51
|
Zhang S, Findlater M. Electrochemically Driven Hydrogen Atom Transfer Catalysis: A Tool for C(sp 3)/Si-H Functionalization and Hydrofunctionalization of Alkenes. ACS Catal 2023; 13:8731-8751. [PMID: 37441236 PMCID: PMC10334887 DOI: 10.1021/acscatal.3c01221] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/27/2023] [Indexed: 07/15/2023]
Abstract
Electrochemically driven hydrogen atom transfer (HAT) catalysis provides a complementary approach for the transformation of redox-inactive substrates that would be inaccessible to conventional electron transfer (ET) catalysis. Moreover, electrochemically driven HAT catalysis could promote organic transformations with either hydrogen atom abstraction or donation as the key step. It provides a versatile and effective tool for the direct functionalization of C(sp3)-H/Si-H bonds and the hydrofunctionalization of alkenes. Despite these attractive properties, electrochemically driven HAT catalysis has been largely overlooked due to the lack of understanding of both the catalytic mechanism and how catalyst selection should occur. In this Review, we give an overview of the HAT catalysis applications in the direct C(sp3)-H/Si-H functionalization and hydrofunctionalization of alkenes. The mechanistic pathways, physical properties of the HAT mediators, and state-of-the-art examples are described and discussed.
Collapse
Affiliation(s)
- Sheng Zhang
- Institutes
of Physical Science and Information Technology, Key Laboratory of
Structure and Functional Regulation of Hybrid Materials of Ministry
of Education, Anhui University, Hefei, Anhui 230601, China
| | - Michael Findlater
- Department
of Chemistry and Biochemistry, University
of California Merced, Merced, California 95343, United States
| |
Collapse
|
52
|
Maiti D, Saha A, Guin S, Maiti D, Sen S. Unveiling catalyst-free electro-photochemical reactivity of aryl diazoesters and facile synthesis of oxazoles, imide-fused pyrroles and tetrahydro-epoxy-pyridines via carbene radical anions. Chem Sci 2023; 14:6216-6225. [PMID: 37325143 PMCID: PMC10266477 DOI: 10.1039/d3sc00089c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/16/2023] [Indexed: 06/17/2023] Open
Abstract
Herein, we report a reagent-less (devoid of catalyst, supporting electrolyte, oxidant and reductant) electro-photochemical (EPC) reaction [electricity (50 μA) and blue LED (5 W)] of aryl diazoesters to generate radical anions which are subsequently reacted with acetonitrile or propionitrile and maleimides to generate diversely substituted oxazoles, diastereo-selective imide-fused pyrroles and tetrahydroepoxy-pyridines in good to excellent yield. Thorough mechanistic investigation including a 'biphasic e-cell' experiment supports the reaction mechanism involving a carbene radical anion. The tetrahydroepoxy-pyridines could be fluently converted to fused pyridines resembling vitamin B6 derivatives. The source of the electric current in the EPC reaction could be a simple cell phone charger. The reaction was efficiently scaled up to the gram level. Crystal structure, 1D, 2D NMRs and HRMS data confirmed the product structures. This report demonstrates a unique generation of radical anions via electro-photochemistry and their direct applications in the synthesis of important heterocycles.
Collapse
Affiliation(s)
- Debajit Maiti
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University Chithera, Dadri, Gautam Buddha Nagar UP 201314 India
| | - Argha Saha
- Department of Chemistry, IIT-Bombay Powai Mumbai 400076 MH India
| | - Srimanta Guin
- Department of Chemistry, IIT-Bombay Powai Mumbai 400076 MH India
| | - Debabrata Maiti
- Department of Chemistry, IIT-Bombay Powai Mumbai 400076 MH India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University Chithera, Dadri, Gautam Buddha Nagar UP 201314 India
| |
Collapse
|
53
|
Yavari I, Shaabanzadeh S. Migration from Photochemistry to Electrochemistry for [2 + 2] Cycloaddition Reaction. J Org Chem 2023. [PMID: 37289957 DOI: 10.1021/acs.joc.3c00817] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cyclobutane scaffolds are incorporated in several valuable natural and bioactive products. However, non-photochemical ways to synthesize cyclobutanes have scarcely been investigated. Herein, based on the principles of the electrosynthesis technique, we introduce a novel electrochemical approach for attaining cyclobutanes by a simple [2 + 2] cycloaddition of two electron-deficient olefins in the absence of photocatalysts or metal catalysts. This electrochemical strategy provides a suitable condition for synthesizing tetrasubstituted cyclobutanes with a variety of functional groups in good to excellent efficiency, compatible with gram-scale synthesis. In contrast to previous challenging methods, this approach strongly focuses on the convenient accessibility of the reaction instruments and starting materials for preparing cyclobutanes. Readily accessible and inexpensive electrode materials are firm evidence to prove the simplicity of this reaction. In addition, mechanistic insight into the reaction is obtained by investigation of the CV spectra of the reactants. Also, the structure of a product is identified by X-ray crystallography.
Collapse
Affiliation(s)
- Issa Yavari
- Department of Chemistry, Tarbiat Modares University, P.O. Box, 14115-175, Tehran 1411713116, Iran
| | - Sina Shaabanzadeh
- Department of Chemistry, Tarbiat Modares University, P.O. Box, 14115-175, Tehran 1411713116, Iran
| |
Collapse
|
54
|
Hatch CE, Chain WJ. Electrochemically Enabled Total Syntheses of Natural Products. ChemElectroChem 2023; 10:e202300140. [PMID: 38106361 PMCID: PMC10723087 DOI: 10.1002/celc.202300140] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 12/19/2023]
Abstract
Electrochemical techniques have helped to enable the total synthesis of natural products since the pioneering work of Kolbe in the mid 1800's. The electrochemical toolset grows every day and these new possibilities change the way chemists look at and think about natural products. This review provides a perspective on total syntheses wherein electrochemical techniques enabled the carbon─carbon bond formations in the skeletal assembly of important natural products, discussion of mechanistic details, and representative examples of the bond formations enabled over the last several decades. These bond formations are often distinctly different from those possible with conventional chemistries and allow assemblies complementary to other techniques.
Collapse
Affiliation(s)
- Chad E Hatch
- Chemical Biology, Memorial Sloan Kettering Cancer Center, 417 E. 68 St., New York, NY, 10065 (United States)
| | - William J Chain
- Department of Chemistry & Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716 (United States)
| |
Collapse
|
55
|
Choi S, Song S, Ko Y, Kim KC. Impact of Structural Flexibility of Amine Moieties as Bridges for Redox-Active Sites on Secondary Battery Performance. CHEMSUSCHEM 2023; 16:e202300219. [PMID: 36897490 DOI: 10.1002/cssc.202300219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 05/20/2023]
Abstract
Although environmentally benign organic cathode materials for secondary batteries are in demand, their high solubility in electrolyte solvents hinders broad applicability. In this study, a bridging fragment to link redox-active sites is incorporated into organic complexes with the aim of preventing dissolution in electrolyte systems with no significant performance loss. Evaluation of these complexes using an advanced computational approach reveals that the type of redox-active site (i. e., dicyanide, quinone, or dithione) is a key parameter for determining the intrinsic redox activity of the complexes, with the redox activity decreasing in the order of dithione>quinone>dicyanide. In contrast, the structural integrity is strongly reliant on the bridging style (i. e., amine-based single linkage or diamine-based double linkage). In particular, owing to their rigid anchoring effect, diamine-based double linkages incorporated at dithione sites allow structural integrity to be maintained with no significant decrease in the high thermodynamic performance of dithione sites. These findings provide insights into design directions for insoluble organic cathode materials that can sustain high performance and structural durability during repeated cycling.
Collapse
Affiliation(s)
- Siku Choi
- Division of Chemical Engineering, Konkuk University, Seoul, 05029, The Republic of Korea
| | - Songi Song
- Division of Chemical Engineering, Konkuk University, Seoul, 05029, The Republic of Korea
| | - Yeongnam Ko
- Computational Materials Design Laboratory, Department of Chemical Engineering, Konkuk University, Seoul, 05029, The Republic of Korea
| | - Ki Chul Kim
- Division of Chemical Engineering, Konkuk University, Seoul, 05029, The Republic of Korea
- Computational Materials Design Laboratory, Department of Chemical Engineering, Konkuk University, Seoul, 05029, The Republic of Korea
| |
Collapse
|
56
|
Baidya M, Dutta J, De Sarkar S. Electrochemical Organoselenium Catalysis for the Selective Activation of Alkynes: Easy Access to Carbonyl-pyrroles/oxazoles from N-Propargyl Enamines/Amides. Org Lett 2023; 25:3812-3817. [PMID: 37196050 DOI: 10.1021/acs.orglett.3c01355] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Intramolecular electro-oxidative addition of enamines or amides to nonactivated alkynes was attained to access carbonyl-pyrroles or -oxazoles from N-propargyl derivatives. Organoselenium was employed as the electrocatalyst, which played a crucial role as a π-Lewis acid and selectively activated the alkyne for the successful nucleophilic addition. The synthetic strategy permits a wide range of substrate scope up to 93% yield. Several mechanistic experiments, including the isolation of a selenium-incorporated intermediate adduct, enlighten the electrocatalytic pathway.
Collapse
Affiliation(s)
- Mrinmay Baidya
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Jhilik Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| |
Collapse
|
57
|
Liu M, Liu J, Li J, Zhao Z, Zhou K, Li Y, He P, Wu J, Bao Z, Yang Q, Yang Y, Ren Q, Zhang Z. Blending Aryl Ketone in Covalent Organic Frameworks to Promote Photoinduced Electron Transfer. J Am Chem Soc 2023; 145:9198-9206. [PMID: 37125453 DOI: 10.1021/jacs.3c01273] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Aryl-ketone derivatives have been acknowledged as promising organic photocatalysts for photosynthesis. However, they are limited by their photostability and have been less explored for photoinduced electron transfer (PET) applications. Herein we demonstrate a novel strategy to cover the shortage of aryl-ketone photocatalysts and control the photoreactivity by implanting symmetric aryl ketones into the conjugated covalent organic frameworks (COFs). To prove the concept, three comparative materials with the same topology and varied electronic structures were built, adopting truxenone knot and functionalized terephthalaldehyde linkers. Spectroscopic investigation and excited carrier dynamics analysis disclosed improvements in the photostability and electronic transfer efficiency as well as the structure-performance relationships toward N-aryl tetrahydroisoquinoline oxidation. This system provides a robust rule of thumb for designing new-generation aryl-ketone photocatalysts.
Collapse
Affiliation(s)
- Mingjie Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Junnan Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Jing Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Zhenghua Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Kai Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Yueming Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Peipei He
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Jiashu Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| |
Collapse
|
58
|
Ackermann L, Lin S. Special Collection on Organic Electrocatalysis. European J Org Chem 2023. [DOI: 10.1002/ejoc.202300214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
59
|
Wang B, Zhang X, Cao Y, Zou L, Qi X, Lu Q. Electrooxidative Activation of B-B Bond in B 2 cat 2 : Access to gem-Diborylalkanes via Paired Electrolysis. Angew Chem Int Ed Engl 2023; 62:e202218179. [PMID: 36722684 DOI: 10.1002/anie.202218179] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
This report describes the unprecedented electrooxidation of a solvent (e.g., DMF)-ligated B2 cat2 complex, whereby a solvent-stabilized boryl radical is formed via quasi-homolytic cleavage of the B-B bond in a DMF-ligated B2 cat2 radical cation. Cyclic voltammetry and density functional theory provide evidence to support this novel B-B bond activation strategy. Furthermore, a strategy for the electrochemical gem-diborylation of gem-bromides via paired electrolysis is developed for the first time, affording a range of versatile gem-diborylalkanes, which are widely used in synthetic society. Notably, this reaction approach is scalable, transition-metal-free, and requires no external activator.
Collapse
Affiliation(s)
- Bingbing Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Xiangyu Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Yangmin Cao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Long Zou
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
60
|
Qian L, Shi M. Contemporary photoelectrochemical strategies and reactions in organic synthesis. Chem Commun (Camb) 2023; 59:3487-3506. [PMID: 36857689 DOI: 10.1039/d3cc00437f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
In recent years, with the development of organic synthetic chemistry, a variety of organic synthetic methods have been discovered and applied in practical production. Photochemistry and electrochemistry have been widely used in organic synthesis recently due to their advantages such as mild conditions and green and environmental protection and have now been developed into two of the most massive synthetic strategies in the field of organic synthesis. In order to further enhance the potential of photochemistry and electrochemistry and to overcome the limitations of each, organic synthetic chemists have worked to combine the two synthetic strategies together to develop photoelectrochemistry as a new synthetic method. Photoelectrochemistry achieves the complementary advantages and disadvantages of photochemistry and electrochemistry, avoids the problem of using stoichiometric oxidants or reductants in photochemistry and easy dimerization in electrochemistry, generates highly reactive reaction intermediates under mild conditions, and achieves reactions that are difficult to accomplish by single photochemistry or electrochemistry. This review summarizes the research progress in the field of photoelectrochemistry from the perspective of photoelectro-chemical catalysts in recent years, analyzes the catalytic mechanism of various catalysts in detail, and gives a brief outlook on the research direction and development prospects in this field.
Collapse
Affiliation(s)
- Ling Qian
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.
| |
Collapse
|
61
|
Luo MJ, Zhou W, Yang R, Ding H, Song XR, Xiao Q. Electrochemically enabled decyanative C(sp 3)-H oxygenation of N-cyanomethylamines to formamides. Org Biomol Chem 2023; 21:2917-2921. [PMID: 36942930 DOI: 10.1039/d3ob00313b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Selective oxygenation of C(sp3)-H bonds adjacent to nitrogen atoms is a highly attractive strategy for synthesizing various formamide derivatives while preserving the substrate skeletons. Herein, an environmentally benign electrochemically enabled decyanative C(sp3)-H oxygenation of N-cyanomethylamines using H2O as a carbonyl oxygen atom source is described, leading to the synthesis of a large class of formamides in good to excellent yields with a broad substrate scope under metal- and oxidant-free conditions. This electrochemical technology highlights the facile incorporation of N-formyl into some important bioactive molecules.
Collapse
Affiliation(s)
- Mu-Jia Luo
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Wei Zhou
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Ruchun Yang
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Haixin Ding
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Xian-Rong Song
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Qiang Xiao
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| |
Collapse
|
62
|
Yu W, Wang S, He M, Jiang Z, Yu Y, Lan J, Luo J, Wang P, Qi X, Wang T, Lei A. Electroreduction Enables Regioselective 1,2‐Diarylation of Alkenes with Two Electrophiles. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202219166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Weijie Yu
- National Research Center for Carbohydrate Synthesis Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology Jiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Shengchun Wang
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072, Hubei P. R. China
| | - Meng He
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072, Hubei P. R. China
| | - Zhou Jiang
- National Research Center for Carbohydrate Synthesis Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology Jiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Yi Yu
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072, Hubei P. R. China
| | - Jinping Lan
- National Research Center for Carbohydrate Synthesis Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology Jiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Jin Luo
- National Research Center for Carbohydrate Synthesis Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology Jiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Pengjie Wang
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072, Hubei P. R. China
| | - Xiaotian Qi
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072, Hubei P. R. China
| | - Tao Wang
- National Research Center for Carbohydrate Synthesis Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology Jiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Aiwen Lei
- National Research Center for Carbohydrate Synthesis Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology Jiangxi Normal University Nanchang 330022, Jiangxi P. R. China
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072, Hubei P. R. China
| |
Collapse
|
63
|
Sheng H, Liu Q, Zhang BB, Wang ZX, Chen XY. Visible-Light-Induced N-Heterocyclic Carbene-Catalyzed Single Electron Reduction of Mono-Fluoroarenes. Angew Chem Int Ed Engl 2023; 62:e202218468. [PMID: 36633173 DOI: 10.1002/anie.202218468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/13/2023]
Abstract
Fluoroarenes are abundant and readily available feedstocks. However, due to the high reduction potentials of mono-fluoroarenes, their photoreduction remains a continuing challenge, motivating the development of efficient activation modes to address this issue. This report presents the blue light-induced N-heterocyclic carbene (NHC)-catalyzed single electron reduction of mono-fluoroarenes for biaryl cross-couplings. We discovered that under blue light irradiation, NHC/tBuOK combination could construct powerful photoactive architectures to promote single electron transfer for Caryl -F bond reduction via forming highly reducing NHC radical anion. Notably, the strategy was also successful to reduce Caryl -O, Caryl -N, and Caryl -S bonds for biaryl cross-couplings.
Collapse
Affiliation(s)
- He Sheng
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Liu
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bei-Bei Zhang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China.,Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province, 256606, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China.,Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province, 256606, China
| |
Collapse
|
64
|
Nguyen K, Nguyen V, Tran H, Pham P. Organo-photocatalytic C-H bond oxidation: an operationally simple and scalable method to prepare ketones with ambient air. RSC Adv 2023; 13:7168-7178. [PMID: 36891491 PMCID: PMC9986805 DOI: 10.1039/d3ra00332a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Oxidative C-H functionalization with O2 is a sustainable strategy to convert feedstock-like chemicals into valuable products. Nevertheless, eco-friendly O2-utilizing chemical processes, which are scalable yet operationally simple, are challenging to develop. Here, we report our efforts, via organo-photocatalysis, in devising such protocols for catalytic C-H bond oxidation of alcohols and alkylbenzenes to ketones using ambient air as the oxidant. The protocols employed tetrabutylammonium anthraquinone-2-sulfonate as the organic photocatalyst which is readily available from a scalable ion exchange of inexpensive salts and is easy to separate from neutral organic products. Cobalt(ii) acetylacetonate was found to be greatly instrumental to oxidation of alcohols and therefore was included as an additive in evaluating the alcohol scope. The protocols employed a nontoxic solvent, could accommodate a variety of functional groups, and were readily scaled to 500 mmol scale in a simple batch setting using round-bottom flasks and ambient air. A preliminary mechanistic study of C-H bond oxidation of alcohols supported the validity of one possible mechanistic pathway, nested in a more complex network of potential pathways, in which the anthraquinone form - the oxidized form - of the photocatalyst activates alcohols and the anthrahydroquinone form - the relevant reduced form of the photocatalyst - activates O2. A detailed mechanism, which reflected such a pathway and was consistent with previously accepted mechanisms, was proposed to account for formation of ketones from aerobic C-H bond oxidation of both alcohols and alkylbenzenes.
Collapse
Affiliation(s)
- Ky Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University Hanoi Vietnam
| | - Van Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University Hanoi Vietnam
| | - Hieu Tran
- Faculty of Chemistry, University of Science, Vietnam National University Hanoi Vietnam
| | - Phong Pham
- Faculty of Chemistry, University of Science, Vietnam National University Hanoi Vietnam
| |
Collapse
|
65
|
Rapisarda L, Fermi A, Ceroni P, Giovanelli R, Bertuzzi G, Bandini M. Electrochemical C(sp 3)-H functionalization of ethers via hydrogen-atom transfer by means of cathodic reduction. Chem Commun (Camb) 2023; 59:2664-2667. [PMID: 36785969 DOI: 10.1039/d2cc06999g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The chemo- and stereoselective electrochemical allylation/alkylation of ethers is presented via a C(sp3)-H activation event. The electrosynthetic protocol enables the realization of a large library of functionalized ethers (35 examples) in high yields (up to 84%) via cathodic activation of a new type of redox-active carbonate (RAC), capable of triggering HAT (Hydrogen-Atom-Transfer) events through the generation of electrophilic oxy radicals. The process displayed high functional group tolerance and mild reaction conditions. A mechanistic elucidation via voltammetric analysis completes the study.
Collapse
Affiliation(s)
- Leonardo Rapisarda
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, via Selmi 2, 40126, Bologna, Italy.
| | - Andrea Fermi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, via Selmi 2, 40126, Bologna, Italy. .,Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna Via Selmi 2, 40126, Bologna, Italy
| | - Paola Ceroni
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, via Selmi 2, 40126, Bologna, Italy. .,Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna Via Selmi 2, 40126, Bologna, Italy
| | - Riccardo Giovanelli
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, via Selmi 2, 40126, Bologna, Italy. .,Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna Via Selmi 2, 40126, Bologna, Italy
| | - Giulio Bertuzzi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, via Selmi 2, 40126, Bologna, Italy. .,Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna Via Selmi 2, 40126, Bologna, Italy
| | - Marco Bandini
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, via Selmi 2, 40126, Bologna, Italy. .,Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna Via Selmi 2, 40126, Bologna, Italy
| |
Collapse
|
66
|
Shi J, Wang Z, Teng X, Zhang B, Sun K, Wang X. Electro-Oxidative C3-Selenylation of Pyrido[1,2- a]pyrimidin-4-ones. Molecules 2023; 28:molecules28052206. [PMID: 36903450 PMCID: PMC10005275 DOI: 10.3390/molecules28052206] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
In this work, we achieved a C3-selenylation of pyrido[1,2-a]pyrimidin-4-ones using an electrochemically driven external oxidant-free strategy. Various structurally diverse seleno-substituted N-heterocycles were obtained in moderate to excellent yields. Through radical trapping experiments, GC-MS analysis and cyclic voltammetry study, a plausible mechanism for this selenylation was proposed.
Collapse
Affiliation(s)
- Jianwei Shi
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Zhichuan Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiaoxu Teng
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Bing Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (B.Z.); (X.W.)
| | - Kai Sun
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xin Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
- Correspondence: (B.Z.); (X.W.)
| |
Collapse
|
67
|
Yue H, Zhu C, Rueping M. Trisaminocyclopropenium ion (TAC +) enables contiguous CH bonds oxygenations via oxidative electrophotocatalysis. Sci Bull (Beijing) 2023:S2095-9273(23)00076-2. [PMID: 36774299 DOI: 10.1016/j.scib.2023.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Huifeng Yue
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Chen Zhu
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
68
|
Yu W, Wang S, He M, Jiang Z, Yu Y, Lan J, Luo J, Wang P, Qi X, Wang T, Lei A. Electroreduction Enables Regioselective 1,2-Diarylation of Alkenes with Two Electrophiles. Angew Chem Int Ed Engl 2023; 62:e202219166. [PMID: 36826413 DOI: 10.1002/anie.202219166] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 02/25/2023]
Abstract
Precisely introducing two similar functional groups into bulk chemical alkenes represents a formidable route to complex molecules. Especially, the selective activation of two electrophiles is in crucial demand, yet challenging for cross-electrophile-coupling. Herein, we demonstrate a redox-mediated electrolysis, in which aryl nitriles are both aryl radical precursors and redox-mediators, enables an intermolecular alkene 1,2-diarylation with a remarkable regioselectivity, thereby avoiding the involvement of transition-metal catalysts. This transformation utilizes cyanoarene radical anions for activating various aryl halides (including iodides, bromides, and even chlorides) and affords 1,2-diarylation adducts in up to 83 % yield and >20 : 1 regioselectivity with more than 80 examples, providing a feasible approach to complex bibenzyl derivatives.
Collapse
Affiliation(s)
- Weijie Yu
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology, Jiangxi Normal University, Nanchang, 330022, Jiangxi, P. R. China
| | - Shengchun Wang
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Meng He
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Zhou Jiang
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology, Jiangxi Normal University, Nanchang, 330022, Jiangxi, P. R. China
| | - Yi Yu
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Jinping Lan
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology, Jiangxi Normal University, Nanchang, 330022, Jiangxi, P. R. China
| | - Jin Luo
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology, Jiangxi Normal University, Nanchang, 330022, Jiangxi, P. R. China
| | - Pengjie Wang
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Xiaotian Qi
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Tao Wang
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology, Jiangxi Normal University, Nanchang, 330022, Jiangxi, P. R. China
| | - Aiwen Lei
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology, Jiangxi Normal University, Nanchang, 330022, Jiangxi, P. R. China.,The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| |
Collapse
|
69
|
Wang X, Shu S, Wang X, Luo R, Ming X, Wang T, Zhang Z. Access to Saturated Oxygen Heterocycles and Lactones via Electrochemical Sulfonylative Oxycyclization of Alkenes with Sulfonyl Hydrazides. J Org Chem 2023; 88:2505-2520. [PMID: 36751026 DOI: 10.1021/acs.joc.2c02966] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
A facile electrochemical sulfonylative cycloetherification of linear unsaturated alcohols with sulfonyl hydrazides under mild conditions has been accomplished. This catalyst- and oxidant-free protocol proceeds via electro-oxidation, followed by radical addition, as well as an intramolecular oxygen nucleophilic process. This methodology is compatible with a broad substrate scope and good functional group compatibility, which provides a valuable and convenient synthetic tool for the synthesis of saturated five-, six-, seven-, and eight-membered ring oxygen heterocycles. Furthermore, sulfonylative cycloesterification of linear unsaturated acids toward the lactone products has also been established under this electrochemical system. In addition, control experiments indicated that the N-H bonds of the sulfonyl hydrazide molecule are non-essential.
Collapse
Affiliation(s)
- Xiaoshuo Wang
- Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Shubing Shu
- Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Xiaojing Wang
- Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Renshi Luo
- College of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, P. R. China
| | - Xiayi Ming
- Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Tao Wang
- Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Zhenming Zhang
- Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| |
Collapse
|
70
|
Wan Q, Hou ZW, Zhao XR, Xie X, Wang L. Organoelectrophotocatalytic C-H Silylation of Heteroarenes. Org Lett 2023; 25:1008-1013. [PMID: 36735345 DOI: 10.1021/acs.orglett.3c00144] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An organoelectrophotocatalytic approach for the C-H silylation of heteroarenes through dehydrogenation cross-coupling with H2 evolution has been developed. The organoelectrophotocatalytic strategy is carried out under a simple and efficient monocatalytic system by employing 9,10-phenanthrenequinone both as an organocatalyst and as a hydrogen atom transfer (HAT) reagent, which avoids the need for an external HAT reagent, an oxidant, or a metal reagent. A variety of heteroarenes can be compatible in satisfactory yields with excellent regioselectivity.
Collapse
Affiliation(s)
- Qinhui Wan
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Zhong-Wei Hou
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Xin-Ru Zhao
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Xiaoyu Xie
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lei Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
71
|
Mahe C, Blacque O, Gasser G, Gandon V, Cariou K. N-Metallocenyl Ynamides: Preparation, Reactivity, and Synthesis of ansa[3]-Ferrocenylamides. Org Lett 2023; 25:624-629. [PMID: 36688847 DOI: 10.1021/acs.orglett.2c04169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The first synthesis of various N-metallocenyl ynamides has been developed, and two strategies for the oxidative cyclization of N-ferrocenyl ynamide into ansa[3]-ferrocenylamide are also reported. The mechanism for the iodine(III)-triggered transformation has been studied by means of DFT calculations, showing that it proceeds through a concerted iodination deprotonation step.
Collapse
Affiliation(s)
- Capucine Mahe
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.,CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris Saclay, 91405 Orsay, France.,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| |
Collapse
|
72
|
Chandra P, Choudhary N, Mobin SM. The game between molecular photoredox catalysis and hydrogen: The golden age of hydrogen budge. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
73
|
Long C, He Y, Guan Z. Emerging Strategies for Asymmetric Synthesis: Combining Enzyme Promiscuity and Photo‐/Electro‐redox Catalysis. ASIAN J ORG CHEM 2023. [DOI: 10.1002/ajoc.202200685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Chao‐Jiu Long
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| | - Yan‐Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| |
Collapse
|
74
|
Xiang H, He J, Qian W, Qiu M, Xu H, Duan W, Ouyang Y, Wang Y, Zhu C. Electroreductively Induced Radicals for Organic Synthesis. Molecules 2023; 28:857. [PMID: 36677915 PMCID: PMC9866059 DOI: 10.3390/molecules28020857] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Organic electrochemistry has attracted tremendous interest within the novel sustainable methodologies that have not only reduced the undesired byproducts, but also utilized cleaner and renewable energy sources. Particularly, oxidative electrochemistry has gained major attention. On the contrary, reductive electrolysis remains an underexplored research direction. In this context, we discuss advances in transition-metal-free cathodically generated radicals for selective organic transformations since 2016. We highlight the electroreductive reaction of alkyl radicals, aryl radicals, acyl radicals, silyl radicals, fluorosulfonyl radicals and trifluoromethoxyl radicals.
Collapse
Affiliation(s)
| | | | | | - Mingqiang Qiu
- Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | | | | | | | | | - Cuiju Zhu
- Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| |
Collapse
|
75
|
Yang K, Wang Y, Luo S, Fu N. Electrophotochemical Metal-Catalyzed Enantioselective Decarboxylative Cyanation. Chemistry 2023; 29:e202203962. [PMID: 36638008 DOI: 10.1002/chem.202203962] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/14/2023]
Abstract
In contrast to the rapid growth of electrophotocatalysis in recent years, enantioselective catalytic reactions powered by this unique methodology remain rare. In this work, we report an electrophotochemical metal-catalyzed protocol for direct asymmetric decarboxylative cyanation of aliphatic carboxylic acids. The synergistic merging of electrophotochemical cerium catalysis and asymmetric electrochemical copper catalysis permits mild reaction conditions for the formation and utilization of the key carbon centered radicals by combining the power of light and electrical energy. Electrophotochemical cerium catalysis enables radical decarboxylation to produce alkyl radicals, which could be effectively intercepted by asymmetric electrochemical copper catalysis for the construction of C-CN bonds in a highly stereoselective fashion. This environmentally benign method smoothly converts a diverse array of arylacetic acids into the corresponding alkyl nitriles in good yields and enantioselectivities without using chemical oxidants or pre-functionalization of the acid substrates and can be readily scaled up.
Collapse
Affiliation(s)
- Kai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Yukang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Sanzhong Luo
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Niankai Fu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| |
Collapse
|
76
|
Feng Q, Wang Y, Zheng B, Huang S. Electrochemical Oxidative Cleavage of Alkynes to Carboxylic Acids. Org Lett 2023; 25:293-297. [PMID: 36587377 DOI: 10.1021/acs.orglett.2c04204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A sustainable method for converting terminal alkynes into their corresponding carboxylic acids is reported using synthetic electrolysis in an undivided cell at room temperature. This protocol, avoiding transition metal catalysis and stoichiometric chemical oxidants, tolerates a variety of aryl, heteroaryl, and alkyl akynes. Preliminary mechanistic studies demonstrate that sodium nitrite serves a triple role as the electrolyte, nitryl radical precursor, and a nitrosating reagent.
Collapse
Affiliation(s)
- Qingyuan Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yamin Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Binnan Zheng
- Ningxia Best Pharmaceutical Chemical Co., Ltd., Yinchuan 750411, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
77
|
Kundu S, Roy L, Maji MS. Development of Carbazole-Cored Organo-Photocatalyst for Visible Light-Driven Reductive Pinacol/Imino-Pinacol Coupling. Org Lett 2022; 24:9001-9006. [PMID: 36469513 DOI: 10.1021/acs.orglett.2c03600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Benzoperylenocarbazole (BPC), a unique carbazole-based organophotocatalyst, is reported herein as a potent organo-photoreductant. Lower excited state oxidation potential (-2.0 V vs SCE) and reasonable excited state lifetime (4.61 ns) render BPC an effective photosensitizer. Under irradiation of blue light employing low catalyst loading (0.5 mol %), a plethora of vicinal diols and diamines were synthesized in excellent yields through reductive coupling of carbonyls and imines, respectively. Insight about the electronic structure of BPC was obtained by DFT calculations.
Collapse
Affiliation(s)
- Samrat Kundu
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, Bhubaneswar 751013, India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
78
|
Yu Y, Zhu XB, Yuan Y, Ye KY. An electrochemical multicomponent reaction toward C-H tetrazolation of alkyl arenes and vicinal azidotetrazolation of alkenes. Chem Sci 2022; 13:13851-13856. [PMID: 36544744 PMCID: PMC9710211 DOI: 10.1039/d2sc05423j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
The widespread use of tetrazoles in medicine, biology, and materials science continuously promotes the development of their efficient and selective syntheses. Despite the prosperous development of multicomponent reactions, the use of the most abundant and inexpensive chemical feedstocks, i.e., alkanes and alkenes, toward the preparation of diverse tetrazoles remains elusive. Herein, we developed an electrochemical multicomponent reaction (e-MCR) for highly efficient and selective C-H tetrazolation of alkyl arenes. When applied to alkenes, the corresponding vicinal azidotetrazoles were readily obtained, which were further demonstrated to be versatile building blocks and potential high-energy materials.
Collapse
Affiliation(s)
- Yi Yu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Xiao-Bin Zhu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Yaofeng Yuan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| |
Collapse
|
79
|
Yavari I, Shaabanzadeh S. Benzylic C(sp 3)-H Bonds Play the Dual Role of Starting Material and Oxidation Inhibitor for Hydrazides in the Electrochemical Synthesis of Hydrazones. J Org Chem 2022; 87:15077-15085. [PMID: 36347012 DOI: 10.1021/acs.joc.2c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The electrooxidation of benzylic C(sp3)-H bonds to produce hydrazones as an alternate for conventional pathways has an enormous dignity. Under the aegis of electricity, instead of hazardous metal catalysts and external oxidants, we unveil an electrochemical process for electrooxidation of various benzylic C(sp3)-H bonds in aqueous media in all pH ranges that subsequently produce hydrazones with further reactions. This electrooxidative reaction strategy provides an acceptable condition for synthesizing hydrazones with various functional groups in good efficiency and amenable to gram-scale synthesis. The electrochemical oxidation condition proves an excellent level of compatibility with super cheap electrolyte NaCl for the oxidation of benzylic C(sp3)-H position despite the highly oxidizable hydrazide group remaining intact in the reaction.
Collapse
Affiliation(s)
- Issa Yavari
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran 1463694571, Iran
| | - Sina Shaabanzadeh
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran 1463694571, Iran
| |
Collapse
|
80
|
Zhang X, Cheng X. Electrochemical Reductive Functionalization of Alkenes with Deuterochloroform as a One-Carbon Deuteration Block. Org Lett 2022; 24:8645-8650. [DOI: 10.1021/acs.orglett.2c03443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Xiaofeng Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, Xianlin Road 163, Qixia District, Nanjing 210023, China
| | - Xu Cheng
- School of Chemistry and Chemical Engineering, Nanjing University, Xianlin Road 163, Qixia District, Nanjing 210023, China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Weijing Road 93, Nankai District, Tianjin 300071, China
| |
Collapse
|
81
|
Huang H, Lambert TH. Regiodivergent Electrophotocatalytic Aminooxygenation of Aryl Olefins. J Am Chem Soc 2022; 144:18803-18809. [PMID: 36194776 PMCID: PMC10405276 DOI: 10.1021/jacs.2c08951] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A method for the regiodivergent aminooxygenation of aryl olefins under electrophotocatalytic conditions is described. The procedure employs a trisaminocyclopropenium (TAC) ion catalyst with visible light irradiation under a controlled electrochemical potential to convert aryl olefins to the corresponding oxazolines with high chemo- and diastereoselectivity. With the judicious choice between two inexpensive and abundant reagents, namely water and urethane, either 2-amino-1-ol or 1-amino-2-ol derivatives could be prepared from the same substrate. This method is amenable to multigram synthesis of the oxazoline products with low catalyst loadings.
Collapse
Affiliation(s)
- He Huang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Tristan H Lambert
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
82
|
Tang S, Chen X, Ke Y, Wang F, Yan X. Voltage-Controlled Divergent Cascade of Electrochemical Reactions for Characterization of Lipids at Multiple Isomer Levels Using Mass Spectrometry. Anal Chem 2022; 94:12750-12756. [PMID: 36087069 PMCID: PMC10386884 DOI: 10.1021/acs.analchem.2c02375] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cascading divergent reactions in a single system is highly desirable for their intrinsic efficiency and potential to achieve multilevel structural characterization of complex biomolecules. In this work, two electrochemical reactions, interfacial electro-epoxidation and cobalt anodic corrosion, are divergently cascaded in nanoelectrospray (nESI) and can be switched at different voltages. We applied these reactions to lipid identification at multiple isomer levels using mass spectrometry (MS), which remains a great challenge in structural lipidomics. The divergent cascade reactions in situ derivatize lipids to produce epoxidized lipids and cobalt-adducted lipids at different voltages. These lipids are then fragmented upon low-energy collision-induced dissociation (CID), generating diagnostic fragments to indicate C═C locations and sn-positions that cannot be achieved by the low-energy CID of native lipids. We have demonstrated that lipid structural isomers show significantly different profiles in the analysis of healthy and cancerous mouse prostate samples using this strategy. The application of divergent cascade reactions in lipid identification allows the four-in-one analysis of lipid headgroups, fatty acyl chains, C═C locations, and sn-positions simply by tuning the nESI voltages within a single experiment. This feature as well as its low sample consumption, no need for an extra apparatus, and quantitative analysis capability show its great potential in lipidomics.
Collapse
Affiliation(s)
- Shuli Tang
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Xi Chen
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Yuepeng Ke
- Center for Translational Cancer Research, Texas A&M Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
| | - Fen Wang
- Center for Translational Cancer Research, Texas A&M Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
| | - Xin Yan
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| |
Collapse
|
83
|
Cuccu F, De Luca L, Delogu F, Colacino E, Solin N, Mocci R, Porcheddu A. Mechanochemistry: New Tools to Navigate the Uncharted Territory of "Impossible" Reactions. CHEMSUSCHEM 2022; 15:e202200362. [PMID: 35867602 PMCID: PMC9542358 DOI: 10.1002/cssc.202200362] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/01/2022] [Indexed: 05/10/2023]
Abstract
Mechanochemical transformations have made chemists enter unknown territories, forcing a different chemistry perspective. While questioning or revisiting familiar concepts belonging to solution chemistry, mechanochemistry has broken new ground, especially in the panorama of organic synthesis. Not only does it foster new "thinking outside the box", but it also has opened new reaction paths, allowing to overcome the weaknesses of traditional chemistry exactly where the use of well-established solution-based methodologies rules out progress. In this Review, the reader is introduced to an intriguing research subject not yet fully explored and waiting for improved understanding. Indeed, the study is mainly focused on organic transformations that, although impossible in solution, become possible under mechanochemical processing conditions, simultaneously entailing innovation and expanding the chemical space.
Collapse
Affiliation(s)
- Federico Cuccu
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| | - Lidia De Luca
- Dipartimento di Chimica e FarmaciaUniversità degli Studi di Sassarivia Vienna 207100SassariItaly
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica e dei MaterialiUniversità degli Studi di CagliariVia Marengo 209123CagliariItaly
| | | | - Niclas Solin
- Department of PhysicsChemistry and Biology (IFM)Electronic and Photonic Materials (EFM)Building Fysikhuset, Room M319, CampusVallaSweden
| | - Rita Mocci
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| |
Collapse
|
84
|
Panja S, Ahsan S, Pal T, Kolb S, Ali W, Sharma S, Das C, Grover J, Dutta A, Werz DB, Paul A, Maiti D. Non-directed Pd-catalysed electrooxidative olefination of arenes. Chem Sci 2022; 13:9432-9439. [PMID: 36093017 PMCID: PMC9383708 DOI: 10.1039/d2sc03288k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/15/2022] [Indexed: 12/19/2022] Open
Abstract
The Fujiwara-Moritani reaction is a powerful tool for the olefination of arenes by Pd-catalysed C-H activation. However, the need for superstoichiometric amounts of toxic chemical oxidants makes the reaction unattractive from an environmental and atom-economical view. Herein, we report the first non-directed and regioselective olefination of simple arenes via an electrooxidative Fujiwara-Moritani reaction. The versatility of this operator-friendly approach was demonstrated by a broad substrate scope which includes arenes, heteroarenes and a variety of olefins. Electroanalytical studies suggest the involvement of a Pd(ii)/Pd(iv) catalytic cycle via a Pd(iii) intermediate.
Collapse
Affiliation(s)
- Subir Panja
- IIT Bombay, Department of Chemistry and IDP, Climate Studies Powai Mumbai 400076 India
| | - Salman Ahsan
- Indian Institute of Science Education and Research (IISER) Bhopal, Department of Chemistry Bhopal Madhya Pradesh 462066 India
| | - Tanay Pal
- IIT Bombay, Department of Chemistry and IDP, Climate Studies Powai Mumbai 400076 India
| | - Simon Kolb
- Technische Universität Braunschweig, Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Wajid Ali
- IIT Bombay, Department of Chemistry and IDP, Climate Studies Powai Mumbai 400076 India
| | - Sulekha Sharma
- Indian Institute of Science Education and Research (IISER) Bhopal, Department of Chemistry Bhopal Madhya Pradesh 462066 India
| | - Chandan Das
- IIT Bombay, Department of Chemistry and IDP, Climate Studies Powai Mumbai 400076 India
| | - Jagrit Grover
- IIT Bombay, Department of Chemistry and IDP, Climate Studies Powai Mumbai 400076 India
| | - Arnab Dutta
- IIT Bombay, Department of Chemistry and IDP, Climate Studies Powai Mumbai 400076 India
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Amit Paul
- Indian Institute of Science Education and Research (IISER) Bhopal, Department of Chemistry Bhopal Madhya Pradesh 462066 India
| | - Debabrata Maiti
- IIT Bombay, Department of Chemistry and IDP, Climate Studies Powai Mumbai 400076 India
| |
Collapse
|
85
|
Wang Y, Li L, Fu N. Electrophotochemical Decarboxylative Azidation of Aliphatic Carboxylic Acids. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yukang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liubo Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Niankai Fu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
86
|
Pavlovska T, Král Lesný D, Svobodová E, Hoskovcová I, Archipowa N, Kutta RJ, Cibulka R. Tuning Deazaflavins Towards Highly Potent Reducing Photocatalysts Guided by Mechanistic Understanding - Enhancement of the Key Step by the Internal Heavy Atom Effect. Chemistry 2022; 28:e202200768. [PMID: 35538649 PMCID: PMC9541856 DOI: 10.1002/chem.202200768] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/11/2022]
Abstract
Deazaflavins are well suited for reductive chemistry acting via a consecutive photo-induced electron transfer, in which their triplet state and semiquinone - the latter is formed from the former after electron transfer from a sacrificial electron donor - are key intermediates. Guided by mechanistic investigations aiming to increase intersystem crossing by the internal heavy atom effect and optimising the concentration conditions to avoid unproductive excited singlet reactions, we synthesised 5-aryldeazaflavins with Br or Cl substituents on different structural positions via a three-component reaction. Bromination of the deazaisoalloxazine core leads to almost 100 % triplet yield but causes photo-instability and enhances unproductive side reactions. Bromine on the 5-phenyl group in ortho position does not affect the photostability, increases the triplet yield, and allows its efficient usage in the photocatalytic dehalogenation of bromo- and chloroarenes with electron-donating methoxy and alkyl groups even under aerobic conditions. Reductive powers comparable to lithium are achieved.
Collapse
Affiliation(s)
- Tetiana Pavlovska
- Department of Organic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| | - David Král Lesný
- Department of Organic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| | - Eva Svobodová
- Department of Organic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| | - Irena Hoskovcová
- Department of Inorganic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| | - Nataliya Archipowa
- Institute for Biophysics and Physical BiochemistryUniversity of RegensburgD-93053RegensburgGermany
| | - Roger Jan Kutta
- Institute of Physical and Theoretical ChemistryUniversity of RegensburgD-93053RegensburgGermany
| | - Radek Cibulka
- Department of Organic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| |
Collapse
|
87
|
Enders P, Májek M, Lam CM, Little D, Francke R. How to Harness Electrochemical Mediators for Photocatalysis – A Systematic Approach Using the Phenanthro[9,10‐d]imidazole Framework as a Test Case. ChemCatChem 2022. [DOI: 10.1002/cctc.202200830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Patrick Enders
- Leibniz Institute for Catalysis: Leibniz-Institut fur Katalyse eV Electrochemistry & Catalysis GERMANY
| | - Michal Májek
- Comenius University in Bratislava: Univerzita Komenskeho v Bratislave Institute of Chemistry SLOVAKIA
| | - Chiu Marco Lam
- University of California Santa Barbara Chemistry & Biochemistry UNITED STATES
| | - Daniel Little
- University of California Santa Barbara Chemistry & Biochemistry UNITED STATES
| | - Robert Francke
- Rostock University Institute of Chemistry Albert-Einstein-Str. 3a 18059 Rostock GERMANY
| |
Collapse
|
88
|
Vinolyn Sylvia S, Rajendran L. Cyclic voltammetric response of homogeneous catalysis of electrochemical reactions: Part 2. A theoretical and numerical approach for EC scheme. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
89
|
Dixit SJN, Chacko S, Manna B, Agarwal N. Ultrafast Dynamics of Photoinduced Electron Transfer in Bay-Aryl-Substituted Perylene Diimide Derivatives. J Phys Chem B 2022; 126:5908-5919. [PMID: 35894852 DOI: 10.1021/acs.jpcb.2c03952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Blends of donors and acceptors have been widely used in bulk-heterojunction solar cells to have exciton formation and charge separation by photoinduced electron transfer (PET). In this work, we have synthesized perylene diimide (PDI)-based materials having different aryl substituents at the bay positions (4-Anisyl-PDI, CBZ-N-Ph-PDI, and 4-Pyridyl-PDI) to understand the excited-state dynamics of electron transfer. The detailed photophysics was studied using steady-state as well as ultrafast dynamics of the excited states in different solvents. CBZ-N-Ph-PDI showed tremendous effects of the solvent on the electronic properties compared with the other two derivatives. The emission quantum yield of CBZ-N-Ph-PDI decreases drastically in dichloromethane and other polar solvents, indicating strong electron transfer. DFT calculations showed that in CBZ-N-Ph-PDI the HOMO is centered mostly on the N-phenylcarbazole and the LUMO is on the electron-poor PDI moieties. In addition, the energy levels of the HOMO and HOMO-1 in CBZ-N-Ph-PDI are estimated to be identical. The free energy change for charge separation (ΔGCS) was calculated using electrochemical and photophysical data and found to be negative for CBZ-N-Ph-PDI. The ground- and excited-state dipole moment ratios suggest that the excited state of 4-Pyridyl-PDI (1.90) is less polar than that of 4-Anisyl-PDI (3.67), which provides an idea of the lower possibility of charge separation in 4-Anisyl-PDI and 4-Pyridyl-PDI. Ultrafast photodynamics studies of 4-Anisyl-PDI, CBZ-N-Ph-PDI, and 4-Pyridyl-PDI showed fast electron transfer only in CBZ-N-Ph-PDI and not in the other PDI derivatives. It was also observed that electron transfer is faster in DCM and THF than in toluene. Ultrafast dynamics studies showed the presence of an equilibrium between electron transfer and decay from the singlet excited state. Ultrafast studies also showed the features of the N-phenylcarbazole cation and PDI anion, further confirming the intramolecular electron transfer in CBZ-N-Ph-PDI.
Collapse
Affiliation(s)
- Swati J N Dixit
- School of Chemical Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina, Santacruz (E), Mumbai 400098, India
| | - Sajeev Chacko
- Department of Physics, University of Mumbai, Kalina, Santacruz (E), Mumbai 400098, India
| | - Biswajit Manna
- Radiation and Photochemistry Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085, India
| | - Neeraj Agarwal
- School of Chemical Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina, Santacruz (E), Mumbai 400098, India
| |
Collapse
|
90
|
Lorandi F, Fantin M, Matyjaszewski K. Atom Transfer Radical Polymerization: A Mechanistic Perspective. J Am Chem Soc 2022; 144:15413-15430. [PMID: 35882005 DOI: 10.1021/jacs.2c05364] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since its inception, atom transfer radical polymerization (ATRP) has seen continuous evolution in terms of the design of the catalyst and reaction conditions; today, it is one of the most useful techniques to prepare well-defined polymers as well as one of the most notable examples of catalysis in polymer chemistry. This Perspective highlights fundamental advances in the design of ATRP reactions and catalysts, focusing on the crucial role that mechanistic studies play in understanding, rationalizing, and predicting polymerization outcomes. A critical summary of traditional ATRP systems is provided first; we then focus on the most recent developments to improve catalyst selectivity, control polymerizations via external stimuli, and employ new photochemical or dual catalytic systems with an outlook to future research directions and open challenges.
Collapse
Affiliation(s)
- Francesca Lorandi
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Marco Fantin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
91
|
Luo MJ, Xiao Q, Li JH. Electro-/photocatalytic alkene-derived radical cation chemistry: recent advances in synthetic applications. Chem Soc Rev 2022; 51:7206-7237. [PMID: 35880555 DOI: 10.1039/d2cs00013j] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alkene-derived radical cations are versatile reactive intermediates and have been widely applied in the construction of complex functionalized molecules and cyclic systems for chemical synthesis. Therefore, the synthetic application of these alkene-derived radical cations represents a powerful and green tool that can be used to achieve the functionalization of alkenes partially because the necessity of stoichiometric external chemical oxidants and/or hazardous reaction conditions is eliminated. This review summarizes the recent advances in the synthetic applications of the electro-/photochemical alkene-derived radical cations, emphasizing the key single-electron oxidation steps of the alkenes, the scope and limitations of the substrates, and the related reaction mechanisms. Using electrocatalysis and/or photocatalysis, single electron transfer (SET) oxidation of the CC bonds in the alkenes occurs, generating the alkene-derived radical cations, which sequentially enables the functionalization of translocated radical cations to occur in two ways: the first involves direct reaction with a nucleophile/radical or two molecules of nucleophiles to realize hydrofunctionalization, difunctionalization and cyclization; and the second involves the transformation of the alkene-derived radical cations into carbon-centered radicals using a base followed by radical coupling or oxidative nucleophilic coupling.
Collapse
Affiliation(s)
- Mu-Jia Luo
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Qiang Xiao
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China. .,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
92
|
Huang H, Steiniger KA, Lambert TH. Electrophotocatalysis: Combining Light and Electricity to Catalyze Reactions. J Am Chem Soc 2022; 144:12567-12583. [PMID: 35816101 DOI: 10.1021/jacs.2c01914] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Visible-light photocatalysis and electrocatalysis are two powerful strategies for the promotion of chemical reactions that have received tremendous attention in recent years. In contrast, processes that combine these two modalities, an area termed electrophotocatalysis, have until recently remained quite rare. However, over the past several years a number of reports in this area have shown the potential of combining the power of light and electrical energy to realize new catalytic transformations. Electrophotocatalysis offers the ability to perform photoredox reactions without the need for large quantities of stoichiometric or superstoichiometric chemical oxidants or reductants by making use of an electrochemical potential as the electron source or sink. In addition, electrophotocatalysis is readily amenable to the generation of open-shell photocatalysts, which tend to have exceptionally strong redox potentials. In this way, potent yet selective redox reactions have been realized under relatively mild conditions. This Perspective highlights recent advances in the area of electrophotocatalysis and provides some possible avenues for future work in this growing area.
Collapse
Affiliation(s)
- He Huang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Keri A Steiniger
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Tristan H Lambert
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
93
|
Gan QC, Song ZQ, Tung CH, Wu LZ. Direct C( sp)-H/Si-H Cross-Coupling via Copper Salts Photocatalysis. Org Lett 2022; 24:5192-5196. [PMID: 35801840 DOI: 10.1021/acs.orglett.2c02022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Reported herein is the first example of C(sp)-H/Si-H cross-coupling by photocatalysis. In terms of cheap and readily available starting materials, a series of alkynylsilanes are prepared in good to excellent yields upon visible-light irradiation of CuCl and alkynes with silane. The large scale reaction with flow chemistry and late-stage functionalization of natural products shows the potential of the transformation in practical organic synthesis of the alkynylsilanes intermediates.
Collapse
Affiliation(s)
- Qi-Chao Gan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zi-Qi Song
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
94
|
Widness JK, Enny DG, McFarlane-Connelly KS, Miedenbauer MT, Krauss TD, Weix DJ. CdS Quantum Dots as Potent Photoreductants for Organic Chemistry Enabled by Auger Processes. J Am Chem Soc 2022; 144:12229-12246. [PMID: 35772053 DOI: 10.1021/jacs.2c03235] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Strong reducing agents (<-2.0 V vs saturated calomel electrode (SCE)) enable a wide array of useful organic chemistry, but suffer from a variety of limitations. Stoichiometric metallic reductants such as alkali metals and SmI2 are commonly employed for these reactions; however, considerations including expense, ease of use, safety, and waste generation limit the practicality of these methods. Recent approaches utilizing energy from multiple photons or electron-primed photoredox catalysis have accessed reduction potentials equivalent to Li0 and shown how this enables selective transformations of aryl chlorides via aryl radicals. However, in some cases, low stability of catalytic intermediates can limit turnover numbers. Herein, we report the ability of CdS nanocrystal quantum dots (QDs) to function as strong photoreductants and present evidence that a highly reducing electron is generated from two consecutive photoexcitations of CdS QDs with intermediate reductive quenching. Mechanistic experiments suggest that Auger recombination, a photophysical phenomenon known to occur in photoexcited anionic QDs, generates transient thermally excited electrons to enable the observed reductions. Using blue light-emitting diodes (LEDs) and sacrificial amine reductants, aryl chlorides and phosphate esters with reduction potentials up to -3.4 V vs SCE are photoreductively cleaved to afford hydrodefunctionalized or functionalized products. In contrast to small-molecule catalysts, QDs are stable under these conditions and turnover numbers up to 47 500 have been achieved. These conditions can also effect other challenging reductions, such as tosylate protecting group removal from amines, debenzylation of benzyl-protected alcohols, and reductive ring opening of cyclopropane carboxylic acid derivatives.
Collapse
Affiliation(s)
- Jonas K Widness
- Department of Chemistry, UW─Madison, Madison, Wisconsin 53706, United States
| | - Daniel G Enny
- Department of Chemistry, UW─Madison, Madison, Wisconsin 53706, United States
| | | | - Mahilet T Miedenbauer
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Todd D Krauss
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.,Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Daniel J Weix
- Department of Chemistry, UW─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
95
|
Kaeffer N, Leitner W. Electrocatalysis with Molecular Transition-Metal Complexes for Reductive Organic Synthesis. JACS AU 2022; 2:1266-1289. [PMID: 35783173 PMCID: PMC9241009 DOI: 10.1021/jacsau.2c00031] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Electrocatalysis enables the formation or cleavage of chemical bonds by a genuine use of electrons or holes from an electrical energy input. As such, electrocatalysis offers resource-economical alternative pathways that bypass sacrificial, waste-generating reagents often required in classical thermal redox reactions. In this Perspective, we showcase the exploitation of molecular electrocatalysts for electrosynthesis, in particular for reductive conversion of organic substrates. Selected case studies illustrate that efficient molecular electrocatalysts not only are appropriate redox shuttles but also embrace the features of organometallic catalysis to facilitate and control chemical steps. From these examples, guidelines are proposed for the design of molecular electrocatalysts suited to the reduction of organic substrates. We finally expose opportunities brought by catalyzed electrosynthesis to functionalize organic backbones, namely using sustainable building blocks.
Collapse
Affiliation(s)
- Nicolas Kaeffer
- Max Planck Institute for Chemical
Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Walter Leitner
- Max Planck Institute for Chemical
Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
96
|
Bertuzzi G, Ombrosi G, Bandini M. Regio- and Stereoselective Electrochemical Alkylation of Morita-Baylis-Hillman Adducts. Org Lett 2022; 24:4354-4359. [PMID: 35700274 PMCID: PMC9237826 DOI: 10.1021/acs.orglett.2c01529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 12/03/2022]
Abstract
Electrosynthesis is effectively employed in a general regio- and stereoselective alkylation of Morita-Baylis-Hillman compounds. The exposition of N-acyloxyphthalimides (redox-active esters) to galvanostatic electroreductive conditions, following the sacrificial-anode strategy, is proved an efficient and practical method to access densely functionalized cinnamate and oxindole derivatives. High yields (up to 80%) and wide functional group tolerance characterized the methodology. A tentative mechanistic sketch is proposed based on dedicated control experiments.
Collapse
Affiliation(s)
- Giulio Bertuzzi
- Dipartimento
di Chimica “Giamician Ciamician”, Alma Mater Studiotum − Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
- Center
for Chemical Catalysis -C3-, Alma Mater
Studiotum − Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Giada Ombrosi
- Dipartimento
di Chimica “Giamician Ciamician”, Alma Mater Studiotum − Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Marco Bandini
- Dipartimento
di Chimica “Giamician Ciamician”, Alma Mater Studiotum − Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
- Center
for Chemical Catalysis -C3-, Alma Mater
Studiotum − Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
97
|
Charboneau DJ, Hazari N, Huang H, Uehling MR, Zultanski SL. Homogeneous Organic Electron Donors in Nickel-Catalyzed Reductive Transformations. J Org Chem 2022; 87:7589-7609. [PMID: 35671350 PMCID: PMC9335070 DOI: 10.1021/acs.joc.2c00462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many contemporary organic transformations, such as Ni-catalyzed cross-electrophile coupling (XEC), require a reductant. Typically, heterogeneous reductants, such as Zn0 or Mn0, are used as the electron source in these reactions. Although heterogeneous reductants are highly practical for preparative-scale batch reactions, they can lead to complications in performing reactions on process scale and are not easily compatible with modern applications, such as flow chemistry. In principle, homogeneous organic reductants can address some of the challenges associated with heterogeneous reductants and also provide greater control of the reductant strength, which can lead to new reactivity. Nevertheless, homogeneous organic reductants have rarely been used in XEC. In this Perspective, we summarize recent progress in the use of homogeneous organic electron donors in Ni-catalyzed XEC and related reactions, discuss potential synthetic and mechanistic benefits, describe the limitations that inhibit their implementation, and outline challenges that need to be solved in order for homogeneous organic reductants to be widely utilized in synthetic chemistry. Although our focus is on XEC, our discussion of the strengths and weaknesses of different methods for introducing electrons is general to other reductive transformations.
Collapse
Affiliation(s)
- David J Charboneau
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Nilay Hazari
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Haotian Huang
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Mycah R Uehling
- Discovery Chemistry, HTE and Lead Discovery Capabilities, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Susan L Zultanski
- Department of Process Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
98
|
Li B, Zhou Y, Sun Y, Xiong F, Gu L, Ma W, Mei R. Electrochemical selenium-π-acid promoted hydration of alkynyl phosphonates. Chem Commun (Camb) 2022; 58:7566-7569. [PMID: 35708585 DOI: 10.1039/d2cc01901a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An unprecedented electrochemical selenium-π-acid promoted hydration of internal alkynes bearing a phosphonate auxiliary was described. Thus, valuable (hetero)aryl and alkyl ketones could be accessed under mild, metal- and external oxidant-free conditions. This protocol features high atom-economy, good chemo- and regio-selectivity, excellent functional group tolerance and easily transformable products. Control experiments demonstrate that phosphonate assistance is essential for this transformation.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China.,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Yunhao Zhou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Yanan Sun
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Feng Xiong
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Ruhuai Mei
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China.,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| |
Collapse
|
99
|
Zhu C, Yue H, Rueping M. Nickel catalyzed multicomponent stereodivergent synthesis of olefins enabled by electrochemistry, photocatalysis and photo-electrochemistry. Nat Commun 2022; 13:3240. [PMID: 35688818 PMCID: PMC9187637 DOI: 10.1038/s41467-022-30985-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023] Open
Abstract
Trisubstituted alkenes are important organic synthons and have broad applications in the synthesis of many pharmaceuticals and materials. The stereoselective synthesis of such compounds has long been a research focus for organic researchers. Herein, we report a three-component, reductive cascade, cross-coupling reaction for the arylalkylation of alkynes. A wide range of trisubstituted alkenes are obtained in good to high yields with excellent chemo- and stereoselectivity by switching between electrochemistry and photocatalysis. The E isomer of the product is obtained exclusively when the reaction is conducted with electricity and nickel, while the Z isomer is generated with high stereoselectivity when photo- and nickel dual catalysts are used. Moreover, photo-assisted electrochemically enabled nickel catalyzed protocol is demonstrated to selectively deliver Z-trisubstituted alkenes without the addition of photocatalysts. The construction of trisubstituted alkenes with high stereoselectivity is challenging. Here, the authors realize the stereodivergent synthesis of such compounds via switching between electrochemistry, photochemistry and photoelectrochemistry.
Collapse
Affiliation(s)
- Chen Zhu
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Huifeng Yue
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia. .,RWTH Aachen University, Forckenbeckstrasse 55, 52074, Aachen, Germany.
| |
Collapse
|
100
|
Vandekerckhove B, Piens N, Metten B, Stevens CV, Heugebaert TSA. Practical Ferrioxalate Actinometry for the Determination of Photon Fluxes in Production-Oriented Photoflow Reactors. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bavo Vandekerckhove
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Nicola Piens
- Ajinomoto Bio-Pharma Services, Cooppallaan 91, 9230 Wetteren, Belgium
| | - Bert Metten
- Ajinomoto Bio-Pharma Services, Cooppallaan 91, 9230 Wetteren, Belgium
| | - Christian V. Stevens
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Thomas S. A. Heugebaert
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|