapse
Affiliation(s)
- Anurag Noonikara-Poyil
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Shawn G. Ridlen
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - H. V. Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA
| |
Collapse
|
83
|
Shi Q, Yu T, Wu R, Liu J. Metal-Support Interactions of Single-Atom Catalysts for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60815-60836. [PMID: 34913673 DOI: 10.1021/acsami.1c18797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The development of single-atom catalysts (SACs) has become a rapidly growing research field. It is a critical challenge to understand the interactions between the single-atom metal active sites and the support materials. Recently, original research reports of SACs in biomedical applications have emerged in the literature, yet this topic has seldom been reviewed. Here, this review focuses on the latest advances in single-atom catalysis for biomedical applications and highlights the keys for the design of SACs, such as understanding the interactions between metals and supports and classifying various enzyme-like activities. This review helps bridge the knowledge of multiple disciplines and provides prospects regarding the development of SACs for biomedicine.
Collapse
Affiliation(s)
- Qiaolan Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215006, Jiangsu, P. R. China
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Tianrong Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215006, Jiangsu, P. R. China
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Renfei Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215006, Jiangsu, P. R. China
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Jian Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215006, Jiangsu, P. R. China
| |
Collapse
|
84
|
Gao R, Xu J, Wang J, Lim J, Peng C, Pan L, Zhang X, Yang H, Zou JJ. Pd/Fe 2O 3 with Electronic Coupling Single-Site Pd-Fe Pair Sites for Low-Temperature Semihydrogenation of Alkynes. J Am Chem Soc 2021; 144:573-581. [PMID: 34955021 DOI: 10.1021/jacs.1c11740] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dispersing single palladium atoms on a support is promising to minimize the usage of palladium and improve the selectivity for alkyne semihydrogenation, but its activity is often very low as a result of unfavorable H2 activation. Here, we load palladium onto α-Fe2O3(012) to construct highly active and stable single-site Pd-Fe pairs with luxuriant d-electron domination near the Fermi level driven by strong electronic coupling and prove that Pd-Fe pairs cooperatively adsorb H2 and dissociate an H─H bond, whereas solo Pd sites enable preferential desorption of C═C intermediate, thus achieving both high activity and high selectivity for alkyne hydrogenation. This catalyst exhibits state-of-the-art performance in purifying acetylene of ethylene stream, with 99.6% and 100% conversion and 96.7% and 94.7% selectivity at 353 and 393 K, respectively, and excellent stability with negligible activity decay after a 200 h test. This single-site pair inherits the advantage but overcomes the weakness of both Pd ensemble and single Pd atoms, enabling ultralow-Pd-loading catalysts for selective hydrogenation.
Collapse
Affiliation(s)
- Ruijie Gao
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.,Zhejiang Institute of Tianjin University, Ningbo 315201, China.,Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
| | - Jisheng Xu
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.,Zhejiang Institute of Tianjin University, Ningbo 315201, China
| | - Jian Wang
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea.,Molecular Science Research Institute, Seoul National University, Seoul 08826, South Korea
| | - Jongwoo Lim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea.,Molecular Science Research Institute, Seoul National University, Seoul 08826, South Korea
| | - Chong Peng
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200230, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.,Zhejiang Institute of Tianjin University, Ningbo 315201, China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.,Zhejiang Institute of Tianjin University, Ningbo 315201, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.,Zhejiang Institute of Tianjin University, Ningbo 315201, China
| |
Collapse
|
85
|
Qi P, Wang J, Djitcheu X, He D, Liu H, Zhang Q. Techniques for the characterization of single atom catalysts. RSC Adv 2021; 12:1216-1227. [PMID: 35425093 PMCID: PMC8978979 DOI: 10.1039/d1ra07799f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
Single atom catalysts (SACs) are a hot research area recently. Over most of the SACs, the singly dispersed atoms are the active sites, which contribute to the catalytic activities significantly compared with a catalyst with continuously packed active sites. It is essential to determine whether SACs have been successfully synthesized. Several techniques have been applied for the characterization of the dispersion states of the active sites over SACs, such as Energy Dispersive X-ray spectroscopy (EDX), Electron Energy Loss Spectroscopy (EELS), etc. In this review, the techniques for the identification of the singly dispersed sites over SACs are introduced, the advantages and limitations of each technique are pointed out, and the future research directions have been discussed. It is hoped that this review will be helpful for a more comprehensive understanding of the characterization and detection methods involved in SACs, and stimulate and promote the further development of this emerging research field.
Collapse
Affiliation(s)
- Ping Qi
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Jian Wang
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Xavier Djitcheu
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Dehua He
- Innovative Catalysis Program, Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Huimin Liu
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Qijian Zhang
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| |
Collapse
|
86
|
Shah SSA, Najam T, Javed MS, Bashir MS, Nazir MA, Khan NA, Rehman AU, Subhan MA, Rahman MM. Recent Advances in Synthesis and Applications of Single-Atom Catalysts for Rechargeable Batteries. CHEM REC 2021; 22:e202100280. [PMID: 34921492 DOI: 10.1002/tcr.202100280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/28/2021] [Indexed: 11/12/2022]
Abstract
The rapid development of flexible and wearable optoelectronic devices, demanding the superior, reliable, and ultra-long cycling energy storage systems. But poor performances of electrode materials used in energy devices are main obstacles. Recently, single-atom catalysts (SACs) are considered as emerging and potential candidates as electrode materials for battery devices. Herein, we have discussed the recent methods for the fabrication of SACs for rechargeable metal-air batteries, metal-CO2 batteries, metal-sulfur batteries, and other batteries, following the recent advances in assembling and performance of these batteries by using SACs as electrode materials. The role of SACs to solve the bottle-neck problems of these energy storage devices and future perspectives are also discussed.
Collapse
Affiliation(s)
- Syed Shoaib Ahmad Shah
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China.,Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Tayyaba Najam
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Muhammad Sohail Bashir
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Muhammad Altaf Nazir
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Naseem Ahmad Khan
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Aziz Ur Rehman
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Md Abdus Subhan
- Department of Chemistry, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Mohammed Muzibur Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Jeddah, Saudi Arabia
| |
Collapse
|
87
|
|
88
|
Wang S, Uwakwe K, Yu L, Ye J, Zhu Y, Hu J, Chen R, Zhang Z, Zhou Z, Li J, Xie Z, Deng D. Highly efficient ethylene production via electrocatalytic hydrogenation of acetylene under mild conditions. Nat Commun 2021; 12:7072. [PMID: 34873161 PMCID: PMC8648715 DOI: 10.1038/s41467-021-27372-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/16/2021] [Indexed: 11/19/2022] Open
Abstract
Renewable energy-based electrocatalytic hydrogenation of acetylene to ethylene (E-HAE) under mild conditions is an attractive substitution to the conventional energy-intensive industrial process, but is challenging due to its low Faradaic efficiency caused by competitive hydrogen evolution reaction. Herein, we report a highly efficient and selective E-HAE process at room temperature and ambient pressure over the Cu catalyst. A high Faradaic efficiency of 83.2% for ethylene with a current density of 29 mA cm-2 is reached at -0.6 V vs. the reversible hydrogen electrode. In-situ spectroscopic characterizations combined with first-principles calculations reveal that electron transfer from the Cu surface to adsorbed acetylene induces preferential adsorption and hydrogenation of the acetylene over hydrogen formation, thus enabling a highly selective E-HAE process through the electron-coupled proton transfer mechanism. This work presents a feasible route for high-efficiency ethylene production from E-HAE.
Collapse
Affiliation(s)
- Suheng Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Kelechi Uwakwe
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Yu
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jinyu Ye
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuezhou Zhu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jingting Hu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Ruixue Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zheng Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhiyou Zhou
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jianfeng Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhaoxiong Xie
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Dehui Deng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
89
|
Liquid-Phase Hydrogenation of 1-Phenyl-1-propyne on the Pd 1Ag 3/Al 2O 3 Single-Atom Alloy Catalyst: Kinetic Modeling and the Reaction Mechanism. NANOMATERIALS 2021; 11:nano11123286. [PMID: 34947637 PMCID: PMC8705174 DOI: 10.3390/nano11123286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022]
Abstract
This research was focused on studying the performance of the Pd1Ag3/Al2O3 single-atom alloy (SAA) in the liquid-phase hydrogenation of di-substituted alkyne (1-phenyl-1-propyne), and development of a kinetic model adequately describing the reaction kinetic being also consistent with the reaction mechanism suggested for alkyne hydrogenation on SAA catalysts. Formation of the SAA structure on the surface of PdAg3 nanoparticles was confirmed by DRIFTS-CO, revealing the presence of single-atom Pd1 sites surrounded by Ag atoms (characteristic symmetrical band at 2046 cm−1) and almost complete absence of multiatomic Pdn surface sites (<0.2%). The catalyst demonstrated excellent selectivity in alkyne formation (95–97%), which is essentially independent of P(H2) and alkyne concentration. It is remarkable that selectivity remains almost constant upon variation of 1-phenyl-1-propyne (1-Ph-1-Pr) conversion from 5 to 95–98%, which indicates that a direct alkyne to alkane hydrogenation is negligible over Pd1Ag3 catalyst. The kinetics of 1-phenyl-1-propyne hydrogenation on Pd1Ag3/Al2O3 was adequately described by the Langmuir-Hinshelwood type of model developed on the basis of the reaction mechanism, which suggests competitive H2 and alkyne/alkene adsorption on single atom Pd1 centers surrounded by inactive Ag atoms. The model is capable to describe kinetic characteristics of 1-phenyl-1-propyne hydrogenation on SAA Pd1Ag3/Al2O3 catalyst with the excellent explanation degree (98.9%).
Collapse
|
90
|
C2H2 semi-hydrogenation on the Pdshell@Mcore (M = Cu, Ag, Au) alloy catalysts: The influence of shell Pd ensemble form on the catalytic activity and selectivity. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
91
|
Chen M, Yan K, Cao Y, Li Y, Ge X, Zhang J, Gong X, Qian G, Zhou X, Duan X. Thermodynamics Insights into the Selective Hydrogenation of Alkynes in C 2 and C 3 Streams. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mingming Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Kelin Yan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yueqiang Cao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yurou Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiaohu Ge
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jing Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xueqing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Gang Qian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
92
|
Anand S, Pinheiro D, Sunaja Devi KR. Recent Advances in Hydrogenation Reactions Using Bimetallic Nanocatalysts: A Review. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Samika Anand
- Department of Chemistry CHRIST (Deemed to be University) Bangalore 560029 Karnataka India
| | - Dephan Pinheiro
- Department of Chemistry CHRIST (Deemed to be University) Bangalore 560029 Karnataka India
| | - K. R. Sunaja Devi
- Department of Chemistry CHRIST (Deemed to be University) Bangalore 560029 Karnataka India
| |
Collapse
|
93
|
Breaking the inverse relationship between catalytic activity and selectivity in acetylene partial hydrogenation using dynamic metal–polymer interaction. J Catal 2021. [DOI: 10.1016/j.jcat.2021.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
94
|
Singh B, Gawande MB, Kute AD, Varma RS, Fornasiero P, McNeice P, Jagadeesh RV, Beller M, Zbořil R. Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chem Rev 2021; 121:13620-13697. [PMID: 34644065 DOI: 10.1021/acs.chemrev.1c00158] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supported single-metal atom catalysts (SACs) are constituted of isolated active metal centers, which are heterogenized on inert supports such as graphene, porous carbon, and metal oxides. Their thermal stability, electronic properties, and catalytic activities can be controlled via interactions between the single-metal atom center and neighboring heteroatoms such as nitrogen, oxygen, and sulfur. Due to the atomic dispersion of the active catalytic centers, the amount of metal required for catalysis can be decreased, thus offering new possibilities to control the selectivity of a given transformation as well as to improve catalyst turnover frequencies and turnover numbers. This review aims to comprehensively summarize the synthesis of Fe-SACs with a focus on anchoring single atoms (SA) on carbon/graphene supports. The characterization of these advanced materials using various spectroscopic techniques and their applications in diverse research areas are described. When applicable, mechanistic investigations conducted to understand the specific behavior of Fe-SACs-based catalysts are highlighted, including the use of theoretical models.
Collapse
Affiliation(s)
- Baljeet Singh
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193 Portugal
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Arun D Kute
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 779 00 Olomouc, Czech Republic
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport Giacomo Ciamiciam, INSTM Trieste Research Unit and ICCOM-CNR Trieste Research Unit, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Peter McNeice
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Rajenahally V Jagadeesh
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.,Department of Chemistry, REVA University, Bangalore 560064, India
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 779 00 Olomouc, Czech Republic.,CEET Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
95
|
Qin F, Zhou D, Sun M, Xu W, Tang H, Fan J, Chen W. Atomically dispersed Pd catalysts promote the oxygen evolution reaction in acidic media. Chem Commun (Camb) 2021; 57:11561-11564. [PMID: 34668004 DOI: 10.1039/d1cc04984d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Pd-doped Pt3Sn-based single atom alloy catalyst (Pd-Pt3Sn) was synthesized via a hydrothermal method. The overpotential of Pd-Pt3Sn is lower than that of commercial Pd/C and IrO2 catalysts at 10 mA cm-2. This is due to the synergistic effect between Pt, Sn and Pd and the influence of electronic effects on their catalytic performance.
Collapse
Affiliation(s)
- Fengjuan Qin
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Danni Zhou
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Mengru Sun
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Wenjing Xu
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Hao Tang
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Jianling Fan
- Department of Physics and Engineering Technology, Guilin Normal College, Guilin 541199, China.
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
96
|
Adsorption Behavior and Electron Structure Engineering of Pd-IL Catalysts for Selective Hydrogenation of Acetylene. Catal Letters 2021. [DOI: 10.1007/s10562-020-03485-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
97
|
Zheng Y, Tan T, Wang C. Seed‐mediated Growth of Alloyed
Ag‐Pd
Shells toward Alkyne Semi‐hydrogenation Reactions under Mild Conditions
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yuqin Zheng
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low‐Carbon Technologies, School of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 China
| | - Taixing Tan
- Ganjiang Innovation Academy Chinese Academy of Sciences Ganzhou Jiangxi 341000 China
| | - Cheng Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low‐Carbon Technologies, School of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 China
| |
Collapse
|
98
|
Qi Y, Wang B, Fan M, Li D, Zhang R. C2H2 semi-hydrogenation on the metal M (M = Cu, Ag, Au) alloyed single-atom Pd catalysts: Effects of Pd coordination number and environment on the catalytic performance. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
99
|
Zhang C, Li Y. Graphdiyne Based Atomic Catalyst: an Emerging Star for Energy Conversion. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1349-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
100
|
Zhu W, Meng Y, Yang C, Zhao J, Wang H, Hu W, Lv G, Wang Y, Deng T, Hou X. Effect of Coordination Environment Surrounding a Single Pt Site on the Liquid-Phase Aerobic Oxidation of 5-Hydroxymethylfurfural. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48582-48594. [PMID: 34612043 DOI: 10.1021/acsami.1c12329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As the frontier in heterogeneous catalyst, a monomer and positively charged active sites in the single-atom catalyst (SAC), anchored by high electronegative N, O, S, P, etc., atoms, may not be active for the multispecies (O2, substrates, intermediates, solvent etc.) involved liquid-phase aerobic oxidation. Here, with catalytic, aerobic oxidation of 5-hydroxymethylfurfural as an example, Pt SAC (Pt1-N4) was synthesized and tested first. With commercial Pt/C (Pt loading of 5 wt %) as a benchmark, 2,5-furandicarboxylic acid (FDCA) yield of 97.6% was obtained. Pt SAC (0.56 wt %) gave a much lower FDCA yield (28.8%). By changing the coordination atoms from highly electronegative N to low electronegative Co atoms, the prepared Pt single-atom alloy (SAA, Pt1-Co3) catalyst with ultralow Pt loading (0.06 wt %) gave a much high FDCA yield (99.6%). Density functional theory (DFT) calculations indicated that positively charged Pt sites (+0.712e) in Pt1-N4 almost lost the capability for oxygen adsorption and activation, as well as the adsorption for the key intermediate. In Pt1-Co3 SAA, the central negatively charged Pt atom (-0.446e) facilitated the adsorption of the key intermediate; meanwhile, the nearby Co atoms around the Pt atom constituted the O2-preferred adsorption/activation sites. This work shows the difference between the SAC with NPs and the SAA during liquid-phase oxidation of HMF and gives a useful guide in the future single-atom catalyst design in other related reactions.
Collapse
Affiliation(s)
- Wanzhen Zhu
- Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yu Meng
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| | - Chaoxin Yang
- Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jun Zhao
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Hongliang Wang
- College of Biomass Sciences and Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wei Hu
- Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guangqiang Lv
- Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yingxiong Wang
- Shanxi Engineering Research Center of Biorefinery, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Tiansheng Deng
- Shanxi Engineering Research Center of Biorefinery, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Xianglin Hou
- Shanxi Engineering Research Center of Biorefinery, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| |
Collapse
|