51
|
Zambelli B, Mazzei L, Ciurli S. Intrinsic disorder in the nickel-dependent urease network. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:307-330. [DOI: 10.1016/bs.pmbts.2020.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
52
|
Egawa T, Deng H, Chang E, Callender R. Effect of Protein Isotope Labeling on the Catalytic Mechanism of Lactate Dehydrogenase. J Phys Chem B 2019; 123:9801-9808. [PMID: 31644296 DOI: 10.1021/acs.jpcb.9b08656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigate how isotopic labeling of the enzyme lactate dehydrogenase (LDH) affects its function. LDH is of special interest because there exists a line of residues spanning the protein that are involved in the transition state (TS) of the chemical reaction coordinate (so-called promoting vibration). Hence, studies have been carried out on this protein (as well as others) using labeled protein (so-called heavy protein) along with measurements of single turnover kcat yielding a KIE (=kcatlight/kcatheavy) aimed at understanding the effect of labeling generally and more specifically this line of residues. Here, it is shown that 13C, 15N, and 2H atom labeling of hhLDH (human heart) affects its internal structure which in turn affects its dynamics and catalytic mechanism. Spectral studies employing advanced FTIR difference spectroscopy show that the height of the electronic potential surface of the TS is lowered (probably by ground state destabilization) by labeling. Moreover, laser-induced T-jump relaxation kinetic spectroscopy shows that the microsecond to millisecond nuclear motions internal to the protein are affected by labeling. While the effects are small, they are sufficient to contribute to the observed KIE values as well or even more than promoting vibration effects.
Collapse
Affiliation(s)
- Tsuyoshi Egawa
- Department of Biochemistry , Albert Einstein College of Medicine , Bronx , New York 10461 , United States
| | - Hua Deng
- Department of Biochemistry , Albert Einstein College of Medicine , Bronx , New York 10461 , United States
| | - Eric Chang
- Department of Chemistry and Physical Sciences , Pace University , New York , New York 10038 , United States
| | - Robert Callender
- Department of Biochemistry , Albert Einstein College of Medicine , Bronx , New York 10461 , United States
| |
Collapse
|
53
|
Bastolla U, Dehouck Y. Can Conformational Changes of Proteins Be Represented in Torsion Angle Space? A Study with Rescaled Ridge Regression. J Chem Inf Model 2019; 59:4929-4941. [PMID: 31600071 DOI: 10.1021/acs.jcim.9b00627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Torsion angles are the natural degrees of freedom of protein structures. The ability to determine torsional variations corresponding to observed changes in Cartesian coordinates is highly valuable, notably to investigate the mechanisms of functional conformational changes or to develop computational models of protein dynamics. This issue is far from trivial in practice since the impact of modifying one torsion angle strongly depends on all other angles, and the compounding effects of small variations in bond lengths and valence angles can completely disrupt a protein fold. We demonstrate that naive strategies, such as directly comparing torsion angles between structures without correcting for variations in bond lengths and valence angles or fitting torsional variations without a proper regularization scheme, fail at producing an adequate representation of conformational changes in internal coordinates. In contrast, rescaled ridge regression, a method recently introduced to regularize multidimensional regressions with correlated explanatory variables, is shown to consistently identify a minimal set of torsion angles variations that closely reproduce changes in Cartesian coordinates. This torsional representation of conformational changes is shown to be robust to the choice of experimental structures. It also provides a better agreement with theoretical models of protein dynamics than the Cartesian representation, regarding notably the predominance of low-frequency normal modes in functional motions and the presence, in predicted equilibrium dynamics, of hints of natural selection for specific functional motions. The software is available at https://github.com/ugobas/tnm .
Collapse
Affiliation(s)
- Ugo Bastolla
- Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM Cantoblanco , 28049 Madrid , Spain
| | - Yves Dehouck
- Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM Cantoblanco , 28049 Madrid , Spain
| |
Collapse
|
54
|
Menger FM, Nome F. Interaction vs Preorganization in Enzyme Catalysis. A Dispute That Calls for Resolution. ACS Chem Biol 2019; 14:1386-1392. [PMID: 31150194 DOI: 10.1021/acschembio.8b01029] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This essay focuses on the debate between Warshel et al. (proponents of preorganization) and Menger and Nome (proponents of spatiotemporal effects) over the source of fast enzyme catalysis. The Warshel model proposes that the main function of enzymes is to push the solvent coordinate toward the transition state. Other physical-organic factors (e.g., desolvation, entropic effects, ground state destabilization, etc.) do not, ostensibly, contribute substantially to the rate. Indeed, physical organic chemistry in its entirety was claimed to be "irrelevant to an enzyme's active site". Preorganization had been applied by Warshel to his "flagship" enzyme, ketosteroid isomerase, but we discuss troubling issues with their ensuing analysis. For example, the concepts of "general acid" and "general base", known to play a role in this enzyme's mechanism, are ignored in the text. In contrast, the spatiotemporal theory postulates that enzyme-like rates (i.e., accelerations >108) occur when two functionalities are held rigidly at contact distances less than ca. 3 Å. Numerous diverse organic systems are shown to bear this out experimentally. Many of these are intramolecular systems where distances between functionalities are known. Among them are fast intramolecular systems where strain is actually generated during the reaction, thereby excluding steric compression as a source of the observed enzyme-like rates. Finally, the account ends with structural data from four active sites of enzymes, obtained by others, all showing contact distances between substrate analogues and enzyme. To our knowledge, contact distances less than the diameter of water are found universally among enzymes, and it is to this fact that we attribute their extremely fast rates given the assumption that enzymes, whatever their particular mechanism, obey elementary chemical principles.
Collapse
Affiliation(s)
- Fredric M. Menger
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Faruk Nome
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| |
Collapse
|
55
|
Alonso-Cotchico L, Rodríguez-Guerra Pedregal J, Lledós A, Maréchal JD. The Effect of Cofactor Binding on the Conformational Plasticity of the Biological Receptors in Artificial Metalloenzymes: The Case Study of LmrR. Front Chem 2019; 7:211. [PMID: 31024897 PMCID: PMC6467942 DOI: 10.3389/fchem.2019.00211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/18/2019] [Indexed: 12/21/2022] Open
Abstract
The design of Artificial Metalloenzymes (ArMs), which result from the incorporation of organometallic cofactors into biological structures, has grown steadily in the last two decades and important new-to-Nature reactions have been reached. These type of exercises could greatly benefit from an understanding of the structural impact that the inclusion of organometallic moieties may have on the biological host. To date though, our understanding of this phenomenon is highly partial. This lack of knowledge is one of the elements that condition that first-generation ArMs generally display relatively poor catalytic profiles. In this work, we approach this matter by assessing the dynamics and stability of a series of ArMs resulting from the inclusion, via different anchoring strategies, of a variety of organometallic cofactors into the Lactococcal multidrug resistance regulator (LmrR) protein. To this aim, we coupled standard force field-based techniques such as Protein-Ligand Docking and Molecular Dynamics simulations with a variety of trajectory convergence analyses, capable of assessing both the stability and flexibility of the different systems under study upon the binding of cofactors. Together with the experimental evidence obtained in other studies, we provide an overview on how these changes can affect the catalytic outcomes obtained from the different ArMs. Fundamentally, our results show that the convergence analysis used in this work can assess how the inclusion of synthetic metallic cofactors in proteins can condition different structural modulations of their host. Those conformational modifications are key to the success of the desired catalytic activity and their proper identification can be wisely used to improve the quality and the rate of success of the ArMs.
Collapse
Affiliation(s)
- Lur Alonso-Cotchico
- Departament de Química, Universitat Autònoma de Barcelona, Barcelona, Spain.,Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| | | | - Agustí Lledós
- Departament de Química, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | |
Collapse
|
56
|
Affiliation(s)
- He Yin
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Hui Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Adam Grofe
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
57
|
Dell'Amico L, Zanardi F. Acetaldehyde Silyl Enol Ethers in Enantioselective Mukaiyama Aldol Reactions: Enzyme-Like Organocatalysis in Action. Angew Chem Int Ed Engl 2019; 58:3264-3266. [PMID: 30730598 DOI: 10.1002/anie.201812964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Indexed: 12/29/2022]
Abstract
Touched for the very first time! It is herein highlighted how acetaldehyde silyl enol ethers undergo enantioselective Mukaiyama aldol reaction with aliphatic and aromatic aldehydes. The chemistry relies on the use of the highly efficient and substrate-selective imidodiphosphorimidate catalyst, which displays some of the features of enzymatic catalysis.
Collapse
Affiliation(s)
- Luca Dell'Amico
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Franca Zanardi
- Food and Drug Department, Università di Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| |
Collapse
|
58
|
Dell'Amico L, Zanardi F. Silylenolether des Acetaldehyds in enantioselektiven Mukaiyama-Aldolreaktionen: Enzym-artige Organokatalyse. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Luca Dell'Amico
- Department of Chemical Sciences; Università di Padova; Via Marzolo 1 35131 Padova Italien
| | - Franca Zanardi
- Food and Drug Department; Università di Parma; Parco Area delle Scienze 27/A 43124 Parma Italien
| |
Collapse
|
59
|
Sun Z, Liu Q, Qu G, Feng Y, Reetz MT. Utility of B-Factors in Protein Science: Interpreting Rigidity, Flexibility, and Internal Motion and Engineering Thermostability. Chem Rev 2019; 119:1626-1665. [PMID: 30698416 DOI: 10.1021/acs.chemrev.8b00290] [Citation(s) in RCA: 306] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Chemistry Department, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
60
|
Matyushov DV, Newton MD. Thermodynamics of Reactions Affected by Medium Reorganization. J Phys Chem B 2018; 122:12302-12311. [PMID: 30514079 DOI: 10.1021/acs.jpcb.8b08865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a thermodynamic analysis of the activation barrier for reactions which can be monitored through the difference in the energies of reactants and products defined as the reaction coordinate (electron and atom transfer, enzyme catalysis, etc.). The free-energy surfaces along the reaction coordinate are separated into the enthalpy and entropy surfaces. For the Gaussian statistics of the reaction coordinate, the free-energy surfaces are parabolas, and the entropy surface is an inverted parabola. Its maximum coincides with the transition state for reactions with zero value of the reaction free energy. Maximum entropic depression of the activation barrier, anticipated by the concept of transition-state ensembles, can be achieved for such reactions. From Onsager's reversibility, the entropy of equilibrium fluctuations encodes the entropic component of the activation barrier. The reorganization entropy thus becomes the critical parameter of the theory reducing the problem of activation entropy to the problem of reorganization entropy. Standard solvation theories do not allow reorganization entropy sufficient for the barrier depression. Complex media, characterized by many relaxation processes, need to be involved. Proteins provide several routes for achieving large entropic effects through incomplete (nonergodic) sampling of the complex energy landscape and by facilitating an active role of water in the reaction mechanism.
Collapse
Affiliation(s)
- Dmitry V Matyushov
- Department of Physics and School of Molecular Sciences , Arizona State University , PO Box 871504, Tempe , Arizona 85287 , United States
| | - Marshall D Newton
- Brookhaven National Laboratory , Chemistry Department , Box 5000, Upton , New York 11973-5000 , United States
| |
Collapse
|
61
|
Abstract
Transition state theory teaches that chemically stable mimics of enzymatic transition states will bind tightly to their cognate enzymes. Kinetic isotope effects combined with computational quantum chemistry provides enzymatic transition state information with sufficient fidelity to design transition state analogues. Examples are selected from various stages of drug development to demonstrate the application of transition state theory, inhibitor design, physicochemical characterization of transition state analogues, and their progress in drug development.
Collapse
Affiliation(s)
- Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
62
|
Matyushov DV. Fluctuation relations, effective temperature, and ageing of enzymes: The case of protein electron transfer. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
63
|
Rigling C, Kisunzu JK, Duschmalé J, Häussinger D, Wiesner M, Ebert MO, Wennemers H. Conformational Properties of a Peptidic Catalyst: Insights from NMR Spectroscopic Studies. J Am Chem Soc 2018; 140:10829-10838. [PMID: 30106584 DOI: 10.1021/jacs.8b05459] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Peptides have become valuable as catalysts for a variety of different reactions, but little is known about the conformational properties of peptidic catalysts. We investigated the conformation of the peptide H-dPro-Pro-Glu-NH2, a highly reactive and stereoselective catalyst for conjugate addition reactions, and the corresponding enamine intermediate in solution by NMR spectroscopy and computational methods. The combination of nuclear Overhauser effects (NOEs), residual dipolar couplings (RDCs), J-couplings, and temperature coefficients revealed that the tripeptide adopts a single predominant conformation in its ground state. The structure is a type I β-turn, which gains stabilization from three hydrogen bonds that are cooperatively formed between all functional groups (secondary amine, carboxylic acid, amides) within the tripeptide. In contrast, the conformation of the enamine intermediate is significantly more flexible. The conformational ensemble of the enamine is still dominated by the β-turn, but the backbone and the side chain of the glutamic acid residue are more dynamic. The key to the switch between rigidity and flexibility of the peptidic catalyst is the CO2H group in the side chain of the glutamic acid residue, which acts as a lid that can open and close. As a result, the peptidic catalyst is able to adapt to the structural requirements of the intermediates and transition states of the catalytic cycle. These insights might explain the robustness and high reactivity of the peptidic catalyst, which exceeds that of other secondary amine-based organocatalysts. The data suggest that a balance between rigidity and flexibility, which is reminiscent of the dynamic nature of enzymes, is beneficial for peptidic catalysts and other synthetic catalysts.
Collapse
Affiliation(s)
- Carla Rigling
- Laboratorium für Organische Chemie , ETH Zürich , D-CHAB, Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland
| | - Jessica K Kisunzu
- Laboratorium für Organische Chemie , ETH Zürich , D-CHAB, Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland
| | - Jörg Duschmalé
- Laboratorium für Organische Chemie , ETH Zürich , D-CHAB, Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland.,Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Daniel Häussinger
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Markus Wiesner
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Marc-Olivier Ebert
- Laboratorium für Organische Chemie , ETH Zürich , D-CHAB, Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland
| | - Helma Wennemers
- Laboratorium für Organische Chemie , ETH Zürich , D-CHAB, Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland
| |
Collapse
|
64
|
Duff MR, Borreguero JM, Cuneo MJ, Ramanathan A, He J, Kamath G, Chennubhotla SC, Meilleur F, Howell EE, Herwig KW, Myles DAA, Agarwal PK. Modulating Enzyme Activity by Altering Protein Dynamics with Solvent. Biochemistry 2018; 57:4263-4275. [PMID: 29901984 DOI: 10.1021/acs.biochem.8b00424] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Optimal enzyme activity depends on a number of factors, including structure and dynamics. The role of enzyme structure is well recognized; however, the linkage between protein dynamics and enzyme activity has given rise to a contentious debate. We have developed an approach that uses an aqueous mixture of organic solvent to control the functionally relevant enzyme dynamics (without changing the structure), which in turn modulates the enzyme activity. Using this approach, we predicted that the hydride transfer reaction catalyzed by the enzyme dihydrofolate reductase (DHFR) from Escherichia coli in aqueous mixtures of isopropanol (IPA) with water will decrease by ∼3 fold at 20% (v/v) IPA concentration. Stopped-flow kinetic measurements find that the pH-independent khydride rate decreases by 2.2 fold. X-ray crystallographic enzyme structures show no noticeable differences, while computational studies indicate that the transition state and electrostatic effects were identical for water and mixed solvent conditions; quasi-elastic neutron scattering studies show that the dynamical enzyme motions are suppressed. Our approach provides a unique avenue to modulating enzyme activity through changes in enzyme dynamics. Further it provides vital insights that show the altered motions of DHFR cause significant changes in the enzyme's ability to access its functionally relevant conformational substates, explaining the decreased khydride rate. This approach has important implications for obtaining fundamental insights into the role of rate-limiting dynamics in catalysis and as well as for enzyme engineering.
Collapse
Affiliation(s)
- Michael R Duff
- Biochemistry & Cellular and Molecular Biology Department , University of Tennessee , Knoxville , Tennessee , United States
| | - Jose M Borreguero
- Neutron Data Analysis and Visualization Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - Matthew J Cuneo
- Biology and Soft Matter Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - Arvind Ramanathan
- Computer Science and Engineering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - Junhong He
- Neutron Technologies Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - Ganesh Kamath
- Computer Science and Engineering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - S Chakra Chennubhotla
- Department of Computational and Systems Biology , University of Pittsburgh , Pittsburgh , Pennsylvania , United States
| | - Flora Meilleur
- Biology and Soft Matter Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States.,Molecular and Structural Biochemistry Department , North Carolina State University , Raleigh , North Carolina , United States
| | - Elizabeth E Howell
- Biochemistry & Cellular and Molecular Biology Department , University of Tennessee , Knoxville , Tennessee , United States
| | - Kenneth W Herwig
- Neutron Technologies Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - Dean A A Myles
- Biology and Soft Matter Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - Pratul K Agarwal
- Biochemistry & Cellular and Molecular Biology Department , University of Tennessee , Knoxville , Tennessee , United States.,Computer Science and Engineering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| |
Collapse
|
65
|
Herget K, Frerichs H, Pfitzner F, Tahir MN, Tremel W. Functional Enzyme Mimics for Oxidative Halogenation Reactions that Combat Biofilm Formation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707073. [PMID: 29920781 DOI: 10.1002/adma.201707073] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/18/2018] [Indexed: 06/08/2023]
Abstract
Transition-metal oxide nanoparticles and molecular coordination compounds are highlighted as functional mimics of halogenating enzymes. These enzymes are involved in halometabolite biosynthesis. Their activity is based upon the formation of hypohalous acids from halides and hydrogen peroxide or oxygen, which form bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities in follow-up reactions. Therefore, enzyme mimics and halogenating enzymes may be valuable tools to combat biofilm formation. Here, halogenating enzyme models are briefly described, enzyme mimics are classified according to their catalytic functions, and current knowledge about the settlement chemistry and adhesion of fouling organisms is summarized. Enzyme mimics with the highest potential are showcased. They may find application in antifouling coatings, indoor and outdoor paints, polymer membranes for water desalination, or in aquacultures, but also on surfaces for food packaging, door handles, hand rails, push buttons, keyboards, and other elements made of plastic where biofilms are present. The use of natural compounds, formed in situ with nontoxic and abundant metal oxide enzyme mimics, represents a novel and efficient "green" strategy to emulate and utilize a natural defense system for preventing bacterial colonization and biofilm growth.
Collapse
Affiliation(s)
- Karoline Herget
- Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55128, Mainz, Germany
| | - Hajo Frerichs
- Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55128, Mainz, Germany
| | - Felix Pfitzner
- Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55128, Mainz, Germany
| | - Muhammad Nawaz Tahir
- Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55128, Mainz, Germany
| | - Wolfgang Tremel
- Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55128, Mainz, Germany
| |
Collapse
|
66
|
Pierdominici-Sottile G, Cossio-Pérez R, Da Fonseca I, Kizjakina K, Tanner JJ, Sobrado P. Steric Control of the Rate-Limiting Step of UDP-Galactopyranose Mutase. Biochemistry 2018; 57:3713-3721. [PMID: 29757624 DOI: 10.1021/acs.biochem.8b00323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Galactose is an abundant monosaccharide found exclusively in mammals as galactopyranose (Gal p), the six-membered ring form of this sugar. In contrast, galactose appears in many pathogenic microorganisms as the five-membered ring form, galactofuranose (Gal f). Gal f biosynthesis begins with the conversion of UDP-Gal p to UDP-Gal f catalyzed by the flavoenzyme UDP-galactopyranose mutase (UGM). Because UGM is essential for the survival and proliferation of several pathogens, there is interest in understanding the catalytic mechanism to aid inhibitor development. Herein, we have used kinetic measurements and molecular dynamics simulations to explore the features of UGM that control the rate-limiting step (RLS). We show that UGM from the pathogenic fungus Aspergillus fumigatus also catalyzes the isomerization of UDP-arabinopyranose (UDP-Ara p), which differs from UDP-Gal p by lacking a -CH2-OH substituent at the C5 position of the hexose ring. Unexpectedly, the RLS changed from a chemical step for the natural substrate to product release with UDP-Ara p. This result implicated residues that contact the -CH2-OH of UDP-Gal p in controlling the mechanistic path. The mutation of one of these residues, Trp315, to Ala changed the RLS of the natural substrate to product release, similar to the wild-type enzyme with UDP-Ara p. Molecular dynamics simulations suggest that steric complementarity in the Michaelis complex is responsible for this distinct behavior. These results provide new insight into the UGM mechanism and, more generally, how steric factors in the enzyme active site control the free energy barriers along the reaction path.
Collapse
Affiliation(s)
| | - Rodrigo Cossio-Pérez
- Sci-prot. Departamento de Ciencia y Tecnología , Universidad Nacional de Quilmes , Bernal B1876BXD , Argentina
| | - Isabel Da Fonseca
- Department of Biochemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Karina Kizjakina
- Department of Biochemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - John J Tanner
- Departments of Biochemistry and Chemistry , University of Missouri-Columbia , Columbia , Missouri 65211 , United States
| | - Pablo Sobrado
- Department of Biochemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States
| |
Collapse
|
67
|
Hernández-Meza JM, Sampedro JG. Trehalose Mediated Inhibition of Lactate Dehydrogenase from Rabbit Muscle. The Application of Kramers' Theory in Enzyme Catalysis. J Phys Chem B 2018; 122:4309-4317. [PMID: 29595977 DOI: 10.1021/acs.jpcb.8b01656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lactate dehydrogenase (LDH) catalyzes the reduction of pyruvate to lactate by using NADH. LDH kinetics has been proposed to be dependent on the dynamics of a loop over the active site. Kramers' theory has been useful in the study of enzyme catalysis dependent on large structural dynamics. In this work, LDH kinetics was studied in the presence of trehalose and at different temperatures. In the absence of trehalose, temperature increase raised exponentially the LDH Vmax and revealed a sigmoid transition of Km toward a low-affinity state similar to protein unfolding. Notably, LDH Vmax diminished when in the presence of trehalose, while pyruvate affinity increased and the temperature-mediated binding site transition was hindered. The effect of trehalose on kcat was viscosity dependent as described by Kramers' theory since Vmax correlated inversely with the viscosity of the medium. As a result, activation energy ( Ea) for pyruvate reduction was dramatically increased by trehalose presence. This work provides experimental evidence that the dynamics of a structural component in LDH is essential for catalysis, i.e., the closing of the loop on the active site. While the trehalose mediated-increased of pyruvate affinity is proposed to be due to the compaction and/or increase of structural order at the binding site.
Collapse
Affiliation(s)
- Juan M Hernández-Meza
- Instituto de Física, Universidad Autónoma de San Luis Potosí , Manuel Nava 6, Zona Universitaria , C.P. 78290 San Luis Potosí , SLP , México
| | - José G Sampedro
- Instituto de Física, Universidad Autónoma de San Luis Potosí , Manuel Nava 6, Zona Universitaria , C.P. 78290 San Luis Potosí , SLP , México
| |
Collapse
|
68
|
Direct observation of ultrafast large-scale dynamics of an enzyme under turnover conditions. Proc Natl Acad Sci U S A 2018. [PMID: 29531052 PMCID: PMC5879700 DOI: 10.1073/pnas.1720448115] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The potential effect of conformational dynamics of enzymes on their chemical steps has been intensely debated recently. We use single-molecule FRET experiments on adenylate kinase (AK) to shed new light on this question. AK closes its domains to bring its two substrate close together for reaction. We show that domain closure takes only microseconds to complete, which is two orders of magnitude faster than the chemical reaction. Nevertheless, active-site mutants that reduce the rate of domain closure also reduce the reaction rate, suggesting a connection between the two phenomena. We propose that ultrafast domain closure is used by enzymes as a mechanism to optimize mutual orientation of substrates, a novel mode of coupling between conformational dynamics and catalysis. The functional cycle of many proteins involves large-scale motions of domains and subunits. The relation between conformational dynamics and the chemical steps of enzymes remains under debate. Here we show that in the presence of substrates, domain motions of an enzyme can take place on the microsecond time scale, yet exert influence on the much-slower chemical step. We study the domain closure reaction of the enzyme adenylate kinase from Escherichia coli while in action (i.e., under turnover conditions), using single-molecule FRET spectroscopy. We find that substrate binding increases dramatically domain closing and opening times, making them as short as ∼15 and ∼45 µs, respectively. These large-scale conformational dynamics are likely the fastest measured to date, and are ∼100–200 times faster than the enzymatic turnover rate. Some active-site mutants are shown to fully or partially prevent the substrate-induced increase in domain closure times, while at the same time they also reduce enzymatic activity, establishing a clear connection between the two phenomena, despite their disparate time scales. Based on these surprising observations, we propose a paradigm for the mode of action of enzymes, in which numerous cycles of conformational rearrangement are required to find a mutual orientation of substrates that is optimal for the chemical reaction.
Collapse
|
69
|
Schlee S, Klein T, Schumacher M, Nazet J, Merkl R, Steinhoff HJ, Sterner R. Relationship of Catalysis and Active Site Loop Dynamics in the (βα)8-Barrel Enzyme Indole-3-glycerol Phosphate Synthase. Biochemistry 2018; 57:3265-3277. [DOI: 10.1021/acs.biochem.8b00167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sandra Schlee
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Thomas Klein
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Magdalena Schumacher
- Department of Physics, University of Osnabrück, Barbarastrasse 7, D-49076 Osnabrück, Germany
| | - Julian Nazet
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Rainer Merkl
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Heinz-Jürgen Steinhoff
- Department of Physics, University of Osnabrück, Barbarastrasse 7, D-49076 Osnabrück, Germany
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| |
Collapse
|
70
|
Rueda AJV, Monzon AM, Ardanaz SM, Iglesias LE, Parisi G. Large scale analysis of protein conformational transitions from aqueous to non-aqueous media. BMC Bioinformatics 2018; 19:27. [PMID: 29382320 PMCID: PMC5791380 DOI: 10.1186/s12859-018-2044-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/24/2018] [Indexed: 12/13/2022] Open
Abstract
Background Biocatalysis in organic solvents is nowadays a common practice with a large potential in Biotechnology. Several studies report that proteins which are co-crystallized or soaked in organic solvents preserve their fold integrity showing almost identical arrangements when compared to their aqueous forms. However, it is well established that the catalytic activity of proteins in organic solvents is much lower than in water. In order to explain this diminished activity and to further characterize the behaviour of proteins in non-aqueous environments, we performed a large-scale analysis (1737 proteins) of the conformational diversity of proteins crystallized in aqueous and co-crystallized or soaked in non-aqueous media. Results Using proteins’ experimentally determined conformational diversity taken from CoDNaS database, we found that proteins in non-aqueous media display much lower conformational diversity when compared to the corresponding conformers obtained in water. When conformational diversity is compared between conformers obtained in different non-aqueous media, their structural differences are larger and mostly independent of the presence of cognate ligands. We also found that conformers corresponding to non-aqueous media have larger but less flexible cavities, lower number of disordered regions and lower active-site residue mobility. Conclusions Our results show that non-aqueous media conformers have specific structural features and that they do not adopt extreme conformations found in aqueous media. This makes them clearly different from their corresponding aqueous conformers. Electronic supplementary material The online version of this article (10.1186/s12859-018-2044-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana Julia Velez Rueda
- Departamento de Ciencia y Tecnología, CONICET, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina
| | - Alexander Miguel Monzon
- Departamento de Ciencia y Tecnología, CONICET, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina
| | - Sebastián M Ardanaz
- Laboratorio de Biocatálisis y Biotransformaciones, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina
| | - Luis E Iglesias
- Laboratorio de Biocatálisis y Biotransformaciones, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina
| | - Gustavo Parisi
- Departamento de Ciencia y Tecnología, CONICET, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina.
| |
Collapse
|
71
|
Vaughn MB, Zhang J, Spiro TG, Dyer RB, Klinman JP. Activity-Related Microsecond Dynamics Revealed by Temperature-Jump Förster Resonance Energy Transfer Measurements on Thermophilic Alcohol Dehydrogenase. J Am Chem Soc 2018; 140:900-903. [PMID: 29323490 DOI: 10.1021/jacs.7b12369] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous studies of a thermophilic alcohol dehydrogenase (ht-ADH) demonstrated a range of discontinuous transitions at 30 °C that include catalysis, kinetic isotope effects, protein hydrogen-deuterium exchange rates, and intrinsic fluorescence properties. Using the Förster resonance energy transfer response from a Trp-NADH donor-acceptor pair in T-jump studies of ht-ADH, we now report microsecond protein motions that can be directly related to active site chemistry. Two distinctive transients are observed: a slow, kinetic process lacking a temperature break, together with a faster transient that is only detectable above 30 °C. The latter establishes a link between enzyme activity and microsecond protein motions near the cofactor binding site, in a region distinct from a previously detected protein network that communicates with the substrate binding site. Though evidence of direct dynamical links between microsecond protein motions and active site bond cleavage events is extremely rare, these studies highlight the potential of T-jump measurements to uncover such properties.
Collapse
Affiliation(s)
- Morgan B Vaughn
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | | | - Thomas G Spiro
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - R Brian Dyer
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | | |
Collapse
|
72
|
Grimme S, Schreiner PR. Computerchemie: das Schicksal aktueller Methoden und zukünftige Herausforderungen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709943] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Stefan Grimme
- Mulliken Center for Theoretical Chemistry; Universität Bonn; Beringstraße 4 53115 Bonn Deutschland
| | - Peter R. Schreiner
- Institut für Organische Chemie; Justus-Liebig-Universität; Heinrich-Buff-Ring 17 35392 Gießen Deutschland
| |
Collapse
|
73
|
Grimme S, Schreiner PR. Computational Chemistry: The Fate of Current Methods and Future Challenges. Angew Chem Int Ed Engl 2017; 57:4170-4176. [PMID: 29105929 DOI: 10.1002/anie.201709943] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Indexed: 11/12/2022]
Abstract
"Where do we go from here?" is the underlying question regarding the future (perhaps foreseeable) developments in computational chemistry. Although this young discipline has already permeated practically all of chemistry, it is likely to become even more powerful with the rapid development of computational hard- and software.
Collapse
Affiliation(s)
- Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115, Bonn, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| |
Collapse
|
74
|
Ash PA, Hidalgo R, Vincent KA. Protein Film Infrared Electrochemistry Demonstrated for Study of H2 Oxidation by a [NiFe] Hydrogenase. J Vis Exp 2017:55858. [PMID: 29286464 PMCID: PMC5755520 DOI: 10.3791/55858] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Understanding the chemistry of redox proteins demands methods that provide precise control over redox centers within the protein. The technique of protein film electrochemistry, in which a protein is immobilized on an electrode surface such that the electrode replaces physiological electron donors or acceptors, has provided functional insight into the redox reactions of a range of different proteins. Full chemical understanding requires electrochemical control to be combined with other techniques that can add additional structural and mechanistic insight. Here we demonstrate a technique, protein film infrared electrochemistry, which combines protein film electrochemistry with infrared spectroscopic sampling of redox proteins. The technique uses a multiple-reflection attenuated total reflectance geometry to probe a redox protein immobilized on a high surface area carbon black electrode. Incorporation of this electrode into a flow cell allows solution pH or solute concentrations to be changed during measurements. This is particularly powerful in addressing redox enzymes, where rapid catalytic turnover can be sustained and controlled at the electrode allowing spectroscopic observation of long-lived intermediate species in the catalytic mechanism. We demonstrate the technique with experiments on E. coli hydrogenase 1 under turnover (H2 oxidation) and non-turnover conditions.
Collapse
Affiliation(s)
- Philip A Ash
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory
| | - Ricardo Hidalgo
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory
| | - Kylie A Vincent
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory;
| |
Collapse
|
75
|
Copley SD. Shining a light on enzyme promiscuity. Curr Opin Struct Biol 2017; 47:167-175. [DOI: 10.1016/j.sbi.2017.11.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/14/2017] [Accepted: 11/02/2017] [Indexed: 11/16/2022]
|
76
|
Seyedi S, Matyushov DV. Ergodicity breaking of iron displacement in heme proteins. SOFT MATTER 2017; 13:8188-8201. [PMID: 29082406 DOI: 10.1039/c7sm01561e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a model of the dynamical transition of atomic displacements in proteins. Increased mean-square displacement at higher temperatures is caused by the softening of the force constant for atomic/molecular displacements by electrostatic and van der Waals forces from the protein-water thermal bath. Displacement softening passes through a nonergodic dynamical transition when the relaxation time of the force-force correlation function enters, with increasing temperature, the instrumental observation window. Two crossover temperatures are identified. The lower crossover, presently connected to the glass transition, is related to the dynamical unfreezing of rotations of water molecules within nanodomains polarized by charged surface residues of the protein. The higher crossover temperature, usually assigned to the dynamical transition, marks the onset of water translations. All crossovers are ergodicity breaking transitions depending on the corresponding observation windows. Allowing stretched exponential relaxation of the protein-water thermal bath significantly improves the theory-experiment agreement when applied to solid protein samples studied by Mössbauer spectroscopy.
Collapse
Affiliation(s)
- Salman Seyedi
- Department of Physics, Arizona State University, PO Box 871504, Tempe, Arizona 85287, USA
| | | |
Collapse
|
77
|
Deng H, Vedad J, Desamero RZB, Callender R. Difference FTIR Studies of Substrate Distribution in Triosephosphate Isomerase. J Phys Chem B 2017; 121:10036-10045. [PMID: 28990791 PMCID: PMC5687254 DOI: 10.1021/acs.jpcb.7b08114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Triosephosphate isomerase (TIM) catalyzes the interconversion between dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate (GAP), via an enediol(ate) intermediate. Determination of substrate population distribution in the TIM/substrate reaction mixture at equilibrium and characterization of the substrate-enzyme interactions in the Michaelis complex are ongoing efforts toward the understanding of the TIM reaction mechanism. By using isotope-edited difference Fourier transform infrared studies with unlabeled and 13C-labeled substrates at specific carbon(s), we are able to show that in the reaction mixture at equilibrium the keto DHAP is the dominant species and the populations of aldehyde GAP and enediol(ate) are very low, consistent with the results from previous X-ray structural and 13C NMR studies. Furthermore, within the DHAP side of the Michaelis complex, there is a set of conformational substates that can be characterized by the different C2═O stretch frequencies. The C2═O frequency differences reflect the different degree of the C2═O bond polarization due to hydrogen bonding from active site residues. The C2═O bond polarization has been considered as an important component for substrate activation within the Michaelis complex. We have found that in the enzyme-substrate reaction mixture with TIM from different organisms the number of substates and their population distribution within the DHAP side of the Michaelis complex may be different. These discoveries provide a rare opportunity to probe the interconversion dynamics of these DHAP substates and form the bases for the future studies to determine if the TIM-catalyzed reaction follows a simple linear reaction pathway, as previously believed, or follows parallel reaction pathways, as suggested in another enzyme system that also shows a set of substates in the Michaelis complex.
Collapse
Affiliation(s)
- Hua Deng
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Jayson Vedad
- Programs in Chemistry and Biochemistry, CUNY Graduate Center and Department of Chemistry, York College of CUNY, Jamaica, New York 11451, United States
| | - Ruel Z. B. Desamero
- Programs in Chemistry and Biochemistry, CUNY Graduate Center and Department of Chemistry, York College of CUNY, Jamaica, New York 11451, United States
| | - Robert Callender
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
78
|
Peng HL, Callender R. Mechanistic Analysis of Fluorescence Quenching of Reduced Nicotinamide Adenine Dinucleotide by Oxamate in Lactate Dehydrogenase Ternary Complexes. Photochem Photobiol 2017; 93:1193-1203. [PMID: 28391608 PMCID: PMC5603363 DOI: 10.1111/php.12775] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/11/2017] [Indexed: 11/27/2022]
Abstract
Fluorescence of Reduced Nicotinamide Adenine Dinucleotide (NADH) is extensively employed in studies of oxidoreductases. A substantial amount of static and kinetic work has focused on the binding of pyruvate or substrate mimic oxamate to the binary complex of lactate dehydrogenase (LDH)-NADH where substantial fluorescence quenching is typically observed. However, the quenching mechanism is not well understood limiting structural interpretation. Based on time-dependent density functional theory (TDDFT) computations with cam-B3LYP functional in conjunction with the analysis of previous experimental results, we propose that bound oxamate acts as an electron acceptor in the quenching of fluorescence of NADH in the ternary complex, where a charge transfer (CT) state characterized by excitation from the highest occupied molecular orbital (HOMO) of the nicotinamide moiety of NADH to the lowest unoccupied molecular orbital (LUMO) of oxamate exists close to the locally excited (LE) state involving only the nicotinamide moiety. Efficient quenching in the encounter complex like in pig heart LDH requires that oxamate forms a salt bridge with Arg-171 and hydrogen bonds with His-195, Thr-246 and Asn-140. Further structural rearrangement and loop closure, which also brings about another hydrogen bond between oxamate and Arg-109, will increase the rate of fluorescence quenching as well.
Collapse
Affiliation(s)
- Huo-Lei Peng
- Department of Biochemistry, Albert Einstein College of Medicine, New
York, NY 10461, USA
| | - Robert Callender
- Department of Biochemistry, Albert Einstein College of Medicine, New
York, NY 10461, USA
| |
Collapse
|
79
|
Peón A, Robles A, Blanco B, Convertino M, Thompson P, Hawkins AR, Caflisch A, González-Bello C. Reducing the Flexibility of Type II Dehydroquinase for Inhibition: A Fragment-Based Approach and Molecular Dynamics Study. ChemMedChem 2017; 12:1512-1524. [DOI: 10.1002/cmdc.201700396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/01/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Antonio Peón
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares, CIQUS, and Departamento de Química Orgánica; Universidade de Santiago de Compostela; calle Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| | - Adrián Robles
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares, CIQUS, and Departamento de Química Orgánica; Universidade de Santiago de Compostela; calle Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| | - Beatriz Blanco
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares, CIQUS, and Departamento de Química Orgánica; Universidade de Santiago de Compostela; calle Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| | - Marino Convertino
- Department of Biochemistry; University of Zurich; 8057 Zurich Switzerland
- Current address: Department of Biochemistry and Biophysics; University of North Carolina, School of Medicine; Chapel Hill NC 27599 USA
| | - Paul Thompson
- Institute of Cell and Molecular Biosciences, Medical School; University of Newcastle upon Tyne; Catherine Cookson Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Alastair R. Hawkins
- Institute of Cell and Molecular Biosciences, Medical School; University of Newcastle upon Tyne; Catherine Cookson Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Amedeo Caflisch
- Department of Biochemistry; University of Zurich; 8057 Zurich Switzerland
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares, CIQUS, and Departamento de Química Orgánica; Universidade de Santiago de Compostela; calle Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| |
Collapse
|
80
|
Reddish MJ, Callender R, Dyer RB. Resolution of Submillisecond Kinetics of Multiple Reaction Pathways for Lactate Dehydrogenase. Biophys J 2017; 112:1852-1862. [PMID: 28494956 DOI: 10.1016/j.bpj.2017.03.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 10/19/2022] Open
Abstract
Enzymes are known to exhibit conformational flexibility. An important consequence of this flexibility is that the same enzyme reaction can occur via multiple reaction pathways on a reaction landscape. A model enzyme for the study of reaction landscapes is lactate dehydrogenase. We have previously used temperature-jump (T-jump) methods to demonstrate that the reaction landscape of lactate dehydrogenase branches at multiple points creating pathways with varied reactivity. A limitation of this previous work is that the T-jump method makes only small perturbations to equilibrium and may not report conclusively on all steps in a reaction. Therefore, interpreting T-jump results of lactate dehydrogenase kinetics has required extensive computational modeling work. Rapid mixing methods offer a complementary approach that can access large perturbations from equilibrium; however, traditional enzyme mixing methods like stopped-flow do not allow for the observation of fast protein dynamics. In this report, we apply a microfluidic rapid mixing device with a mixing time of <100 μs that allows us to study these fast dynamics and the catalytic redox step of the enzyme reaction. Additionally, we report UV absorbance and emission T-jump results with improved signal-to-noise ratio at fast times. The combination of mixing and T-jump results yields an unprecedented view of lactate dehydrogenase enzymology, confirming the timescale of substrate-induced conformational change and presence of multiple reaction pathways.
Collapse
Affiliation(s)
| | - Robert Callender
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York.
| | - R Brian Dyer
- Department of Chemistry, Emory University, Atlanta, Georgia
| |
Collapse
|
81
|
Abstract
Enzyme isotope effects, or the kinetic effects of "heavy" enzymes, refer to the effect of isotopically labeled protein residues on the enzyme's activity or physical properties. These effects are increasingly employed in the examination of the possible contributions of protein dynamics to enzyme catalysis. One hypothesis assumed that isotopic substitution of all 12C, 14N, and nonexchangeable 1H by 13C, 15N, and 2H, would slow down protein picosecond to femtosecond dynamics without any effect on the system's electrostatics following the Born-Oppenheimer approximation. It was suggested that reduced reaction rates reported for several "heavy" enzymes accords with that hypothesis. However, numerous deviations from the predictions of that hypothesis were also reported. Current studies also attempt to test the role of individual residues by site-specific labeling or by labeling a pattern of residues on activity. It appears that in several systems the protein's fast dynamics are indeed reduced in "heavy" enzymes in a way that reduces the probability of barrier crossing of its chemical step. Other observations, however, indicated that slower protein dynamics are electrostatically altered in isotopically labeled enzymes. Interestingly, these effects appear to be system dependent, thus it might be premature to suggest a general role of "heavy" enzymes' effect on catalysis.
Collapse
|
82
|
Palombo M, Bonucci A, Etienne E, Ciurli S, Uversky VN, Guigliarelli B, Belle V, Mileo E, Zambelli B. The relationship between folding and activity in UreG, an intrinsically disordered enzyme. Sci Rep 2017; 7:5977. [PMID: 28729736 PMCID: PMC5519622 DOI: 10.1038/s41598-017-06330-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/12/2017] [Indexed: 12/02/2022] Open
Abstract
A growing body of literature on intrinsically disordered proteins (IDPs) led scientists to rethink the structure-function paradigm of protein folding. Enzymes are often considered an exception to the rule of intrinsic disorder (ID), believed to require a unique structure for catalysis. However, recent studies revealed the presence of disorder in several functional native enzymes. In the present work, we address the importance of dynamics for catalysis, by investigating the relationship between folding and activity in Sporosarcina pasteurii UreG (SpUreG), a P-loop GTPase and the first discovered native ID enzyme, involved in the maturation of the nickel-containing urease. The effect of denaturants and osmolytes on protein structure and activity was analyzed using circular dichroism (CD), Site-Directed Spin Labeling (SDSL) coupled to EPR spectroscopy, and enzymatic assays. Our data show that SpUreG needs a "flexibility window" to be catalytically competent, with both too low and too high mobility being detrimental for its activity.
Collapse
Affiliation(s)
- Marta Palombo
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, Bologna, 40127, Italy
| | - Alessio Bonucci
- Aix-Marseille Univ, CNRS, IMM (FR 3479), BIP (UMR 7281), 31 chemin Joseph Aiguier, Marseille, 13402, France
| | - Emilien Etienne
- Aix-Marseille Univ, CNRS, IMM (FR 3479), BIP (UMR 7281), 31 chemin Joseph Aiguier, Marseille, 13402, France
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, Bologna, 40127, Italy
| | - Vladimir N Uversky
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, MDC07, USA
| | - Bruno Guigliarelli
- Aix-Marseille Univ, CNRS, IMM (FR 3479), BIP (UMR 7281), 31 chemin Joseph Aiguier, Marseille, 13402, France
| | - Valérie Belle
- Aix-Marseille Univ, CNRS, IMM (FR 3479), BIP (UMR 7281), 31 chemin Joseph Aiguier, Marseille, 13402, France
| | - Elisabetta Mileo
- Aix-Marseille Univ, CNRS, IMM (FR 3479), BIP (UMR 7281), 31 chemin Joseph Aiguier, Marseille, 13402, France.
| | - Barbara Zambelli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, Bologna, 40127, Italy.
| |
Collapse
|
83
|
Verma R, Mitchell-Koch K. In Silico Studies of Small Molecule Interactions with Enzymes Reveal Aspects of Catalytic Function. Catalysts 2017; 7:212. [PMID: 30464857 PMCID: PMC6241538 DOI: 10.3390/catal7070212] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Small molecules, such as solvent, substrate, and cofactor molecules, are key players in enzyme catalysis. Computational methods are powerful tools for exploring the dynamics and thermodynamics of these small molecules as they participate in or contribute to enzymatic processes. In-depth knowledge of how small molecule interactions and dynamics influence protein conformational dynamics and function is critical for progress in the field of enzyme catalysis. Although numerous computational studies have focused on enzyme-substrate complexes to gain insight into catalytic mechanisms, transition states and reaction rates, the dynamics of solvents, substrates, and cofactors are generally less well studied. Also, solvent dynamics within the biomolecular solvation layer play an important part in enzyme catalysis, but a full understanding of its role is hampered by its complexity. Moreover, passive substrate transport has been identified in certain enzymes, and the underlying principles of molecular recognition are an area of active investigation. Enzymes are highly dynamic entities that undergo different conformational changes, which range from side chain rearrangement of a residue to larger-scale conformational dynamics involving domains. These events may happen nearby or far away from the catalytic site, and may occur on different time scales, yet many are related to biological and catalytic function. Computational studies, primarily molecular dynamics (MD) simulations, provide atomistic-level insight and site-specific information on small molecule interactions, and their role in conformational pre-reorganization and dynamics in enzyme catalysis. The review is focused on MD simulation studies of small molecule interactions and dynamics to characterize and comprehend protein dynamics and function in catalyzed reactions. Experimental and theoretical methods available to complement and expand insight from MD simulations are discussed briefly.
Collapse
Affiliation(s)
- Rajni Verma
- Department of Chemistry, McKinley Hall, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0051, USA
| | - Katie Mitchell-Koch
- Department of Chemistry, McKinley Hall, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0051, USA
| |
Collapse
|
84
|
Khrapunov S, Chang E, Callender RH. Thermodynamic and Structural Adaptation Differences between the Mesophilic and Psychrophilic Lactate Dehydrogenases. Biochemistry 2017. [PMID: 28627164 DOI: 10.1021/acs.biochem.7b00156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The thermodynamics of substrate binding and enzymatic activity of a glycolytic enzyme, lactate dehydrogenase (LDH), from both porcine heart, phLDH (Sus scrofa; a mesophile), and mackerel icefish, cgLDH (Chamapsocephalus gunnari; a psychrophile), were investigated. Using a novel and quite sensitive fluorescence assay that can distinguish protein conformational changes close to and distal from the substrate binding pocket, a reversible global protein structural transition preceding the high-temperature transition (denaturation) was surprisingly found to coincide with a marked change in enzymatic activity for both LDHs. A similar reversible structural transition of the active site structure was observed for phLDH but not for cgLDH. An observed lower substrate binding affinity for cgLDH compared to that for phLDH was accompanied by a larger contribution of entropy to ΔG, which reflects a higher functional plasticity of the psychrophilic cgLDH compared to that of the mesophilic phLDH. The natural osmolyte, trimethylamine N-oxide (TMAO), increases stability and shifts all structural transitions to higher temperatures for both orthologs while simultaneously reducing catalytic activity. The presence of TMAO causes cgLDH to adopt catalytic parameters like those of phLDH in the absence of the osmolyte. Our results are most naturally understood within a model of enzyme dynamics whereby different conformations of the enzyme that have varied catalytic parameters (i.e., binding and catalytic proclivity) and whose population profiles are temperature-dependent and influenced by osmolytes interconvert among themselves. Our results also show that adaptation can be achieved by means other than gene mutations and complements the synchronic evolution of the cellular milieu.
Collapse
Affiliation(s)
- Sergei Khrapunov
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Eric Chang
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Robert H Callender
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
85
|
Affiliation(s)
- Yan Qin
- Key
Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihui Zhu
- Key
Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sanzhong Luo
- Key
Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
86
|
Katava M, Maccarini M, Villain G, Paciaroni A, Sztucki M, Ivanova O, Madern D, Sterpone F. Thermal activation of 'allosteric-like' large-scale motions in a eukaryotic Lactate Dehydrogenase. Sci Rep 2017; 7:41092. [PMID: 28112231 PMCID: PMC5253740 DOI: 10.1038/srep41092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/14/2016] [Indexed: 01/22/2023] Open
Abstract
Conformational changes occurring during the enzymatic turnover are essential for the regulation of protein functionality. Individuating the protein regions involved in these changes and the associated mechanical modes is still a challenge at both experimental and theoretical levels. We present here a detailed investigation of the thermal activation of the functional modes and conformational changes in a eukaryotic Lactate Dehydrogenase enzyme (LDH). Neutron Spin Echo spectroscopy and Molecular Dynamics simulations were used to uncover the characteristic length- and timescales of the LDH nanoscale motions in the apo state. The modes involving the catalytic loop and the mobile region around the binding site are activated at room temperature, and match the allosteric reorganisation of bacterial LDHs. In a temperature window of about 15 degrees, these modes render the protein flexible enough and capable of reorganising the active site toward reactive configurations. On the other hand an excess of thermal excitation leads to the distortion of the protein matrix with a possible anti-catalytic effect. Thus, the temperature activates eukaryotic LDHs via the same conformational changes observed in the allosteric bacterial LDHs. Our investigation provides an extended molecular picture of eukaryotic LDH's conformational landscape that enriches the static view based on crystallographic studies alone.
Collapse
Affiliation(s)
- Marina Katava
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Marco Maccarini
- Univ. Grenoble Alpes - Laboratoire TIMC/IMAG UMR CNRS 5525, Grenoble Pavillon Taillefer Domaine de la merci, 38700 La Tronche, France
| | - Guillaume Villain
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Alessandro Paciaroni
- Dipartimento di Fisica e Geologia, Universitá di Perugia, via A. Pascoli, 06123 Perugia, Italy
| | - Michael Sztucki
- European Syncrotron Radiation Facility, 6, rue Jules Horowitz, 38042, Grenoble, France
| | - Oxana Ivanova
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Garching, Germany
| | - Dominique Madern
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
87
|
|
88
|
Wang Z, Chang EP, Schramm VL. Triple Isotope Effects Support Concerted Hydride and Proton Transfer and Promoting Vibrations in Human Heart Lactate Dehydrogenase. J Am Chem Soc 2016; 138:15004-15010. [PMID: 27766841 DOI: 10.1021/jacs.6b09049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transition path sampling simulations have proposed that human heart lactate dehydrogenase (LDH) employs protein promoting vibrations (PPVs) on the femtosecond (fs) to picosecond (ps) time scale to promote crossing of the chemical barrier. This chemical barrier involves both hydride and proton transfers to pyruvate to form l-lactate, using reduced nicotinamide adenine dinucleotide (NADH) as the cofactor. Here we report experimental evidence from three types of isotope effect experiments that support coupling of the promoting vibrations to barrier crossing and the coincidence of hydride and proton transfer. We prepared the native (light) LDH and a heavy LDH labeled with 13C, 15N, and nonexchangeable 2H (D) to perturb the predicted PPVs. Heavy LDH has slowed chemistry in single turnover experiments, supporting a contribution of PPVs to transition state formation. Both the [4-2H]NADH (NADD) kinetic isotope effect and the D2O solvent isotope effect were increased in dual-label experiments combining both NADD and D2O, a pattern maintained with both light and heavy LDHs. These isotope effects support concerted hydride and proton transfer for both light and heavy LDHs. Although the transition state barrier-crossing probability is reduced in heavy LDH, the concerted mechanism of the hydride-proton transfer reaction is not altered. This study takes advantage of triple isotope effects to resolve the chemical mechanism of LDH and establish the coupling of fs-ps protein dynamics to barrier crossing.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Eric P Chang
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| |
Collapse
|
89
|
Pan X, Schwartz SD. Conformational Heterogeneity in the Michaelis Complex of Lactate Dehydrogenase: An Analysis of Vibrational Spectroscopy Using Markov and Hidden Markov Models. J Phys Chem B 2016; 120:6612-20. [PMID: 27347759 DOI: 10.1021/acs.jpcb.6b05119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate. Recent isotope-edited IR spectroscopy suggests that conformational heterogeneity exists within the Michaelis complex of LDH, and this heterogeneity affects the propensity toward the on-enzyme chemical step for each Michaelis substate. By combining molecular dynamics simulations with Markov and hidden Markov models, we obtained a detailed kinetic network of the substates of the Michaelis complex of LDH. The ensemble-average electric fields exerted onto the vibrational probe were calculated to provide a direct comparison with the vibrational spectroscopy. Structural features of the Michaelis substates were also analyzed on atomistic scales. Our work not only clearly demonstrates the conformational heterogeneity in the Michaelis complex of LDH and its coupling to the reactivities of the substates, but it also suggests a methodology to simultaneously resolve kinetics and structures on atomistic scales, which can be directly compared with the vibrational spectroscopy.
Collapse
Affiliation(s)
- Xiaoliang Pan
- Department of Chemistry and Biochemistry, University of Arizona , 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona , 1306 East University Boulevard, Tucson, Arizona 85721, United States
| |
Collapse
|
90
|
Wei G, Xi W, Nussinov R, Ma B. Protein Ensembles: How Does Nature Harness Thermodynamic Fluctuations for Life? The Diverse Functional Roles of Conformational Ensembles in the Cell. Chem Rev 2016; 116:6516-51. [PMID: 26807783 PMCID: PMC6407618 DOI: 10.1021/acs.chemrev.5b00562] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
All soluble proteins populate conformational ensembles that together constitute the native state. Their fluctuations in water are intrinsic thermodynamic phenomena, and the distributions of the states on the energy landscape are determined by statistical thermodynamics; however, they are optimized to perform their biological functions. In this review we briefly describe advances in free energy landscape studies of protein conformational ensembles. Experimental (nuclear magnetic resonance, small-angle X-ray scattering, single-molecule spectroscopy, and cryo-electron microscopy) and computational (replica-exchange molecular dynamics, metadynamics, and Markov state models) approaches have made great progress in recent years. These address the challenging characterization of the highly flexible and heterogeneous protein ensembles. We focus on structural aspects of protein conformational distributions, from collective motions of single- and multi-domain proteins, intrinsically disordered proteins, to multiprotein complexes. Importantly, we highlight recent studies that illustrate functional adjustment of protein conformational ensembles in the crowded cellular environment. We center on the role of the ensemble in recognition of small- and macro-molecules (protein and RNA/DNA) and emphasize emerging concepts of protein dynamics in enzyme catalysis. Overall, protein ensembles link fundamental physicochemical principles and protein behavior and the cellular network and its regulation.
Collapse
Affiliation(s)
- Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China
| | - Wenhui Xi
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA
- Sackler Inst. of Molecular Medicine Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA
| |
Collapse
|
91
|
Ruiz-Pernía JJ, Behiry E, Luk LYP, Loveridge EJ, Tuñón I, Moliner V, Allemann RK. Minimization of dynamic effects in the evolution of dihydrofolate reductase. Chem Sci 2016; 7:3248-3255. [PMID: 29997817 PMCID: PMC6006479 DOI: 10.1039/c5sc04209g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/02/2016] [Indexed: 11/22/2022] Open
Abstract
Protein isotope labeling is a powerful technique to probe functionally important motions in enzyme catalysis and can be applied to investigate the conformational dynamics of proteins. Previous investigations have indicated that dynamic coupling is detrimental to catalysis by dihydrofolate reductase (DHFR) from the mesophile Escherichia coli (EcDHFR). Comparison of DHFRs from organisms adapted to survive at a wide range of temperatures suggests that dynamic coupling in DHFR catalysis has been minimized during evolution; it arises from reorganizational motions needed to facilitate charge transfer events. Contrary to the behaviour observed for the DHFR from the moderate thermophile Geobacillus stearothermophilus (BsDHFR), the chemical transformation catalyzed by the cold-adapted bacterium Moritella profunda (MpDHFR) is only weakly affected by protein isotope substitutions at low temperatures, but the isotopically substituted enzyme is a substantially inferior catalyst at higher, non-physiological temperatures. QM/MM studies revealed that this behaviour is caused by the enzyme's structural sensitivity to temperature changes, which enhances unfavorable dynamic coupling at higher temperatures by promoting additional recrossing trajectories on the transition state dividing surface. We postulate that these motions are minimized by fine-tuning DHFR flexibility through optimization of the free energy surface of the reaction, such that a nearly static reaction-ready configuration with optimal electrostatic properties is maintained under physiological conditions.
Collapse
Affiliation(s)
- J Javier Ruiz-Pernía
- Departament de Química Física i Analítica , Universitat Jaume I , 12071 Castelló , Spain .
| | - Enas Behiry
- School of Chemistry & Cardiff Catalysis Institute , Cardiff University , Park Place , Cardiff , CF10 3AT , UK .
| | - Louis Y P Luk
- School of Chemistry & Cardiff Catalysis Institute , Cardiff University , Park Place , Cardiff , CF10 3AT , UK .
| | - E Joel Loveridge
- School of Chemistry & Cardiff Catalysis Institute , Cardiff University , Park Place , Cardiff , CF10 3AT , UK .
| | - Iñaki Tuñón
- Departament de Química Física , Universitat de València , 46100 Burjassot , Spain .
| | - Vicent Moliner
- Departament de Química Física i Analítica , Universitat Jaume I , 12071 Castelló , Spain .
| | - Rudolf K Allemann
- School of Chemistry & Cardiff Catalysis Institute , Cardiff University , Park Place , Cardiff , CF10 3AT , UK .
| |
Collapse
|
92
|
Reddish MJ, Vaughn MB, Fu R, Dyer RB. Ligand-Dependent Conformational Dynamics of Dihydrofolate Reductase. Biochemistry 2016; 55:1485-93. [PMID: 26901612 DOI: 10.1021/acs.biochem.5b01364] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzymes are known to change among several conformational states during turnover. The role of such dynamic structural changes in catalysis is not fully understood. The influence of dynamics in catalysis can be inferred, but not proven, by comparison of equilibrium structures of protein variants and protein-ligand complexes. A more direct way to establish connections between protein dynamics and the catalytic cycle is to probe the kinetics of specific protein motions in comparison to progress along the reaction coordinate. We have examined the enzyme model system dihydrofolate reductase (DHFR) from Escherichia coli with tryptophan fluorescence-probed temperature-jump spectroscopy. We aimed to observe the kinetics of the ligand binding and ligand-induced conformational changes of three DHFR complexes to establish the relationship among these catalytic steps. Surprisingly, in all three complexes, the observed kinetics do not match a simple sequential two-step process. Through analysis of the relationship between ligand concentration and observed rate, we conclude that the observed kinetics correspond to the ligand binding step of the reaction and a noncoupled enzyme conformational change. The kinetics of the conformational change vary with the ligand's identity and presence but do not appear to be directly related to progress along the reaction coordinate. These results emphasize the need for kinetic studies of DHFR with highly specific spectroscopic probes to determine which dynamic events are coupled to the catalytic cycle and which are not.
Collapse
Affiliation(s)
- Michael J Reddish
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - Morgan B Vaughn
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - Rong Fu
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - R Brian Dyer
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| |
Collapse
|
93
|
Papaleo E, Saladino G, Lambrughi M, Lindorff-Larsen K, Gervasio FL, Nussinov R. The Role of Protein Loops and Linkers in Conformational Dynamics and Allostery. Chem Rev 2016; 116:6391-423. [DOI: 10.1021/acs.chemrev.5b00623] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Elena Papaleo
- Computational
Biology Laboratory, Unit of Statistics, Bioinformatics and Registry, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
- Structural
Biology and NMR Laboratory, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Giorgio Saladino
- Department
of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Matteo Lambrughi
- Department
of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126 Milan, Italy
| | - Kresten Lindorff-Larsen
- Structural
Biology and NMR Laboratory, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Ruth Nussinov
- Cancer
and Inflammation Program, Leidos Biomedical Research, Inc., Frederick
National Laboratory for Cancer Research, National Cancer Institute Frederick, Frederick, Maryland 21702, United States
- Sackler Institute
of Molecular Medicine, Department of Human Genetics and Molecular
Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
94
|
Peng HL, Egawa T, Chang E, Deng H, Callender R. Mechanism of Thermal Adaptation in the Lactate Dehydrogenases. J Phys Chem B 2015; 119:15256-62. [PMID: 26556099 DOI: 10.1021/acs.jpcb.5b09909] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism of thermal adaptation of enzyme function at the molecular level is poorly understood but is thought to lie within the structure of the protein or its dynamics. Our previous work on pig heart lactate dehydrogenase (phLDH) has determined very high resolution structures of the active site, via isotope edited IR studies, and has characterized its dynamical nature, via laser-induced temperature jump (T-jump) relaxation spectroscopy on the Michaelis complex. These particular probes are quite powerful at getting at the interplay between structure and dynamics in adaptation. Hence, we extend these studies to the psychrophilic protein cgLDH (Champsocephalus gunnari; 0 °C) and the extreme thermophile tmLDH (Thermotoga maritima LDH; 80 °C) for comparison to the mesophile phLDH (38-39 °C). Instead of the native substrate pyruvate, we utilize oxamate as a nonreactive substrate mimic for experimental reasons. Using isotope edited IR spectroscopy, we find small differences in the substate composition that arise from the detailed bonding patterns of oxamate within the active site of the three proteins; however, we find these differences insufficient to explain the mechanism of thermal adaptation. On the other hand, T-jump studies of reduced β-nicotinamide adenine dinucleotide (NADH) emission reveal that the most important parameter affecting thermal adaptation appears to be enzyme control of the specific kinetics and dynamics of protein motions that lie along the catalytic pathway. The relaxation rate of the motions scale as cgLDH > phLDH > tmLDH in a way that faithfully matches kcat of the three isozymes.
Collapse
Affiliation(s)
- Huo-Lei Peng
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Tsuyoshi Egawa
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Eric Chang
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Hua Deng
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Robert Callender
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| |
Collapse
|
95
|
Golovin YI, Gribanovsky SL, Golovin DY, Klyachko NL, Majouga AG, Master АM, Sokolsky M, Kabanov AV. Towards nanomedicines of the future: Remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields. J Control Release 2015; 219:43-60. [PMID: 26407671 DOI: 10.1016/j.jconrel.2015.09.038] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/19/2015] [Indexed: 11/12/2022]
Abstract
The paper describes the concept of magneto-mechanical actuation of single-domain magnetic nanoparticles (MNPs) in super-low and low frequency alternating magnetic fields (AMFs) and its possible use for remote control of nanomedicines and drug delivery systems. The applications of this approach for remote actuation of drug release as well as effects on biomacromolecules, biomembranes, subcellular structures and cells are discussed in comparison to conventional strategies employing magnetic hyperthermia in a radio frequency (RF) AMF. Several quantitative models describing interaction of functionalized MNPs with single macromolecules, lipid membranes, and proteins (e.g. cell membrane receptors, ion channels) are presented. The optimal characteristics of the MNPs and an AMF for effective magneto-mechanical actuation of single molecule responses in biological and bio-inspired systems are discussed. Altogether, the described studies and phenomena offer opportunities for the development of novel therapeutics both alone and in combination with magnetic hyperthermia.
Collapse
Affiliation(s)
- Yuri I Golovin
- Nanocenter, G. R. Derzhavin Tambov State University, Tambov 392000, Russian Federation; Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M. V. Lomonosov Moscow State University, Moscow, 117234, Russian Federation
| | - Sergey L Gribanovsky
- Nanocenter, G. R. Derzhavin Tambov State University, Tambov 392000, Russian Federation
| | - Dmitry Y Golovin
- Nanocenter, G. R. Derzhavin Tambov State University, Tambov 392000, Russian Federation
| | - Natalia L Klyachko
- Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M. V. Lomonosov Moscow State University, Moscow, 117234, Russian Federation; Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Alexander G Majouga
- Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M. V. Lomonosov Moscow State University, Moscow, 117234, Russian Federation; National University of Science and Technology MISiS, Leninskiy pr., 9, Moscow 119049, Russian Federation
| | - Аlyssa M Master
- Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Marina Sokolsky
- Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Alexander V Kabanov
- Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M. V. Lomonosov Moscow State University, Moscow, 117234, Russian Federation; Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA.
| |
Collapse
|
96
|
Ribeiro AJM, Santos-Martins D, Russo N, Ramos MJ, Fernandes PA. Enzymatic Flexibility and Reaction Rate: A QM/MM Study of HIV-1 Protease. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00759] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- António J. M. Ribeiro
- UCBIO,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
- Dipartimento
di Chimica, Università della Calabria, 87036 Arcavacata
di Rende, Italia
| | - Diogo Santos-Martins
- UCBIO,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Nino Russo
- Dipartimento
di Chimica, Università della Calabria, 87036 Arcavacata
di Rende, Italia
| | - Maria J. Ramos
- UCBIO,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- UCBIO,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
97
|
Roberts G. The role of protein dynamics in allosteric effects-introduction. Biophys Rev 2015; 7:161-163. [PMID: 28510175 DOI: 10.1007/s12551-015-0174-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022] Open
Affiliation(s)
- Gordon Roberts
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN, UK.
| |
Collapse
|
98
|
Gindt YM, Messyasz A, Jumbo PI. Binding of Substrate Locks the Electrochemistry of CRY-DASH into DNA Repair. Biochemistry 2015; 54:2802-5. [PMID: 25910181 DOI: 10.1021/acs.biochem.5b00307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
VcCry1, a member of the CRY-DASH family, may serve two diverse roles in vivo, including blue-light signaling and repair of UV-damaged DNA. We have discovered that the electrochemistry of the flavin adenine dinucleotide cofactor of VcCry1 is locked to cycle only between the hydroquinone and neutral semiquinone states when UV-damaged DNA is present. Other potential substrates, including undamaged DNA and ATP, have no discernible effect on the electrochemistry, and the kinetics of the reduction is unaffected by damaged DNA. Binding of the damaged DNA substrate determines the role of the protein and prevents the presumed photochemistry required for blue-light signaling.
Collapse
Affiliation(s)
- Yvonne M Gindt
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Adriana Messyasz
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Pamela I Jumbo
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| |
Collapse
|