51
|
Li Y, He M, Liu Z, Chuah C, Tang Y, Duo Y, Tang BZ. A simple strategy for the efficient design of mitochondria-targeting NIR-II phototheranostics. J Mater Chem B 2023; 11:2700-2705. [PMID: 36857751 DOI: 10.1039/d2tb02295h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The pursuit of phototheranostic agents with near-infrared II (NIR-II) emission, high photothermal conversion efficiency (PCE) and the robust generation of reactive oxygen species (ROS) in the aggregated state is always in high demand but remains a big challenge. Herein, we report a simple strategy to endow molecules with NIR-II imaging and photothermal therapy (PTT)/photodynamic therapy (PDT) abilities by equipping NIR-II aggregation-induced emission luminogens (AIEgens) with the cationic trimethylammonium unit, named as TDTN+. The resultant TDTN+ species can self-assemble into nanoparticles, which exhibit a maximum emission at ∼1052 nm, a high PCE (66.7%), type I and type II ROS generation and a mitochondria-targeting ability, simultaneously. The TDTN+ can realize brain imaging with bright fluorescence and an effective tumor killing effect. Overall, this work presents an innovative design strategy to develop multimodality phototheranostic agents.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Mubin He
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Zeming Liu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Clarence Chuah
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Youhong Tang
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Yanhong Duo
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177, Stockholm, Sweden.
- Department of Radiation Oncology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| |
Collapse
|
52
|
Ma B, Zhang K, Sun Z, Pan H, Yang K, Jiang B, Zhao B, Liang Z, Zhang Y, Zhang L. Pushpin-like nanozyme for plasmon-enhanced tumor targeted therapy. Acta Biomater 2023; 158:673-685. [PMID: 36632878 DOI: 10.1016/j.actbio.2022.12.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/09/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023]
Abstract
Relatively low catalytic activity and poor targeting limit the applications of nanoceria (CeO2) nanozymes in the treatment of tumors. Here, we designed a unique pushpin-like Au/CeO2 hybrid nanozyme with high catalytic activity by combining site-selective growth and steric restriction strategies. The enhanced enzyme activity was attributed to plasmon-induced hot electrons. Furthermore, the pushpin-like structure facilitated targeting molecule modification. The nanozyme exhibited superior antitumor effects both in vitro and in vivo due to its high catalytic activity and targeting effects. Importantly, its potential mechanism of anti-tumor therapy was studied by quantitative proteomics. The reactive oxygen species (ROS) generated by folic acid-PEG thiol-Au/CeO2 (FA-Au/CeO2) caused mitochondrial and proteasomal damage in tumor cells and further evoked a response to oxidative stress and innate immunity in vivo. This study provided a spatiotemporal approach to enhance the antitumor activity of nanozymes by structural design. The designed pushpin-like Au/CeO2 could be utilized as a multifunctional nanoplatform for in vitro and in vivo plasmon-enhanced cancer therapy with active targeting effects. Moreover, this study systematically explored the anti-tumor mechanism of the nanozyme in both cell and mouse models, promoting its translation to the clinic. STATEMENT OF SIGNIFICANCE: A strategy combining the principles of site-selective growth and steric restriction was developed to prepare a unique pushpin-like Au/CeO2 hybrid nanozyme with high catalytic activity and low steric hindrance. The hybrid nanozyme showed superior antitumor activity at both the cellular and tissue levels. Furthermore, the antitumor mechanism was investigated in terms of the differential proteins and their pathways using quantitative proteomics, thus promoting the translation of nanozymes to the clinic.
Collapse
Affiliation(s)
- Baofu Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics Chinese Academy of Science, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics Chinese Academy of Science, Dalian 116023, China; The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province 110001, China
| | - Zhen Sun
- Department of Oncology, The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jie fang Street, Dalian, Liaoning 110006, China
| | - Hui Pan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics Chinese Academy of Science, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiguang Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics Chinese Academy of Science, Dalian 116023, China
| | - Bo Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics Chinese Academy of Science, Dalian 116023, China.
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics Chinese Academy of Science, Dalian 116023, China; The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province 110001, China.
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics Chinese Academy of Science, Dalian 116023, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics Chinese Academy of Science, Dalian 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics Chinese Academy of Science, Dalian 116023, China.
| |
Collapse
|
53
|
Cheng R, Santos HA. Smart Nanoparticle-Based Platforms for Regulating Tumor Microenvironment and Cancer Immunotherapy. Adv Healthc Mater 2023; 12:e2202063. [PMID: 36479842 PMCID: PMC11468886 DOI: 10.1002/adhm.202202063] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/18/2022] [Indexed: 12/12/2022]
Abstract
Tumor development and metastasis are closely related to the tumor microenvironment (TME). Recently, several studies indicate that modulating TME can enhance cancer immunotherapy. Among various approaches to modulating TME, nanoparticles (NPs) with unique inherent advantages and smart modified characteristics are promising candidates in delivering drugs to cancer cells, amplifying the therapeutic effects, and leading to a cascade of immune responses. In this review, several smart NP-based platforms are briefly introduced, such as responsive NPs, targeting NPs, and the composition of TME, including dendritic cells, macrophages, fibroblasts, endothelial cells, myeloid-derived suppressor cells, and regulatory T cells. Moreover, the recent applications of smart NP-based platforms in regulating TME and cancer immunotherapy are briefly introduced. Last, the advantages and disadvantages of these smart NP-based platforms in potential clinical translation are discussed.
Collapse
Affiliation(s)
- Ruoyu Cheng
- Department of Biomedical EngineeringUniversity Medical Center GroningenUniversity of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
- W. J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity Medical Center GroningenUniversity of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Hélder A. Santos
- Department of Biomedical EngineeringUniversity Medical Center GroningenUniversity of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
- W. J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity Medical Center GroningenUniversity of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| |
Collapse
|
54
|
Li R, Yang F, Zhang L, Li M, Wang G, Wang W, Xu Y, Wei W. Manipulating Host-Guest Charge Transfer of a Water-Soluble Double-Cavity Cyclophane for NIR-II Photothermal Therapy. Angew Chem Int Ed Engl 2023; 62:e202301267. [PMID: 36802335 DOI: 10.1002/anie.202301267] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/23/2023]
Abstract
Water-soluble small organic photothermal agents (PTAs) over NIR-II biowindow (1000-1350 nm) are highly desirable, but the rarity greatly limits their applications. Based on a water-soluble double-cavity cyclophane GBox-44+ , we report a class of host-guest charge transfer (CT) complexes as structurally uniform PTAs for NIR-II photothermal therapy. As a result of its high electron-deficiency, GBox-44+ can bind different electron-rich planar guests with a 1 : 2 host/guest stoichiometry to readily tune the CT absorption band that extends to the NIR-II region. When using a diaminofluorene guest substituted with an oligoethylene glycol chain, the host-guest system realized both good biocompatibility and enhanced photothermal conversion at 1064 nm, and was then exploited as a high-efficiency NIR-II PTA for cancer cell and bacterial ablation. This work broadens the potential applications of host-guest cyclophane systems and provides a new access to bio-friendly NIR-II photoabsorbers with well-defined structures.
Collapse
Affiliation(s)
- Ran Li
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Fei Yang
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China.,Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Liying Zhang
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Mengzhen Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Guo Wang
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yanqing Xu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Wei Wei
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| |
Collapse
|
55
|
Sun P, Yang Z, Qu F, Du X, Shen Q, Fan Q. Conjugated/nonconjugated alternating copolymers for enhanced NIR-II fluorescence imaging and NIR-II photothermal-ferrotherapy. J Mater Chem B 2022; 10:9830-9837. [PMID: 36437705 DOI: 10.1039/d2tb01567f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Conjugated polymers hold great promise for NIR-II fluorescence imaging (FI)-guided NIR-II photothermal therapy (PTT) due to the advantages of easy modification of chemical structures and adjustable NIR absorption. However, to make use of these advantages, it is of paramount importance to formulate conjugated polymers with excellent solubility in organic solution, great NIR-II photothermal conversion efficiency, and high NIR-II fluorescence quantum yield. Herein, a new class of conjugated/nonconjugated alternating copolymers (CNACPs) is reported by introducing nonconjugated linkers into a conjugated backbone to modulate the extinction coefficient at 1064 nm and NIR-II fluorescence quantum yield. The NIR-II absorption, NIR-II emission, and NIR-II photothermal properties of the new CNACPs were studied. Interestingly, it is observed that longer nonconjugated linkers in CNACPs result in higher NIR-II fluorescence intensity with sufficient NIR-II absorption and NIR-II photothermal ability. With these newly developed CNACPs (BBT-C6), phototheranostic nanoparticles (BBTD6/Fe@PMA) are prepared through facile nanoprecipitation using PMA-AD-PEG as an iron ion chelator for NIR-II FI-guided NIR-II PTT/ferrotherapy synergistic therapy. In vitro and in vivo, BBTD6/Fe@PMA effectively inhibited 4T1 cells and tumor progression under 1064 nm laser irradiation. Consequently, this work provides new CNACPs by incorporating nonconjugated linkers into a conjugated backbone to design more effective NIR-II fluorescence imaging and NIR-II photothermal therapy agents.
Collapse
Affiliation(s)
- Pengfei Sun
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Zelan Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Fan Qu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Xinlong Du
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Qingming Shen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| |
Collapse
|
56
|
Moniruzzaman M, Dutta SD, Lim KT, Kim J. Perylene-Derived Hydrophilic Carbon Dots with Polychromatic Emissions as Superior Bioimaging and NIR-Responsive Photothermal Bactericidal Agent. ACS OMEGA 2022; 7:37388-37400. [PMID: 36312345 PMCID: PMC9607673 DOI: 10.1021/acsomega.2c04130] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Little progress has been achieved on the synthesis of hydrophilic carbon dots (CDs), derived from polycyclic aromatic hydrocarbons, as an excellent photothermal agent. In this study, a strategy was developed to synthesize highly photoluminescent greenish-yellow emissive CDs based on nitration followed by hydrothermal carbonization of the polycyclic aromatic hydrocarbon precursor, perylene. The perylene-derived CDs (PY-CDs) exhibited an excellent NIR-light (808 nm) harvesting property toward high photothermal conversion efficiency (PCE = ∼56.7%) and thus demonstrated remarkable NIR-light responsive photothermal bactericidal performance. Furthermore, these fluorescent PY-CD nanoprobes displayed excitation-dependent polychromatic emissions in the range of 538-600 nm, with the maximum emission at 538 nm. This enables intense multicolor biological imaging of cellular substances with long-term photostability, nontoxicity, and effective subcellular distribution. The bactericidal action of PY-CDs is likely due to the elevated reactive oxygen species amplification in cooperation with the hyperthermia effect. This study offers a potential substitute for multicolor imaging-guided metal-free carbon-based photothermal therapy.
Collapse
Affiliation(s)
- Md Moniruzzaman
- Department
of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Sayan Deb Dutta
- Department
of Biosystems Engineering, Kangwon National
University, Chuncheon24341, Gangwon-do, Republic of Korea
| | - Ki-Taek Lim
- Department
of Biosystems Engineering, Kangwon National
University, Chuncheon24341, Gangwon-do, Republic of Korea
| | - Jongsung Kim
- Department
of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| |
Collapse
|
57
|
Li N, Wu G, Tang L, Zhou W, Yang S, Pan Q, Wang M, Wu P, Xiao H, He Y, Tan X, Yang Q. Metabolic Labeling Strategy Boosted Antibacterial Efficiency for Photothermal and Photodynamic Synergistic Bacteria-Infected Wound Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46362-46373. [PMID: 36198018 DOI: 10.1021/acsami.2c15759] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pathogenic bacteria infections bring about a substantial risk to human health. Given the development of antibiotic-resistance bacteria, alternative antibacterial strategies with great inactivation efficiency and bacteria-binding ability are extremely attractive. In this work, a metabolic labeling photosensitizer, prepared by the coupling of commercial IR820 and d-propargylglycine (a type of d-amino acid, DAA) via a straightforward one-step incubation (IR820-DAA), could metabolically be incorporated into the bacterial wall via enzymatic reactions, thus enhancing antibacterial efficiency. The laser energy at 808 nm could make IR820-DAA a synergistic photothermal/photodynamic agent for efficient antibacterial therapy and wound healing. Furthermore, IR820-DAA exhibits good water solubility and biological safety for clinical translation and even possesses biofilm degradation activity toward methicillin-resistant Staphylococcus aureus (MRSA). Overall, the proposed IR820-DAA holds great promise as a nonantibiotic tool for the treatment of bacteria-related diseases and offers a blueprint for building the precise synergistic antibacterial therapeutic platform.
Collapse
Affiliation(s)
- Na Li
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan421001, China
| | - Guilong Wu
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan421001, China
| | - Li Tang
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan421001, China
| | - Wei Zhou
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan421001, China
| | - Sha Yang
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan421001, China
| | - Qi Pan
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan421001, China
| | - Minghui Wang
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan421001, China
| | - Peixian Wu
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan421001, China
| | - Hao Xiao
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan421001, China
| | - Yuxuan He
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan421001, China
| | - Xiaofeng Tan
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan421001, China
| | - Qinglai Yang
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan421001, China
| |
Collapse
|
58
|
Wang F, Duan H, Xu W, Sheng G, Sun Z, Chu H. Light-activated nanomaterials for tumor immunotherapy. Front Chem 2022; 10:1031811. [PMID: 36277335 PMCID: PMC9585221 DOI: 10.3389/fchem.2022.1031811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Tumor immunotherapy mainly relies on activating the immune system to achieve antitumor treatment. However, the present tumor immunotherapy used in the clinic showed low treatment efficacy with high systematic toxicity. To overcome the shortcomings of traditional drugs for immunotherapy, a series of antitumor immunotherapies based on nanomaterials have been developed to enhance the body’s antitumor immune response and reduce systematic toxicity. Due to the noninvasiveness, remote controllability, and high temporal and spatial resolution of light, photocontrolled nanomaterials irradiated by excitation light have been widely used in drug delivery and photocontrolled switching. This review aims to highlight recent advances in antitumor immunotherapy based on photocontrolled nanomaterials. We emphasized the advantages of nanocomposites for antitumor immunotherapy and highlighted the latest progress of antitumor immunotherapy based on photoactivated nanomaterials. Finally, the challenges and future prospects of light-activated nanomaterials in antitumor immunity are discussed.
Collapse
Affiliation(s)
- Fang Wang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Huijuan Duan
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Weizhe Xu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Gang Sheng
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
- *Correspondence: Hongqian Chu,
| |
Collapse
|
59
|
Yuan H, Xia P, Sun X, Ma J, Xu X, Fu C, Zhou H, Guan Y, Li Z, Zhao S, Wang H, Dai L, Xu C, Dong S, Geng Q, Li Z, Wang J. Photothermal Nanozymatic Nanoparticles Induce Ferroptosis and Apoptosis through Tumor Microenvironment Manipulation for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202161. [PMID: 36089650 DOI: 10.1002/smll.202202161] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/30/2022] [Indexed: 06/15/2023]
Abstract
It is highly desirable to design a single modality that can simultaneously trigger apoptosis and ferroptosis to efficiently eliminate tumor progression. Herein, a nanosystem based on the intrinsic properties of tumor microenvironment (TME) is designed to achieve tumor control through the simultaneous induction of ferroptosis and apoptosis. CuCP molecules are encapsulated in a liposome-based nanosystem to assemble into biocompatible and stable CuCP nanoparticles (CuCP Lipo NPs). This nanosystem intrinsically possesses nanozymatic activity and photothermal characteristics due to the property of Cu atoms and the structure of CuCP Lipo NPs. It is demonstrated that the synergistic strategy increases the intracellular lipid-reactive oxides species, induces the occurrence of ferroptosis and apoptosis, and completely eradicates the tumors in vivo. Proteomics analysis further discloses the key involved proteins (including Tp53, HMOX1, Ptgs2, Tfrc, Slc11a2, Mgst2, Sod1, and several GST family members) and pathways (including apoptosis, ferroptosis, and ROS synthesis). Conclusively, this work develops a strategy based on one nanosystem to synergistically induce ferroptosis and apoptosis in vivo for tumor suppression, which holds great potential in the clinical translation for tumor therapy.
Collapse
Affiliation(s)
- Haitao Yuan
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, P. R. China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, P. R. China
| | - Peng Xia
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, P. R. China
- Department of Hepatobiliary& Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430062, P. R. China
| | - Xin Sun
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, P. R. China
| | - Jingbo Ma
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, P. R. China
| | - Xiaolong Xu
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, P. R. China
| | - Chunjin Fu
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, P. R. China
| | - Hongchao Zhou
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, P. R. China
| | - Yudong Guan
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, P. R. China
| | - Zhifen Li
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Xing Yun Street, Pingcheng District, Datong, Shanxi Province, 037009, P. R. China
| | - Shanshan Zhao
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, P. R. China
| | - Huifang Wang
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, P. R. China
| | - Lingyun Dai
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, P. R. China
| | - Chengchao Xu
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, P. R. China
| | - Shaohong Dong
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, P. R. China
| | - Qingshan Geng
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, P. R. China
| | - Zhijie Li
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, P. R. China
| | - Jigang Wang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, P. R. China
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| |
Collapse
|
60
|
Cui S, Dai S, Lin N, Wu X, Shi J, Tong B, Liu P, Cai Z, Dong Y. Constructing Hypoxia-Tolerant and Host Tumor-Enriched Aggregation-Induced Emission Photosensitizer for Suppressing Malignant Tumors Relapse and Metastasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203825. [PMID: 36071022 DOI: 10.1002/smll.202203825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Photodynamic immunotherapy is a promising treatment strategy that destroys primary tumors and inhibits the metastasis and relapse of distant tumors. As reactive oxygen species are an intermediary for triggering immune responses, photosensitizers (PSs) that can actively target and efficiently trigger oxidative stress are urgently required. Herein, pyrrolo[3,2-b]pyrrole as an electronic donor is introduced in acceptor-donor-acceptor skeleton PSs (TP-IS1 and TP-IS2) with aggregation-induced emission properties and high absorptivity. Meanwhile, pyrrolo[3,2-b]pyrrole derivatives innovatively prove their ability of type I photoreaction, indicating their promising hypoxia-tolerant advantages. Moreover, M1 macrophages depicting an ultrafast delivery through the cell-to-cell tunneling nanotube pathway emerge to construct TP-IS1@M1 by coating the photosensitizer TP-IS1. Under low concentration of TP-IS1@M1, an effective immune response of TP-IS1@M1 is demonstrated by releasing damage-associated molecular patterns, maturating dendritic cells, and vanishing the distant tumor. These findings reveal insights into developing hypoxia-tolerant PSs and an efficient delivery method with unprecedented performance against tumor metastasis.
Collapse
Affiliation(s)
- Shisheng Cui
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Shuangxiong Dai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Na Lin
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xinghui Wu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jianbing Shi
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Bin Tong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Pai Liu
- Department of Material Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Zhengxu Cai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
61
|
Lu B, Zhang Z, Huang Y, Zhang Y, Wang J, Ding Y, Wang Y, Yao Y. A nanoplatform for mild-temperature photothermal and type I & II photodynamic therapy in the NIR-II biowindow. Chem Commun (Camb) 2022; 58:10353-10356. [PMID: 36004760 DOI: 10.1039/d2cc03248a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the current work, we synthesized an A-D-A smallmolecule photosensitizer, denoted as DPTTIC, and a dual PEG-functionalized pillararene, denoted as WP5-8C-2PEG, and used them to construct novel DPTTIC nanoparticles (NPs) displaying NIR II absorption. Under 980 nm-wavelength laser irradiation, DPTTIC NPs performed well in mild-temperature photothermal and type I & II photodynamic anti-tumor therapy.
Collapse
Affiliation(s)
- Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Zhecheng Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yuying Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yuehua Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
62
|
Xie S, Li S, Cao W, Mo C, Zhang Z, Huang K, Li X. Bacteria-Templated and Dual Enzyme-Powered Microcapsule Motors To Promote Thrombus Penetration and Thrombolytic Efficacy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37553-37565. [PMID: 35948498 DOI: 10.1021/acsami.2c11213] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antithrombotic therapy is confronted with short half-lives of thrombolytic agents and high bleeding risks. Challenges remain in the development of drug delivery systems for thorough destruction of thrombi and timely restoration of blood flow while minimizing side effects. Herein, polydopamine capsule-like micromotors with urokinase (uPA) loadings and Arg-Gly-Asp (RGD) grafts (r-u@PCM) were constructed using rod-shaped bacteria as the template, and one single opening was created on each capsule through bacterial ghost (BG) formation. Glucose oxidase and catalase were encapsulated in the large cavity of microcapsules, and their successive oxidation of glucose produced O2 bubbles, which ejected out through the single opening to propel the motion of r-u@PCM. In vitro targeting testing of r-u@PCM shows significant higher accumulations on the activated platelets than those without RGD grafts (u@PCM, 7 folds) or without enzyme loadings (r-u@PC, 11 folds). Compared with the major distribution of r-u@PC on the clot surface, r-u@PCM efficiently penetrates into clots with dense fibrin networks, and near-infrared (NIR) irradiation (r-u@PCM/NIR) promotes thrombus infiltration through increasing uPA release and thermolysis of the networks. Pharmacokinetic study shows that the loading of uPA in r-u@PCM extends the terminal half-life from 24 min to 5.5 h and the bioavailability increased 13 times. In a hindlimb venous thrombosis model, r-u@PCM/NIR treatment promotes uPA accumulations in thrombi and disrupts all the thrombi after 8 h with a full recovery of blood flows. Effective thrombolysis is also achieved even after reducing the uPA dose 5 times. Thus, this is the first attempt to fabricate rod-shaped microcapsule motors through a biologically derived method, including bacterial templating and BG formation-induced opening generation. r-u@PCM/NIR treatment promotes thrombolysis through the photothermal effect, self-propelled infiltration into thrombi, and accelerated local release of uPA, providing a prerequisite for reducing uPA dose and bleeding side effects.
Collapse
Affiliation(s)
- Songzhi Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory for Meat Processing of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Shang Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Jiulongpo Center for Disease Control and Prevention of Chongqing, Chongqing 400039, P. R. China
| | - Wenxiong Cao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Chuanfei Mo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Zhanlin Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Kun Huang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Xiaohong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| |
Collapse
|
63
|
Li S, Deng X, Cheng H, Li X, Wan Y, Cao C, Yu J, Liu Y, Yuan Y, Wang K, Lee CS. Bright Near-Infrared π-Conjugated Oligomer Nanoparticles for Deep-Brain Three-Photon Microscopy Excited at the 1700 nm Window in Vivo. ACS NANO 2022; 16:12480-12487. [PMID: 35968934 DOI: 10.1021/acsnano.2c03813] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of three-photon fluorophores with 1700 nm excitation is pressingly desirable for in vivo imaging of tissue resided deep inside the brain. Herein, we report a designed and synthesized fluorescent molecule (OFET) for in vivo mouse brain imaging with three-photon microscopy at a record imaging depth. The OFET molecule has a relatively high fluorescence brightness and has a near-infrared (NIR) maximum emission at 820 nm after integrating as water-dispersible nanoparticles (OEFT NPs). Under 1720 nm excitation, OFET NPs show a large three-photon action cross-section of 1.06 × 10-82 cm6 s2/photon2, which is more than twice that of the commonly used sulforhodamine 101 (SR101) dye. Benefiting from the high tissue penetration depths for both the long excitation in the second NIR window of 1720 nm and the emission wavelength in the first NIR window of 820 nm, a high brightness, and a large action cross-section of three-photon, OFET NPs have good deep-brain imaging performance. Brain vasculatures of a mouse located at a depth of 1696 μm can be clearly resolved in vivo. With no observable cytotoxicity even in a high concentration, the present OFET NPs suggest that fluorescent π-conjugated oligomers are of great potential in high-resolution 3PM imaging of in vivo deep-tissue.
Collapse
Affiliation(s)
- Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Xiangquan Deng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Hui Cheng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xiaozhen Li
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Chen Cao
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Jie Yu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Ying Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Yi Yuan
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Ke Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
64
|
Ding Z, Gu Y, Zheng C, Gu Y, Yang J, Li D, Xu Y, Wang P. Organic small molecule-based photothermal agents for cancer therapy: Design strategies from single-molecule optimization to synergistic enhancement. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214564] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
65
|
Wang J, Xue P, Jiang Y, Huo Y, Zhan X. The principles, design and applications of fused-ring electron acceptors. Nat Rev Chem 2022; 6:614-634. [PMID: 37117709 DOI: 10.1038/s41570-022-00409-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 11/10/2022]
Abstract
Fused-ring electron acceptors (FREAs) have a donor-acceptor-donor structure comprising an electron-donating fused-ring core, electron-accepting end groups, π-bridges and side chains. FREAs possess beneficial features, such as feasibility to tailor their structures, high property tunability, strong visible and near-infrared light absorption and excellent n-type semiconducting characteristics. FREAs have initiated a revolution to the field of organic solar cells in recent years. FREA-based organic solar cells have achieved unprecedented efficiencies, over 20%, which breaks the theoretical efficiency limit of traditional fullerene acceptors (~13%), and boast potential operational lifetimes approaching 10 years. Based on the original studies of FREAs, a variety of new structures, mechanisms and applications have flourished. In this Review, we introduce the fundamental principles of FREAs, including their structures and inherent electronic and physical properties. Next, we discuss the way in which the properties of FREAs can be modulated through variations to the electronic structure or molecular packing. We then present the current applications and consider the future areas that may benefit from developments in FREAs. Finally, we conclude with the position of FREA chemistry, reflecting on the challenges and opportunities that may arise in the future of this burgeoning field.
Collapse
|
66
|
Zhu K, Qian S, Guo H, Wang Q, Chu X, Wang X, Lu S, Peng Y, Guo Y, Zhu Z, Qin T, Liu B, Yang YW, Wang B. pH-Activatable Organic Nanoparticles for Efficient Low-Temperature Photothermal Therapy of Ocular Bacterial Infection. ACS NANO 2022; 16:11136-11151. [PMID: 35749223 DOI: 10.1021/acsnano.2c03971] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Low-temperature photothermal therapy (PTT) systems constructed by integrating organic photothermal agents with other bactericidal components that initiate bacterial apoptosis at low hyperthermia possess a promising prospect. However, these multicomponent low-temperature PTT nanoplatforms have drawbacks in terms of the tedious construction process, suboptimal synergy effect of diverse antibacterial therapies, and high laser dose needed, compromising their biosafety in ocular bacterial infection treatment. Herein, a mild PTT nanotherapeutic platform is formulated via the self-assembly of a pH-responsive phenothiazinium dye. These organic nanoparticles with photothermal conversion efficiency up to 84.5% necessitate only an ultralow light dose of 36 J/cm2 to achieve efficient low-temperature photothermal bacterial inhibition at pH 5.5 under 650 nm laser irradiation. In addition, this intelligent mild photothermal nanoplatform undergoes negative to positive charge reversion in acid biofilms, exhibiting good penetration and highly efficient elimination of drug-resistant E. coli biofilms under photoirradiation. Further in vivo animal tests demonstrated efficient bacterial elimination and inflammatory mitigation as well as superior biocompatibility and biosafety of the photothermal nanoparticles in ocular bacterial infection treatment. Overall, this efficient single-component mild PTT system featuring simple construction processes holds great potential for wide application and clinical transformation.
Collapse
Affiliation(s)
- Kangning Zhu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Siyuan Qian
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Hanwen Guo
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Qingying Wang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaoying Chu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Xinyi Wang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Si Lu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Yaou Peng
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Yishun Guo
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhongqiang Zhu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Tianyi Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Bin Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, Changchun 130012, China
| | - Bailiang Wang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| |
Collapse
|
67
|
Xu C, Ye R, Shen H, Lam JWY, Zhao Z, Zhong Tang B. Molecular Motion and Nonradiative Decay: Towards Efficient Photothermal and Photoacoustic Systems. Angew Chem Int Ed Engl 2022; 61:e202204604. [PMID: 35543996 DOI: 10.1002/anie.202204604] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 12/11/2022]
Abstract
Nonradiative decay invariably competes with radiative decay during the deexcitation process of matter. In the community of luminescence research, nonradiative decay has been deemed less attractive than radiative decay. However, all things in their being are good for something and so is nonradiative decay. As the molecular motion-facilitated nonradiative decay (MMFND) effect is inevitable in photophysical processes, it provides a new avenue to convert the harvested light energy into exploitable forms by harnessing molecular motion. In many cases, active molecular motion enables thermal deactivation from excited states. In this Minireview, recent advances in photothermal and photoacoustic systems with MMFND character are summarized. We believe that this presentation of the rational engineering of molecular motion for efficient photothermal generation will deepen the understanding of the relationship between molecular motion and nonradiative decay and navigate people to rethink the positive aspects of nonradiative decay for the establishment of new light-controllable techniques.
Collapse
Affiliation(s)
- Changhuo Xu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ruquan Ye
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Hanchen Shen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
68
|
Chen YT, Wen X, He J, Li Z, Zhu S, Chen W, Yu J, Guo Y, Ni S, Chen S, Dang L, Li MD. Boosting Near-Infrared Photothermal Conversion by Intermolecular Interactions in Isomeric Cocrystals. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28781-28791. [PMID: 35709472 DOI: 10.1021/acsami.2c03940] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organic cocrystal exhibits excellent photothermal conversion (PTC), but how the intermolecular interactions of cocrystals regulate the PTC is obscure. Here, two isomeric donor molecules (phenanthrene and anthracene) and two electron-withdrawing molecules (7,7,8,8,8-tetracyanodimethylquinone and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinone dimethane) are self-assembled into the four cocrystals (PTQ, PFQ, ATQ, and AFQ). By changing the molecular configuration of the donor and the electron-withdrawing ability of the acceptor, the intrinsic influencing factors of the intermolecular interaction on the PTC were explored. Under near-infrared laser (808 nm) irradiation, the PTC efficiencies of PTQ, PFQ, AFQ, and ATQ are 35.85, 44.74, 57.00, and 60.53%, respectively. Based on the single-crystal X-ray diffraction, ultrafast time-resolved transient absorption, and excited-state theoretical calculations, we found that the π-π stacking in ATQ and AFQ is conducive to promoting the near-infrared light-harvesting ability and the p-π interaction of cocrystals can regulate the nonradiative rotation of -C(C≡N)2 groups, resulting in a tunable near-infrared PTC via the isomeric cocrystals. Accordingly, the evaporation rate of the porous polyurethane-AFQ foam can reach 1.33 kg·m-2·h-1 in the simulated solar-driven water evaporation system. This work provides a strategy to boost the PTC by the intermolecular interactions of cocrystal materials.
Collapse
Affiliation(s)
- Ye-Tao Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Xinyi Wen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Jiaxing He
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Zhanhua Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Sheng Zhu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Wenbin Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Jierong Yu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Yan Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Shaofei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Shunli Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| |
Collapse
|
69
|
Xu C, Ye R, Shen H, Lam JWY, Zhao Z, Zhong Tang B. Molecular Motion and Nonradiative Decay: Towards Efficient Photothermal and Photoacoustic Systems. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Changhuo Xu
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 China
| | - Ruquan Ye
- Department of Chemistry State Key Laboratory of Marine Pollution City University of Hong Kong Hong Kong 999077 China
| | - Hanchen Shen
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 China
| | - Jacky W. Y. Lam
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 China
| | - Zheng Zhao
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| | - Ben Zhong Tang
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 China
| |
Collapse
|
70
|
Yang G, Zhang X, Zhou S, Zhou W, Yin C, Xie C, Fan Q, Huang W. An AIPH-decorated semiconducting nanoagonist for NIR-II light-triggered photothermic/thermodynamic combinational therapy. Chem Commun (Camb) 2022; 58:7400-7403. [PMID: 35694962 DOI: 10.1039/d2cc01207c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A multifunctional semiconducting nanoagonist with high photothermic conversion efficiency (86.2%) and alkyl radical generation ability was developed. The nanoagonist demonstrated excellent anticancer performance through NIR-II light-triggered photothermic/thermodynamic combinational therapy both in vitro and in vivo.
Collapse
Affiliation(s)
- Guangzhao Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Xi Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Shan Zhou
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Wen Zhou
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Chao Yin
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Chen Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
71
|
Icing on the cake: combining a dual PEG-functionalized pillararene and an A-D-A small molecule photosensitizer for multimodal phototherapy. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1232-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
72
|
Yao Y, Zhang Y, Zhang J, Yang X, Ding D, Shi Y, Xu H, Gao X. Azulene-Containing Squaraines for Photoacoustic Imaging and Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19192-19203. [PMID: 35438482 DOI: 10.1021/acsami.2c02308] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photoacoustic imaging (PAI) guided photothermal therapy (PTT) can realize real-time diagnosis and in situ treatment of cancer at the same time. Absorption in the near-infrared (NIR) region with large molar extinction coefficient (ε) and high value of photothermal conversion efficiency (PCE) are key prerequisites for photothermal agents (PTAs) to realize dual PAI and PTT treatments. Squaraines have stable quinoid structures with strong planarity and rigidity, in favor of the NIR absorption and high ε values. On the other hand, azulene derivatives mostly have very faint fluorescence emission, which is beneficial for photothermal transformation. Herein, two azulene-containing squaraines Az-SQ-1 and Az-SQ-2 are synthesized as high-performance PTAs. In comparison with Az-SQ-1, Az-SQ-2 possesses larger εmax of 3 × 105 M-1 cm-1 at 780 nm in organic solution and higher PCE of 53.2% in the form of nanoparticles under 808 nm laser irradiation. Accordingly, Az-SQ-2 NPs present stronger photoacoustic signals (about 15.1-times the background signal) and more efficient suppression of tumor growth. Our research indicates that the introduction of azulene unit to traditional NIR dyes is a simple but effective approach to obtain outstanding PTAs in the aspect of phototheranostics.
Collapse
Affiliation(s)
- Yiming Yao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Yuan Zhang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211116, China
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Jianwei Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaodi Yang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Yang Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Huae Xu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211116, China
| | - Xike Gao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
73
|
Sun B, Meng Y, Song T, Shi J, He X, Zhao P. Electron Transfer Strategies to Regulate Carriers’ Separation for Intensive Pyroelectric Dynamic Therapy With Simultaneous Photothermal Therapy. Front Chem 2022; 10:874641. [PMID: 35494633 PMCID: PMC9039012 DOI: 10.3389/fchem.2022.874641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Endogenic heat shock proteins and uneven local heat distribution are two main problems in traditional tumor hyperthermia therapy strategies. Aiming at solving these problems, we designed Au–SnSe–PVP nanomaterials (ASNPs) by modifying Au nanoparticles (Au-NPs) and biocompatible PVP on SnSe nanorods via a new reactive oxygen species production strategy. The ASNPs with excellent photothermal conversion performance can produce thermoelectric effects in response to temperature differences during photothermal conversion. The modification of Au-NPs can attract free electron (e–) to accumulate and promote the separation of e– and holes (h+) in the thermoelectric process, thereby further promoting e–-rich Au-NPs-induced H2O2 homolysis and h+–H2O half-reaction to generate hydroxyl radicals, realizing the synergistic application of photothermal therapy and pyroelectric dynamic therapy in tumor treatment.
Collapse
Affiliation(s)
- Bingxia Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yun Meng
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianlin Song
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jieyun Shi
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xinhong He
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Peiran Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- *Correspondence: Peiran Zhao,
| |
Collapse
|
74
|
Duan X, Zhang Q, Jiang Y, Wu X, Yue X, Geng Y, Shen J, Ding D. Semiconducting Polymer Nanoparticles with Intramolecular Motion-Induced Photothermy for Tumor Phototheranostics and Tooth Root Canal Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200179. [PMID: 35239994 DOI: 10.1002/adma.202200179] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Much effort is devoted to develop agents with superior photoacoustic/photothermal properties for improved disease diagnosis and treatment. Herein, a new fused two isoindigo (DIID)-based semiconducting conjugated polymer (named PBDT-DIID) is rationally designed and synthesized with a strong near-infrared absorption band ranging from 700 to 1000 nm. Water-dispersing nanoparticles (NPs) of PBDT-DIID are prepared with good biocompatibility and a rather high photothermal conversion efficiency (70.6%), as the active excited-state intramolecular twist around the central double bonds in DIID permits most of the absorbed excitation energy flow to heat deactivation pathway through internal conversion. The photoacoustic signal can be further magnified by incorporation of polylactide (PLA) in the NP core to confine the generated heat of PBDT-DIID within NPs. The resultant doped NPs show excellent performance in photoacoustic imaging-guided photothermal therapy in an orthotopic 4T1 breast tumor-bearing mouse model. It is also found that the photothermal effect of the PBDT-DIID NPs is safe and quite efficacious to highly improve the root canal treatment outcome by heating the 1% NaClO solution inside the root canal upon 808 nm laser irradiation in a human extracted tooth root canal infection model.
Collapse
Affiliation(s)
- Xingchen Duan
- Central Laboratory of Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, China
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qianyu Zhang
- Central Laboratory of Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, China
| | - Yu Jiang
- School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Xinying Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin Yue
- Central Laboratory of Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, China
| | - Yanhou Geng
- School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Jing Shen
- Central Laboratory of Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, China
| | - Dan Ding
- Central Laboratory of Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, China
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
75
|
Chen C, Wang Z, Jia S, Zhang Y, Ji S, Zhao Z, Kwok RTK, Lam JWY, Ding D, Shi Y, Tang BZ. Evoking Highly Immunogenic Ferroptosis Aided by Intramolecular Motion-Induced Photo-Hyperthermia for Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104885. [PMID: 35132824 PMCID: PMC8981454 DOI: 10.1002/advs.202104885] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 05/28/2023]
Abstract
Immunogenic cell death (ICD) through apoptosis or necroptosis is widely adopted to improve the therapeutic effect in cancer treatment by triggering a specific antitumor immunity. However, the tumor resistance to apoptosis/necroptosis seriously impedes the therapeutic effect. Recently, ferroptosis featured with excessive lipid peroxidation is demonstrated capable of bypassing the apoptosis/necroptosis resistance to kill cancer cells. To date, numerous efficient ferroptosis inducers are developed and successfully utilized for sensitizing cancer cells to ferroptosis. Unfortunately, these inducers can hardly generate adequate immunogenicity during induction of ferroptotic cancer cell death, which distinctly attenuates the efficacy of triggering antitumor immune response, therefore leads to unsatisfactory therapeutic effect. Herein, a novel high-performance photothermal nanoparticle (TPA-NDTA NP) is designed by exploiting energy via excited-state intramolecular motion and employed for immensely assisting ferroptosis inducer to evoke highly efficient ICD through ferroptosis pathway. Tumor models with poor immunogenicity are used to demonstrate the tremendously enhanced therapeutic effect endowed by highly enhanced immunogenic ferroptosis in vitro and in vivo by virtue of the NPs. This study sheds new light on a previously unrecognized facet of boosting the immunogenicity of ferroptosis for achieving satisfactory therapeutic effect in cancer therapy.
Collapse
Affiliation(s)
- Chao Chen
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionState Key Laboratory of Molecular NanoscienceDivision of Life ScienceDepartment of Chemical and Biological EngineeringThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong999077China
| | - Zaiyu Wang
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionState Key Laboratory of Molecular NanoscienceDivision of Life ScienceDepartment of Chemical and Biological EngineeringThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong999077China
| | - Shaorui Jia
- Key Laboratory of Bioactive MaterialsMinistry of Educationand College of Life SciencesNankai UniversityTianjin300071China
| | - Yuan Zhang
- Department of PharmaceuticsSchool of PharmacyNanjing Medical UniversityNanjing211116China
| | - Shenglu Ji
- The Key Laboratory of Biomedical Material, School of Life Science and TechnologyXinxiang Medical UniversityXinxiang453003China
| | - Zheng Zhao
- Shenzhen Institute of Molecular Aggregate Science and TechnologySchool of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
| | - Ryan T. K. Kwok
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionState Key Laboratory of Molecular NanoscienceDivision of Life ScienceDepartment of Chemical and Biological EngineeringThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong999077China
| | - Jacky W. Y. Lam
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionState Key Laboratory of Molecular NanoscienceDivision of Life ScienceDepartment of Chemical and Biological EngineeringThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong999077China
| | - Dan Ding
- Key Laboratory of Bioactive MaterialsMinistry of Educationand College of Life SciencesNankai UniversityTianjin300071China
| | - Yang Shi
- Key Laboratory of Bioactive MaterialsMinistry of Educationand College of Life SciencesNankai UniversityTianjin300071China
| | - Ben Zhong Tang
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionState Key Laboratory of Molecular NanoscienceDivision of Life ScienceDepartment of Chemical and Biological EngineeringThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong999077China
- Shenzhen Institute of Molecular Aggregate Science and TechnologySchool of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- AIE InstituteGuangzhou Development District, HuangpuGuangzhou510530China
| |
Collapse
|
76
|
Qi X, Huang Y, You S, Xiang Y, Cai E, Mao R, Pan W, Tong X, Dong W, Ye F, Shen J. Engineering Robust Ag-Decorated Polydopamine Nano-Photothermal Platforms to Combat Bacterial Infection and Prompt Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106015. [PMID: 35191211 PMCID: PMC9008420 DOI: 10.1002/advs.202106015] [Citation(s) in RCA: 176] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 05/02/2023]
Abstract
Polydopamine (PDA) nanoparticles have emerged as an attractive biomimetic photothermal agent in photothermal antibacterial therapy due to their ease of synthesis, good biodegradability, long-term safety, and excellent photostability. However, the therapeutic effects of PDA nanoparticles are generally limited by the low photothermal conversion efficiency (PCE). Herein, PDA@Ag nanoparticles are synthesized via growing Ag on the surface of PDA nanoparticles and then encapsulated into a cationic guar gum (CG) hydrogel network. The optimized CG/PDA@Ag platform exhibits a high PCE (38.2%), which is more than two times higher than that of pure PDA (16.6%). More importantly, the formulated CG/PDA@Ag hydrogel with many active groups can capture and kill bacteria through effective interactions between hydrogel and bacteria, thereby benefiting the antibacterial effect. As anticipated, the designed CG/PDA@Ag system combined the advantages of PDA@Ag nanoparticles (high PCE) and hydrogel (preventing aggregation of PDA@Ag nanoparticles and possessing inherent antibacterial ability) is demonstrated to have superior antibacterial efficacy both in vitro and in vivo. This study develops a facile approach to boost the PCE of PDA for photothermal antibacterial therapy, providing a significant step forward in advancing the application of PDA nano-photothermal agents.
Collapse
Affiliation(s)
- Xiaoliang Qi
- State Key Laboratory of OphthalmologyOptometry and Vision ScienceSchool of Ophthalmology and OptometrySchool of Biomedical EngineeringWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Yijing Huang
- School of Chemical EngineeringNanjing University of Science and TechnologyNanjingJiangsu210094China
| | - Shengye You
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Yajing Xiang
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Erya Cai
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Ruiting Mao
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Wenhao Pan
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Xianqin Tong
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Wei Dong
- School of Chemical EngineeringNanjing University of Science and TechnologyNanjingJiangsu210094China
| | - Fangfu Ye
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Jianliang Shen
- State Key Laboratory of OphthalmologyOptometry and Vision ScienceSchool of Ophthalmology and OptometrySchool of Biomedical EngineeringWenzhou Medical UniversityWenzhouZhejiang325027China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouZhejiang325001China
| |
Collapse
|
77
|
Wang J, Zhan X. From Perylene Diimide Polymers to
Fused‐Ring
Electron Acceptors: A
15‐Year
Exploration Journey of Nonfullerene Acceptors. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiayu Wang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University Beijing 100871 China
| | - Xiaowei Zhan
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University Beijing 100871 China
| |
Collapse
|
78
|
Li X, Bao W, Liu M, Meng J, Wang Z, Sun M, Zhang L, Tian Z. Polymeric micelles-based nanoagents enable phototriggering combined chemotherapy and photothermal therapy with high sensitivity. Biomater Sci 2022; 10:5520-5534. [DOI: 10.1039/d2bm00652a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new type of polymeric nanomicelles-based nanoagent (denoted as PT@MFH hereafter) capable of highly sensitively releasing chemotherapeutic drug paclitaxel (PTX) upon triggering of near-infrared laser was developed by encapsulating PTX...
Collapse
|
79
|
Zheng R, Zhao Q, Qing W, Li S, Liu Z, Li Q, Huang Y. Carrier-Free Delivery of Ultrasmall π-Conjugated Oligomer Nanoparticles with Photothermal Conversion over 80% for Cancer Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104521. [PMID: 34821029 DOI: 10.1002/smll.202104521] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/05/2021] [Indexed: 06/13/2023]
Abstract
High-performance photothermal theranostics is urgently desired for cancer therapy because of their good controllability and noninvasive features. The relatively low photothermal conversion efficiency is still at the drawbacks because of the absence of efficient extraneous carriers. Herein, a carrier-free nanomedicine is developed to in vivo self-deliver organic photothermal agents for efficient cancer phototheranostics. By a facile self-assembly strategy, the near-infrared (NIR)-absorbing conjugated oligomer IDIC-4F is fabricated into a carrier-free nanoparticle (DCF-P), showing ultrasmall size of nearly 4.0 nm with a nearly 100% of drug loading capacity. Notably, DCF-P achieves a superhigh photothermal conversion efficiency of 80.5% that is far greater than that of IDIC-4F-loaded nanomicelle DCF-M (57.3%). With the guidance of NIR fluorescence and photoacoustic dual-imaging, it is verified that DCF-P could well achieve tumor-preferential accumulation and retention at 4 h postinjection, and meanwhile shows highly efficient in vivo tumor elimination with good biosafety. This study thus contributes a novel concept for designing ultrasmall nanoparticle characteristics of preferential accumulation in tumors, and also provides a strategy for creating high-performance carrier-free nanomedicine via highly ordered molecular stacking.
Collapse
Affiliation(s)
- Rijie Zheng
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Qi Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Weixia Qing
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Zhonghua Liu
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Qianqian Li
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Yongwei Huang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| |
Collapse
|
80
|
Lu Y, Zhang P, Lin L, Gao X, Zhou Y, Feng J, Zhang H. Ultra-small bimetallic phosphide for dual-modal MRI imaging guided photothermal ablation of tumor. Dalton Trans 2022; 51:4423-4428. [DOI: 10.1039/d1dt03898b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal phosphides have been proved to be the potential theranostic agents of tumor. However, the limitation of single-modal imaging or treatment effect of such materials need to be further improved....
Collapse
|
81
|
Yu Y, Tang D, Liu C, Zhang Q, Tang L, Lu Y, Xiao H. Biodegradable Polymer with Effective Near-Infrared-II Absorption as a Photothermal Agent for Deep Tumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105976. [PMID: 34695252 DOI: 10.1002/adma.202105976] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Photothermal therapy holds great promise for cancer treatment due to its effective tumor ablation and minimal invasiveness. Herein a new class of biodegradable photothermal agents with effective adsorption in both near-infrared-I (NIR-I) and NIR-II windows is reported for deep tumor therapy. As demonstrated in a deep-seated ovarian cancer model, photothermal therapy using 1064 nm irradiation effectively inhibits tumor progression and prolongs survival spans. This work provides a new design of photothermal agents toward a more effective therapy of tumors.
Collapse
Affiliation(s)
- Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dongsheng Tang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physical and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Chaoyong Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qi Zhang
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lin Tang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yunfeng Lu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physical and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
- University of Chinese Academy of Science, Beijing, 100049, China
| |
Collapse
|
82
|
Yang F, Li Y, Li R, Wang X, Cui X, Wei W, Xu Y. Fine-Tuning Macrocycle Cavity to Selectively Bind Guests in Water for Near-Infrared Photothermal Conversion. Org Chem Front 2022. [DOI: 10.1039/d2qo00443g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rational and specific synthesis of the required organic macrocycles to bind the size-matched targeted guests without undesired macrocyclic byproducts remains a great challenge. Herein, based on a new naphthalimide...
Collapse
|
83
|
Fan Z, Zhuang C, Wang S, Zhang Y. Photodynamic and Photothermal Therapy of Hepatocellular Carcinoma. Front Oncol 2021; 11:787780. [PMID: 34950591 PMCID: PMC8688153 DOI: 10.3389/fonc.2021.787780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/22/2021] [Indexed: 01/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver tumor. It is ranked the sixth most common neoplasm and the third most common cause of cancer mortality. At present, the most common treatment for HCC is surgery, but the 5-year recurrence rates are still high. Patients with early stage HCC with few nodules can be treated with resection or radiofrequency ablation (RFA); while for multinodular HCC, transarterial chemoembolization (TACE) has been the first-line treatment. In recent years, based on medical engineering cooperation, nanotechnology has been increasingly applied to the treatment of cancer. Photodynamic therapy and photothermal therapy are effective for cancer. This paper summarizes the latest progress of photodynamic therapy and photothermal therapy for HCC, with the aim of providing new ideas for the treatment of HCC.
Collapse
Affiliation(s)
- Zhe Fan
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.,Department of Central Laboratory, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Chengjun Zhuang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuang Wang
- Department of Endocrinology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yewei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
84
|
Cai Y, Chen X, Si J, Mou X, Dong X. All-in-One Nanomedicine: Multifunctional Single-Component Nanoparticles for Cancer Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103072. [PMID: 34561968 DOI: 10.1002/smll.202103072] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/15/2021] [Indexed: 05/05/2023]
Abstract
The development of cancer diagnostic imaging and treatment is a major concern worldwide. By integrating imaging and therapy into one theranostic nanoplatform for simultaneously detecting tumors, evaluating the targeting ability and timely monitoring therapeutic responses provide more opportunities for precision medicine. Among various theranostic nanosystems, a series of single-component nanoparticles (NPs) have been developed for "all-in-one" theranostics, which presents the unique properties of facile preparation, simple composition, defined structure, high reproducibility, and excellent biocompatibility. Specifically, utilizing single-component NPs for both diagnostics and therapeutics can reduce the possible numerous untoward side effects and risks to the living body. In this review, the recent progress of multifunctional single-component NPs in the applications of cancer theranostics is systematically summarized. Notably, the structure design, categories of NPs, targeted strategies, biomedical applications, potential barriers, challenges, and prospects for the future clinical practice of this rapidly growing field are discussed.
Collapse
Affiliation(s)
- Yu Cai
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Xiaoyi Chen
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Jingxing Si
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| |
Collapse
|
85
|
Zhao S, Yan L, Cao M, Huang L, Yang K, Wu S, Lan M, Niu G, Zhang W. Near-Infrared Light-Triggered Lysosome-Targetable Carbon Dots for Photothermal Therapy of Cancer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53610-53617. [PMID: 34730323 DOI: 10.1021/acsami.1c15926] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photothermal therapy (PTT) has inherent advantages in the treatment of hypoxic tumors due to its optically controlled selectivity on tumor ablation and oxygen-independent nature. The subcellular organelle-targeting capability and photothermal conversion efficiency (PCE) at near-infrared (NIR) wavelength are the key parameters in the assessment of the photothermal agent (PTA). Here, we report that carbon dots (CDs) prepared by the hydrothermal treatment of coronene derivatives show a high PCE of 54.7% at 808 nm, which can be attributed to the narrow band gap and the presence of amounts of continuous energy bands on CDs. Moreover, the vibrations in the layered graphite structures of the CDs also increase the rate of nonradiative transition and thus enhance the PCE. Furthermore, the CDs also possess excellent photostability, biocompatibility, and cell penetration capability and could mainly accumulate in the lysosomes. These experiment results have proved that the CDs are suitable as an efficient NIR light-triggered PTA for efficient PTT against cancer.
Collapse
Affiliation(s)
- Shaojing Zhao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Li Yan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
- Chengdu University, Chengdu 610106, P. R. China
| | - Mingyue Cao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Li Huang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Ke Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Shuilin Wu
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Minhuan Lan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Guangle Niu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, P. R. China
| |
Collapse
|
86
|
Lu B, Zhang Z, Jin D, Yuan X, Wang J, Ding Y, Wang Y, Yao Y. A-DA'D-A fused-ring small molecule-based nanoparticles for combined photothermal and photodynamic therapy of cancer. Chem Commun (Camb) 2021; 57:12020-12023. [PMID: 34713878 DOI: 10.1039/d1cc04629b] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
New nanoparticles (Y6 NPs) based on the A-DA'D-A fused-ring conjugated small molecule Y6 have been prepared for the combined photothermal and photodynamic therapy of cancer. Y6 NPs show excellent light absorption from 300 to 900 nm, a good photothermal conversion efficiency of 57% and reactive oxygen species generation capability. The high photothermal conversion ability and superior photodynamic activity of Y6 NPs endow them with great potential for cancer therapy.
Collapse
Affiliation(s)
- Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Zhecheng Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Danni Jin
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
87
|
Chen H, Zhang H, Xu T, Yu J. An Overview of Micronanoswarms for Biomedical Applications. ACS NANO 2021; 15:15625-15644. [PMID: 34647455 DOI: 10.1021/acsnano.1c07363] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Micronanoswarms have attracted extensive attention worldwide due to their great promise in biomedical applications. The collective behaviors among thousands, or even millions, of tiny active agents indicate immense potential for benefiting the progress of clinical therapeutic and diagnostic methods. In recent years, with the development of smart materials, remote actuation modalities, and automatic control strategies, the motion dexterity, environmental adaptability, and functionality versatility of micronanoswarms are improved. Swarms can thus be designed as dexterous platforms inside living bodies to perform a multitude of tasks related to healthcare. Existing surveys summarize the design, functionalization, and biomedical applications of micronanorobots and the actuation and motion control strategies of micronanoswarms. This review presents the recent progress of micronanoswarms, aiming for biomedical applications. The recent advances on structural design of artificial, living, and hybrid micronanoswarms are summarized, and the biomedical applications that could be tackled using micronanoswarms are introduced, such as targeted drug delivery, hyperthermia, imaging and sensing, and thrombolysis. Moreover, potential challenges and promising trends of future developments are discussed. It is envisioned that the future success of these promising tools will have a significant impact on clinical treatment.
Collapse
Affiliation(s)
- Hui Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
| | - Huimin Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Tiantian Xu
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518126, China
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
| |
Collapse
|
88
|
Gu H, Liu W, Zhen S, Long S, Sun W, Cao J, Zhao X, Du J, Fan J, Peng X. "Internal and External Combined" Nonradiative Decay-Based Nanoagents for Photoacoustic Image-Guided Highly Efficient Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46353-46360. [PMID: 34559529 DOI: 10.1021/acsami.1c14020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rational manipulation of nonradiative decay channels is of crucial significance to improve photothermal conversion efficiency (PCE) and design photothermal agents. We first used the "internal and external combined" nonradiative decay strategy to enhance PCE. Specifically, organic IR-Y6 NPs with strong NIR absorption and high molar extinction coefficient were prepared and characterized. By means of TD-DFT calculations and fs-TA spectroscopy, the dual nonradiative decay channels composed of the free rotor (external strategy) and ultrafast dark excited states (DESs) between S0 and S1 states (internal strategy) were proved, which significantly enhanced PCE, up to 66%. IR-Y6 NPs were applied to a mice tumor model for photoacoustic image-guided photothermal therapy, showing complete tumor ablation ability and good biocompatibility for the normal organs. This work is of significance to deeply understand the nonradiation decay mechanism and rational design of high-performance PTT agents.
Collapse
Affiliation(s)
- Hua Gu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Weijian Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Shijie Zhen
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Jianfang Cao
- School of Chemical Engineering, Dalian University of Technology, Panjin Campus, Panjin 124221, China
| | - Xueze Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
89
|
Wei J, Liu Y, Yu J, Chen L, Luo M, Yang L, Li P, Li S, Zhang XH. Conjugated Polymers: Optical Toolbox for Bioimaging and Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103127. [PMID: 34510742 DOI: 10.1002/smll.202103127] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Conjugated polymers (CPs) are capable of coordinating the electron coupling phenomenon to bestow powerful optoelectronic features. The light-harvesting and light-amplifying properties of CPs are extensively used in figuring out the biomedical issues with special emphasis on accurate diagnosis, effective treatment, and precise theranostics. This review summarizes the recent progress of CP materials in bioimaging, cancer therapeutics, and introduces the design strategies by rationally tuning the optical properties. The recent advances of CPs in bioimaging applications are first summarized and the challenges to clear the future directions of CPs in the respective area are discussed. In the following sections, the focus is on the burgeoning applications of CPs in phototherapy of the tumor, and illustrates the underlying photo-transforming mechanism for further molecular designing. Besides, the recent progress in the CPs-assistant drug therapy, mainly including drug delivery, gene therapeutic, the optical-activated reversion of tumor resistance, and synergistic therapy has also been discussed elaborately. In the end, the potential challenges and future developments of CPs on cancer diagnosis and therapy are also illuminated for the improvement of optical functionalization and the promotion of clinical translation.
Collapse
Affiliation(s)
- Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, P. R. China
| | - Ying Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Jie Yu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Ling Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, P. R. China
| | - Mai Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, P. R. China
| | - Lele Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, P. R. China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
90
|
Gao F, Miao Y, Ma H, Zhang T, Fan H, Zhao L. Boosting the photothermal performance of vacancy-rich MoSe 2-x nanoflowers for photoacoustic imaging guided tumor chemo-photothermal therapy. NANOSCALE 2021; 13:14960-14972. [PMID: 34533549 DOI: 10.1039/d1nr03306a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Due to the relatively low photo-thermal conversion efficiency and poor tumor targeting capacity, phototheranostic nanoagents encounter some challenges in cancer photothermal therapy. To address this problem, in the current research we developed vacancy-rich MoSe2-x (0 ≤ x ≤ 1) nanoflowers (MNFs) with molecular 2-deoxy-D-glucose (2-DG) as the activity target, which could be used as a novel phototheranostic nanoagent in the photoacoustic imaging guided chemo-photothermal synergistic therapy. This selenium-deficient structure endows MNFs with high photothermal conversion efficiency (41.7%) due to the strong localized surface plasmon resonances. Besides, the surface linked 2-DG molecules and the flower-like morphology in the nanoagents promoted the targeting effect (active and passive), thus facilitating the efficient concentration of the nanoagents within the tumor site. Both in vitro and in vivo anti-tumor experiments have demonstrated the high synergistic efficacy promoted by MNFs and complete tumor eradication with lower administration dosages could be achieved. This rational design of nanoparticles not only provided the paradigm of high therapeutic efficacy of a chemo-photothermal protocol for precise cancer theranostics, but also expanded the scope of nanomedical applications using semiconductor-based nanoplatforms through well-defined designing of their microstructures and physiochemical properties.
Collapse
Affiliation(s)
- Fei Gao
- Institute of Integrated Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| | - Yuqing Miao
- Institute of Integrated Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| | - Huijun Ma
- Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Tingbin Zhang
- Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Haiming Fan
- Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Lingyun Zhao
- Key Laboratory of Advanced Materials of Ministry of Education of China, Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
91
|
Li X, Zhang D, Lu G, He T, Wan Y, Tse MK, Ren C, Wang P, Li S, Luo J, Lee CS. Photochemical Synthesis of Nonplanar Small Molecules with Ultrafast Nonradiative Decay for Highly Efficient Phototheranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102799. [PMID: 34319622 DOI: 10.1002/adma.202102799] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/24/2021] [Indexed: 06/13/2023]
Abstract
There has been much recent progress in the development of photothermal agents (PTAs) for biomedical and energy applications. Synthesis of organic PTAs typically involves noble metal catalysts and high temperatures. On the other hand, photochemical synthesis, as an alternative and green chemical technology, has obvious merits such as low cost, energy efficiency, and high yields. However, photochemical reactions have rarely been employed for the synthesis of PTAs. Herein, a facile and high-yield photochemical reaction is exploited for synthesizing nonplanar small molecules (NSMs) containing strong Michler's base donors and a tricyanoquinodimethane acceptor as high-performance PTAs. The synthesized NSMs show interesting photophysical properties including good absorption for photons of over 1000 nm wavelength, high near-infrared extinction coefficients, and excellent photothermal performance. Upon assembling the NSMs into nanoparticles (NSMN), they exhibit good biocompatibility, high photostability, and excellent photothermal conversion efficiency of 75%. Excited-state dynamic studies reveal that the NSMN has ultrafast nonradiative decay after photoexcitation. With these unique properties, the NSMN achieves efficient in vivo photoacoustic imaging and photothermal tumor ablation. This work demonstrates the superior potential of photochemical reactions for the synthesis of high-performance molecular PTAs.
Collapse
Affiliation(s)
- Xiaozhen Li
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Di Zhang
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Guihong Lu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhong Guan Cun, Beijing, 100190, P. R. China
| | - Tingchao He
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Man-Kit Tse
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Can Ren
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Pengfei Wang
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shengliang Li
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Jingdong Luo
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
92
|
Li D, Li Y, Wu Q, Xiao P, Wang L, Wang D, Tang BZ. Add the Finishing Touch: Molecular Engineering of Conjugated Small Molecule for High-Performance AIE Luminogen in Multimodal Phototheranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102044. [PMID: 34342937 DOI: 10.1002/smll.202102044] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Phototheranostics based on luminogens with aggregation-induced emission (AIE) characteristics is captivating increasing research interest nowadays. However, AIE luminogens are inherently featured by inferior absorption coefficients (ε) resulting from the distorted molecular geometry. Besides, molecular innovation of long-wavelength light-excitable AIE luminogens with highly efficient phototheranostic outputs is an appealing yet significantly challenging task. Herein, on the basis of a fused-ring electron acceptor-donator-acceptor (A-D-A) type molecule (IDT) with aggregation-caused quenching (ACQ) properties, molecular engineering smoothly proceeds and successfully yields a novel AIE luminogen (IDT-TPE) via simply modifying tetraphenylethene (TPE) moieties on the sides of IDT backbone. The AIE tendency endows IDT-TPE nanoparticles with enhanced fluorescence brightness and far superior fluorescence imaging performance to IDT nanoparticles for mice tumors. Moreover, IDT-TPE nanoparticles exhibit near-infrared light-excitable features with a high ε of 8.9 × 104 m-1 cm-1 , which is roughly an order of magnitude higher than that of most previously reported AIE luminogens. Combining with their reactive oxygen species generation capability and extremely high photothermal conversion efficiency (59.7%), IDT-TPE nanoparticles actualize unprecedented performance in multimodal phototheranostics. This study thus brings useful insights into the development of versatile phototheranostic materials with great potential for practical cancer theranostics.
Collapse
Affiliation(s)
- Dan Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Youmei Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qian Wu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Peihong Xiao
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lei Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
93
|
Donor strategy for promoting nonradiative decay to achieve an efficient photothermal therapy for treating cancer. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1055-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
94
|
Peng R, Luo Y, Yao C, Cui Q, Wu Q, Li L. Intramolecular Charge Transfer-Based Conjugated Oligomer with Fluorescence, Efficient Photodynamics, and Photothermal Activities. ACS APPLIED BIO MATERIALS 2021; 4:6565-6574. [PMID: 35006900 DOI: 10.1021/acsabm.1c00719] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To develop efficient photoactive agents with satisfactory fluorescence, photodynamic, and photothermal effects is crucial for a phototherapeutic strategy to combat cancer diseases and pathogenic microbes. Herein, a water-soluble donor-acceptor-donor (D-A-D) structured conjugated oligomer was designed and synthesized, consisting of two cyclopenta-dithiophene (CDT) units as the electron donor and boron dipyrromethene (BODIPY) as the electron acceptor. Upon excitation, dual emission was observed for CDT-BODIPY with blue and red fluorescence peaks at 463 nm and at 730 nm, respectively, which was ascribed to intramolecular charge transfer (ICT). Due to the ICT effect, the singlet-to-triplet intersystem crossing rate of CDT-BODIPY was also enhanced, leading to an outstanding photodynamic behavior to produce reactive oxygen species (ROS). Meanwhile, its low bandgap also enabled it a moderate photothermal capability with a conversion efficiency of 33.1%. Taking advantage of its phototriggered activities, this conjugated oligomer exhibited an effective inhibition behavior on the pathogenic growth of Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Candida albicans (C. albicans), which can be guided by dual-wavelength fluorescence imaging. This D-A-D type conjugated oligomer with balanced photophysical characteristics provides a promising strategy to imaging-guided photoactive therapy.
Collapse
Affiliation(s)
- Rui Peng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yufeng Luo
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Chuang Yao
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM) Chongqing, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Qianling Cui
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Qing Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lidong Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
95
|
Boosting Photoacoustic Effect via Intramolecular Motions Amplifying Thermal‐to‐Acoustic Conversion Efficiency for Adaptive Image‐Guided Cancer Surgery. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
96
|
Gao H, Duan X, Jiao D, Zeng Y, Zheng X, Zhang J, Ou H, Qi J, Ding D. Boosting Photoacoustic Effect via Intramolecular Motions Amplifying Thermal-to-Acoustic Conversion Efficiency for Adaptive Image-Guided Cancer Surgery. Angew Chem Int Ed Engl 2021; 60:21047-21055. [PMID: 34309160 DOI: 10.1002/anie.202109048] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 12/19/2022]
Abstract
Photoacoustic (PA) imaging emerges as a promising technique for biomedical applications. The development of new strategies to boost PA conversion without depressing other properties (e.g., fluorescence) is highly desirable for multifunctional imaging but difficult to realize. Here, we report a new phenomenon that active intramolecular motions could promote PA signal by specifically increasing thermal-to-acoustic conversion efficiency. The compound with intense intramolecular motion exhibits amplified PA signal by elevating thermal-to-acoustic conversion, and the fluorescence also increases due to aggregation-induced emission signature. The simultaneously high PA and fluorescence brightness of TPA-TQ3 NPs enable precise image-guided surgery. The preoperative fluorescence and PA imaging are capable of locating orthotopic breast tumor in a high-contrast manner, and the intraoperative fluorescence imaging delineates tiny residual tumors. This study highlights a new design guideline of intramolecular motion amplifying PA effect.
Collapse
Affiliation(s)
- Heqi Gao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xingchen Duan
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Di Jiao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yi Zeng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jingtian Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hanlin Ou
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
97
|
Ma C, Zhang T, Xie Z. Leveraging BODIPY nanomaterials for enhanced tumor photothermal therapy. J Mater Chem B 2021; 9:7318-7327. [PMID: 34355720 DOI: 10.1039/d1tb00855b] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the past ten years, photothermal therapy (PTT) has attracted widespread attention in tumor treatment due to its non-invasiveness and little side effects. PTT utilizes heat produced by photothermal agents under the irradiation of near-infrared light to kill tumor cells. Boron-dipyrromethene (BODIPY), an organic phototherapy agent, has been widely used in tumor phototherapy due to its higher molar extinction coefficient, robust photostability and good phototherapy effect. However, there are some issues in the application of BODIPY for tumor PTT, such as low photothermal conversion efficiency and short absorption wavelength. In this review, we focus on the latest development of BODIPY nanomaterials for overcoming the above problems and enhancing the PTT effect.
Collapse
Affiliation(s)
- Chong Ma
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, Jilin 130033, P. R. China.
| | - Tao Zhang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, Jilin 130033, P. R. China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
| |
Collapse
|
98
|
Chen W, Sun S, Huang G, Ni S, Xu L, Dang L, Phillips DL, Li MD. Unprecedented Improvement of Near-Infrared Photothermal Conversion Efficiency to 87.2% by Ultrafast Non-radiative Decay of Excited States of Self-Assembly Cocrystal. J Phys Chem Lett 2021; 12:5796-5801. [PMID: 34137613 DOI: 10.1021/acs.jpclett.1c01021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Near-infrared (NIR) photothermal conversion is of great interest in many fields. Here, a self-assembly organic cocrystal (N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) and pyromellitic dianhydride (PMDA)) with strong absorption in NIR range is constructed, with widespread absorption (200-1500 nm) and very high NIR photothermal conversion efficiency (87.2%). Essentially, in this cocrystal, a small HOMO-LUMO gap of donor-acceptor pair boosts the absorption ability of this cocrystal in the NIR range. The mixed stacking structure significantly enhances the intermolecular interactions as well as the electron-hole delocalization, suppressing the emission processes, leading to nonradiative decay processes from excited states. Strong intermolecular interactions enable the cocrystal to have dense electronic energy levels, leading to a high proportion (94.4%) vibrational cooling and internal conversion processes with ultrafast excited-state relaxation (0.12 ps), which contributes to high NIR photothermal conversion efficiency. Furthermore, the cocrystal has exhibited capable ability for being an excellent candidate for a NIR photothermal therapy agent.
Collapse
Affiliation(s)
- Wenbin Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Shanshan Sun
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Guanheng Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Shaofei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Liang Xu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - David Lee Phillips
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| |
Collapse
|
99
|
Zhang X, Yang Y, Kang T, Wang J, Yang G, Yang Y, Lin X, Wang L, Li K, Liu J, Ni JS. NIR-II Absorbing Semiconducting Polymer-Triggered Gene-Directed Enzyme Prodrug Therapy for Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100501. [PMID: 33896106 DOI: 10.1002/smll.202100501] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Exploration of facile strategies for precise regulation of target gene expression remains highly challenging in the development of gene therapies. Especially, a stimuli-responsive nanocarrier integrated with ability of noninvasive remote control for treating wide types of cancers is rarely developed. Herein, a NIR-II absorbing semiconducting polymer (PBDTQ) is employed to remotely activate the heat-inducible heat-shock protein 70 (HSP70) promoter under laser irradiation, further realizing regulation of gene-directed enzyme prodrug therapy (GDEPT) for cancer treatment in mild hyperthermia. In this multifunctional nanocomposite, the PBDTQ and double suicide gene plasmid (pSG) based on HSP70 promoter are incorporated into a lipid complex. Upon NIR-II laser excitation, the mild photothermal effect (≈43 °C) generated from PBDTQ can cause the release of pSG and activation of HSP70 promoter, and then upregulate suicide gene expression triggered by the HSP70 promoter which can further convert the nontoxic prodrug into its cytotoxic metabolites. Therefore, this work demonstrates a universal NIR-II laser-triggered GDEPT using semiconducting polymers as the photothermal generator for cancer treatment with minimized collateral damage and nontargeted side effects.
Collapse
Affiliation(s)
- Xun Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yanqing Yang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Tianyi Kang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jun Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guang Yang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuming Yang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Xiangwei Lin
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 58057, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 58057, China
| | - Kai Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jie Liu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Jen-Shyang Ni
- Department of Chemical and Materials Engineering, Photo-Sensitive Material Advanced Research and Technology Center (Photo-SMART), National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
| |
Collapse
|
100
|
Lee K, Wan Y, Li X, Cui X, Li S, Lee C. Recent Progress of Alkyl Radicals Generation-Based Agents for Biomedical Applications. Adv Healthc Mater 2021; 10:e2100055. [PMID: 33738983 DOI: 10.1002/adhm.202100055] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/25/2021] [Indexed: 12/19/2022]
Abstract
Photodynamic therapy (PDT) is extensively explored for anticancer and antibacterial applications. It typically relies on oxygen-dependent generation of reactive oxygen species (ROS) to realize its killing effect. This type of therapy modality shows compromised therapeutic results for treating hypoxic tumors or bacteria-infected wounds. Recently, alkyl radicals attracted much attention as they can be generated from some azo-based initiators only under mild heat stimulus without oxygen participation. Many nanocarriers or hydrogel systems have been developed to load and deliver these radical initiators to lesion sites for theranostics. These systems show good anticancer or antimicrobial effect in hypoxic environment and some of them possess specific imaging abilities providing precise guidance for treatment. This review summarizes the developed materials that aim at treating hypoxic cancer and bacteria-infected wound by using this kind of oxygen-irrelevant alkyl radicals. Based on the carrier components, these agents are divided into three groups: inorganic, organic, as well as inorganic and organic hybrid carrier-based therapeutic systems. The construction of these agents and their specific advantages in biomedical field are highlighted. Finally, the existing problems and future promising development directions are discussed.
Collapse
Affiliation(s)
- Ka‐Wai Lee
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| | - Yingpeng Wan
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| | - Xiaozhen Li
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| | - Xiao Cui
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| | - Shengliang Li
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
- College of Pharmaceutical Sciences Soochow University Suzhou 215123 P. R. China
| | - Chun‐Sing Lee
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| |
Collapse
|