51
|
DeStefano JJ, Nair GR. Novel aptamer inhibitors of human immunodeficiency virus reverse transcriptase. Oligonucleotides 2008; 18:133-44. [PMID: 18637731 DOI: 10.1089/oli.2008.0103] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Primer-template-based double-stranded nucleic acids capable of binding human immunodeficiency virus reverse transcriptase (HIV-RT) with high affinity were used as starting material to develop small single-stranded loop-back DNA aptamers. The original primer-templates were selected using a SELEX (Systematic Evolution of Ligands by EXponential enrichment) approach and consisted of 46- and 50-nt primer and template strands, respectively. The major determinant of the approximately 10-fold tighter binding in selected sequences relative to control primer-templates was a run of 6.8 G residues at the 3' primer end. Sixty, thirty-seven, twenty-seven, and twenty-two nucleotide loop-back single-stranded versions that retained the base pairs near the 3' primer terminus were constructed. Both the 60- and 37-nt versions retained high affinity for RT with K(d) values of approximately 0.44 nM and 0.66 nM, respectively. Random sequence primer-templates of the same length had K(d)s of approximately 20 nM and approximately 161 nM. The shorter 27- and 22-nt aptamers bound with reduced affinity. Several modifications of the 37-nt aptamer were also tested including changes to the terminal 3' G nucleotide and internal bases in the G run, replacement of specific nucleotides with phosphothioates, and alterations to the 5' overhang. Optimal binding required a 4- to 5-nt overhang, and internal changes within the G run had a pronounced negative effect on binding. Phosphothioate nucleotides or the presence of a 3' dideoxy G residue did not alter affinity. The 37-nt aptamer was a potent inhibitor of HIV-RT in vitro and functioned by blocking binding of other primer-templates.
Collapse
Affiliation(s)
- Jeffrey J DeStefano
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
52
|
Kulbachinskiy AV. Methods for selection of aptamers to protein targets. BIOCHEMISTRY (MOSCOW) 2008; 72:1505-18. [PMID: 18282139 DOI: 10.1134/s000629790713007x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aptamers are synthetic single-stranded RNA or DNA molecules capable of specific binding to other target molecules. In this review, the main aptamer properties are considered and methods for selection of aptamers against various protein targets are described. Special attention is given to the methods for directed selection of aptamers, which allow one to obtain ligands with specified properties.
Collapse
Affiliation(s)
- A V Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, pl. Kurchatova 2, 123182 Moscow, Russia.
| |
Collapse
|
53
|
Jochmans D. Novel HIV-1 reverse transcriptase inhibitors. Virus Res 2008; 134:171-85. [PMID: 18308412 DOI: 10.1016/j.virusres.2008.01.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 01/07/2008] [Accepted: 01/08/2008] [Indexed: 10/22/2022]
Abstract
HIV-1 reverse transcriptase (RT) was the first viral enzyme to be targeted by anti-HIV drugs. Despite 20 years of experience with RT inhibitors, new ways to inhibit this target and address viral resistance continue to emerge. In both licensed RT inhibitor classes, nucleosides (NRTIs) and non-nucleosides (NNRTIs), compounds with better resistance, pharmacokinetic and toxicity profiles are being developed. Second-generation NNRTIs active against HIV-1 strains resistant to current NNRTIs are being clinically evaluated. Beyond the classical NRTIs, nucleoside analogs that are no longer obligate chain terminators but nevertheless impede reverse transcription or even lead to viral ablation after several replication cycles, are being studied. RT inhibitor research has also yielded additional mechanisms to block RT. Driven by new insights the RNase H field remains in evolution. In addition, the binding of both substrates (deoxynucleotide and primer/template) to RT is now subject to competition by novel inhibitors. Further development of aptamers bears promise for gene therapy but perhaps more importantly, reveals additional new platforms for the development of small-molecule RT inhibitors. This promising research provides much optimism that RT inhibitors will continue to evolve with subsequent clinical benefit.
Collapse
Affiliation(s)
- Dirk Jochmans
- Tibotec BVBA, Gen De Wittelaan L 11B 3, 2800 Mechelen, Belgium.
| |
Collapse
|
54
|
Allali-Hassani A, Pereira MP, Navani NK, Brown ED, Li Y. Isolation of DNA aptamers for CDP-ribitol synthase, and characterization of their inhibitory and structural properties. Chembiochem 2008; 8:2052-7. [PMID: 17929340 DOI: 10.1002/cbic.200700257] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Abdellah Allali-Hassani
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | | | | | | | | |
Collapse
|
55
|
Zichi D, Eaton B, Singer B, Gold L. Proteomics and diagnostics: Let's Get Specific, again. Curr Opin Chem Biol 2008; 12:78-85. [DOI: 10.1016/j.cbpa.2008.01.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 01/15/2008] [Indexed: 12/21/2022]
|
56
|
Yamazaki S, Tan L, Mayer G, Hartig JS, Song JN, Reuter S, Restle T, Laufer SD, Grohmann D, Kräusslich HG, Bajorath J, Famulok M. Aptamer displacement identifies alternative small-molecule target sites that escape viral resistance. ACTA ACUST UNITED AC 2007; 14:804-12. [PMID: 17656317 DOI: 10.1016/j.chembiol.2007.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 05/10/2007] [Accepted: 06/05/2007] [Indexed: 10/23/2022]
Abstract
Aptamers targeting reverse transcriptase (RT) from HIV-1 inhibit viral replication in vitro, presumably by competing with binding of the primer/template complex. This site is not targeted by the currently available small-molecule anti-HIV-1 RT inhibitors. We have identified SY-3E4, a small-molecule inhibitor of HIV-1 RT, by applying a screening assay that utilizes a reporter-ribozyme regulated by the anti-HIV-1 RT aptamer. SY-3E4 displaces the aptamer from the protein, selectively inhibits DNA-dependent, but not RNA-dependent, polymerase activity, and inhibits the replication of both the wild-type virus and a multidrug-resistant strain. Analysis of available structural data of HIV-1 and HIV-2 RTs rationalizes many of the observed characteristics of the inhibitory profiles of SY-3E4 and the aptamer and suggests a previously not considered region in these RTs as a target for antiviral therapy. Our study reveals unexplored ways for rapidly identifying alternative small-molecule target sites in proteins and illustrates strategies for overcoming resistance-conferring mutations with small molecules.
Collapse
Affiliation(s)
- Satoko Yamazaki
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institute for Organic Chemistry & Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Wenck K, Koch S, Renner C, Sun W, Schrader T. A Noncovalent Switch for Lysozyme. J Am Chem Soc 2007; 129:16015-9. [DOI: 10.1021/ja075507p] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kirstin Wenck
- Contribution from the Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strausse, 35032 Marburg, Germany, and the Institute of Organic Chemistry, Universität Duisburg-Essen, Universitätsstrausse 5, 45117 Essen, Germany
| | - Sebastian Koch
- Contribution from the Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strausse, 35032 Marburg, Germany, and the Institute of Organic Chemistry, Universität Duisburg-Essen, Universitätsstrausse 5, 45117 Essen, Germany
| | - Christian Renner
- Contribution from the Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strausse, 35032 Marburg, Germany, and the Institute of Organic Chemistry, Universität Duisburg-Essen, Universitätsstrausse 5, 45117 Essen, Germany
| | - Wei Sun
- Contribution from the Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strausse, 35032 Marburg, Germany, and the Institute of Organic Chemistry, Universität Duisburg-Essen, Universitätsstrausse 5, 45117 Essen, Germany
| | - Thomas Schrader
- Contribution from the Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strausse, 35032 Marburg, Germany, and the Institute of Organic Chemistry, Universität Duisburg-Essen, Universitätsstrausse 5, 45117 Essen, Germany
| |
Collapse
|
58
|
Abstract
The high affinity and specificity of aptamers make them ideal reagents for a wide range of analytical applications. It is not surprising that they are finding application in microfluidics as well. CE has proven to be an efficient technique for isolating aptamers. Aptamers have been used as affinity reagents in CE assays. Aptamer-based chromatography stationary phases have demonstrated unique selectivities. Possibly the application that holds the highest potential is aptamer microarrays for screening proteomic samples.
Collapse
|
59
|
Capillary electrophoresis as a tool for screening aptamer with high affinity and high specificity to ricin. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11458-007-0082-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
60
|
|
61
|
Kissel JD, Held DM, Hardy RW, Burke DH. Active site binding and sequence requirements for inhibition of HIV-1 reverse transcriptase by the RT1 family of single-stranded DNA aptamers. Nucleic Acids Res 2007; 35:5039-50. [PMID: 17644816 PMCID: PMC1976467 DOI: 10.1093/nar/gkm420] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nucleic acid aptamers can potentially be developed as broad-spectrum antiviral agents. Single-stranded DNA (ssDNA) aptamer RT1t49 inhibits reverse transcriptases (RT) from HIV-1 and diverse lentiviral subtypes with low nanomolar values of Kd and IC50. To dissect the structural requirements for inhibition, RT-catalyzed DNA polymerization was measured in the presence of RT1t49 variants. Three structural domains were found to be essential for RT inhibition by RT1t49: a 5′ stem (stem I), a connector and a 3′ stem (stem II) capable of forming multiple secondary structures. Stem I tolerates considerable sequence plasticity, suggesting that it is recognized by RT more by structure than by sequence-specific contacts. Truncating five nucleotides from the 3′ end prevents formation of the most stable stem II structure, yet has little effect on IC50 across diverse HIV-1, HIV-2 and SIVCPZ RT. When bound to wild-type RT or an RNase H active site mutant, site-specifically generated hydroxyl radicals cleave after nucleotide A32. Cleavage is eliminated by either of two polymerase (pol)-active site mutants, strongly suggesting that A32 lies within the RT pol-active site. These data suggest a model of ssDNA aptamer–RT interactions and provide an improved molecular understanding of a potent, broad-spectrum ssDNA aptamer.
Collapse
Affiliation(s)
- Jay D. Kissel
- Department of Biology, Indiana University, Bloomington, IN 47405, Biosciences Division, SRI International, Menlo Park, CA 94025 and Department of Molecular Microbiology & Immunology and Department of Biochemistry, 471h Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Daniel M. Held
- Department of Biology, Indiana University, Bloomington, IN 47405, Biosciences Division, SRI International, Menlo Park, CA 94025 and Department of Molecular Microbiology & Immunology and Department of Biochemistry, 471h Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Richard W. Hardy
- Department of Biology, Indiana University, Bloomington, IN 47405, Biosciences Division, SRI International, Menlo Park, CA 94025 and Department of Molecular Microbiology & Immunology and Department of Biochemistry, 471h Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Donald H. Burke
- Department of Biology, Indiana University, Bloomington, IN 47405, Biosciences Division, SRI International, Menlo Park, CA 94025 and Department of Molecular Microbiology & Immunology and Department of Biochemistry, 471h Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
- *To whom correspondence should be addressed.(573) 884 1316(573) 884 9676
| |
Collapse
|
62
|
Stoltenburg R, Reinemann C, Strehlitz B. SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands. ACTA ACUST UNITED AC 2007; 24:381-403. [PMID: 17627883 DOI: 10.1016/j.bioeng.2007.06.001] [Citation(s) in RCA: 937] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 05/31/2007] [Accepted: 06/01/2007] [Indexed: 02/07/2023]
Abstract
SELEX stands for systematic evolution of ligands by exponential enrichment. This method, described primarily in 1990 [Ellington, A.D., Szostak, J.W., 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818-822; Tuerk, C., Gold, L., 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505-510] aims at the development of aptamers, which are oligonucleotides (RNA or ssDNA) binding to their target with high selectivity and sensitivity because of their three-dimensional shape. Aptamers are all new ligands with a high affinity for considerably differing molecules ranging from large targets as proteins over peptides, complex molecules to drugs and organic small molecules or even metal ions. Aptamers are widely used, including medical and pharmaceutical basic research, drug development, diagnosis, and therapy. Analytical and separation tools bearing aptamers as molecular recognition and binding elements are another big field of application. Moreover, aptamers are used for the investigation of binding phenomena in proteomics. The SELEX method was modified over the years in different ways to become more efficient and less time consuming, to reach higher affinities of the aptamers selected and for automation of the process. This review is focused on the development of aptamers by use of SELEX and gives an overview about technologies, advantages, limitations, and applications of aptamers.
Collapse
Affiliation(s)
- Regina Stoltenburg
- UFZ, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | | | | |
Collapse
|
63
|
Zhang H, Wang Z, Li XF, Le XC. Ultrasensitive detection of proteins by amplification of affinity aptamers. Angew Chem Int Ed Engl 2007; 45:1576-80. [PMID: 16440380 DOI: 10.1002/anie.200503345] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hongquan Zhang
- Department of Public Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
64
|
Kissel JD, Held DM, Hardy RW, Burke DH. Single-stranded DNA aptamer RT1t49 inhibits RT polymerase and RNase H functions of HIV type 1, HIV type 2, and SIVCPZ RTs. AIDS Res Hum Retroviruses 2007; 23:699-708. [PMID: 17530996 DOI: 10.1089/aid.2006.0262] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Natural and selected resistance of HIV-1 to current anti-HIV drugs continues to pose serious problems to the development of HIV-1 antivirals. The viral reverse transcriptase (RT) is a proven therapeutic target. Single-stranded RNA and DNA (ssRNA and ssDNA) aptamers have been selected that specifically and potently inhibit RT function. In particular, the ssDNA aptamer RT1t49 was previously selected to recognize the RT from a subtype B strain of HIV-1 and binds with a reported K(d) of 4 nM. In the present work, we show that RT1t49 inhibits recombinant RT cloned from diverse branches of the primate lentiviral family. Aptamer concentrations required for half-maximal inhibition of all HIV-1, HIV-2, and SIV(CPZ) RTs assayed were in the low-to mid-nanomolar range for both polymerase and RNase H activities. Using pre-steady-state and order-of-addition kinetic analyses, we also established that this ssDNA aptamer competes with primer-template for access to RT, and that addition of a nucleoside analog RT inhibitor (NRTI) to the in vitro reaction enhanced the overall effectiveness of both drugs, while nonnucleoside analog RT inhibitors (NNRTIs) exhibited simple additivity. This is the first demonstration of universal inhibition of HIV and SIV(cpz) RTs by a nucleic acid aptamer and supports previous reports suggesting that resistance to RT1t49 may be exceptionally infrequent.
Collapse
Affiliation(s)
- Jay D Kissel
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | |
Collapse
|
65
|
Block P, Weskamp N, Wolf A, Klebe G. Strategies to search and design stabilizers of protein-protein interactions: A feasibility study. Proteins 2007; 68:170-86. [PMID: 17393392 DOI: 10.1002/prot.21296] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Since protein-protein interactions play a pivotal role in the communication on the molecular level in virtually every biological system and process, the search and design for modulators of such interactions is of utmost importance. In recent years many inhibitors for specific protein-protein interactions have been developed, however, in only a few cases, small and druglike molecules are able to interfere in the complex formation of proteins. On the other hand, there are several small molecules known to modulate protein-protein interactions by means of stabilizing an already assembled complex. To achieve this goal, a ligand is binding to a pocket, which is located rim-exposed at the interface of the interacting proteins, for example as the phytotoxin Fusicoccin, which stabilizes the interaction of plant H+-ATPase and 14-3-3 protein by nearly a factor of 100. To suggest alternative leads, we performed a virtual screening campaign to discover new molecules putatively stabilizing this complex. Furthermore, we screen a dataset of 198 transient recognition protein-protein complexes for cavities, which are located rim-exposed at their interfaces. We provide evidence for high similarity between such rim-exposed cavities and usual ligands accommodating active sites of enzymes. This analysis suggests that rim-exposed cavities at protein-protein interfaces are druggable binding sites. Therefore, the principle of stabilizing protein-protein interactions seems to be a promising alternative to the approach of the competitive inhibition of such interactions by small molecules.
Collapse
Affiliation(s)
- Peter Block
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, D-35052 Marburg, Germany
| | | | | | | |
Collapse
|
66
|
Abstract
Aptamers are artificial nucleic acid ligands that can be generated in vitro against a wide range of molecules, including the gene products of viruses. Aptamers are isolated from complex libraries of synthetic nucleic acids by an iterative, cell-free process that involves repetitively reducing the complexity of the library by partitioning on the basis of selective binding to the target molecule, followed by reamplification. For virologists, aptamers have potential uses as tools to help to analyse the molecular biology of virus replication, as a complement to the more familiar monoclonal antibodies. They also have potential applications as diagnostic biosensors and in the development of antiviral agents. In recent years, these two promising avenues have been explored increasingly by virologists; here, the progress that has been made is reviewed.
Collapse
Affiliation(s)
- William James
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX2 3RE, UK
| |
Collapse
|
67
|
Abstract
Protein recognition by synthetic molecules is a challenging endeavour, since these materials must bind to a large relatively flat surface domain and recognize a unique distribution of amino acid residues of varying charge, size and shape. The most promising routes involve specific metal coordination, epitope-docking on miniature proteins, aptamer selection, nonnatural peptide isosteres, functionalized platforms, secondary structure mimetics, molecular imprinting and receptors embedded in lipid layers.
Collapse
Affiliation(s)
- Thomas Schrader
- University Duisburg-Essen, Department of Chemistry, Universitätsstr. 5, 45117, Essen, Germany
| | | |
Collapse
|
68
|
Mescalchin A, Wünsche W, Laufer SD, Grohmann D, Restle T, Sczakiel G. Specific binding of a hexanucleotide to HIV-1 reverse transcriptase: a novel class of bioactive molecules. Nucleic Acids Res 2006; 34:5631-7. [PMID: 17038335 PMCID: PMC1635251 DOI: 10.1093/nar/gkl533] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Short oligonucleotides below 8–10 nt in length adopt relatively simple structures. Accordingly, they represent interesting and so far unexplored lead compounds as molecular tools and, potentially, for drug development as a rational improvement of efficacy seem to be less complex than for other classes of longer oligomeric nucleic acid. As a ‘proof of concept’, we describe the highly specific binding of the hexanucleotide UCGUGU (Hex-S3) to human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) as a model target. Ultraviolet (UV) cross-linking studies and competition experiments with primer/template substrates and a RT-directed aptamer suggest site-specific binding of Hex-S3 to the large subunit (p66) of the viral enzyme. The affinity of 5.3 μM is related to hexanucleotide-specific suppression of HIV-1 replication in human cells by up to three orders of magnitude indicating that Hex-S3 exerts specific and biologically relevant activity. Experimental evidence described here further suggests a systematic hexamer array-based search for new tools for molecular biology and novel lead compounds in nucleic acid-based drug development.
Collapse
Affiliation(s)
- Alessandra Mescalchin
- Kompetenzzentrum Drug Design and Target MonitoringMaria-Göppert-Strasse 1, D-23538 Lübeck, Germany
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein and ZMSB, Universität zu LübeckRatzeburger Allee 160, D-23538 Lübeck, Germany
| | - Winfried Wünsche
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein and ZMSB, Universität zu LübeckRatzeburger Allee 160, D-23538 Lübeck, Germany
| | - Sandra D. Laufer
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein and ZMSB, Universität zu LübeckRatzeburger Allee 160, D-23538 Lübeck, Germany
| | - Dina Grohmann
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein and ZMSB, Universität zu LübeckRatzeburger Allee 160, D-23538 Lübeck, Germany
| | - Tobias Restle
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein and ZMSB, Universität zu LübeckRatzeburger Allee 160, D-23538 Lübeck, Germany
| | - Georg Sczakiel
- Kompetenzzentrum Drug Design and Target MonitoringMaria-Göppert-Strasse 1, D-23538 Lübeck, Germany
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein and ZMSB, Universität zu LübeckRatzeburger Allee 160, D-23538 Lübeck, Germany
- To whom correspondence should be addressed. Tel: +49 451 500 2731l; Fax: +49 451 500 2729;
| |
Collapse
|
69
|
Yin H, Hamilton AD. Strategies for targeting protein-protein interactions with synthetic agents. Angew Chem Int Ed Engl 2006; 44:4130-63. [PMID: 15954154 DOI: 10.1002/anie.200461786] [Citation(s) in RCA: 375] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The development of small-molecule modulators of protein-protein interactions is a formidable goal, albeit one that possesses significant potential for the discovery of novel therapeutics. Despite the daunting challenges, a variety of examples exists for the inhibition of two large protein partners with low-molecular-weight ligands. This review discusses the strategies for targeting protein-protein interactions and the state of the art in the rational design of molecules that mimic the structures and functions of their natural targets.
Collapse
Affiliation(s)
- Hang Yin
- Yale University, New Haven, CT, USA
| | | |
Collapse
|
70
|
Koch SJ, Renner C, Xie X, Schrader T. Tuning Linear Copolymers into Protein-Specific Hosts. Angew Chem Int Ed Engl 2006; 45:6352-5. [PMID: 16937424 DOI: 10.1002/anie.200601161] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sebastian J Koch
- Philipps-Universität Marburg, Fachbereich Chemie, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | | | | | | |
Collapse
|
71
|
Koch SJ, Renner C, Xie X, Schrader T. Tuning Linear Copolymers into Protein-Specific Hosts. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200601161] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
72
|
Tang J, Xie J, Shao N, Yan Y. The DNA aptamers that specifically recognize ricin toxin are selected by two in vitro selection methods. Electrophoresis 2006; 27:1303-11. [PMID: 16518777 DOI: 10.1002/elps.200500489] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Aptamers which specifically recognize cytotoxin ricin were successfully selected using the two different in vitro selection methods. One selection method was used to isolate aptamers by affinity chromatography. Another selection method, named CE-SELEX, was carried out using CE as a separation approach. The high separation efficiency of CE evidently improved the rate of enrichment and obviously shortened the selection rounds, with near 87.2% binding just after the fourth round of selection. The aptamers A3, C1, and C5, derived from the two selection methods, were found to possess high affinity and specificity for ricin with the Kd values in the low nanomolar range, and did not recognize abrin toxin similar to ricin in the structures and properties, or BSA. Among the aptamers selected, A3 isolated by affinity chromatography shared extensive sequence similarity with C1 and C5 derived from CE-SELEX. They differed by only one base from each other. Their stable secondary structures predicted also had very similar structure motifs, and all folded a long and internal loop-embedded loop stem structure by base pairing. The ELISA and dot-blot analysis also proved that the selected DNA aptamers had the high specificity to ricin toxin.
Collapse
Affiliation(s)
- Jijun Tang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | | | | | | |
Collapse
|
73
|
Held DM, Kissel JD, Saran D, Michalowski D, Burke DH. Differential susceptibility of HIV-1 reverse transcriptase to inhibition by RNA aptamers in enzymatic reactions monitoring specific steps during genome replication. J Biol Chem 2006; 281:25712-22. [PMID: 16798747 DOI: 10.1074/jbc.m604460200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleic acid aptamers to HIV-1 reverse transcriptase (RT) are potent inhibitors of DNA polymerase function in vitro, and they have been shown to inhibit viral replication when expressed in cultured T-lymphoid lines. We monitored RT inhibition by five RNA pseudoknot RNA aptamers in a series of biochemical assays designed to mimic discrete steps of viral reverse transcription. Our results demonstrate potent aptamer inhibition (IC50 values in the low nanomolar range) of all RT functions assayed, including RNA- and DNA-primed DNA polymerization, strand displacement synthesis, and polymerase-independent RNase H activity. Additionally, we observe differences in the time dependence of aptamer inhibition. Polymerase-independent RNase H activity is the most resistant to long term aptamer suppression, and RNA-dependent DNA polymerization is the most susceptible. Finally, when DNA polymerization was monitored in the presence of an RNA aptamer in combination with each of four different small molecule inhibitors, significant synergy was observed between the aptamer and the two nucleoside analog RT inhibitors (azidothymidine triphosphate or ddCTP), whereas two non-nucleoside analog RT inhibitors showed either weak synergy (efavirenz) or antagonism (nevirapine). Together, these results support a model wherein aptamers suppress viral replication by cumulative inhibition of RT at every stage of genome replication.
Collapse
Affiliation(s)
- Daniel M Held
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | |
Collapse
|
74
|
Gening LV, Klincheva SA, Reshetnjak A, Grollman AP, Miller H. RNA aptamers selected against DNA polymerase beta inhibit the polymerase activities of DNA polymerases beta and kappa. Nucleic Acids Res 2006; 34:2579-86. [PMID: 16707660 PMCID: PMC1463896 DOI: 10.1093/nar/gkl326] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
DNA polymerase β (polβ), a member of the X family of DNA polymerases, is the major polymerase in the base excision repair pathway. Using in vitro selection, we obtained RNA aptamers for polβ from a variable pool of 8 × 1012 individual RNA sequences containing 30 random nucleotides. A total of 60 individual clones selected after seven rounds were screened for the ability to inhibit polβ activity. All of the inhibitory aptamers analyzed have a predicted tri-lobed structure. Gel mobility shift assays demonstrate that the aptamers can displace the DNA substrate from the polβ active site. Inhibition by the aptamers is not polymerase specific; inhibitors of polβ also inhibited DNA polymerase κ, a Y-family DNA polymerase. However, the RNA aptamers did not inhibit the Klenow fragment of DNA polymerase I and only had a minor effect on RB69 DNA polymerase activity. Polβ and κ, despite sharing little sequence similarity and belonging to different DNA polymerase families, have similarly open active sites and relatively few interactions with their DNA substrates. This may allow the aptamers to bind and inhibit polymerase activity. RNA aptamers with inhibitory properties may be useful in modulating DNA polymerase actvity in cells.
Collapse
Affiliation(s)
- Leonid V. Gening
- Laboratory of Chemical Biology, Department of Pharmacological Sciences, Stony Brook UniversityStony Brook, NY 11794-8651, USA
- Institute of Molecular Genetics, Russian Academy of SciencesMoscow 123182, Russia
| | | | - Anastasia Reshetnjak
- Institute of Molecular Genetics, Russian Academy of SciencesMoscow 123182, Russia
| | - Arthur P. Grollman
- Laboratory of Chemical Biology, Department of Pharmacological Sciences, Stony Brook UniversityStony Brook, NY 11794-8651, USA
| | - Holly Miller
- Laboratory of Chemical Biology, Department of Pharmacological Sciences, Stony Brook UniversityStony Brook, NY 11794-8651, USA
- To whom correspondence should be addressed: Tel: +1 631 444 3080, Fax: +1 631 444 7641;
| |
Collapse
|
75
|
Fu H, Guthrie JW, Le XC. Study of binding stoichiometries of the human immunodeficiency virus type 1 reverse transcriptase by capillary electrophoresis and laser-induced fluorescence polarization using aptamers as probes. Electrophoresis 2006; 27:433-41. [PMID: 16331583 DOI: 10.1002/elps.200500460] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Binding stoichiometries between four DNA aptamers (RT12, RT26, RTlt49, and ODN93) and the reverse transcriptase (RT) of the type 1 human immunodeficiency virus (HIV-1) were studied using affinity CE (ACE) coupled with LIF polarization and fluorescence polarization (FP). The ACE/LIF study showed evidence of two binding stoichiometries between the HIV-1 RT protein and aptamers RT12, RT26, and ODN93, suggesting that these aptamers can bind to both the p66 and p51 subunits of the HIV-1 RT. Only one binding stoichiometry for aptamer RTlt49 was found. The affinity complexes were easily separated from the unbound aptamers; however, the different stoichiometries were not well resolved. A complementary technique, FP, was able to provide additional information about the binding and supporting evidence for the ACE/LIF results. The ACE/LIFP study also revealed that the FP values of the 1:1 complexes of the HIV-1 RT protein with aptamers RT12, RT26, and ODN93 were always much greater than those of the 1:2 complexes. This was initially surprising because the larger molecular size of the 1:2 complexes was expected to result in higher FP values than the corresponding 1:1 complexes. This phenomenon was probably a result of fluorescence resonance energy transfer between the two fluorescent molecules bound to the HIV-1 RT protein.
Collapse
Affiliation(s)
- Hao Fu
- Environmental Health Sciences, Department of Public Health Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
76
|
Zhang H, Wang Z, Li XF, Le XC. Ultrasensitive Detection of Proteins by Amplification of Affinity Aptamers. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200503345] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
77
|
DeStefano JJ, Cristofaro JV. Selection of primer-template sequences that bind human immunodeficiency virus reverse transcriptase with high affinity. Nucleic Acids Res 2006; 34:130-9. [PMID: 16397296 PMCID: PMC1325207 DOI: 10.1093/nar/gkj426] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A SELEX (systematic evolution of ligands by exponential enrichment)-based approach was developed to determine whether HIV-RT showed preference for particular primer-template sequences. A 70 nt duplex DNA was designed with 20 nt fixed flanking sequences at the 3′ and 5′ ends and a randomized 30 nt internal sequence. The fixed sequence at the 5′ end contained a BbsI site six bases removed from the randomized region. BbsI cuts downstream of its recognition site generating four base 5′ overhangs with recessed 3′ termini. Cleavage produced a 50 nt template and 46 nt primer with the 3′ terminus within the randomized region. HIV-RT was incubated with this substrate and material that bound RT was isolated by gel-shift. The recovered material was treated to regenerate the BbsI site, amplified by PCR, cleaved with BbsI and selected with HIV-RT again. This was repeated for 12 rounds. Material from round 12 bound approximately 10-fold more tightly than starting material. All selected round 12 primer-templates had similar sequence configuration with a 6–8 base G run at the 3′ primer terminus, similar to the HIV polypurine tract. Further modifications indicate that the Gs were necessary and sufficient for strong binding.
Collapse
Affiliation(s)
- Jeffrey J DeStefano
- Department of Cell Biology and Molecular Genetics, University of Maryland, Building 231, College Park, MD 20742, USA.
| | | |
Collapse
|
78
|
Somasunderam A, Ferguson MR, Rojo DR, Thiviyanathan V, Li X, O'Brien WA, Gorenstein DG. Combinatorial selection, inhibition, and antiviral activity of DNA thioaptamers targeting the RNase H domain of HIV-1 reverse transcriptase. Biochemistry 2005; 44:10388-95. [PMID: 16042416 PMCID: PMC2532674 DOI: 10.1021/bi0507074] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Despite the key role played by the RNase H of human immunodeficiency virus-1 reverse transcriptase (HIV-1 RT) in viral proliferation, only a few inhibitors of RNase H have been reported. Using in vitro combinatorial selection methods and the RNase H domain of the HIV RT, we have selected double-stranded DNA thioaptamers (aptamers with selected thiophosphate backbone substitutions) that inhibit RNase H activity and viral replication. The selected thioaptamer sequences had a very high proportion of G residues. The consensus sequence for the selected thioaptamers showed G clusters separated by single residues at the 5'-end of the sequence. Gel electrophoresis mobility shift assays and nuclear magnetic resonance spectroscopy showed that the selected thioaptamer binds to the isolated RNase H domain, but did not bind to a structurally similar RNase H from Escherichia coli. The lead thioaptamer, R12-2, showed specific binding to HIV-1 RT with a binding constant (K(d)) of 70 nM. The thioaptamer inhibited the RNase H activity of intact HIV-1 RT. In cell culture, transfection of thioaptamer R12-2 (0.5 microg/mL) markedly inhibited viral production and exhibited a dose response of inhibition with R12-2 concentrations ranging from 0.03 to 2.0 microg/mL (IC(50) < 100 nM). Inhibition was also seen across a wide range of virus inoculum, ranging from a multiplicity of infection (moi) of 0.0005 to 0.05, with a reduction of the level of virus production by more than 50% at high moi. Suppression of virus was comparable to that seen with AZT when moi <or= 0.005.
Collapse
Affiliation(s)
- Anoma Somasunderam
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
Fisher TS, Joshi P, Prasad VR. HIV-1 reverse transcriptase mutations that confer decreased in vitro susceptibility to anti-RT DNA aptamer RT1t49 confer cross resistance to other anti-RT aptamers but not to standard RT inhibitors. AIDS Res Ther 2005; 2:8. [PMID: 16207371 PMCID: PMC1266348 DOI: 10.1186/1742-6405-2-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 10/05/2005] [Indexed: 11/25/2022] Open
Abstract
RNA and DNA aptamers specific for HIV-1 reverse transcriptase (RT) can inhibit reverse transcription in vitro. RNA aptamers have been shown to potently block HIV-1 replication in culture. We previously reported mutants of HIV-1 RT with substitutions N255D or N265D that display resistance to the DNA aptamer RT1t49. Variant viruses bearing these mutations singly or in combination were compromised for replication. In order to address the wider applicability of such aptamers, HIV-1 RT variants containing the N255D, N265D or both (Dbl) were tested for the extent of their cross-resistance to other DNA/RNA aptamers as well as to other RT inhibitors. Both N265D and Dbl RTs were resistant to most aptamers tested. N255D mutant displayed mild resistance to two of the DNA aptamers, little change in sensitivity to three and hypersensitivity to one. Although all mutants displayed wild type-like ribonuclease H activity, their activity was compromised under conditions that prevent re-binding. This suggests that the processivity defect caused by these mutations can also affect RNase H function thus contributing further to the replication defect in mutant viruses. These results indicate that mutants conferring resistance to anti-RT aptamers significantly affect many HIV-1 RT enzymatic activities, which could contribute to preventing the development of resistance in vivo. If such mutations were to arise in vivo, our results suggest that variant viruses should remain susceptible to many existing anti-RT inhibitors. This result was tempered by the observation that NRTI-resistance mutations such as K65R can confer resistance to some anti-RT aptamers.
Collapse
Affiliation(s)
- Timothy S Fisher
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
- Division of Cardiovascular Diseases, Merck Research Laboratories, Rahway, New Jersey 07065, USA
| | - Pheroze Joshi
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Vinayaka R Prasad
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
80
|
Yin H, Hamilton AD. Strategien zur Modulation von Protein-Protein-Wechselwirkungen mit synthetischen Substanzen. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200461786] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
81
|
Métifiot M, Leon O, Tarrago-Litvak L, Litvak S, Andréola ML. Targeting HIV-1 integrase with aptamers selected against the purified RNase H domain of HIV-1 RT. Biochimie 2005; 87:911-9. [PMID: 16164998 DOI: 10.1016/j.biochi.2005.03.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Revised: 02/10/2005] [Accepted: 03/18/2005] [Indexed: 11/17/2022]
Abstract
Several in vitro strategies have been developed to selectively screen for nucleic acid sequences that bind to specific proteins. We previously used the SELEX procedure to search for aptamers against HIV-1 RNase H activity associated with reverse transcriptase (RT) and human RNase H1. Aptamers containing G-rich sequences were selected in both cases. To investigate whether the interaction with G-rich oligonucleotides (ODNs) was a characteristic of these enzymes, a second in vitro selection was performed with an isolated RNase H domain of HIV-1 RT (p15) as a target and a new DNA library. In this work we found that the second SELEX led again to the isolation of G-rich aptamers. But in contrast to the first selection, these latter ODNs were not able to inhibit the RNase H activity of either the p15 domain or the RNase H embedded in the complete RT. On the other hand, the aptamers from the first SELEX that were inhibitors of the RT-associated RNase H did not inhibit the activity of the isolated p15 domain. This suggests that the active conformation of both RNase H domains is different according to the presence or absence of the DNA polymerase domain. HIV-1 RNase H and integrase both belong to the phosphotransferase family and share structural similarities. An interesting result was obtained when the DNA aptamers initially raised against p15 RNase H were assayed against HIV-1 integrase. In contrast to RNase H, the HIV-1 integrase was inhibited by these aptamers. Our results point out that prototype structures can be exploited to develop inhibitors of two related enzymes.
Collapse
Affiliation(s)
- Mathieu Métifiot
- UMR 5097 CNRS, Université Victor Segalen Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux cedex, France
| | | | | | | | | |
Collapse
|
82
|
Le XC, Pavski V, Wang H. 2002 W.A.E. McBryde Award Lecture Affinity recognition, capillary electrophoresis, and laser-induced fluorescence polarization for ultrasensitive bioanalysis. CAN J CHEM 2005. [DOI: 10.1139/v04-175] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The combination of affinity recognition, capillary electrophoresis (CE), laser-induced fluorescence (LIF), and fluorescence polarization for the ultrasensitive determination of compounds of biological interest is described. Competitive immunoassays using CELIF eliminate the need for fluorescently labeling trace analytes of interest and are particularly useful for determination of small molecules, such as cyclosporine, gentamicin, vancomycin, and digoxin. Fluorescence polarization allows for differentiation of the antibody-bound from the unbound small molecules. Noncompetitive affinity CELIF assays are shown to be highly effective in the determination of biomarkers for DNA damage and HIV-1 infection. An antibody (or aptamer) is used as a fluorescent probe to bind with a target DNA adduct (or the reverse transcriptase of the HIV-1 virus), with the fluorescent reaction products being separated by CE and detected by LIF. Aptamers are attractive affinity probes for protein analysis because of high affinity, high specificity, and the potential for a wide range of target proteins. Fluorescence polarization provides unique information for studying molecular interactions. Innovative integrations of these technologies will have broad applications ranging from cancer research, to biomedical diagnosis, to pharmaceutical and environmental analyses.Key words: capillary electrophoresis, laser-induced fluorescence, fluorescence polarization, immunoassay, affinity probes, antibodies, aptamers, DNA damage, toxins, therapeutic drugs.
Collapse
|
83
|
Bellecave P, Andreola ML, Ventura M, Tarrago-Litvak L, Litvak S, Astier-Gin T. Selection of DNA aptamers that bind the RNA-dependent RNA polymerase of hepatitis C virus and inhibit viral RNA synthesis in vitro. Oligonucleotides 2004; 13:455-63. [PMID: 15025912 DOI: 10.1089/154545703322860771] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The RNA-dependent RNA polymerase (NS5B) of the hepatitis C virus (HCV) plays a key role in the life cycle of the virus. In order to find inhibitors of the HCV polymerase, we screened a library of 81 nucleotide (nt)-long synthetic DNA containing 35 random nucleotides by the Systematic Evolution of Ligands by Exponential enrichment (SELEX) approach. Thirty ligands selected for their binding affinity to the NS5B were classified into four groups on the basis of their sequence homologies. Among the selected molecules, two were able to inhibit in vitro the polymerase activity of the HCV NS5B. These aptamers appeared to be specific for HCV polymerase, as no inhibition of poliovirus 3D polymerase activity was observed. The binding and inhibitory potential of one aptamer (27v) was associated with the 35 nt-long variable region. This oligonucleotide displayed an apparent dissociation constant (K(d)) in the nanomolar range. Our results showed that it was able to compete with RNA templates corresponding to the 3'-ends of the (+) and the (-) HCV RNA for binding to the polymerase. The fact that a DNA aptamer could interfere with the binding of natural templates of the enzyme could help in performing structure-function analysis of the NS5B and might constitute a basis for further structure-based drug design of this crucial enzyme of HCV replication.
Collapse
Affiliation(s)
- Pantxika Bellecave
- UMR 5097 CNRS, Institut Fédératif de Recherches Pathologies Infectieuses et Cancer (IFR 66), Université Victor Segalen Bordeaux 2, 33076 Bordeaux cedex, France
| | | | | | | | | | | |
Collapse
|
84
|
Pileur F, Andreola ML, Dausse E, Michel J, Moreau S, Yamada H, Gaidamakov SA, Crouch RJ, Toulmé JJ, Cazenave C. Selective inhibitory DNA aptamers of the human RNase H1. Nucleic Acids Res 2003; 31:5776-88. [PMID: 14500841 PMCID: PMC206449 DOI: 10.1093/nar/gkg748] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human RNase H1 binds double-stranded RNA via its N-terminal domain and RNA-DNA hybrid via its C-terminal RNase H domain, the latter being closely related to Escherichia coli RNase HI. Using SELEX, we have generated a set of DNA sequences that can bind efficiently (K(d) values ranging from 10 to 80 nM) to the human RNase H1. None of them could fold into a simple perfect double-stranded DNA hairpin confirming that double-stranded DNA does not constitute a trivial ligand for the enzyme. Only two of the 37 DNA aptamers selected were inhibitors of human RNase H1 activity. The two inhibitory oligomers, V-2 and VI-2, were quite different in structure with V-2 folding into a large, imperfect but stable hairpin loop. The VI-2 structure consists of a central region unimolecular quadruplex formed by stacking of two guanine quartets flanked by the 5' and 3' tails that form a stem of six base pairs. Base pairing between the 5' and 3' tails appears crucial for conferring the inhibitory properties to the aptamer. Finally, the inhibitory aptamers were capable of completely abolishing the action of an antisense oligonucleotide in a rabbit reticulocyte lysate supplemented with human RNase H1, with IC50 ranging from 50 to 100 nM.
Collapse
Affiliation(s)
- Frédéric Pileur
- INSERM U386, IFR Pathologies Infectieuses, Université Victor Segalen Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Nickens DG, Patterson JT, Burke DH. Inhibition of HIV-1 reverse transcriptase by RNA aptamers in Escherichia coli. RNA (NEW YORK, N.Y.) 2003; 9:1029-1033. [PMID: 12923252 PMCID: PMC1370468 DOI: 10.1261/rna.5550103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2003] [Accepted: 05/27/2003] [Indexed: 05/24/2023]
Abstract
A better understanding of aptamer function in bacteria would help to establish simple model systems for screening RNA-protein interactions within an intracellular context. Escherichia coli DNA polymerase I mutants (Pol I(ts)) fail to grow at 37 degrees C unless an exogenous DNA polymerase such as HIV-1 reverse transcriptase (RT) is expressed within the cell. Here, we show that four RNA aptamers that inhibit HIV-1 RT in vitro block complementation by HIV-1 RT when expressed in vivo. No other essential functions are impaired by aptamer expression at either temperature. Intracellular aptamer RNA concentrations from induced cultures were measured to range from 76 to 180 nM, which is comparable with exogenously expressed HIV-1 RT levels in these cells. RT polymerase activity was reduced to background levels in cell-free extracts prepared from cultures expressing both HIV-1 RT and the 70.28 aptamer, compared with extracts from cultures expressing HIV-1 RT alone. Intracellularly expressed RNA aptamers can thus be used to generate conditional null mutants in bacteria by titrating an essential protein.
Collapse
Affiliation(s)
- David G Nickens
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | |
Collapse
|
86
|
Abstract
Single-stranded DNA or double-stranded DNA has the potential to adopt a wide variety of unusual duplex and hairpin motifs in the presence (trans) or absence (cis) of ligands. Several principles for the formation of those unusual structures have been established through the observation of a number of recurring structural motifs associated with different sequences. These include: (i) internal loops of consecutive mismatches can occur in a B-DNA duplex when sheared base pairs are adjacent to each other to confer extensive cross- and intra-strand base stacking; (ii) interdigitated (zipper-like) duplex structures form instead when sheared G*A base pairs are separated by one or two pairs of purine*purine mismatches; (iii) stacking is not restricted to base, deoxyribose also exhibits the potential to do so; (iv) canonical G*C or A.T base pairs are flexible enough to exhibit considerable changes from the regular H-bonded conformation. The paired bases become stacked when bracketed by sheared G.A base pairs, or become extruded out and perpendicular to their neighboring bases in the presence of interacting drugs; (v) the purine-rich and pyrimidine-rich loop structures are notably different in nature. The purine-rich loops form compact triloop structures closed by a sheared G*A, A*A, A*C or sheared-like G(anti)*C(syn) base pair that is stacked by a single residue. On the other hand, the pyrimidine-rich loops with a thymidine in the first position exhibit no base pairing but are characterized by the folding of the thymidine residue into the minor groove to form a compact loop structure. Identification of such diverse duplex or hairpin motifs greatly enlarges the repertoire for unusual DNA structural formation.
Collapse
Affiliation(s)
- Shan-Ho Chou
- Department of Life Science, National Central University, Jung-Li, 320, Taiwan, ROC
| | | | | |
Collapse
|
87
|
Fisher TS, Darden T, Prasad VR. Mutations proximal to the minor groove-binding track of human immunodeficiency virus type 1 reverse transcriptase differentially affect utilization of RNA versus DNA as template. J Virol 2003; 77:5837-45. [PMID: 12719577 PMCID: PMC154037 DOI: 10.1128/jvi.77.10.5837-5845.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2002] [Accepted: 02/07/2003] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT), like all retroviral RTs, is a versatile DNA polymerase that can copy both RNA and DNA templates. In spite of extensive investigations into the structure-function of this enzyme, the structural basis for this dual template specificity is poorly understood. Biochemical studies with two mutations in HIV-1 RT that affect residues contacting the template-primer now provide some insight into this specialized property. The mutations are N255D and N265D, both adjoining the minor groove-binding track, in the thumb region. The N265D substitution led to a loss of processive polymerization on DNA but not on RNA, whereas N255D drastically reduced processive synthesis on both templates. This differential template usage was accompanied by a rapid dissociation of the N265D variant on DNA but not RNA templates, whereas the N255D variant rapidly dissociated from both templates. Molecular dynamics modeling suggested that N265D leads to a loss of template strand-specific hydrogen bonding, indicating that this is a key determinant of the differential template affinity. The N255D substitution caused local changes in conformation and a consequent loss of interaction with the primer, leading to a loss of processive synthesis with both templates. We conclude that N265 is part of a subset of template-enzyme contacts that enable RT to utilize DNA templates in addition to RNA templates and that such residues play an important role in facilitating processive DNA synthesis on both RNA and DNA templates.
Collapse
Affiliation(s)
- Timothy S Fisher
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461,USA
| | | | | |
Collapse
|
88
|
Abstract
Protein-DNA binding assays have been used in a variety of fields from fundamental studies regarding the binding process itself, to serving as probes for the detection, quantification and separation of target analytes. These assays have been used for the study of protein-DNA complex stoichiometry, the detection of DNA damage, and real-time separation of free and bound complexes by electrophoretic mobility. Synthetic DNA oligonucleotides, known as aptamers, have been increasingly used for affinity binding assays to proteins, as well as for separation studies and as biosensors. Recent advances have been made in protein-DNA binding assays using capillary electrophoresis, laser-induced fluorescence, fluorescence polarization, molecular beacons, and affinity chromatography.
Collapse
Affiliation(s)
- Victor Pavski
- Environmental Health Sciences Program, Department of Public Health Sciences, University of Alberta, Alberta, Edmonton, Canada T6G 2G3
| | | |
Collapse
|
89
|
Maurel MC, Biard B, Moulinier C, Braz D, Nugier J, Chaumas I, Reboud-Ravaux M, Décout JL. RNA-acting antibiotics: in-vitro selection of RNA aptamers for the design of new bioactive molecules less susceptible to bacterial resistance. J Pharm Pharmacol 2002; 54:1019-31. [PMID: 12195815 DOI: 10.1211/002235702320266163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
During the last few years, antibiotic multiresistance has been increasing, not only in hospitals, but also, more worryingly, in general medicine. Different ways are being explored to bypass this problem. RNA-acting antibiotics such as aminosides (aminoglycosides) bind to bacterial RNA causing premature termination of proteins and mistranslation in bacteria. It is now possible to study the interactions of such antibiotics with their target by in-vitro selection of RNA molecules that recognize these antibiotics (RNA aptamers, SELEX method). The knowledge of the antibiotic-RNA interactions represents a promising way for the rational design of new bioactive compounds less susceptible to bacterial resistance.
Collapse
Affiliation(s)
- M C Maurel
- Université Pierre et Marie Curie, UFR Sciences de la Vie, 4 place Jussieu 75252 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Andréola ML, De Soultrait VR, Fournier M, Parissi V, Desjobert C, Litvak S. HIV-1 integrase and RNase H activities as therapeutic targets. Expert Opin Ther Targets 2002; 6:433-46. [PMID: 12223059 DOI: 10.1517/14728222.6.4.433] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The retroviruses are a large, diverse family of enveloped RNA viruses defined by their structure, composition and replicative properties. The hallmark of the family is its replicative strategy, essential steps of which include reverse transcription of the viral RNA and the subsequent integration of this DNA into the genome of the cell. These steps are performed by two viral-encoded enzymes, reverse transcriptase (RT), which possesses DNA polymerase and ribonuclease H (RNase H) activities, and integrase (IN). These enzymes are excellent targets for retroviral therapy since they are essential for viral replication. Numerous substances capable of inhibiting the DNA polymerase activity of HIV-1 RT are available, while few specific inhibitors of RNase H activity have been described. IN is absolutely necessary for stable and productive infection of cells. Some IN inhibitors have been recently reported and are available demonstrating the potential of IN as an antiviral target. This paper is an overview of the inhibitors of RNase H and IN and describes the most promising inhibitors.
Collapse
Affiliation(s)
- M L Andréola
- Laboratory of Replication and Expression of Eukaryotic and Retroviral Genomes, UMR 5097, CNRS-Université Victor Segalen Bordeaux 2, France.
| | | | | | | | | | | |
Collapse
|
91
|
Joshi P, Prasad VR. Potent inhibition of human immunodeficiency virus type 1 replication by template analog reverse transcriptase inhibitors derived by SELEX (systematic evolution of ligands by exponential enrichment). J Virol 2002; 76:6545-57. [PMID: 12050367 PMCID: PMC136251 DOI: 10.1128/jvi.76.13.6545-6557.2002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA aptamers derived by SELEX (systematic evolution of ligands by exponential enrichment) and specific for human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) bind at the template-primer cleft with high affinity and inhibit its activity. In order to determine the potential of such template analog RT inhibitors (TRTIs) to inhibit HIV-1 replication, 10 aptamers were expressed with flanking, self-cleaving ribozymes to generate aptamer RNA transcripts with minimal flanking sequences. From these, six aptamers (70.8,13, 70.15, 80.55,65, 70.28, 70.28t34, and 1.1) were selected based on binding constants (K(d)) and the degree of inhibition of RT in vitro (50% inhibitory concentration [IC(50)]). These six aptamers were each stably expressed in 293T cells followed by transfection of a molecular clone of HIV(R3B). Analysis of the virion particles revealed that the aptamers were encapsidated into the virions released and that the packaging of the viral genomic RNA or the cognate primer, tRNA(Lys)(3), was apparently unaffected. Infectivity of virions produced from 293T cell lines expressing the aptamers, as measured by infecting LuSIV reporter cells, was reduced by 90 to 99.5% compared to virions released from cells not expressing any aptamers. PCR analysis of newly made viral DNA upon infection with virions containing any of the three aptamers with the strongest binding affinities (70.8,13, 70.15, and 80.55,65) showed that all three were able to form the minus-strand strong-stop DNA. However, virions with the aptamers 70.8 and 70.15 were defective for first-strand transfer, suggesting an early block in viral reverse transcription. Jurkat T cells expressing each of the three aptamers, when infected with HIV(R3B), completely blocked the spread of HIV in culture. We found that the replication of nucleoside analog RT inhibitor-, nonnucleoside analog RT inhibitor-, and protease inhibitor-resistant viruses was strongly suppressed by the three aptamers. In addition, some of the HIV subtypes were severely inhibited (subtypes A, B, D, E, and F), while others were either moderately inhibited (subtypes C and O) or were naturally resistant to inhibition (chimeric A/D subtype). As virion-encapsidated TRTIs can predispose virions for inhibition immediately upon entry, they should prove to be efficacious agents in gene therapy approaches for AIDS.
Collapse
Affiliation(s)
- Pheroze Joshi
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | |
Collapse
|
92
|
Fisher TS, Joshi P, Prasad VR. Mutations that confer resistance to template-analog inhibitors of human immunodeficiency virus (HIV) type 1 reverse transcriptase lead to severe defects in HIV replication. J Virol 2002; 76:4068-72. [PMID: 11907245 PMCID: PMC136095 DOI: 10.1128/jvi.76.8.4068-4072.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We isolated two template analog reverse transcriptase (RT) inhibitor-resistant mutants of human immunodeficiency virus (HIV) type 1 RT by using the DNA aptamer, RT1t49. The mutations associated, N255D or N265D, displayed low-level resistance to RT1t49, while high-level resistance could be observed when both mutations were present (Dbl). Molecular clones of HIV that contained the mutations produced replication-defective virions. All three RT mutants displayed severe processivity defects. Thus, while biochemical resistance to the DNA aptamer RT1t49 can be generated in vitro via multiple mutations, the overlap between the aptamer- and template-primer-binding pockets favors mutations that also affect the RT-template-primer interaction. Therefore, viruses with such mutations are replication defective. Potent inhibition and a built-in mechanism to render aptamer-resistant viruses replication defective make this an attractive class of inhibitors.
Collapse
Affiliation(s)
- Timothy S Fisher
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
93
|
Abstract
High sensitivity and specificity of two modified ssDNA aptamers capable of photocross-linking recombinant human basic fibroblast growth factor (bFGF((155))) were demonstrated. The aptamers were identified through a novel, covalent, in vitro selection methodology called photochemical systematic evolution of ligands by exponential enrichment (PhotoSELEX). The aptamers exhibited high sensitivity for bFGF((155)) comparable with commercially available ELISA monoclonal antibodies with an absolute sensitivity of at least 0.058 ppt bFGF((155)) under prevailing test conditions. The aptamers exquisitely distinguished bFGF((155)) from consanguine proteins, vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF). A commercially viable diagnostic system incorporating PhotoSELEX-evolved aptamers capable of simultaneous quantification of a large number of analyte molecules is also described. Such a system benefits from covalent bonding of aptamer to target protein allowing vigorous washing with denaturants to improve signal to noise.
Collapse
Affiliation(s)
- M C Golden
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA
| | | | | | | |
Collapse
|
94
|
Andreola ML, Calmels C, Michel J, Toulmé JJ, Litvak S. Towards the selection of phosphorothioate aptamers optimizing in vitro selection steps with phosphorothioate nucleotides. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5032-40. [PMID: 10931185 DOI: 10.1046/j.1432-1327.2000.01557.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The high affinity of a given nucleic acid for a protein ligand can be used to isolate specific inhibitors of enzymes involved in pathological situations. The latter property is the basis of the SELEX (systematic evolution of ligands by exponential enrichment) technique. Recently, several potent nucleic acids inhibitors of HIV-1 replication have been isolated using the SELEX approach. However, phosphodiester oligodeoxynucleotides (PO-ODNs) were not used as antiviral agents because of their sensitivity to nucleases. Our goal in this work was to explore the possibility of selecting, from a fully substituted phosphorothioate library, oligonucleotides having both a strong affinity for HIV-1 reverse transcriptase (RT) and nuclease resistance. HIV-1 RT initiates in vivo reverse transcription from the 3' end of a host tRNALys. Although phosphorothioate ODNs (PS-ODNs) have been claimed to bind unspecifically to proteins, we have shown previously that an ODN corresponding to the acceptor stem of tRNALys was able to inhibit specifically HIV-1 replication in HIV-1 infected cells, without showing cytotoxicity up to 10 microM. As the SELEX strategy requires 'in vitro' transcription and reverse transcription of the selected DNA, we have assayed the available PS precursors as a model system by using PS-dNTPs and rNTPs. We have also developed an experimental procedure to optimize the incorporation of four PS-dNTPs during the PCR step of the SELEX approach. In the course of this work, we have showed that the PS-dGTP is a strong inhibitor of thermostable DNA polymerases as well as of HIV-1 RT.
Collapse
Affiliation(s)
- M L Andreola
- UMR 5097 CNRS-Université Victor Segalen Bordeaux 2, Bordeaux, France; Institut Fédératif de Recherches 'Pathologies Infectieuses' (IFR 66), Bordeaux, France.
| | | | | | | | | |
Collapse
|
95
|
Abstract
Combinatorial library selections through the systematic evolution of ligands by exponential enrichment (SELEX) technique identify so-called nucleic acid aptamers that bind with high-affinity and specificity to a wide range of selected molecules. However, the modest chemical functionality of nucleic acids poses some limits on their versatility as binders and catalysts, and, furthermore, the sensitivity of pure RNA- and DNA-based aptamers to nucleases restricts their use as therapeutic and diagnostic agents. Here we review synthetic chemistries for modifying nucleotides that have been developed to enhance the affinity of aptamers for targets and to increase their stability in biological fluids. Implementation of in vitro selections with modified nucleotides promises to be an elegant technique for the creation of ligands with novel physical and chemical properties and is anticipated to have a significant impact on biotechnology, diagnostics and drug development. The current molecular designs and applications of modified nucleotides for in vitro selections are reviewed, along with a discussion of future developments expected to further the utility of this approach in both practical and theoretical terms.
Collapse
Affiliation(s)
- W Kusser
- Invitrogen Corporation, Carlsbad, CA 92008, USA.
| |
Collapse
|
96
|
Aich P, Kraatz HB, Lee JS. M-DNA: pH Stability, Nuclease Resistance and Signal Transmission. J Biomol Struct Dyn 2000; 17 Suppl 1:297-301. [DOI: 10.1080/07391102.2000.10506635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
97
|
Affiliation(s)
- G Lowe
- Dyson Perrins Laboratory, Oxford University, UK
| |
Collapse
|
98
|
El Amri C, Mauffret O, Monnot M, Tevanian G, Lescot E, Porumb H, Fermandjian S. A DNA hairpin with a single residue loop closed by a strongly distorted Watson-Crick G x C base-pair. J Mol Biol 1999; 294:427-42. [PMID: 10610769 DOI: 10.1006/jmbi.1999.3270] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous NMR and modeling studies have shown that the single-stranded 19mer oligonucleotides d(AGCTTATC-ATC-GATAA GCT) -ATC- and d(AGCTTATC-GAT-GATAAGCT) -GAT- encompassing the strongest topoisomerase II cleavage site in pBR322 DNA could form stable hairpin structures. A new sheared base-pair, the pyrimidine-purine C x A, was found to close the single base -ATC- loop, while -GAT- displayed a flexible loop of three/five residues with no stabilizing interactions. Now we report a structural study on -GAC-, an analog of -GAT-, derived through the substitution of the loop residue T by C. The results obtained from NMR, non-denaturing PAGE, UV-melting, circular dichroism experiments and restrained molecular dynamics indicate that -GAC- adopts a hairpin structure folded through a single residue loop. In the -GAC- hairpin the direction of the G9 sugar is reversed relative to the C8 sugar, thus pushing the backbone of the loop into the major groove. The G9 x C11 base-pair closing the loop is thus neither a sheared base-pair nor a regular Watson-Crick one. Although G9 and C11 are paired through hydrogen bonds of Watson-Crick type, the base-pair is not planar but rather adopts a wedge-shaped geometry with the two bases stacked on top of each other in the minor groove. The distortion decreases the sugar C1'-C1' distance between the paired G9 and C11, to 8 A versus 11 A in the standard B-DNA. The A10 residue at the center of the loop interacts with the G9 x C11 base-pair, and seems to contribute to the extra thermal stability displayed by -GAC- compared to -GAT-. Test calculations allowed us to identify the experimental NOEs critical for inducing the distorted G.C Watson-Crick base-pair. The preference of -GAC- for a hairpin structure rather than a duplex is confirmed by the diffusion constant values obtained from pulse-field gradient NMR experiments. All together, the results illustrate the high degree of plasticity of single-stranded DNAs which can accommodate a variety of turn-loops to fold up on themselves.
Collapse
Affiliation(s)
- C El Amri
- Département de Biologie et Pharmacologie Structurales UMR 8532 CNRS, PR2, Institut Gustave-Roussy, 39 rue Camille-Desmoulins, Villejuif Cedex, 94805, France
| | | | | | | | | | | | | |
Collapse
|
99
|
Abstract
We have listed and described recent promising developments in the field of aptamer research. The properties and the application potential of aptamers propose an exciting future for aptamers either in the clinic or as research tools for various purposes. We have reviewed exciting examples in which the SELEX technology was applied to obtain promising tools that may help to facilitate our understanding of biological processes and to interfere at distinct points in signal transduction cascades. High affinities and specificities of aptamer/target-interactions can now routinely be achieved. Furthermore, a wide spectrum of chemical modifications of nucleotides is known which greatly increase the stability of RNA molecules in biological materials, considerably enhancing their application potential. The aptamer technology shows that the combination of organic synthesis and molecular biology can contribute to interesting and promising new drug leads, which may very soon find their way into daily clinical practice or onto the laboratory benches of many researchers in the life sciences.
Collapse
Affiliation(s)
- M Famulok
- Kekule-Institut für Organische Chemie and Biochemie, Bonn, Germany
| | | |
Collapse
|
100
|
Abstract
Single-residue d(Pu1NPu2) (Pu1.Pu2=G.A, G.G or A.A) hairpin loops can be stably closed by sheared purine.purine pairs. These special motifs have been found in several important biological systems. We now extend these loop-closing base-pairs to a sheared purine. pyrimidine (A.C) pair at a neutral pH condition. High-resolution NMR spectroscopy, distance geometry, and molecular dynamics methods were used to study d(GTACANCGTAC) oligomers. Numerous idiosyncratic nuclear Overhauser enhancements, especially those across the A.C base-pair between C4NH2left and right arrow AH1', C4NH2left and right arrow AH2, and CH5left and right arrow AH2 proton pairs, clearly define the novel sheared nature of the closing A.C base-pair. This novel base-pair is possibly present in several biological systems and in two single-stranded DNA aptamers selected from oligonucleotide libraries.
Collapse
Affiliation(s)
- S H Chou
- Institute of Biochemistry, Department of National Chung-Hsing University, Taichung 40227, Taiwan.
| | | | | |
Collapse
|