51
|
Hunter SJ, Armes SP. Pickering Emulsifiers Based on Block Copolymer Nanoparticles Prepared by Polymerization-Induced Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15463-15484. [PMID: 33325720 PMCID: PMC7884006 DOI: 10.1021/acs.langmuir.0c02595] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/27/2020] [Indexed: 05/28/2023]
Abstract
Block copolymer nanoparticles prepared via polymerization-induced self-assembly (PISA) represent an emerging class of organic Pickering emulsifiers. Such nanoparticles are readily prepared by chain-extending a soluble homopolymer precursor using a carefully selected second monomer that forms an insoluble block in the chosen solvent. As the second block grows, it undergoes phase separation that drives in situ self-assembly to form sterically stabilized nanoparticles. Conducting such PISA syntheses in aqueous solution leads to hydrophilic nanoparticles that enable the formation of oil-in-water emulsions. Alternatively, hydrophobic nanoparticles can be prepared in non-polar media (e.g., n-alkanes), which enables water-in-oil emulsions to be produced. In this review, the specific advantages of using PISA to prepare such bespoke Pickering emulsifiers are highlighted, which include fine control over particle size, copolymer morphology, and surface wettability. This has enabled various fundamental scientific questions regarding Pickering emulsions to be addressed. Moreover, block copolymer nanoparticles can be used to prepare Pickering emulsions over various length scales, with mean droplet diameters ranging from millimeters to less than 200 nm.
Collapse
Affiliation(s)
- Saul J. Hunter
- Department of Chemistry,
Dainton Building, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Department of Chemistry,
Dainton Building, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| |
Collapse
|
52
|
Hogan KJ, Mikos AG. Biodegradable thermoresponsive polymers: Applications in drug delivery and tissue engineering. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123063] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
53
|
Beattie DL, Mykhaylyk OO, Armes SP. Enthalpic incompatibility between two steric stabilizer blocks provides control over the vesicle size distribution during polymerization-induced self-assembly in aqueous media. Chem Sci 2020; 11:10821-10834. [PMID: 33209249 PMCID: PMC7654191 DOI: 10.1039/d0sc01320j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/19/2020] [Indexed: 01/05/2023] Open
Abstract
Over the past two decades, block copolymer vesicles have been widely used by many research groups to encapsulate small molecule drugs, genetic material, nanoparticles or enzymes. They have also been used to design examples of autonomous self-propelled nanoparticles. Traditionally, such vesicles are prepared via post-polymerization processing using a water-miscible co-solvent such as DMF or THF. However, such protocols are invariably conducted in dilute solution, which is a significant disadvantage. In addition, the vesicle size distribution is often quite broad, whereas aqueous dispersions of relatively small vesicles with narrow size distributions are highly desirable for potential biomedical applications. Alternatively, concentrated dispersions of block copolymer vesicles can be directly prepared via polymerization-induced self-assembly (PISA). Moreover, using a binary mixture of a relatively long and a relatively short steric stabilizer block enables the convenient PISA synthesis of relatively small vesicles with reasonably narrow size distributions in alcoholic media (C. Gonzato et al., JACS, 2014, 136, 11100-11106). Unfortunately, this approach has not yet been demonstrated for aqueous media, which would be much more attractive for commercial applications. Herein we show that this important technical objective can be achieved by judicious use of two chemically distinct, enthalpically incompatible steric stabilizer blocks, which ensures the desired microphase separation across the vesicle membrane. This leads to the formation of well-defined vesicles of around 200 nm diameter (size polydispersity = 13-16%) in aqueous media at 10% w/w solids as judged by transmission electron microscopy, dynamic light scattering and small-angle X-ray scattering.
Collapse
Affiliation(s)
- Deborah L Beattie
- Department of Chemistry , University of Sheffield , Dainton Building, Brook Hill , Sheffield , South Yorkshire, S3 7HF , UK . ;
| | - Oleksandr O Mykhaylyk
- Department of Chemistry , University of Sheffield , Dainton Building, Brook Hill , Sheffield , South Yorkshire, S3 7HF , UK . ;
| | - Steven P Armes
- Department of Chemistry , University of Sheffield , Dainton Building, Brook Hill , Sheffield , South Yorkshire, S3 7HF , UK . ;
| |
Collapse
|
54
|
Cerullo AR, Lai TY, Allam B, Baer A, Barnes WJP, Barrientos Z, Deheyn DD, Fudge DS, Gould J, Harrington MJ, Holford M, Hung CS, Jain G, Mayer G, Medina M, Monge-Nájera J, Napolitano T, Espinosa EP, Schmidt S, Thompson EM, Braunschweig AB. Comparative Animal Mucomics: Inspiration for Functional Materials from Ubiquitous and Understudied Biopolymers. ACS Biomater Sci Eng 2020; 6:5377-5398. [DOI: 10.1021/acsbiomaterials.0c00713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Antonio R. Cerullo
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Tsoi Ying Lai
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
| | - Alexander Baer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - W. Jon P. Barnes
- Centre for Cell Engineering, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Zaidett Barrientos
- Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, Mercedes de Montes de Oca, San José 474-2050, Costa Rica
| | - Dimitri D. Deheyn
- Marine Biology Research Division-0202, Scripps Institute of Oceanography, UCSD, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Douglas S. Fudge
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
| | - John Gould
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, New South Wales 2308, Australia
| | - Matthew J. Harrington
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Mandë Holford
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- Department of Invertebrate Zoology, The American Museum of Natural History, New York, New York 10024, United States
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The PhD Program in Biology, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Chia-Suei Hung
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Gaurav Jain
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Pennsylvania 16802, United States
| | - Julian Monge-Nájera
- Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, Mercedes de Montes de Oca, San José 474-2050, Costa Rica
| | - Tanya Napolitano
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Emmanuelle Pales Espinosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
| | - Stephan Schmidt
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Eric M. Thompson
- Sars Centre for Marine Molecular Biology, Thormøhlensgt. 55, 5020 Bergen, Norway
- Department of Biological Sciences, University of Bergen, N-5006 Bergen, Norway
| | - Adam B. Braunschweig
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
55
|
Sponchioni M, Manfredini N, Zanoni A, Scibona E, Morbidelli M, Moscatelli D. Readily Adsorbable Thermoresponsive Polymers for the Preparation of Smart Cell-Culturing Surfaces on Site. ACS Biomater Sci Eng 2020; 6:5337-5345. [PMID: 33455282 DOI: 10.1021/acsbiomaterials.0c01029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The efficacy of several cell therapy products is directly impacted by trypsinization, which can diminish the engrafting capacity of transplanted cells by cleaving cell surface receptors. Thermoresponsive surfaces can alleviate this drawback, enabling temperature-driven and enzyme-free cell harvesting. However, the production of thermoresponsive surfaces relies on dedicated and complex equipment, often involving protocols dependent on high surface activation energies that prevent the development of scalable and universal platforms. In this work, we developed thermoresponsive copolymers incorporating styrene units that enable the copolymer adsorption on tissue culture polystyrene surfaces from an alcoholic solution in a short time, regardless of the vessel size and geometry, and without any particular equipment. In this way, the procedure can be performed with minimal effort by the end user on any surface. The thermoresponsive copolymers were synthesized via reversible addition-fragmentation chain transfer polymerization, providing high control over the polymer microstructure, a key parameter for tuning its cloud point and architecture. Block copolymers comprising a thermoresponsive segment and a polystyrene block exhibited optimal adhesion on conventional cell culture surfaces and permitted a more efficient temperature-mediated harvesting of adipose-derived stromal cells and Chinese hamster ovary cells compared to their statistical counterparts. To expand the application of this polymer deposition protocol to serum-free cell culture, we also considered the polymer modification with the tripeptide arginine-glycine-aspartic acid, known to promote the cell adhesion to synthetic substrates. The incorporation of this peptide enabled the collection in serum-free conditions of intact cell sheets from surfaces prepared shortly before their usage.
Collapse
Affiliation(s)
- Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 2013 Milano, Italy
| | - Nicolò Manfredini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 2013 Milano, Italy
| | - Arianna Zanoni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 2013 Milano, Italy
| | - Ernesto Scibona
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Massimo Morbidelli
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Davide Moscatelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 2013 Milano, Italy
| |
Collapse
|
56
|
Nahi O, Cayre OJ, Kim YY, Smith AJ, Warren NJ, Meldrum FC. A facile method for generating worm-like micelles with controlled lengths and narrow polydispersity. Chem Commun (Camb) 2020; 56:7463-7466. [PMID: 32495778 DOI: 10.1039/d0cc02313b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This work shows that highly uniform worm micelles formed by polymerisation induced self-assembly can be obtained via simple post-synthesis sonication. Importantly, this straightforward and versatile strategy yields exceptionally monodisperse worms with tunable aspect ratios ranging from 7.2 to 17.6 by simply changing the sonication time.
Collapse
Affiliation(s)
- Ouassef Nahi
- School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|
57
|
Georgiou PG, Kontopoulou I, Congdon TR, Gibson MI. Ice recrystallisation inhibiting polymer nano-objects via saline-tolerant polymerisation-induced self-assembly. MATERIALS HORIZONS 2020; 8:1883-1887. [PMID: 33692903 PMCID: PMC7116880 DOI: 10.1039/d0mh00354a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chemical tools to modulate ice formation/growth have great (bio)-technological value, with ice binding/antifreeze proteins being exciting targets for biomimetic materials. Here we introduce polymer nanomaterials that are potent inhibitors of ice recrystallisation using polymerisation-induced self-assembly (PISA), employing a poly(vinyl alcohol) graft macromolecular chain transfer agent (macro-CTA). Crucially, engineering the core-forming block with diacetone acrylamide enabled PISA to be conducted in saline, whereas poly(2-hydroxypropyl methacrylate) cores led to coagulation. The most active particles inhibited ice growth as low as 0.5 mg mL-1, and were more active than the PVA stabiliser block alone, showing that the dense packing of this nanoparticle format enhanced activity. This provides a unique route towards colloids capable of modulating ice growth.
Collapse
Affiliation(s)
| | | | | | - Matthew I. Gibson
- Department of Chemistry, University of Warwick, CV4 7AL, UK
- Warwick Medical School, University of Warwick, CV4 7AL, UK
| |
Collapse
|
58
|
Cornel EJ, O'Hora PS, Smith T, Growney DJ, Mykhaylyk OO, Armes SP. SAXS studies of the thermally-induced fusion of diblock copolymer spheres: formation of hybrid nanoparticles of intermediate size and shape. Chem Sci 2020; 11:4312-4321. [PMID: 34122889 PMCID: PMC8152590 DOI: 10.1039/d0sc00569j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022] Open
Abstract
Dilute dispersions of poly(lauryl methacrylate)-poly(benzyl methacrylate) (PLMA-PBzMA) diblock copolymer spheres (a.k.a. micelles) of differing mean particle diameter were mixed and thermally annealed at 150 °C to produce spherical nanoparticles of intermediate size. The two initial dispersions were prepared via reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of benzyl methacrylate in n-dodecane at 90 °C. Systematic variation of the mean degree of polymerization of the core-forming PBzMA block enabled control over the mean particle diameter: small-angle X-ray scattering (SAXS) analysis indicated that PLMA39-PBzMA97 and PLMA39-PBzMA294 formed well-defined, non-interacting spheres at 25 °C with core diameters of 21 ± 2 nm and 48 ± 5 nm, respectively. When heated separately, both types of nanoparticles regained their original dimensions during a 25-150-25 °C thermal cycle. However, the cores of the smaller nanoparticles became appreciably solvated when annealed at 150 °C, whereas the larger nanoparticles remained virtually non-solvated at this temperature. Moreover, heating caused a significant reduction in mean aggregation number for the PLMA39-PBzMA97 nanoparticles, suggesting their partial dissociation at 150 °C. Binary mixtures of PLMA39-PBzMA97 and PLMA39-PBzMA294 nanoparticles were then studied over a wide range of compositions. For example, annealing a 1.0% w/w equivolume binary mixture led to the formation of a single population of spheres of intermediate mean diameter (36 ± 4 nm). Thus we hypothesize that the individual PLMA39-PBzMA97 chains interact with the larger PLMA39-PBzMA294 nanoparticles to form the hybrid nanoparticles. Time-resolved SAXS studies confirm that the evolution in copolymer morphology occurs on relatively short time scales (within 20 min at 150 °C) and involves weakly anisotropic intermediate species. Moreover, weakly anisotropic nanoparticles can be obtained as a final copolymer morphology over a restricted range of compositions (e.g. for PLMA39-PBzMA97 volume fractions of 0.20-0.35) when heating dilute dispersions of such binary nanoparticle mixtures up to 150 °C. A mechanism involving both chain expulsion/insertion and micelle fusion/fission is proposed to account for these unexpected observations.
Collapse
Affiliation(s)
- E J Cornel
- Department of Chemistry, University of Sheffield Dainton Building, Brook Hill Sheffield South Yorkshire S3 7HF UK
| | - P S O'Hora
- Lubrizol Ltd Nether Lane, Hazelwood Derbyshire DE56 4AN UK
| | - T Smith
- Lubrizol Ltd Nether Lane, Hazelwood Derbyshire DE56 4AN UK
| | - D J Growney
- Lubrizol Ltd Nether Lane, Hazelwood Derbyshire DE56 4AN UK
| | - O O Mykhaylyk
- Department of Chemistry, University of Sheffield Dainton Building, Brook Hill Sheffield South Yorkshire S3 7HF UK
| | - S P Armes
- Department of Chemistry, University of Sheffield Dainton Building, Brook Hill Sheffield South Yorkshire S3 7HF UK
| |
Collapse
|
59
|
D'Agosto F, Rieger J, Lansalot M. RAFT‐vermittelte polymerisationsinduzierte Selbstorganisation (PISA). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911758] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Franck D'Agosto
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne Frankreich
| | - Jutta Rieger
- Sorbonne Université and CNRS UMR 8232 Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team (ECP) 4 Place Jussieu 75005 Paris Frankreich
| | - Muriel Lansalot
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne Frankreich
| |
Collapse
|
60
|
D'Agosto F, Rieger J, Lansalot M. RAFT‐Mediated Polymerization‐Induced Self‐Assembly. Angew Chem Int Ed Engl 2020; 59:8368-8392. [DOI: 10.1002/anie.201911758] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Franck D'Agosto
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne France
| | - Jutta Rieger
- Sorbonne Université and CNRS UMR 8232 Institut Parisien de Chimie Moléculaire (IPCM) Polymer Chemistry Team (ECP) 4 Place Jussieu 75005 Paris France
| | - Muriel Lansalot
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne France
| |
Collapse
|
61
|
Gurnani P, Perrier S. Controlled radical polymerization in dispersed systems for biological applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101209] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
62
|
Spelat R, Ferro F, Contessotto P, Warren NJ, Marsico G, Armes SP, Pandit A. A worm gel-based 3D model to elucidate the paracrine interaction between multiple myeloma and mesenchymal stem cells. Mater Today Bio 2020; 5:100040. [PMID: 32211606 PMCID: PMC7083757 DOI: 10.1016/j.mtbio.2019.100040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 02/04/2023] Open
Abstract
Multiple myeloma (MM) is a malignancy of terminally-differentiated plasma cells that develops mainly inside the bone marrow (BM) microenvironment. It is well known that autocrine and paracrine signals are responsible for the progression of this disease but the precise mechanism and contributions from single cell remain largely unknown. Mesenchymal stem cells (MSC) are an important cellular component of the BM: they support MM growth by increasing its survival and chemo-resistance, but little is known about the paracrine signaling pathways. Three-dimensional (3D) models of MM-MSC paracrine interactions are much more biologically-relevant than simple 2D models and are considered essential for detailed studies of MM pathogenesis. Herein we present a novel 3D co-culture model designed to mimic the paracrine interaction between MSC and MM cells. MSC were embedded within a previously characterized thermoresponsive block copolymer worm gel that can induce stasis in human pluripotent stem cells (hPSC) and then co-cultured with MM cells. Transcriptional phenotyping of co-cultured cells indicated the dysregulation of genes that code for known disease-relevant factors, and also revealed IL-6 and IL-10 as upstream regulators. Importantly, we have identified a synergistic paracrine signaling pathway between IL-6 and IL-10 that plays a critical role in sustaining MM cell proliferation. Our findings indicate that this 3D co-culture system is a useful model to investigate the paracrine interaction between MM cells and the BM microenvironment in vitro. This approach has revealed a new mechanism that promotes the proliferation of MM cells and suggested a new therapeutic target.
Collapse
Affiliation(s)
- Renza Spelat
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway-H91 TK33, Ireland
| | - Federico Ferro
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway-H91 TK33, Ireland
| | - Paolo Contessotto
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway-H91 TK33, Ireland
| | - Nicholas J Warren
- Department of Chemistry, University of Sheffield, Sheffield, South Yorkshire S3 7HF, United Kingdom
| | - Grazia Marsico
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway-H91 TK33, Ireland
| | - Steven P Armes
- Department of Chemistry, University of Sheffield, Sheffield, South Yorkshire S3 7HF, United Kingdom
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway-H91 TK33, Ireland
| |
Collapse
|
63
|
György C, Hunter SJ, Girou C, Derry MJ, Armes SP. Synthesis of poly(stearyl methacrylate)-poly(2-hydroxypropyl methacrylate) diblock copolymer nanoparticles via RAFT dispersion polymerization of 2-hydroxypropyl methacrylate in mineral oil. Polym Chem 2020. [DOI: 10.1039/d0py00562b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RAFT dispersion polymerization of 2-hydroxypropyl methacrylate produces diblock copolymer spheres, worms or vesicles in mineral oil; the Pickering emulsifier performance of the spheres is examined.
Collapse
Affiliation(s)
- Csilla György
- Dainton Building
- Department of Chemistry
- The University of Sheffield
- Sheffield
- UK
| | - Saul J. Hunter
- Dainton Building
- Department of Chemistry
- The University of Sheffield
- Sheffield
- UK
| | - Chloé Girou
- Dainton Building
- Department of Chemistry
- The University of Sheffield
- Sheffield
- UK
| | - Matthew J. Derry
- Dainton Building
- Department of Chemistry
- The University of Sheffield
- Sheffield
- UK
| | - Steven P. Armes
- Dainton Building
- Department of Chemistry
- The University of Sheffield
- Sheffield
- UK
| |
Collapse
|
64
|
Romero-Azogil L, Penfold NJW, Armes SP. Tuning the hydroxyl functionality of block copolymer worm gels modulates their thermoresponsive behavior. Polym Chem 2020. [DOI: 10.1039/d0py00834f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Partial replacement of a hydroxyl-functional steric stabilizer with a poly(ethylene glycol)-based stabilizer modulates the thermoresponsive behavior of block copolymer worm gels prepared via aqueous polymerization-induced self-assembly.
Collapse
Affiliation(s)
- Lucia Romero-Azogil
- Departamento de Química Orgánica y Farmacéutica
- Facultad de Farmacia
- Universidad de Sevilla
- 41012 Sevilla
- Spain
| | | | - Steven P. Armes
- Department of Chemistry
- Dainton Building
- University of Sheffield
- Brook Hill
- Sheffield
| |
Collapse
|
65
|
Shen L, Li Y, Lu Q, Qi X, Wu X, Shen J. Facile preparation of one-dimensional nanostructures through polymerization-induced self-assembly mediated by host–guest interaction. Polym Chem 2020. [DOI: 10.1039/d0py00676a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A RAFT aqueous dispersion polymerization of ferrocenylmethyl acrylate mediated by host–guest interaction was investigated and a series of peculiar one-dimensional morphologies can be readily obtained.
Collapse
Affiliation(s)
- Liangliang Shen
- State Key Laboratory of Ophthalmology
- Optometry and Vision Science
- School of Ophthalmology and Optometry
- School of Biomedical Engineering
- Wenzhou Medical University
| | - Yahui Li
- State Key Laboratory of Ophthalmology
- Optometry and Vision Science
- School of Ophthalmology and Optometry
- School of Biomedical Engineering
- Wenzhou Medical University
| | - Qunzan Lu
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province
- Wenzhou Institute
- University of Chinese Academy of Sciences
- Wenzhou 325001
- PR China
| | - Xiaoliang Qi
- State Key Laboratory of Ophthalmology
- Optometry and Vision Science
- School of Ophthalmology and Optometry
- School of Biomedical Engineering
- Wenzhou Medical University
| | - Xuan Wu
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province
- Wenzhou Institute
- University of Chinese Academy of Sciences
- Wenzhou 325001
- PR China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology
- Optometry and Vision Science
- School of Ophthalmology and Optometry
- School of Biomedical Engineering
- Wenzhou Medical University
| |
Collapse
|
66
|
Busatto N, Keddie JL, Roth PJ. Sphere-to-worm morphological transitions and size changes through thiol–para-fluoro core modification of PISA-made nano-objects. Polym Chem 2020. [DOI: 10.1039/c9py01585j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spherical diblock copolymer nanoparticles became larger spheres, unimers, or worm-shaped particles when functionalised via thiol–para-fluoro substitution in the core.
Collapse
Affiliation(s)
| | | | - Peter J. Roth
- Department of Chemistry
- University of Surrey
- Guildford
- UK
| |
Collapse
|
67
|
Parkinson S, Knox ST, Bourne RA, Warren NJ. Rapid production of block copolymer nano-objects via continuous-flow ultrafast RAFT dispersion polymerisation. Polym Chem 2020. [DOI: 10.1039/d0py00276c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Continuous-flow reactors are exploited for conducting ultrafast RAFT dispersion polymerisation for the preparation of diblock copolymer nanoparticles.
Collapse
Affiliation(s)
- Sam Parkinson
- School of Chemical and Process Engineering
- University of Leeds
- Leeds
- UK
| | - Stephen T. Knox
- School of Chemical and Process Engineering
- University of Leeds
- Leeds
- UK
| | - Richard A. Bourne
- School of Chemical and Process Engineering
- University of Leeds
- Leeds
- UK
| | | |
Collapse
|
68
|
North SM, Armes SP. Aqueous solution behavior of stimulus-responsive poly(methacrylic acid)-poly(2-hydroxypropyl methacrylate) diblock copolymer nanoparticles. Polym Chem 2020. [DOI: 10.1039/d0py00061b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RAFT aqueous dispersion polymerization is used to prepare poly(methacrylic acid)-poly(2-hydroxypropyl methacrylate) diblock copolymer nanoparticles, which exhibit stimulus-responsive behaviour on adjusting the solution temperature and/or solution pH.
Collapse
|
69
|
Sponchioni M, O'Brien CT, Borchers C, Wang E, Rivolta MN, Penfold NJW, Canton I, Armes SP. Probing the mechanism for hydrogel-based stasis induction in human pluripotent stem cells: is the chemical functionality of the hydrogel important? Chem Sci 2019; 11:232-240. [PMID: 34040716 PMCID: PMC8133024 DOI: 10.1039/c9sc04734d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/11/2019] [Indexed: 11/23/2022] Open
Abstract
It is well-known that pluripotent human embryonic stem cells (hPSC) can differentiate into any cell type. Recently, we reported that hPSC colonies enter stasis when immersed in an extremely soft hydrogel comprising hydroxyl-functional block copolymer worms (I. Canton, N. J. Warren, A. Chahal, K. Amps, A. Wood, R. Weightman, E. Wang, H. Moore and S. P. Armes, ACS Centr. Sci., 2016, 2, 65-74). The gel modulus and chemical structure of this synthetic hydrogel are similar to that of natural mucins, which are implicated in the mechanism of diapause for mammalian embryos. Does stasis induction occur merely because of the very soft nature of such hydrogels or does chemical functionality also play a role? Herein, we address this key question by designing a new hydrogel of comparable softness in which the PGMA stabilizer chains are replaced with non-hydroxylated poly(ethylene glycol) [PEG]. Immunolabeling studies confirm that hPSC colonies immersed in such PEG-based hydrogels do not enter stasis but instead proliferate (and differentiate if no adhesion substrate is present). However, pluripotency is retained if an appropriate adhesion substrate is provided. Thus, the chemical functionality of the hydrogel clearly plays a decisive role in the stasis induction mechanism.
Collapse
Affiliation(s)
- M Sponchioni
- Department of Chemistry, University of Sheffield Dainton Building Sheffield S3 7HF UK
| | - C T O'Brien
- Department of Chemistry, University of Sheffield Dainton Building Sheffield S3 7HF UK
| | - C Borchers
- Department of Chemistry, University of Sheffield Dainton Building Sheffield S3 7HF UK
| | - E Wang
- Department of Biochemistry and Molecular Genetics, University of Louisville Louisville Kentucky 40202 USA
| | - M N Rivolta
- Department of Biomedical Science, University of Sheffield Western Bank Sheffield S10 2TN UK
| | - N J W Penfold
- Department of Chemistry, University of Sheffield Dainton Building Sheffield S3 7HF UK
| | - I Canton
- Department of Chemistry, University of Sheffield Dainton Building Sheffield S3 7HF UK
| | - S P Armes
- Department of Chemistry, University of Sheffield Dainton Building Sheffield S3 7HF UK
| |
Collapse
|
70
|
Molle E, Le D, Norizadeh Abbariki T, Akdemir MS, Takamiya M, Miceli E, Kassel O, Delaittre G. Access to Photoreactive Core‐Shell Nanomaterials by Photoinitiated Polymerization‐Induced Self‐Assembly. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Edgar Molle
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76244 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT) Engesserstrasse 18 76131 Karlsruhe Germany
| | - Dao Le
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76244 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT) Engesserstrasse 18 76131 Karlsruhe Germany
| | - Tannaz Norizadeh Abbariki
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76244 Eggenstein-Leopoldshafen Germany
| | - Meryem S. Akdemir
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76244 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT) Engesserstrasse 18 76131 Karlsruhe Germany
| | - Masanari Takamiya
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76244 Eggenstein-Leopoldshafen Germany
| | - Enrico Miceli
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76244 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT) Engesserstrasse 18 76131 Karlsruhe Germany
| | - Olivier Kassel
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76244 Eggenstein-Leopoldshafen Germany
| | - Guillaume Delaittre
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76244 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT) Engesserstrasse 18 76131 Karlsruhe Germany
- Institute for Applied Polymer ChemistryUniversity of Applied Sciences Aachen Heinrich-Mussmann-Strasse 1 52428 Jülich Germany
- Deutsches Textilforschungszentrum Nord-West (DTNW) gGmbH Adlerstrasse 1 47798 Krefeld Germany
| |
Collapse
|
71
|
Sponchioni M, Capasso Palmiero U, Moscatelli D. Thermo-responsive polymers: Applications of smart materials in drug delivery and tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:589-605. [PMID: 31147031 DOI: 10.1016/j.msec.2019.04.069] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/02/2019] [Accepted: 04/22/2019] [Indexed: 01/01/2023]
Abstract
Synthetic polymers are attracting great attention in the last decades for their use in the biomedical field as nanovectors for controlled drug delivery, hydrogels and scaffolds enabling cell growth. Among them, polymers able to respond to environmental stimuli have been recently under growing consideration to impart a "smart" behavior to the final product, which is highly desirable to provide it with a specific dynamic and an advanced function. In particular, thermo-responsive polymers, materials able to undergo a discontinuous phase transition or morphological change in response to a temperature variation, are among the most studied. The development of the so-called controlled radical polymerization techniques has paved the way to a high degree of engineering for the polymer architecture and properties, which in turn brought to a plethora of sophisticated behaviors for these polymers by simply switching the external temperature. These can be exploited in many different fields, from separation to advanced optics and biosensors. The aim of this review is to critically discuss the latest advances in the development of thermo-responsive materials for biomedical applications, including a highly controlled drug delivery, mediation of cell growth and bioseparation. The focus is on the structural and design aspects that are required to exploit such materials for cutting-edge applications in the biomedical field.
Collapse
Affiliation(s)
- Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy; Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland.
| | - Umberto Capasso Palmiero
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Davide Moscatelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
72
|
Rymaruk MJ, O’Brien CT, Brown SL, Williams CN, Armes SP. Effect of Core Cross-linking on the Physical Properties of Poly(dimethylsiloxane)-Based Diblock Copolymer Worms Prepared in Silicone Oil. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01488] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Matthew J. Rymaruk
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Cate T. O’Brien
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Steven L. Brown
- Scott Bader Company Ltd., Wollaston, Wellingborough, Northamptonshire NN29 7RL, U.K
| | - Clive N. Williams
- Scott Bader Company Ltd., Wollaston, Wellingborough, Northamptonshire NN29 7RL, U.K
| | - Steven P. Armes
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
73
|
Penfold NJW, Yeow J, Boyer C, Armes SP. Emerging Trends in Polymerization-Induced Self-Assembly. ACS Macro Lett 2019; 8:1029-1054. [PMID: 35619484 DOI: 10.1021/acsmacrolett.9b00464] [Citation(s) in RCA: 366] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this Perspective, we summarize recent progress in polymerization-induced self-assembly (PISA) for the rational synthesis of block copolymer nanoparticles with various morphologies. Much of the PISA literature has been based on thermally initiated reversible addition-fragmentation chain transfer (RAFT) polymerization. Herein, we pay particular attention to alternative PISA protocols, which allow the preparation of nanoparticles with improved control over copolymer morphology and functionality. For example, initiation based on visible light, redox chemistry, or enzymes enables the incorporation of sensitive monomers and fragile biomolecules into block copolymer nanoparticles. Furthermore, PISA syntheses and postfunctionalization of the resulting nanoparticles (e.g., cross-linking) can be conducted sequentially without intermediate purification by using various external stimuli. Finally, PISA formulations have been optimized via high-throughput polymerization and recently evaluated within flow reactors for facile scale-up syntheses.
Collapse
Affiliation(s)
- Nicholas J. W. Penfold
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, United Kingdom
| | - Jonathan Yeow
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2051, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2051, Australia
| | - Steven P. Armes
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, United Kingdom
| |
Collapse
|
74
|
Ultrastructural morphology is distinct among primary progenitor cell isolates from normal, inflamed, and cryopreserved equine hoof tissue and CD105 +K14 + progenitor cells. In Vitro Cell Dev Biol Anim 2019; 55:641-655. [PMID: 31297697 PMCID: PMC6717190 DOI: 10.1007/s11626-019-00380-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022]
Abstract
The equine hoof dermal-epidermal interface requires progenitor cells with distinct characteristics. This study was designed to provide accurate ultrastructural depictions of progenitor cells isolated from inflamed tissue and normal tissue before and after cryopreservation and following selection of cells expressing both keratin (K) 14 (ectodermal) and cluster of differentiation (CD) 105 (mesodermal). Passage 3 cell ultrastructure was assessed following 2D culture and after 3D culture on decellularized hoof tissue scaffolds. Outcome measures included light, transmission electron, and scanning electron microscopy, immunocytochemistry, and CD105+K14+ cell trilineage plasticity. Cells from normal tissue had typical progenitor cell characteristics. Those from inflamed tissue had organelles and morphology consistent with catabolic activities including lysosomes, irregular rough endoplasmic reticulum, and fewer vacuoles and early endosomes than those from normal tissue. Cryopreserved tissue cells appeared apoptotic with an irregular cell membrane covered by cytoplasmic protrusions closely associated with endocytic and exocytic vesicles, chromatin aggregated on the nuclear envelop, abundant, poorly organized rough endoplasmic reticulum, and plentiful lysosomes. Cells that were CD105+K14+ were distinguishable from heterogenous cells by infrequent microvilli on the cell surface, sparse endosomes and vesicles, and desmosomes between cells. Cells expressed ectodermal (K15) and mesodermal (CD105) proteins in 2D and 3D cultures. Inflamed and cryopreserved tissue isolates attached poorly to tissue scaffold while normal tissue cells attached well, but only CD105+K14+ cells produced extracellular matrix after 4 d. The CD105+K14+ cells exhibited osteoblastic, adipocytic, and neurocytic differentiation. Ultrastructural information provided by this study contributes to understanding of equine hoof progenitor cells to predict their potential contributions to tissue maintenance, healing, and damage as well post-implantation behavior.
Collapse
|
75
|
Stacey GN, Andrews PW, Barbaric I, Boiers C, Chandra A, Cossu G, Csontos L, Frith TJ, Halliwell JA, Hewitt Z, McCall M, Moore HD, Parmar M, Panico MB, Pisupati V, Shichkin VP, Stacey AR, Tedesco FS, Thompson O, Wagey R. Stem cell culture conditions and stability: a joint workshop of the PluriMes Consortium and Pluripotent Stem Cell Platform. Regen Med 2019; 14:243-255. [PMID: 30938271 PMCID: PMC7611410 DOI: 10.2217/rme-2019-0001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human stem cells have the potential to transform medicine. However, hurdles remain to ensure that manufacturing processes produce safe and effective products. A thorough understanding of the biological processes occurring during manufacture is fundamental to assuring these qualities and thus, their acceptability to regulators and clinicians. Leaders in both human pluripotent and somatic stem cells, were brought together with experts in clinical translation, biomanufacturing and regulation, to discuss key issues in assuring appropriate manufacturing conditions for delivery of effective and safe products from these cell types. This report summarizes the key issues discussed and records consensus reached by delegates and emphasizes the need for accurate language and nomenclature in the scientific discourse around stem cells.
Collapse
Affiliation(s)
- Glyn N Stacey
- International Stem Cell Banking Initiative, 2 High Street, Barley, Hertfordshire SG8 8HZ, UK
| | - Peter W Andrews
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Ivana Barbaric
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Charlotta Boiers
- Department of Cancer Biology, University College London, London, WC1E 6DD, UK
- Cancer Institute, University College London, London, WC1E 6DD, UK
| | | | - Giulio Cossu
- Division of Cell Matrix Biology & Regenerative Medicine, University of Manchester, M13 9PL, UK
| | | | - Thomas Jr Frith
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Jason A Halliwell
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Zoe Hewitt
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Mark McCall
- Centre for Biological Engineering, Loughborough University, Loughborough, LE11 3TU, UK
| | - Harry D Moore
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Malin Parmar
- Developmental & Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund, S221 84, Sweden
- Lund Stem Cell Center, Lund University, Lund, S221 84, Sweden
| | - M Beatrice Panico
- Medicines & Healthcare products Regulatory Agency, London, E14 4PU, UK
| | - Venkat Pisupati
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Valentin P Shichkin
- Research Centre of Immunology & Biomedical Technologies, Open International University of Human Development Ukraine, Kyiv 03115, Ukraine
- Bienta Ltd, 78 Chervonotkatska Str., Kyiv 02094, Ukraine
| | - Alison R Stacey
- Division of Cell Matrix Biology & Regenerative Medicine, University of Manchester, M13 9PL, UK
| | - Francesco S Tedesco
- Department of Cell & Developmental Biology & Great Ormond Street Institute of Child Health, University College London, WC1E 6DE, UK
- The Dubowitz Neuromuscular Centre, Greta Ormond Street Institute of Child Health, University College London, WC1N 1EH, London, UK
| | - Oliver Thompson
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, S10 2TN, UK
| | | |
Collapse
|
76
|
Penfold NJW, Whatley JR, Armes SP. Thermoreversible Block Copolymer Worm Gels Using Binary Mixtures of PEG Stabilizer Blocks. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02491] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Nicholas J. W. Penfold
- Department of Chemistry, Dainton Building, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Jessica R. Whatley
- Department of Chemistry, Dainton Building, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Steven P. Armes
- Department of Chemistry, Dainton Building, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
77
|
Werlang C, Cárcarmo-Oyarce G, Ribbeck K. Engineering mucus to study and influence the microbiome. NATURE REVIEWS. MATERIALS 2019; 4:134-145. [PMID: 40084234 PMCID: PMC11906034 DOI: 10.1038/s41578-018-0079-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Mucus is a 3D hydrogel that houses the majority of the human microbiome. The mucous environment plays an important role in the differentiation and behaviour of microbial phenotypes and enables the creation of spatial distributions. Dysregulation of mucus is further associated with various diseases. Therefore, mucus is the key ingredient to study the behaviour of commensal and pathogenic microbiota in vitro. Indeed, microorganisms cultured in mucus exhibit phenotypes substantially different from those exhibited in standard laboratory media. In this Review, we discuss the impact of mucus on the microbiome and examine the structure and glycosylation of mucins - the main building blocks of mucus. We investigate the impact of glycans on mucin function and highlight different approaches for the engineering of synthetic mucins, including synthesis of the backbone, the design of mucin-mimetic hydrogels and the engineering of glycans. Finally, mucin mimetics for 3D in vitro cell culture and for modulating microbial community structure and function are discussed.
Collapse
Affiliation(s)
- Caroline Werlang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gerardo Cárcarmo-Oyarce
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory for Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory for Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
78
|
Elter JK, Biehl P, Gottschaldt M, Schacher FH. Core-crosslinked worm-like micelles from polyether-based diblock terpolymers. Polym Chem 2019. [DOI: 10.1039/c9py01054h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We herein report on the synthesis of polyether-based diblock terpolymers and their self-assembly into complex solution structures (e.g. filomicelles). The aggregates were core-crosslinked and their structure was influenced via ultrasonication.
Collapse
Affiliation(s)
- Johanna K. Elter
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- D-07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Philip Biehl
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- D-07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Michael Gottschaldt
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- D-07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Felix H. Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- D-07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| |
Collapse
|
79
|
Wang X, Man S, Zheng J, An Z. Alkyl α-Hydroxymethyl Acrylate Monomers for Aqueous Dispersion Polymerization-Induced Self-Assembly. ACS Macro Lett 2018; 7:1461-1467. [PMID: 35651227 DOI: 10.1021/acsmacrolett.8b00839] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Baylis-Hillman reaction was used to afford a series of four alkyl α-hydroxymethyl acrylates, methyl (MHMA), ethyl (EHMA), isopropyl (iPrHMA), and n-butyl (nBHMA) α-hydroxymethyl acrylate, with tunable water solubility. MHMA and EHMA with high water solubility were identified as suitable candidates for aqueous dispersion polymerization-induced self-assembly (PISA). PISA of EHMA and MHMA using poly(ethylene glycol) macromolecular chain transfer agents (PEG45-CTA and PEG113-CTA) was investigated under either thermal or photoinitiation at 40-70 °C. Photo-PISA at low temperatures provided both morphological transition and PEG45-PEHMAx block copolymers with narrow molecular weight distributions. iPrHMA with moderate water solubility was used for dispersion-emulsion polymerization with the formation of vesicles being observed.
Collapse
Affiliation(s)
- Xiao Wang
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shoukuo Man
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jinwen Zheng
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zesheng An
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| |
Collapse
|
80
|
Warren NJ, Derry MJ, Mykhaylyk OO, Lovett JR, Ratcliffe LPD, Ladmiral V, Blanazs A, Fielding LA, Armes SP. Critical Dependence of Molecular Weight on Thermoresponsive Behavior of Diblock Copolymer Worm Gels in Aqueous Solution. Macromolecules 2018; 51:8357-8371. [PMID: 30449901 PMCID: PMC6236470 DOI: 10.1021/acs.macromol.8b01617] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/02/2018] [Indexed: 01/03/2023]
Abstract
Reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate was used to prepare three poly(glycerol monomethacrylate) x -poly(2-hydroxypropyl methacrylate) y (denoted G x -H y or PGMA-PHPMA) diblock copolymers, namely G37-H80, G54-H140, and G71-H200. A master phase diagram was used to select each copolymer composition to ensure that a pure worm phase was obtained in each case, as confirmed by transmission electron microscopy (TEM) and small-angle x-ray scattering (SAXS) studies. The latter technique indicated a mean worm cross-sectional diameter (or worm width) ranging from 11 to 20 nm as the mean degree of polymerization (DP) of the hydrophobic PHPMA block was increased from 80 to 200. These copolymer worms form soft hydrogels at 20 °C that undergo degelation on cooling. This thermoresponsive behavior was examined using variable temperature DLS, oscillatory rheology, and SAXS. A 10% w/w G37-H80 worm dispersion dissociated to afford an aqueous solution of molecularly dissolved copolymer chains at 2 °C; on returning to ambient temperature, these chains aggregated to form first spheres and then worms, with the original gel strength being recovered. In contrast, the G54-H140 and G71-H200 worms each only formed spheres on cooling to 2 °C, with thermoreversible (de)gelation being observed in the former case. The sphere-to-worm transition for G54-H140 was monitored by variable temperature SAXS: these experiments indicated the gradual formation of longer worms at higher temperature, with a concomitant reduction in the number of spheres, suggesting worm growth via multiple 1D sphere-sphere fusion events. DLS studies indicated that a 0.1% w/w aqueous dispersion of G71-H200 worms underwent an irreversible worm-to-sphere transition on cooling to 2 °C. Furthermore, irreversible degelation over the time scale of the experiment was also observed during rheological studies of a 10% w/w G71-H200 worm dispersion. Shear-induced polarized light imaging (SIPLI) studies revealed qualitatively different thermoreversible behavior for these three copolymer worm dispersions, although worm alignment was observed at a shear rate of 10 s-1 in each case. Subsequently conducting this technique at a lower shear rate of 1 s-1 combined with ultra small-angle x-ray scattering (USAXS) also indicated that worm branching occurred at a certain critical temperature since an upturn in viscosity, distortion in the birefringence, and a characteristic feature in the USAXS pattern were observed. Finally, SIPLI studies indicated that the characteristic relaxation times required for loss of worm alignment after cessation of shear depended markedly on the copolymer molecular weight.
Collapse
Affiliation(s)
- Nicholas J. Warren
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Matthew J. Derry
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | | | - Joseph R. Lovett
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Liam P. D. Ratcliffe
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Vincent Ladmiral
- Ingénierie
et Architectures Macromoléculaires, CNRS, UM, ENSCM, Institut Charles Gerhardt UMR 5253, Place Eugène Bataillon, Cedex 5 34095 Montpellier, France
| | - Adam Blanazs
- BASF SE, GMV/P-B001, 67056 Ludwigshafen, Germany
| | - Lee A. Fielding
- School
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| |
Collapse
|
81
|
Le D, Keller D, Delaittre G. Reactive and Functional Nanoobjects by Polymerization-Induced Self-Assembly. Macromol Rapid Commun 2018; 40:e1800551. [DOI: 10.1002/marc.201800551] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/06/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Dao Le
- Institute of Toxicology and Genetics; Karlsruhe Institute of Technology; Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Germany
- Macromolecular Architectures, Institute for Chemical Technology and Polymer Chemistry; Karlsruhe Institute of Technology; Engesserstr. 18, 76128 Karlsruhe Germany
| | - Dominic Keller
- Institute of Toxicology and Genetics; Karlsruhe Institute of Technology; Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Germany
- Macromolecular Architectures, Institute for Chemical Technology and Polymer Chemistry; Karlsruhe Institute of Technology; Engesserstr. 18, 76128 Karlsruhe Germany
| | - Guillaume Delaittre
- Institute of Toxicology and Genetics; Karlsruhe Institute of Technology; Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Germany
- Macromolecular Architectures, Institute for Chemical Technology and Polymer Chemistry; Karlsruhe Institute of Technology; Engesserstr. 18, 76128 Karlsruhe Germany
| |
Collapse
|
82
|
Bioinspired and biomimetic systems for advanced drug and gene delivery. J Control Release 2018; 287:142-155. [DOI: 10.1016/j.jconrel.2018.08.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 12/15/2022]
|
83
|
Lovett JR, Derry MJ, Yang P, Hatton FL, Warren NJ, Fowler PW, Armes SP. Can percolation theory explain the gelation behavior of diblock copolymer worms? Chem Sci 2018; 9:7138-7144. [PMID: 30310636 PMCID: PMC6137452 DOI: 10.1039/c8sc02406e] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
It is well known that polymerization-induced self-assembly (PISA) offers an efficient synthetic route for the production of highly anisotropic diblock copolymer worms. When prepared in aqueous media, such worms form thermoresponsive free-standing hydrogels that are (i) readily sterilizable, (ii) can act as a 3D matrix for the culture of normal mammalian cells and (iii) can induce stasis in human stem cell colonies. Herein we critically examine the gelation behavior of two types of diblock copolymer worms in terms of recent advances in percolation theory for rigid rods, which explicitly account for the effect of rod length polydispersity. More specifically, we use small-angle X-ray scattering (SAXS) to determine the weight-average worm contour length, L w, and the mean worm cross-sectional radius, R. This approach enables a direct comparison to be made between the theoretical critical worm volume fraction, φ c, required for gelation and the experimental values indicated by rheological measurements and tube inversion experiments. Given that these diblock copolymer worms are relatively flexible rather than truly rod-like, reasonably good agreement between these two parameters is observed, particularly for shorter, relatively stiff worms. For longer, more flexible worms a proportionality constant of approximately two is required to reconcile theory with experimental values for φ c. These findings are expected to have important implications for the aqueous gelation behavior exhibited by various other anisotropic nanoparticles, such as cellulose nanocrystals and semicrystalline block copolymer rods, and also fibril-forming small molecule (e.g. dipeptide) gelators.
Collapse
Affiliation(s)
- Joseph R Lovett
- Department of Chemistry , The University of Sheffield , Dainton Building, Brook Hill , Sheffield , South Yorkshire S3 7HF , UK .
| | - Matthew J Derry
- Department of Chemistry , The University of Sheffield , Dainton Building, Brook Hill , Sheffield , South Yorkshire S3 7HF , UK .
| | - Pengcheng Yang
- Department of Chemistry , The University of Sheffield , Dainton Building, Brook Hill , Sheffield , South Yorkshire S3 7HF , UK .
| | - Fiona L Hatton
- Department of Chemistry , The University of Sheffield , Dainton Building, Brook Hill , Sheffield , South Yorkshire S3 7HF , UK .
| | - Nicholas J Warren
- School of Chemical and Process Engineering , University of Leeds , Leeds , West Yorkshire LS2 9JT , UK
| | - Patrick W Fowler
- Department of Chemistry , The University of Sheffield , Dainton Building, Brook Hill , Sheffield , South Yorkshire S3 7HF , UK .
| | - Steven P Armes
- Department of Chemistry , The University of Sheffield , Dainton Building, Brook Hill , Sheffield , South Yorkshire S3 7HF , UK .
| |
Collapse
|
84
|
Khor SY, Quinn JF, Whittaker MR, Truong NP, Davis TP. Controlling Nanomaterial Size and Shape for Biomedical Applications via Polymerization-Induced Self-Assembly. Macromol Rapid Commun 2018; 40:e1800438. [PMID: 30091816 DOI: 10.1002/marc.201800438] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/13/2018] [Indexed: 11/06/2022]
Abstract
Rapid developments in the polymerization-induced self-assembly (PISA) technique have paved the way for the environmentally friendly production of nanoparticles with tunable size and shape for a diverse range of applications. In this feature article, the biomedical applications of PISA nanoparticles and the substantial progress made in controlling their size and shape are highlighted. In addition to early investigations into drug delivery, applications such as medical imaging, tissue culture, and blood cryopreservation are also described. Various parameters for controlling the morphology of PISA nanoparticles are discussed, including the degree of polymerization of the macro-CTA and core-forming polymers, the concentration of macro-CTA and core-forming monomers, the solid content of the final products, the solution pH, the thermoresponsitivity of the macro-CTA, the macro-CTA end group, and the initiator concentration. Finally, several limitations and challenges for the PISA technique that have been recently addressed, along with those that will require further efforts into the future, will be highlighted.
Collapse
Affiliation(s)
- Song Yang Khor
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - John F Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Michael R Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Nghia P Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.,Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV47AL, UK
| |
Collapse
|
85
|
Wang X, Shen L, An Z. Dispersion polymerization in environmentally benign solvents via reversible deactivation radical polymerization. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.05.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
86
|
Jesson C, Cunningham VJ, Smallridge MJ, Armes SP. Synthesis of High Molecular Weight Poly(glycerol monomethacrylate) via RAFT Emulsion Polymerization of Isopropylideneglycerol Methacrylate. Macromolecules 2018; 51:3221-3232. [PMID: 29805184 PMCID: PMC5959244 DOI: 10.1021/acs.macromol.8b00294] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/27/2018] [Indexed: 12/17/2022]
Abstract
High molecular weight water-soluble polymers are widely used as flocculants or thickeners. However, synthesis of such polymers via solution polymerization invariably results in highly viscous fluids, which makes subsequent processing somewhat problematic. Alternatively, such polymers can be prepared as colloidal dispersions; in principle, this is advantageous because the particulate nature of the polymer chains ensures a much lower fluid viscosity. Herein we exemplify the latter approach by reporting the convenient one-pot synthesis of high molecular weight poly(glycerol monomethacrylate) (PGMA) via the reversible addition-fragmentation chain transfer (RAFT) aqueous emulsion polymerization of a water-immiscible protected monomer precursor, isopropylideneglycerol methacrylate (IPGMA) at 70 °C, using a water-soluble poly(glycerol monomethacrylate) (PGMA) chain transfer agent as a steric stabilizer. This formulation produces a low-viscosity aqueous dispersion of PGMA-PIPGMA diblock copolymer nanoparticles at 20% solids. Subsequent acid deprotection of the hydrophobic core-forming PIPGMA block leads to particle dissolution and affords a viscous aqueous solution comprising high molecular weight PGMA homopolymer chains with a relatively narrow molecular weight distribution. Moreover, it is shown that this latex precursor route offers an important advantage compared to the RAFT aqueous solution polymerization of glycerol monomethacrylate since it provides a significantly faster rate of polymerization (and hence higher monomer conversion) under comparable conditions.
Collapse
Affiliation(s)
- Craig
P. Jesson
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | | | | | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| |
Collapse
|
87
|
Derry MJ, Mykhaylyk OO, Ryan AJ, Armes SP. Thermoreversible crystallization-driven aggregation of diblock copolymer nanoparticles in mineral oil. Chem Sci 2018; 9:4071-4082. [PMID: 29780536 PMCID: PMC5944243 DOI: 10.1039/c8sc00762d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/01/2018] [Indexed: 12/18/2022] Open
Abstract
A poly(behenyl methacrylate)37 (PBeMA37) macromolecular chain transfer agent is utilized for the reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of benzyl methacrylate (BzMA) directly in mineral oil at 90 °C. Polymerization-induced self-assembly (PISA) occurs under these conditions, yielding a series of sterically-stabilized PBeMA37-PBzMA x diblock copolymer spheres of tunable diameter as confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM) studies. Rheological studies indicate that a relatively transparent, free-flowing, concentrated dispersion of non-interacting 32 nm PBeMA37-PBzMA100 spheres at 50 °C forms a turbid, paste-like dispersion on cooling to 20 °C. Turbidimetry and differential scanning calorimetry (DSC) studies conducted on solutions of PBeMA37 homopolymer in mineral oil suggest that this switchable colloidal stability is linked to crystallization-induced phase separation exhibited by this stabilizer block. Indeed, variable-temperature small-angle X-ray scattering (SAXS) indicates that a loose mass fractal network of strongly interacting spheres is formed on cooling to 20 °C, which accounts for this thermoreversible sol-gel transition. Moreover, SAXS, DSC and wide-angle X-ray scattering (WAXS) analyses indicate that the behenyl (C22H45) side-chains first form crystalline domains comprising adjacent stabilizer chains within individual spherical nanoparticles, with subsequent crystallization between neighboring nanoparticles leading to the formation of the mass fractal aggregates.
Collapse
Affiliation(s)
- Matthew J Derry
- Department of Chemistry , The University of Sheffield , Dainton Building, Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ; ;
| | - Oleksandr O Mykhaylyk
- Department of Chemistry , The University of Sheffield , Dainton Building, Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ; ;
| | - Anthony J Ryan
- Department of Chemistry , The University of Sheffield , Dainton Building, Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ; ;
| | - Steven P Armes
- Department of Chemistry , The University of Sheffield , Dainton Building, Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ; ;
| |
Collapse
|
88
|
Zhang B, Lv X, Zhu A, Zheng J, Yang Y, An Z. Morphological Stabilization of Block Copolymer Worms Using Asymmetric Cross-Linkers during Polymerization-Induced Self-Assembly. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00246] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Baohua Zhang
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoqing Lv
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Anqi Zhu
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jinwen Zheng
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yongqi Yang
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zesheng An
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
89
|
Madsen J, Madden G, Themistou E, Warren NJ, Armes SP. pH-Responsive diblock copolymers with two different fluorescent labels for simultaneous monitoring of micellar self-assembly and degree of protonation. Polym Chem 2018. [DOI: 10.1039/c8py00111a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Facile labelling of both blocks of a pH-responsive diblock copolymer with different fluorophores allows monitoring of polymer aggregation and deprotonation.
Collapse
Affiliation(s)
- Jeppe Madsen
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
- Danish Polymer Centre
| | | | - Efrosyni Themistou
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast BT9 5AG
- UK
| | - Nicholas J. Warren
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
- School of Chemical and Process Engineering
| | | |
Collapse
|
90
|
Cockram AA, Bradley RD, Lynch SA, Fleming PCD, Williams NSJ, Murray MW, Emmett SN, Armes SP. Optimization of the high-throughput synthesis of multiblock copolymer nanoparticles in aqueous media via polymerization-induced self-assembly. REACT CHEM ENG 2018. [DOI: 10.1039/c8re00066b] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
High-throughput synthesis of multiblock copolymer nanoparticles via PISA.
Collapse
Affiliation(s)
- Amy A. Cockram
- Department of Chemistry
- The University of Sheffield
- Sheffield
- UK
| | | | | | | | | | | | | | - Steven P. Armes
- Department of Chemistry
- The University of Sheffield
- Sheffield
- UK
| |
Collapse
|
91
|
Ratcliffe LPD, Bentley KJ, Wehr R, Warren NJ, Saunders BR, Armes SP. Cationic disulfide-functionalized worm gels. Polym Chem 2017; 8:5962-5971. [PMID: 29308095 PMCID: PMC5735358 DOI: 10.1039/c7py01306j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022]
Abstract
The recent development of polymerization-induced self-assembly (PISA) has facilitated the rational synthesis of a range of diblock copolymer worms, which hitherto could only be prepared via traditional post-polymerization processing in dilute solution. Herein we explore a new synthetic route to aqueous dispersions of cationic disulfide-functionalized worm gels. This is achieved via the PISA synthesis of poly[(glycerol monomethacrylate-stat-glycidyl methacrylate)]-block-poly(2-hydroxypropyl methacrylate) (P(GMA-stat-GlyMA)-PHPMA) block copolymer worms via reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of HPMA. A water-soluble reagent, cystamine, is then reacted with the pendent epoxy groups located within the P(GMA-stat-GlyMA) stabilizer chains to introduce disulfide functionality, while simultaneously conferring cationic character via formation of secondary amine groups. Moreover, systematic variation of the cystamine/epoxy molar ratio enables either chemically cross-linked worm gels or physical (linear) primary amine-functionalized disulfide-based worm gels to be obtained. These new worm gels were characterized using gel permeation chromatography, 1H NMR spectroscopy, transmission electron microscopy, dynamic light scattering, aqueous electrophoresis and rheology. In principle, such hydrogels may offer enhanced mucoadhesive properties.
Collapse
Affiliation(s)
- L P D Ratcliffe
- Dainton Building , Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ;
| | - K J Bentley
- Dainton Building , Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ;
| | - R Wehr
- Dainton Building , Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ;
| | - N J Warren
- School of Chemical and Process Engineering , University of Leeds , Leeds , LS2 9JT , UK .
| | - B R Saunders
- School of Materials , The University of Manchester , MSS Tower , Manchester , M13 9PL , UK
| | - S P Armes
- Dainton Building , Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ;
| |
Collapse
|
92
|
Khor SY, Truong NP, Quinn JF, Whittaker MR, Davis TP. Polymerization-Induced Self-Assembly: The Effect of End Group and Initiator Concentration on Morphology of Nanoparticles Prepared via RAFT Aqueous Emulsion Polymerization. ACS Macro Lett 2017; 6:1013-1019. [PMID: 35650881 DOI: 10.1021/acsmacrolett.7b00583] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Polymerization-induced self-assembly (PISA) is a widely used technique for the synthesis of nanoparticles with various morphologies including spheres, worms, and vesicles. The development of a PISA formulation based on reversible addition-fragmentation chain transfer (RAFT) aqueous emulsion polymerization offers considerable advantages such as enhanced rate of polymerization, high conversion and environmentally friendly conditions. However, this formulation has typically produced spheres as opposed to worms and vesicles. Herein, we report the formation of vesicle morphology by increasing the RAFT end-group hydrophobicity of the macromolecular chain transfer agent or manipulating the radical initiator concentration used in the aqueous emulsion polymerization PISA formulation. Additionally, decreasing the molecular weight of the hydrophobic polystyrene domain in these vesicles leads to the formation of worms. This work demonstrates that RAFT end-group hydrophobicity and radical initiator concentration are key parameters which can be exploited to enable access to sphere, worm, and vesicle morphologies via the RAFT aqueous emulsion polymerization.
Collapse
Affiliation(s)
- Song Yang Khor
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Nghia P. Truong
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - John F. Quinn
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Michael R. Whittaker
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Thomas P. Davis
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
93
|
Wang X, Zhou J, Lv X, Zhang B, An Z. Temperature-Induced Morphological Transitions of Poly(dimethylacrylamide)–Poly(diacetone acrylamide) Block Copolymer Lamellae Synthesized via Aqueous Polymerization-Induced Self-Assembly. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01644] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xiao Wang
- Institute of Nanochemistry and Nanobiology,
College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jiamin Zhou
- Institute of Nanochemistry and Nanobiology,
College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoqing Lv
- Institute of Nanochemistry and Nanobiology,
College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Baohua Zhang
- Institute of Nanochemistry and Nanobiology,
College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zesheng An
- Institute of Nanochemistry and Nanobiology,
College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
94
|
Byard SJ, Williams M, McKenzie BE, Blanazs A, Armes SP. Preparation and Cross-Linking of All-Acrylamide Diblock Copolymer Nano-Objects via Polymerization-Induced Self-Assembly in Aqueous Solution. Macromolecules 2017; 50:1482-1493. [PMID: 28260814 PMCID: PMC5333187 DOI: 10.1021/acs.macromol.6b02643] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/01/2017] [Indexed: 01/17/2023]
Abstract
Various carboxylic acid-functionalized poly( N , N -dimethylacrylamide) (PDMAC) macromolecular chain transfer agents (macro-CTAs) were chain-extended with diacetone acrylamide (DAAM) by reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization at 70 °C and 20% w/w solids to produce a series of PDMAC-PDAAM diblock copolymer nano-objects via polymerization-induced self-assembly (PISA). TEM studies indicate that a PDMAC macro-CTA with a mean degree of polymerization (DP) of 68 or higher results in the formation of well-defined spherical nanoparticles with mean diameters ranging from 40 to 150 nm. In contrast, either highly anisotropic worms or polydisperse vesicles are formed when relatively short macro-CTAs (DP = 40-58) are used. A phase diagram was constructed to enable accurate targeting of pure copolymer morphologies. Dynamic light scattering (DLS) and aqueous electrophoresis studies indicated that in most cases these PDMAC-PDAAM nano-objects are surprisingly resistant to changes in either solution pH or temperature. However, PDMAC40-PDAAM99 worms do undergo partial dissociation to form a mixture of relatively short worms and spheres on adjusting the solution pH from pH 2-3 to around pH 9 at 20 °C. Moreover, a change in copolymer morphology from worms to a mixture of short worms and vesicles was observed by DLS and TEM on heating this worm dispersion to 50 °C. Postpolymerization cross-linking of concentrated aqueous dispersions of PDMAC-PDAAM spheres, worms, or vesicles was performed at ambient temperature using adipic acid dihydrazide (ADH), which reacts with the hydrophobic ketone-functionalized PDAAM chains. The formation of hydrazone groups was monitored by FT-IR spectroscopy and afforded covalently stabilized nano-objects that remained intact on exposure to methanol, which is a good solvent for both blocks. Rheological studies indicated that the cross-linked worms formed a stronger gel compared to linear precursor worms.
Collapse
Affiliation(s)
- Sarah J Byard
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Mark Williams
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Beulah E McKenzie
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Adam Blanazs
- BASF SE, GMV/P-B001, 67056 Ludwigshafen, Germany
| | - Steven P Armes
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
95
|
Jesson C, Pearce CM, Simon H, Werner A, Cunningham VJ, Lovett JR, Smallridge MJ, Warren NJ, Armes SP. H 2O 2 Enables Convenient Removal of RAFT End-Groups from Block Copolymer Nano-Objects Prepared via Polymerization-Induced Self-Assembly in Water. Macromolecules 2017; 50:182-191. [PMID: 31007283 PMCID: PMC6471490 DOI: 10.1021/acs.macromol.6b01963] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/17/2016] [Indexed: 12/21/2022]
Abstract
RAFT-synthesized polymers are typically colored and malodorous due to the presence of the sulfur-based RAFT end-group(s). In principle, RAFT end-groups can be removed by treating molecularly dissolved copolymer chains with excess free radical initiators, amines, or oxidants. Herein we report a convenient method for the removal of RAFT end-groups from aqueous dispersions of diblock copolymer nano-objects using H2O2. This oxidant is relatively cheap, has minimal impact on the copolymer morphology, and produces benign side products that can be readily removed via dialysis. We investigate the efficiency of end-group removal for various diblock copolymer nano-objects prepared with either dithiobenzoate- or trithiocarbonate-based RAFT chain transfer agents. The advantage of using UV GPC rather than UV spectroscopy is demonstrated for assessing both the kinetics and extent of end-group removal.
Collapse
Affiliation(s)
- Craig
P. Jesson
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Charles M. Pearce
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Helene Simon
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Arthur Werner
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | | | - Joseph R. Lovett
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | | | - Nicholas J. Warren
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| |
Collapse
|
96
|
Li Y, Khuu N, Gevorkian A, Sarjinsky S, Therien-Aubin H, Wang Y, Cho S, Kumacheva E. Supramolecular Nanofibrillar Thermoreversible Hydrogel for Growth and Release of Cancer Spheroids. Angew Chem Int Ed Engl 2016; 56:6083-6087. [DOI: 10.1002/anie.201610353] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 11/11/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Yunfeng Li
- Department of Chemistry; University of Toronto; 80 Saint George street Toronto Ontario M5S 3H6 Canada
| | - Nancy Khuu
- Department of Chemistry; University of Toronto; 80 Saint George street Toronto Ontario M5S 3H6 Canada
| | - Albert Gevorkian
- Department of Chemistry; University of Toronto; 80 Saint George street Toronto Ontario M5S 3H6 Canada
| | - Sharon Sarjinsky
- Department of Chemistry; University of Toronto; 80 Saint George street Toronto Ontario M5S 3H6 Canada
| | - Heloise Therien-Aubin
- Department of Chemistry; University of Toronto; 80 Saint George street Toronto Ontario M5S 3H6 Canada
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Yihe Wang
- Department of Chemistry; University of Toronto; 80 Saint George street Toronto Ontario M5S 3H6 Canada
| | - Sangho Cho
- Department of Chemistry; University of Toronto; 80 Saint George street Toronto Ontario M5S 3H6 Canada
| | - Eugenia Kumacheva
- Department of Chemistry; University of Toronto; 80 Saint George street Toronto Ontario M5S 3H6 Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; 200 College Street Toronto Ontario M5S 3E5 Canada
- The Institute of Biomaterials and Biomedical Engineering; University of Toronto; 4 Taddle Creek Road Toronto Ontario M5S 3G9 Canada
| |
Collapse
|
97
|
Pei Y, Lowe AB, Roth PJ. Stimulus-Responsive Nanoparticles and Associated (Reversible) Polymorphism via Polymerization Induced Self-assembly (PISA). Macromol Rapid Commun 2016; 38. [DOI: 10.1002/marc.201600528] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/07/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Yiwen Pei
- Department of Chemistry; Faculty of Engineering and Physical Sciences; University of Surrey; Guildford GU2 7XH United Kingdom
| | - Andrew B. Lowe
- Nanochemistry Research Institute and Department of Chemistry; Curtin University; Bentley Perth 6102 WA Australia
| | - Peter J. Roth
- Department of Chemistry; Faculty of Engineering and Physical Sciences; University of Surrey; Guildford GU2 7XH United Kingdom
| |
Collapse
|
98
|
Li Y, Khuu N, Gevorkian A, Sarjinsky S, Therien-Aubin H, Wang Y, Cho S, Kumacheva E. Supramolecular Nanofibrillar Thermoreversible Hydrogel for Growth and Release of Cancer Spheroids. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201610353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yunfeng Li
- Department of Chemistry; University of Toronto; 80 Saint George street Toronto Ontario M5S 3H6 Canada
| | - Nancy Khuu
- Department of Chemistry; University of Toronto; 80 Saint George street Toronto Ontario M5S 3H6 Canada
| | - Albert Gevorkian
- Department of Chemistry; University of Toronto; 80 Saint George street Toronto Ontario M5S 3H6 Canada
| | - Sharon Sarjinsky
- Department of Chemistry; University of Toronto; 80 Saint George street Toronto Ontario M5S 3H6 Canada
| | - Heloise Therien-Aubin
- Department of Chemistry; University of Toronto; 80 Saint George street Toronto Ontario M5S 3H6 Canada
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Yihe Wang
- Department of Chemistry; University of Toronto; 80 Saint George street Toronto Ontario M5S 3H6 Canada
| | - Sangho Cho
- Department of Chemistry; University of Toronto; 80 Saint George street Toronto Ontario M5S 3H6 Canada
| | - Eugenia Kumacheva
- Department of Chemistry; University of Toronto; 80 Saint George street Toronto Ontario M5S 3H6 Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; 200 College Street Toronto Ontario M5S 3E5 Canada
- The Institute of Biomaterials and Biomedical Engineering; University of Toronto; 4 Taddle Creek Road Toronto Ontario M5S 3G9 Canada
| |
Collapse
|
99
|
Cho S, Li Y, Seo M, Kumacheva E. Nanofibrillar Stimulus-Responsive Cholesteric Microgels with Catalytic Properties. Angew Chem Int Ed Engl 2016; 55:14014-14018. [DOI: 10.1002/anie.201607406] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Sangho Cho
- Department of Chemistry; University of Toronto; 80 Saint George Street Toronto Ontario M5S 3H6 Canada
| | - Yunfeng Li
- Department of Chemistry; University of Toronto; 80 Saint George Street Toronto Ontario M5S 3H6 Canada
| | - Minseok Seo
- Department of Chemistry; University of Toronto; 80 Saint George Street Toronto Ontario M5S 3H6 Canada
| | - Eugenia Kumacheva
- Department of Chemistry; University of Toronto; 80 Saint George Street Toronto Ontario M5S 3H6 Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; 200 College Street Toronto Ontario M5S 3E5 Canada
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; 4 Taddle Creek Road Toronto Ontario M5S 3G9 Canada
| |
Collapse
|
100
|
Cho S, Li Y, Seo M, Kumacheva E. Nanofibrillar Stimulus-Responsive Cholesteric Microgels with Catalytic Properties. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607406] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sangho Cho
- Department of Chemistry; University of Toronto; 80 Saint George Street Toronto Ontario M5S 3H6 Canada
| | - Yunfeng Li
- Department of Chemistry; University of Toronto; 80 Saint George Street Toronto Ontario M5S 3H6 Canada
| | - Minseok Seo
- Department of Chemistry; University of Toronto; 80 Saint George Street Toronto Ontario M5S 3H6 Canada
| | - Eugenia Kumacheva
- Department of Chemistry; University of Toronto; 80 Saint George Street Toronto Ontario M5S 3H6 Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; 200 College Street Toronto Ontario M5S 3E5 Canada
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; 4 Taddle Creek Road Toronto Ontario M5S 3G9 Canada
| |
Collapse
|