51
|
Anthony RM, DeStefano JJ. In vitro synthesis of long DNA products in reactions with HIV-RT and nucleocapsid protein. J Mol Biol 2006; 365:310-24. [PMID: 17070544 PMCID: PMC2493291 DOI: 10.1016/j.jmb.2006.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 09/29/2006] [Accepted: 10/02/2006] [Indexed: 10/24/2022]
Abstract
In vitro reaction conditions using HIV reverse transcriptase (RT) and nucleocapsid protein (NC) that allowed efficient synthesis of single-stranded DNA products over a thousand nucleotides in length from genomic HIV RNA were characterized. Consistent with previous reports, the reactions required high concentrations of NC and RT. Long products were produced as a result of frequent strand transfer between RNA templates, averaging at least one transfer per 300 nucleotides synthesized. No change in RT processivity was observed in the reactions in the presence versus absence of NC. Synthesis of long products required formation of a high molecular mass aggregate between NC and nucleic acids. The aggregate formed rapidly and pelleted with low speed centrifugation. The aggregate was accessible to RT as pre-formed aggregates synthesized long products when RT was added. NC finger mutants lacking either finger one or two or with the finger positions switched were all effective in promoting long products. This suggests that the aggregation/condensation but not helix-destabilizing activity of NC was required. We propose that these high molecular mass aggregates promote synthesis of long reverse transcription products in vitro by concentrating nucleic acids, RT enzyme and NC to close proximity, thereby mimicking the role of the capsid environment within the host cell.
Collapse
|
52
|
Vo MN, Barany G, Rouzina I, Musier-Forsyth K. Mechanistic studies of mini-TAR RNA/DNA annealing in the absence and presence of HIV-1 nucleocapsid protein. J Mol Biol 2006; 363:244-61. [PMID: 16962137 DOI: 10.1016/j.jmb.2006.08.039] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 08/12/2006] [Accepted: 08/16/2006] [Indexed: 11/24/2022]
Abstract
HIV-1 reverse transcription involves several nucleic acid rearrangements, which are catalyzed by the nucleocapsid protein (NC). Annealing of the trans-activation response element (TAR) DNA hairpin to a complementary TAR RNA hairpin, resulting in the formation of an extended 98-base-pair duplex, is an essential step in the minus-strand transfer step of reverse transcription. To elucidate the TAR RNA/DNA annealing reaction pathway, annealing kinetics were studied systematically by gel-shift assays performed in the presence or absence of HIV-1 NC. Truncated 27 nucleotide mini-TAR RNA and DNA constructs were used in this work. In the absence of NC, the annealing is slow, and involves the fast formation of an unstable extended "kissing" loop intermediate, followed by a slower strand exchange between the terminal stems. This annealing is very sensitive to loop-loop complementarity, as well as to nucleic acid concentration, ionic strength and temperature. NC stimulates the annealing approximately 5000-fold by stabilizing the bimolecular intermediate approximately 100 to 200-fold, and promoting the subsequent strand exchange reaction approximately 10 to 20-fold. NC concentration dependence studies suggest that there is a direct correlation between the amount of NC required to stabilize the intermediate and the amount needed to induce mini-TAR aggregation. Whereas saturating levels of NC are required to efficiently aggregate nucleic acids, sub-saturating NC is sufficient to significantly enhance duplex destabilization. Equilibrium levels of mini-TAR RNA/DNA annealing were also measured under a variety of conditions. Taken together, the results presented here provide a quantitative accounting of HIV-1 NC's aggregation and duplex destabilizing activity, and provide insights into the universal nucleic acid chaperone activity of this essential viral protein.
Collapse
Affiliation(s)
- My-Nuong Vo
- University of Minnesota, Department of Chemistry and Institute for Molecular Virology, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
53
|
Cruceanu M, Urbaneja MA, Hixson CV, Johnson DG, Datta SA, Fivash MJ, Stephen AG, Fisher RJ, Gorelick RJ, Casas-Finet JR, Rein A, Rouzina I, Williams MC. Nucleic acid binding and chaperone properties of HIV-1 Gag and nucleocapsid proteins. Nucleic Acids Res 2006; 34:593-605. [PMID: 16449201 PMCID: PMC1356529 DOI: 10.1093/nar/gkj458] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Gag polyprotein of HIV-1 is essential for retroviral replication and packaging. The nucleocapsid (NC) protein is the primary region for the interaction of Gag with nucleic acids. In this study, we examine the interactions of Gag and its NC cleavage products (NCp15, NCp9 and NCp7) with nucleic acids using solution and single molecule experiments. The NC cleavage products bound DNA with comparable affinity and strongly destabilized the DNA duplex. In contrast, the binding constant of Gag to DNA was found to be approximately 10-fold higher than that of the NC proteins, and its destabilizing effect on dsDNA was negligible. These findings are consistent with the primary function of Gag as a nucleic acid binding and packaging protein and the primary function of the NC proteins as nucleic acid chaperones. Also, our results suggest that NCp7's capability for fast sequence-nonspecific nucleic acid duplex destabilization, as well as its ability to facilitate nucleic acid strand annealing by inducing electrostatic attraction between strands, likely optimize the fully processed NC protein to facilitate complex nucleic acid secondary structure rearrangements. In contrast, Gag's stronger DNA binding and aggregation capabilities likely make it an effective chaperone for processes that do not require significant duplex destabilization.
Collapse
Affiliation(s)
- Margareta Cruceanu
- Department of Physics, Northeastern University111 Dana Research Center, 110 Forsyth Street, Boston, MA 02115, USA
| | - Maria A. Urbaneja
- AIDS Vaccine Program, SAIC-Frederick, Inc.NCI at Frederick, Frederick, MD 21702, USA
| | - Catherine V. Hixson
- AIDS Vaccine Program, SAIC-Frederick, Inc.NCI at Frederick, Frederick, MD 21702, USA
| | - Donald G. Johnson
- AIDS Vaccine Program, SAIC-Frederick, Inc.NCI at Frederick, Frederick, MD 21702, USA
| | | | - Matthew J. Fivash
- Data Management Services, Inc.NCI-Frederick, Frederick, MD 2170, USA
| | - Andrew G. Stephen
- Protein Chemistry Laboratory, SAIC Frederick, Inc.NCI at Frederick, Frederick, MD 2170, USA
| | - Robert J. Fisher
- Protein Chemistry Laboratory, SAIC Frederick, Inc.NCI at Frederick, Frederick, MD 2170, USA
| | - Robert J. Gorelick
- AIDS Vaccine Program, SAIC-Frederick, Inc.NCI at Frederick, Frederick, MD 21702, USA
| | | | - Alan Rein
- HIV Drug Resistance Program, NCI-FrederickFrederick, MD 21702-1201, USA
| | - Ioulia Rouzina
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota6-155 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| | - Mark C. Williams
- Department of Physics, Northeastern University111 Dana Research Center, 110 Forsyth Street, Boston, MA 02115, USA
- Center for Interdisciplinary Research on Complex Systems, Northeastern University111 Dana Research Center, 110 Forsyth Street, Boston, MA 02115, USA
- To whom correspondence should be addressed. Tel: 1 617 373 7323; Fax: 1 617 373 2943;
| |
Collapse
|
54
|
Levin JG, Guo J, Rouzina I, Musier-Forsyth K. Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism. ACTA ACUST UNITED AC 2006; 80:217-86. [PMID: 16164976 DOI: 10.1016/s0079-6603(05)80006-6] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Judith G Levin
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
55
|
Egelé C, Schaub E, Piémont E, de Rocquigny H, Mély Y. Investigation by fluorescence correlation spectroscopy of the chaperoning interactions of HIV-1 nucleocapsid protein with the viral DNA initiation sequences. C R Biol 2005; 328:1041-51. [PMID: 16314282 DOI: 10.1016/j.crvi.2005.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 05/26/2005] [Accepted: 07/27/2005] [Indexed: 11/23/2022]
Abstract
HIV-1 nucleocapsid protein (NC) exhibits nucleic acid chaperone properties that are important during reverse transcription. Herein, we review and extend our recent investigation by fluorescence correlation spectroscopy (FCS) of the NC chaperone activity on the primer binding site sequences (PBS) of the (-) and (+) DNA strands, which are involved in the second strand transfer during reverse transcription. In the absence of NC, the PBS stem-loops exhibited a fraying limited to the terminal G-C base pair. The kinetics of fraying were significantly activated by NC, a feature that may favour (-)PBS/(+)PBS annealing during the second strand transfer. In addition, NC was found to promote the formation of PBS kissing homodimers through interaction between the loops. These kissing complexes may favour secondary contacts between viral sequences and thus, promote recombination and viral diversity.
Collapse
Affiliation(s)
- Caroline Egelé
- Laboratoire de pharmacologie et physico-chimie des interactions cellulaires et moléculaires, UMR 7034, CNRS, faculté de pharmacie, université Louis-Pasteur, Strasbourg-1, 74, route du Rhin, 67401 Illkirch cedex, France
| | | | | | | | | |
Collapse
|
56
|
Liu HW, Cosa G, Landes CF, Zeng Y, Kovaleski BJ, Mullen DG, Barany G, Musier-Forsyth K, Barbara PF. Single-molecule FRET studies of important intermediates in the nucleocapsid-protein-chaperoned minus-strand transfer step in HIV-1 reverse transcription. Biophys J 2005; 89:3470-9. [PMID: 16100256 PMCID: PMC1366842 DOI: 10.1529/biophysj.105.065326] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The minus-strand transfer step of HIV-1 reverse transcription is chaperoned by the nucleocapsid protein (NC), which has been shown to facilitate the annealing between the transactivation response element (TAR) RNA and complementary TAR DNA stem-loop structures. In this work, potential intermediates in the mechanism of NC-chaperoned TAR DNA/TAR RNA annealing have been examined using single-molecule fluorescence resonance energy transfer. The interaction between TAR DNA and various DNA oligonucleotides designed to mimic the initial annealing step was monitored to capture potential intermediates along the reaction pathway. Two possible mechanisms of annealing were examined, namely nucleation through the 3'/5' termini, termed the "zipper" complex, or nucleation through the hairpin loops in a "kissing" complex. Intermediates associated with both mechanisms were observed in the presence of NC, and the kinetics of formation of these intermediates were also measured. Thus, the single-molecule experiments support the notion that NC-assisted annealing of TAR DNA:TAR RNA may occur through multiple pathways.
Collapse
Affiliation(s)
- Hsiao-Wei Liu
- Department of Chemistry and Biochemistry, Center for Nano and Molecular Science and Technology, University of Texas, Austin, TX 78712, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Zhou J, McAllen JK, Tailor Y, Summers MF. High affinity nucleocapsid protein binding to the muPsi RNA packaging signal of Rous sarcoma virus. J Mol Biol 2005; 349:976-88. [PMID: 15907938 DOI: 10.1016/j.jmb.2005.04.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 04/15/2005] [Accepted: 04/20/2005] [Indexed: 11/21/2022]
Abstract
The genomes of all retroviruses contain sequences near their 5' ends that interact with the nucleocapsid domains (NC) of assembling Gag proteins and direct their packaging into virus particles. Retroviral packaging signals often occur in non-contiguous segments spanning several hundred nucleotides of the RNA genome, confounding structural and mechanistic studies of genome packaging. Recently, a relatively short, 82 nucleotide region of the Rous sarcoma virus (RSV) genome, called muPsi, was shown to be sufficient to direct efficient packaging of heterologous RNAs into RSV-like particles. We have developed a method for the preparation and purification of large quantities of recombinant RSV NC protein, and have studied its interactions with native and mutant forms of the muPsi encapsidation element. NC does not bind with significant affinity to truncated forms of muPsi, consistent with earlier packaging and mutagenesis studies. Surprisingly, NC binds to the native muPsi RNA with affinity that is approximately 100 times greater than that observed for other previously characterized retroviral NC-RNA complexes (extrapolated dissociation constant K(d)=1.9 nM). Tight binding with 1:1 NC-muPsi stoichiometry is dependent on a conserved UGCG tetraloop in one of three predicted stem loops, and an AUG initiation codon controvertibly implicated in genome packaging and translational control. Loop nucleotides of other stem loops do not contribute to NC binding. Our findings indicate that the structural determinants of RSV genome recognition and NC-RNA binding differ considerably from those observed for other retroviruses.
Collapse
Affiliation(s)
- Jing Zhou
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | | | | | |
Collapse
|
58
|
Beltz H, Clauss C, Piémont E, Ficheux D, Gorelick RJ, Roques B, Gabus C, Darlix JL, de Rocquigny H, Mély Y. Structural determinants of HIV-1 nucleocapsid protein for cTAR DNA binding and destabilization, and correlation with inhibition of self-primed DNA synthesis. J Mol Biol 2005; 348:1113-26. [PMID: 15854648 DOI: 10.1016/j.jmb.2005.02.042] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 02/17/2005] [Accepted: 02/17/2005] [Indexed: 11/30/2022]
Abstract
The nucleocapsid protein (NC) of human immunodeficiency virus type 1 (HIV-1) is formed of two highly conserved CCHC zinc fingers flanked by small basic domains. NC is required for the two obligatory strand transfers in viral DNA synthesis through its nucleic acid chaperoning properties. The first DNA strand transfer relies on NC's ability to bind and destabilize the secondary structure of complementary transactivation response region (cTAR) DNA, to inhibit self-priming, and to promote the annealing of cTAR to TAR RNA. To further investigate NC chaperone properties, our aim was to identify by fluorescence spectroscopy and gel electrophoresis, the NC structural determinants for cTAR binding and destabilization, and for the inhibition of self-primed DNA synthesis on a model system using a series of NC mutants and HIV-1 reverse transcriptase. NC destabilization and self-priming inhibition properties were found to be supported by the two fingers in their proper context and the basic (29)RAPRKKG(35) linker. The strict requirement of the native proximal finger suggests that its hydrophobic platform (Val13, Phe16, Thr24 and Ala25) is crucial for binding, destabilization and inhibition of self-priming. In contrast, only partial folding of the distal finger is required, probably for presenting the Trp37 residue in an appropriate orientation. Also, Trp37 and the hydrophobic residues of the proximal finger appear to be essential for the propagation of the melting from the cTAR ends up to the middle of the stem. Finally, both N-terminal and C-terminal basic domains contribute to cTAR binding but not to its destabilization.
Collapse
Affiliation(s)
- Hervé Beltz
- Laboratoire de Pharmacologie et Physico-Chimie des Interactions Cellulaires et Moléculaires, UMR 7034 CNRS, Faculté de Pharmacie, Université Louis Pasteur, Strasbourg 1, 74, Route du Rhin, 67401 Illkirch Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Egelé C, Schaub E, Ramalanjaona N, Piémont E, Ficheux D, Roques B, Darlix JL, Mély Y. HIV-1 nucleocapsid protein binds to the viral DNA initiation sequences and chaperones their kissing interactions. J Mol Biol 2004; 342:453-66. [PMID: 15327946 DOI: 10.1016/j.jmb.2004.07.059] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 07/19/2004] [Indexed: 11/17/2022]
Abstract
The chaperone properties of the human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein (NC) are required for the two obligatory strand transfer reactions occurring during viral DNA synthesis. The second strand transfer relies on the destabilization and the subsequent annealing of the primer binding site sequences (PBS) at the 3' end of the (-) and (+) DNA strands. To characterize the binding and chaperone properties of NC on the (-)PBS and (+)PBS sequences, we monitored by steady-state and time-resolved fluorescence spectroscopy as well as by fluorescence correlation spectroscopy the interaction of NC with wild type and mutant oligonucleotides corresponding to the (-)PBS and (+)PBS hairpins. NC was found to bind with high affinity to the loop, the stem and the single-stranded protruding sequence of both PBS sequences. NC induces only a limited destabilization of the secondary structure of both sequences, activating the transient melting of the stem only during its "breathing" period. This probably results from the high stability of the PBS due to the four G-C pairs in the stem. In contrast, NC directs the formation of "kissing" homodimers efficiently for both (-)PBS and (+)PBS sequences. Salt-induced dimerization and mutations in the (-)PBS sequence suggest that these homodimers may be stabilized by two intermolecular G-C Watson-Crick base-pairs between the partly self-complementary loops. The propensity of NC to promote the dimerization of partly complementary sequences may favor secondary contacts between viral sequences and thus, recombination and viral diversity.
Collapse
Affiliation(s)
- Caroline Egelé
- Laboratoire de Pharmacologie et Physico-Chimie des Interactions Cellulaires et Moléculaires, UMR 7034 CNRS, Faculté de Pharmacie, Université Louis Pasteur, Strasbourg 1, 74, Route du Rhin, 67401 Illkirch Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Heilman-Miller SL, Wu T, Levin JG. Alteration of nucleic acid structure and stability modulates the efficiency of minus-strand transfer mediated by the HIV-1 nucleocapsid protein. J Biol Chem 2004; 279:44154-65. [PMID: 15271979 DOI: 10.1074/jbc.m401646200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During human immunodeficiency virus type 1 minus-strand transfer, the nucleocapsid protein (NC) facilitates annealing of the complementary repeat regions at the 3'-ends of acceptor RNA and minus-strand strong-stop DNA ((-) SSDNA). In addition, NC destabilizes the highly structured complementary trans-activation response element (TAR) stem-loop (TAR DNA) at the 3'-end of (-) SSDNA and inhibits TAR-induced self-priming, a dead-end reaction that competes with minus-strand transfer. To investigate the relationship between nucleic acid secondary structure and NC function, a series of truncated (-) SSDNA and acceptor RNA constructs were used to assay minus-strand transfer and self-priming in vitro. The results were correlated with extensive enzymatic probing and mFold analysis. As the length of (-) SSDNA was decreased, self-priming increased and was highest when the DNA contained little more than TAR DNA, even if NC and acceptor were both present; in contrast, truncations within TAR DNA led to a striking reduction or elimination of self-priming. However, destabilization of TAR DNA was not sufficient for successful strand transfer: the stability of acceptor RNA was also crucial, and little or no strand transfer occurred if the RNA was highly stable. Significantly, NC may not be required for in vitro strand transfer if (-) SSDNA and acceptor RNA are small, relatively unstructured molecules with low thermodynamic stabilities. Collectively, these findings demonstrate that for efficient NC-mediated minus-strand transfer, a delicate thermodynamic balance between the RNA and DNA reactants must be maintained.
Collapse
Affiliation(s)
- Susan L Heilman-Miller
- Laboratory of Molecular Genetics, NICHD, National Institutes of Health, Bethesda, Maryland 20892-2780, USA
| | | | | |
Collapse
|
61
|
Beltz H, Piémont E, Schaub E, Ficheux D, Roques B, Darlix JL, Mély Y. Role of the structure of the top half of HIV-1 cTAR DNA on the nucleic acid destabilizing activity of the nucleocapsid protein NCp7. J Mol Biol 2004; 338:711-23. [PMID: 15099739 DOI: 10.1016/j.jmb.2004.03.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Revised: 03/01/2004] [Accepted: 03/01/2004] [Indexed: 11/27/2022]
Abstract
The viral nucleic acid chaperone protein NCp7 of HIV-1 assists the two obligatory strand transfers required for the conversion of the genomic RNA into double-stranded DNA by reverse transcriptase. The first strand transfer necessitates the annealing of the early product of cDNA synthesis, the minus strand strong stop DNA (ss-cDNA) to the 3' end of the genomic RNA. The hybridization reaction involves regions containing imperfect stem-loop (SL) structures, namely the TAR RNA at the 3' end of the genomic RNA and the complementary sequence cTAR at the 3' end of ss-cDNA. To pursue the characterization of the interaction between NCp7 and cTAR DNA, we investigated by absorbance, steady-state and time-resolved fluorescence spectroscopy, the interaction of NCp7 with wild-type and mutated DNAs representing the top half of cTAR. NCp7 was found to activate the transient melting of this cTAR DNA structure but less efficiently than that of cTAR lower half. The NCp7-induced destabilization of cTAR top half is dependent upon the three nucleotides bulging out of the stem, which thus represent a melting initiation site. In contrast, despite its ability to bind NCp7, the top loop does not play any significant role in NCp7-mediated melting. Thermodynamic data further suggest that NCp7-mediated destabilization of this cTAR structure correlates with the free energy changes afforded by destabilizing motifs like loops and bulges within the SL secondary structure. Interestingly, since NCp7 melts only short double-stranded sequences, destabilizing motifs need to be regularly positioned along the genomic sequence in order to promote strand transfer and thus genetic recombination during proviral DNA synthesis.
Collapse
Affiliation(s)
- Hervé Beltz
- UMR 7034 CNRS, Faculté de Pharmacie, Université Louis Pasteur, Strasbourg 1, 74 Route du Rhin, 67401 Illkirch Cedex, France
| | | | | | | | | | | | | |
Collapse
|
62
|
Chen Y, Balakrishnan M, Roques BP, Bambara RA. Steps of the acceptor invasion mechanism for HIV-1 minus strand strong stop transfer. J Biol Chem 2003; 278:38368-75. [PMID: 12878597 DOI: 10.1074/jbc.m305700200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Minus strand strong stop transfer is obligatory for completion of HIV-1 minus strand synthesis. We previously showed evidence for an acceptor invasion-initiated mechanism for minus strand transfer. In the present study, we examined the major acceptor invasion initiation site using a minus strand transfer system in vitro, containing the 97-nucleotide full-length R region. A series of DNA oligonucleotides complementary to different regions of the cDNA was designed to interfere with transfer. Oligomers covering the region around the base of the TAR hairpin were most effective in inhibiting transfer, suggesting that the hairpin base is a preferred site for acceptor invasion. The strong pausing of reverse transcriptase at the base of the TAR and the concomitant RNase H cleavages 10-19 nucleotides behind the pause site correlated with the location of the invasion site. Oligomers closer to the 5'-end of R also inhibited transfer, though less effectively, presumably by blocking strand exchange and branch migration. We propose that pausing of reverse transcriptase at the base of TAR increases RNase H cleavages, creating gaps for acceptor invasion and transfer initiation. Strand exchange then propagates by branch migration, displacing the fragmented donor RNA, including the fragment at the 5' terminus. The primer terminus switches to the acceptor, completing the transfer. Nucleocapsid (NC) protein stimulated transfer efficiency by 5-7-fold. NC enhanced RNase H cleavages close to the TAR base, creating more effective invasion sites for efficient transfer. Most likely, NC also stimulates transfer by promoting strand exchange invasion and branch migration.
Collapse
Affiliation(s)
- Yan Chen
- Department of Biochemistry and Biophysics, University of Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
63
|
Krishnamoorthy G, Roques B, Darlix JL, Mély Y. DNA condensation by the nucleocapsid protein of HIV-1: a mechanism ensuring DNA protection. Nucleic Acids Res 2003; 31:5425-32. [PMID: 12954779 PMCID: PMC203321 DOI: 10.1093/nar/gkg738] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2003] [Revised: 07/12/2003] [Accepted: 07/28/2003] [Indexed: 11/14/2022] Open
Abstract
The nucleocapsid (NC) protein NCp7 of the immunodeficiency virus type 1 is a small basic protein with two zinc finger motifs. NCp7 has key roles in virus replication and structure, which rely on its interactions with nucleic acids. Although most interactions involve RNAs, binding to the viral DNA is thought to be of importance to achieve protection of the DNA against cellular nucleases and its integration into the host genome. We investigated the interaction of NCp7 with plasmid DNA as a model system. The fluorescence probe YOYO-1 was used as the reporter. Binding of NCp7 to DNA caused DNA condensation, as inferred from the dramatic decrease in YOYO-1 fluorescence. Efficient condensation of DNA required the full length NCp7 with the zinc fingers. The fingerless peptide was less efficient in condensing DNA. Binding of both these NC peptides led to freezing of the segmental dynamics of DNA as revealed by anisotropy decay kinetics of YOYO-1. The truncated peptide NC(12-55) which retains the zinc fingers did not lead to DNA condensation despite its ability to bind and partially freeze the segmental motion of DNA. We propose that the histone-like property of NCp7 leading to DNA condensation contributes to viral DNA stability, in vivo.
Collapse
Affiliation(s)
- G Krishnamoorthy
- Laboratoire de Pharmacologie et Physicochimie des interactions cellulaires et moléculaires, UMR 7034 du CNRS, Faculté de Pharmacie, Université Louis Pasteur de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France.
| | | | | | | |
Collapse
|
64
|
Roda RH, Balakrishnan M, Hanson MN, Wohrl BM, Le Grice SFJ, Roques BP, Gorelick RJ, Bambara RA. Role of the Reverse Transcriptase, Nucleocapsid Protein, and Template Structure in the Two-step Transfer Mechanism in Retroviral Recombination. J Biol Chem 2003; 278:31536-46. [PMID: 12801926 DOI: 10.1074/jbc.m304608200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Template switching during reverse transcription promotes recombination in retroviruses. Efficient switches have been measured in vitro on hairpin-containing RNA templates by a two-step mechanism. Pausing of the reverse transcriptase (RT) at the hairpin base allowed enhanced cleavage of the initial donor RNA template, exposing regions of the cDNA and allowing the acceptor to base pair with the cDNA. This defines the first or docking step. The primer continued synthesis on the donor, transferring or locking in a second step. Here we determine the enzyme-dependent factors that influence template switching by comparing the RTs from human immunodeficiency virus, type 1 (HIV-1), and equine infectious anemia virus (EIAV). HIV-1 RT promoted transfers with higher efficiency than EIAV RT. We found that both RTs paused strongly at the base of the hairpin. While stalled, HIV-1 RT made closely spaced cuts, whereas EIAV RT made only a single cut. Docking occurred efficiently at the multiply cut but not at the singly cut site. HIV-1 nucleocapsid (NC) protein stimulated strand transfers. It improved RNase H activity of both RTs. It allowed the EIAV RT to make a distribution of cuts, greatly stimulating docking at the base of the hairpin. Most likely, it also promoted strand exchange, allowing transfers to be initiated from sites throughout the hairpin. Minor pause sites beyond the base of the hairpin correlated with the locking sites. The strand exchange properties of NC likely promote this step. We present a model that explains the roles of RNase H specificity, template structure, and properties of NC in the two-step transfer reaction.
Collapse
Affiliation(s)
- Ricardo H Roda
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Derebail SS, Heath MJ, DeStefano JJ. Evidence for the differential effects of nucleocapsid protein on strand transfer in various regions of the HIV genome. J Biol Chem 2003; 278:15702-12. [PMID: 12595541 DOI: 10.1074/jbc.m211701200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
An in vitro strand transfer assay that mimicked recombinational events occurring during reverse transcription in HIV-1 was used to assess the role of nucleocapsid protein (NC) in strand transfer. Strand transfer in highly structured nucleic acid species from the U3 3' long terminal repeats, gag-pol frameshift region, and Rev response element were strongly enhanced by NC. In contrast, weakly structured templates from the env and pol-vif regions transferred well without NC and showed lower enhancement. The lack of strong polymerase pause sites in the latter regions demonstrated that non-pause driven mechanisms could also promote transfer. Assays conducted using NC zinc finger mutants supported a differential role for the two fingers in strand transfer with finger 1 (N-terminal) being more important on highly structured RNAs. Overall this report suggests a role for structural intricacies of RNA templates in determining the extent of influence of NC on recombination and illustrates that strand transfer may occur by several different mechanisms depending on the structural nature of the RNA.
Collapse
Affiliation(s)
- Suchitra S Derebail
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
66
|
Tajima K, Kim WJ, Sato Y, Akaike T, Maruyama A. Simple Basic Peptides Activate DNA Strand Exchange. CHEM LETT 2003. [DOI: 10.1246/cl.2003.470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
67
|
Beltz H, Azoulay J, Bernacchi S, Clamme JP, Ficheux D, Roques B, Darlix JL, Mély Y. Impact of the terminal bulges of HIV-1 cTAR DNA on its stability and the destabilizing activity of the nucleocapsid protein NCp7. J Mol Biol 2003; 328:95-108. [PMID: 12684000 DOI: 10.1016/s0022-2836(03)00244-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reverse transcription of HIV-1 genomic RNA to double-stranded DNA by reverse transcriptase (RT) is a critical step in HIV-1 replication. This process relies on two viral proteins, the RT enzyme and nucleocapsid protein NCp7 that has well documented nucleic acid chaperone properties. At the beginning of the linear DNA synthesis, the newly made minus-strand strong-stop DNA ((-)ssDNA) is transferred to the 3'end of the genomic RNA by means of an hybridization reaction between transactivation response element (TAR) RNA and cTAR DNA sequences. Since both TAR sequences exhibit stable hairpin structures, NCp7 needs to destabilize the TAR structures in order to chaperone their hybridization. To further characterize the relationships between TAR stability and NC-mediated destabilization, the role of the A(49) and G(52) bulged residues in cTAR DNA stability was investigated. The stability of cTAR and mutants where one or the two terminal bulges were replaced by base-pairs as well as the NCp7-mediated destabilization of these cTAR sequences were examined. Thermodynamic data indicate that the two bulges cooperatively destabilize cTAR by reducing the stacking interactions between the bases. This causes a free energy change of about 6.4 kcal/mol and seems to be critical for NC activity. Time-resolved fluorescence data of doubly labelled cTAR derivatives suggest that NC-mediated melting of cTAR ends propagates up to the 10C.A(44) mismatch or T(40) bulge. Fluorescence correlation spectroscopy using two-photon excitation was also used to monitor cTAR ends fraying by NC. Results show that NC causes a very significant increase of cTAR ends fraying, probably limited to the terminal base-pair in the case of cTAR mutants. Since the TAR RNA and cTAR DNA bulges or mismatches appear well conserved among all HIV-1 strains, the present data support the notion of a co-evolutionary relationship between TAR and NC activity.
Collapse
Affiliation(s)
- Hervé Beltz
- Laboratoire de Pharmacologie et Physico-Chimie des Interactions Cellulaires et Moléculaires, UMR 7034 CNRS, Faculté de Pharmacie, Université Louis Pasteur, Strasbourg 1, 74, Route du Rhin, 67401 Illkirch Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Iwatani Y, Rosen AE, Guo J, Musier-Forsyth K, Levin JG. Efficient initiation of HIV-1 reverse transcription in vitro. Requirement for RNA sequences downstream of the primer binding site abrogated by nucleocapsid protein-dependent primer-template interactions. J Biol Chem 2003; 278:14185-95. [PMID: 12560327 DOI: 10.1074/jbc.m211618200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synthesis of HIV-1 (-) strong-stop DNA is initiated following annealing of the 3' 18 nucleotides (nt) of tRNA(3)(Lys) to the primer binding site (PBS) near the 5' terminus of viral RNA. Here, we have investigated whether sequences downstream of the PBS play a role in promoting efficient (-) strong-stop DNA synthesis. Our findings demonstrate a template requirement for at least 24 bases downstream of the PBS when tRNA(3)(Lys) or an 18-nt RNA complementary to the PBS (R18), but not an 18-nt DNA primer, are used. Additional assays using 18-nt DNA-RNA chimeric primers, as well as melting studies and circular dichroism spectra of 18-nt primer:PBS duplexes, suggest that priming efficiency is correlated with duplex conformation and stability. Interestingly, in the presence of nucleocapsid protein (NC), the 24 downstream bases are dispensable for synthesis primed by tRNA(3)(Lys) but not by R18. We present data supporting the conclusion that NC promotes extended interactions between the anticodon stem and variable loop of tRNA(3)(Lys) and a sequence upstream of the A-rich loop in the template. Taken together, this study leads to new insights into the initiation of HIV-1 reverse transcription and the functional role of NC-facilitated tRNA-template interactions in this process.
Collapse
Affiliation(s)
- Yasumasa Iwatani
- Laboratory of Molecular Genetics, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
69
|
Chen Y, Balakrishnan M, Roques BP, Fay PJ, Bambara RA. Mechanism of minus strand strong stop transfer in HIV-1 reverse transcription. J Biol Chem 2003; 278:8006-17. [PMID: 12499370 DOI: 10.1074/jbc.m210959200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retrovirus minus strand strong stop transfer (minus strand transfer) requires reverse transcriptase-associated RNase H, R sequence homology, and viral nucleocapsid protein. The minus strand transfer mechanism in human immunodeficiency virus-1 was examined in vitro with purified protein and substrates. Blocking donor RNA 5'-end cleavage inhibited transfers when template homology was 19 nucleotides (nt) or less. Cleavage of the donor 5'-end occurred prior to formation of transfer products. This suggests that when template homology is short, transfer occurs through a primer terminus switch-initiated mechanism, which requires cleavage of the donor 5' terminus. On templates with 26-nt and longer homology, transfer occurred before cleavage of the donor 5' terminus. Transfer was unaffected when donor 5'-end cleavages were blocked but was reduced when internal cleavages within the donor were restricted. Based on the overall data, we conclude that in human immunodeficiency virus-1, which contains a 97-nt R sequence, minus strand transfer occurs through an acceptor invasion-initiated mechanism. Transfer is initiated at internal regions of the homologous R sequence without requiring cleavage at the donor 5'-end. The acceptor invades at gaps created by reverse transcriptase-RNase H in the donor-cDNA hybrid. The fragmented donor is eventually strand-displaced by the acceptor, completing the transfer.
Collapse
Affiliation(s)
- Yan Chen
- Department of Biochemistry and Biophysics, University of Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
70
|
Hong MK, Harbron EJ, O'Connor DB, Guo J, Barbara PF, Levin JG, Musier-Forsyth K. Nucleic acid conformational changes essential for HIV-1 nucleocapsid protein-mediated inhibition of self-priming in minus-strand transfer. J Mol Biol 2003; 325:1-10. [PMID: 12473448 DOI: 10.1016/s0022-2836(02)01177-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Reverse transcription of the HIV-1 genome is a complex multi-step process. HIV-1 nucleocapsid protein (NC) is a nucleic acid chaperone protein that has been shown to greatly facilitate the nucleic acid rearrangements that precede the minus-strand transfer step in reverse transcription. NC destabilizes the highly structured transactivation response region (TAR) present in the R region of the RNA genome, as well as a complementary hairpin structure ("TAR DNA") at the 3'-end of the newly synthesized minus-strand strong-stop DNA ((-) SSDNA). Melting of the latter structure inhibits a self-priming (SP) reaction that competes with the strand transfer reaction. In an in vitro minus-strand transfer system consisting of a (-) SSDNA mimic and a TAR-containing acceptor RNA molecule, we find that when both nucleic acids are present, NC facilitates formation of the transfer product and the SP reaction is greatly reduced. In contrast, in the absence of the acceptor RNA, NC has only a small inhibitory effect on the SP reaction. To further investigate NC-mediated inhibition of SP, we developed a FRET-based assay that allows us to directly monitor conformational changes in the TAR DNA structure upon NC binding. Although the majority ( approximately 71%) of the TAR DNA molecules assume a folded hairpin conformation in the absence of NC, two minor "semi-folded" and "unfolded" populations are also observed. Upon NC binding to the TAR DNA alone, we observe a modest shift in the population towards the less-folded states. In the presence of the RNA acceptor molecule, NC binding to TAR DNA results in a shift of the majority of molecules to the unfolded state. These measurements help to explain why acceptor RNA is required for significant inhibition of the SP reaction by NC, and support the hypothesis that NC-mediated annealing of nucleic acids is a concerted process wherein the unwinding step occurs in synchrony with hybridization.
Collapse
Affiliation(s)
- Minh K Hong
- Department of Chemistry, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, MN 55455-0431, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Buckman JS, Bosche WJ, Gorelick RJ. Human immunodeficiency virus type 1 nucleocapsid zn(2+) fingers are required for efficient reverse transcription, initial integration processes, and protection of newly synthesized viral DNA. J Virol 2003; 77:1469-80. [PMID: 12502862 PMCID: PMC140799 DOI: 10.1128/jvi.77.2.1469-1480.2003] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) containing mutations in the nucleocapsid (NC) Zn(2+) finger domains have greatly reduced infectivity, even though genome packaging is largely unaffected in certain cases. To examine replication defects, viral DNA (vDNA) was isolated from cells infected with viruses containing His-to-Cys changes in their Zn(2+) fingers (NC(H23C) and NC(H44C)), an integrase mutant (IN(D116N)), a double mutant (NC(H23C)/IN(D116N)), or wild-type HIV-1. In vitro assays have established potential roles for NC in reverse transcription and integration. In vivo results for these processes were obtained by quantitative PCR, cloning of PCR products, and comparison of the quantity and composition of vDNA generated at discrete points during reverse transcription. Quantitative analysis of the reverse transcription intermediates for these species strongly suggests decreased stability of the DNA produced. Both Zn(2+) finger mutants appear to be defective in DNA synthesis, with the minus- and plus-strand transfer processes being affected while interior portions of the vDNA remain more intact. Sequences obtained from PCR amplification and cloning of 2-LTR circle junction fragments revealed that the NC mutants had a phenotype similar to the IN mutant; removal of the terminal CA dinucleotides necessary for integration of the vDNA is disabled by the NC mutations. Thus, the loss of infectivity in these NC mutants in vivo appears to result from defective reverse transcription and integration processes stemming from decreased protection of the full-length vDNA. Finally, these results indicate that the chaperone activity of NC extends from the management of viral RNA through to the full-length vDNA.
Collapse
Affiliation(s)
- James S Buckman
- AIDS Vaccine Program, SAIC Frederick, Inc., National Cancer Institute at Frederick, Maryland 21702-1201, USA
| | | | | |
Collapse
|
72
|
Urbaneja MA, Wu M, Casas-Finet JR, Karpel RL. HIV-1 nucleocapsid protein as a nucleic acid chaperone: spectroscopic study of its helix-destabilizing properties, structural binding specificity, and annealing activity. J Mol Biol 2002; 318:749-64. [PMID: 12054820 DOI: 10.1016/s0022-2836(02)00043-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Assembly of infectious retroviral particles involves recognition of specific sequences on the viral RNA by the nucleocapsid (NC) domain of the Gag polyprotein, and subsequent stoichiometric binding of the processed NC protein along the entire length of the RNA. NC proteins also act as nucleic acid chaperones. They accelerate nucleic acid hybridization and strand exchange, which may be critical during the initial stages of reverse transcription. In order to better understand these properties, we have studied the nucleic acid helix-destabilizing t(m)-depressing) and binding activities of HIV-1 NCp7 protein with a variety of substrates, and the real-time kinetics of NC-induced strand exchange. At low ionic strength (0.01 M Na phosphate, pH 7.0) and saturating levels of protein, NCp7 displays moderate helix-destabilizing activity on double-stranded DNA. Saturating levels of NCp7 lowered the t(m) of a synthetic 28 base-pair 28(+)/28(-) oligonucleotide duplex by about 10 deg. C (51 to 41 degrees C). The presence of single-stranded calf thymus DNA (equimolar with duplex) eliminated the t(m) depression, whereas double-stranded calf thymus DNA only altered the t(m) of the 28-mer duplex by about 2 deg. C. Similar effects were seen with duplexes with single-stranded overhangs or internal single-stranded gaps. Binding experiments utilizing intrinsic tryptophan quenching indicated significant affinity (K(d) about 0.1 microM) for both single-stranded and double-stranded forms of the 28-mer in 0.01 M sodium phosphate at 25 degrees C, although long-chain (calf thymus double-stranded) DNA displayed a much lower affinity. The effects of NCp7 on the kinetics of nucleic acid annealing, strand exchange, and strand displacement were determined by use of oligonucleotides with end-labeled fluorophores serving as donor-acceptor pairs. NCp7 accelerated all these reactions. In the strand exchange reaction, an imperfect duplex, 28(+)/21(-), was reacted with a perfect complement, 28(-). The kinetics of 28(+)/28(-) annealing in this reaction did not conform to a simple bimolecular model, but could be well fit to the sum of two exponential decays. Addition of stoichiometric levels of NCp7 increased the rate constants of both components, and significantly increased the fraction of exchange associated with the rapid process. Increasing levels of 28(-) also increased the rapid fraction, as well as the rapid rate constant. This concentration dependence indicates that, although the kinetic decays appear biexponential, at least one of the steps is bimolecular. Simple annealing reactions, 28(+) with 28(-), could be fit to single-exponential decays, and their magnitudes in the presence of NCp7 were comparable to the rapid step of annealing observed for exchange reactions, suggesting that this step is connected with annealing. Strand dissociation during exchange was monitored by placing the fluorescent acceptor on the 21(-) strand. The results, though complex, suggest that the slow step of exchange is largely associated with the dissociation of the shorter oligonucleotide. Analogous experiments were performed with variants of these oligonucleotides, and the results are in line with the 28(+)/21(-)/28(-) experiments. On the basis of an analysis of the effect of increasing levels of 28(-) on the formation of the perfect 28 bp duplex from the imperfect duplex, we propose that NCp7 forms a ternary complex intermediate with imperfect duplex and 28(-), and suggest several ways by which such an intermediate would facilitate strand exchange.
Collapse
Affiliation(s)
- María A Urbaneja
- AIDS Vaccine Program, SAIC-Frederick, Building 535-424, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | | | | | | |
Collapse
|
73
|
Guo J, Wu T, Kane BF, Johnson DG, Henderson LE, Gorelick RJ, Levin JG. Subtle alterations of the native zinc finger structures have dramatic effects on the nucleic acid chaperone activity of human immunodeficiency virus type 1 nucleocapsid protein. J Virol 2002; 76:4370-8. [PMID: 11932404 PMCID: PMC155087 DOI: 10.1128/jvi.76.9.4370-4378.2002] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleocapsid protein (NC) of human immunodeficiency virus type 1 has two zinc fingers, each containing the invariant CCHC zinc-binding motif; however, the surrounding amino acid context is not identical in the two fingers. Recently, we demonstrated that zinc coordination is required when NC unfolds complex secondary structures in RNA and DNA minus- and plus-strand transfer intermediates; this property of NC reflects its nucleic acid chaperone activity. Here we have analyzed the chaperone activities of mutants having substitutions of alternative zinc-coordinating residues, i.e., CCHH or CCCC, for the wild-type CCHC motif. We also investigated the activities of mutants that retain the CCHC motifs but have mutations that exchange or duplicate the zinc fingers (mutants 1-1, 2-1, and 2-2); these changes affect amino acid context. Our results indicate that in general, for optimal activity in an assay that measures stimulation of minus-strand transfer and inhibition of nonspecific self-priming, the CCHC motif in the zinc fingers cannot be replaced by CCHH or CCCC and the amino acid context of the fingers must be conserved. Context changes also reduce the ability of NC to facilitate primer removal in plus-strand transfer. In addition, we found that the first finger is a more crucial determinant of nucleic acid chaperone activity than the second finger. Interestingly, comparison of the in vitro results with earlier in vivo replication data raises the possibility that NC may adopt multiple conformations that are responsible for different NC functions during virus replication.
Collapse
Affiliation(s)
- Jianhui Guo
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
Bernacchi S, Stoylov S, Piémont E, Ficheux D, Roques BP, Darlix JL, Mély Y. HIV-1 nucleocapsid protein activates transient melting of least stable parts of the secondary structure of TAR and its complementary sequence. J Mol Biol 2002; 317:385-99. [PMID: 11922672 DOI: 10.1006/jmbi.2002.5429] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The nucleocapsid protein NCp7 of HIV-1 possesses a nucleic acid chaperone activity that is critical in minus and plus strand transfer during reverse transcription. The minus strand transfer notably relies on the ability of NCp7 to destabilize the stable stem with five contiguous, double-stranded segments of both the TAR sequence at the 3' end of the viral genome and the complementary sequence, cTAR, in minus strong-stop DNA. In order to examine the nature and the extent of NCp7 destabilizing activity, we investigated, by absorbance and fluorescence spectroscopy, the interaction of TAR and cTAR with a (12-55)NCp7 peptide containing the zinc-finger motifs but lacking the ability to aggregate the oligonucleotides. The absorbance changes in the UV band of cTAR show that seven to eight base-pairs, on average, are melted per oligonucleotide at a ratio of one peptide to 7.5 nucleotides. In contrast, the melting of TAR does not exceed an average of one base-pair per oligonucleotide. This may be linked to the greater stability of TAR, since a strong correlation between NCp7 destabilizing effect and oligonucleotide stability was observed. The effect of (12-55)NCp7 on the stem terminus was investigated by using a cTAR molecule doubly labeled at the 3' and 5' ends by a donor/acceptor couple. In the absence of the peptide, about 80 % of the oligonucleotides are in a dark non-fluorescent state, having a close proximity of the two dyes. The remaining 20 % are distributed between three fluorescent species, having either the terminal segment, the two terminal segments or all segments of the stem melted. This is in line with a fraying mechanism wherein the stem terminus fluctuates rapidly between open and closed states. Addition of (12-55)NCp7 shifts the equilibrium toward the open species, suggesting that NC enhances fraying of the stem terminus. Taken together, our data suggest that NCp7 activates the transient opening of base-pairs in the least stable parts of the stem. Also, this activity of NCp7 was found to be dependent on the zinc-finger motifs, since no melting was observed with a fingerless NCp7 peptide.
Collapse
MESH Headings
- Base Pairing
- Base Sequence
- Capsid/chemistry
- Capsid/metabolism
- Capsid Proteins
- Crystallography, X-Ray
- Gene Products, gag/chemistry
- Gene Products, gag/metabolism
- HIV Long Terminal Repeat/genetics
- HIV-1/genetics
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- Sequence Alignment
- Spectrometry, Fluorescence
- Spectrophotometry, Ultraviolet
- Structure-Activity Relationship
- Viral Proteins
- Zinc Fingers
- gag Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Serena Bernacchi
- Laboratoire de Pharmacologie et Physico-Chimie des Interactions Cellulaires et Moléculaires, UMR 7034 CNRS, Faculté de Pharmacie, Université Louis Pasteur, 74, Route du Rhin, Strasbourg 1, 67401, France
| | | | | | | | | | | | | |
Collapse
|
75
|
Muthuswami R, Chen J, Burnett BP, Thimmig RL, Janjic N, McHenry CS. The HIV plus-strand transfer reaction: determination of replication-competent intermediates and identification of a novel lentiviral element, the primer over-extension sequence. J Mol Biol 2002; 315:311-23. [PMID: 11786014 DOI: 10.1006/jmbi.2001.5205] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Current retroviral replication models propose that during (+) strand synthesis, the initial (-) strand tRNA primer is partially replicated to reproduce the 18 nt primer-binding site (PBS). Subsequent removal of the tRNA primer from the (-) strand template exposes the PBS, which anneals to complementary sequences on a DNA acceptor template to enable (+) strand transfer. We used model templates composed of primed (-) strand DNA covalently linked with post-transcriptionally modified tRNA(3)(lys) along with natural sequence human immunodeficiency virus (HIV) acceptor DNA to study the generation of the (+) strand strong stop intermediate and the subsequent (+) strand transfer reaction. The rate of formation of the (+) strand transfer reaction products was modestly increased (threefold) by inclusion of nucleocapsid protein, suggesting an ancillary role for this protein in this stage of retroviral replication. In addition to the well-known stop site opposite G59 of the tRNA primer, we detected two additional stop sites opposite psi55 and at A38. Kinetic analysis showed that only the intermediates formed by stops opposite G59 and psi55 were active in the subsequent (+) strand transfer reaction. The surprising discovery of the longer, viable (+) strand interaction intermediate prompted us to survey retroviral sequences for a region complementary to the additional donor DNA nucleotides involved in this over-extension. Indeed, complementary sequences that could support this over-extension were found. A strong consensus sequence is immediately adjacent to and downstream of the PBS in lentiviruses and spumaviruses. This consensus sequence was not found in other genera of retroviruses. We have named this element the "primer over-extension sequence" (POS), and propose that it provides a complementary sequence for strand transfer reactions proceeding from intermediates that extend beyond the standard 18 nt complement of the PBS.
Collapse
MESH Headings
- Base Pairing/genetics
- Base Sequence
- Consensus Sequence/genetics
- DNA, Viral/genetics
- DNA, Viral/metabolism
- HIV/genetics
- Humans
- Kinetics
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA/biosynthesis
- RNA/chemistry
- RNA/genetics
- RNA, Transfer, Lys/chemistry
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Lys/metabolism
- RNA, Viral/biosynthesis
- RNA, Viral/chemistry
- RNA, Viral/genetics
- Regulatory Sequences, Nucleic Acid/genetics
- Spumavirus/genetics
- Templates, Genetic
- Virus Replication/genetics
Collapse
Affiliation(s)
- Rohini Muthuswami
- Department of Biochemistry & Molecular Genetics and Molecular Biology Program, University of Colorado Health Sciences Center, 4200 E. Ninth Avenue, B121, Denver, CO 80262, USA
| | | | | | | | | | | |
Collapse
|
76
|
Hargittai MR, Mangla AT, Gorelick RJ, Musier-Forsyth K. HIV-1 nucleocapsid protein zinc finger structures induce tRNA(Lys,3) structural changes but are not critical for primer/template annealing. J Mol Biol 2001; 312:985-97. [PMID: 11580244 DOI: 10.1006/jmbi.2001.5021] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retroviral reverse transcriptases use host cellular tRNAs as primers to initiate reverse transcription. In the case of human immunodeficiency virus type 1 (HIV-1), the 3' 18 nucleotides of human tRNA(Lys,3) are annealed to a complementary sequence on the RNA genome known as the primer binding site (PBS). The HIV-1 nucleocapsid protein (NC) facilitates this annealing. To understand the structural changes that are induced upon NC binding to the tRNA alone, we employed a chemical probing method using the lanthanide metal terbium. At low concentrations of NC, the strong terbium cleavage observed in the core region of the tRNA is significantly attenuated. Thus, NC binding first results in disruption of the tRNA's metal binding pockets, including those that stabilize the D-TPsiC tertiary interaction. When NC concentrations approach the amount needed for complete primer/template annealing, NC further destabilizes the tRNA acceptor-TPsiC stem minihelix, as evidenced by increased terbium cleavage in this domain. A mutant form of NC (SSHS NC), which lacks the zinc finger structures, is able to anneal tRNA(Lys,3) efficiently to the PBS, and to destabilize the tRNA tertiary core, albeit less effectively than wild-type NC. This mutant form of NC does not affect cleavage significantly in the helical regions, even when bound at high concentrations. These results, as well as experiments conducted in the presence of polyLys, suggest that in the absence of the zinc finger structures, NC acts as a polycation, neutralizing the highly negative phosphodiester backbone. The presence of an effective multivalent cationic peptide is sufficient for efficient tRNA primer annealing to the PBS.
Collapse
Affiliation(s)
- M R Hargittai
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
77
|
Bernacchi S, Mély Y. Exciton interaction in molecular beacons: a sensitive sensor for short range modifications of the nucleic acid structure. Nucleic Acids Res 2001; 29:E62-2. [PMID: 11433038 PMCID: PMC55786 DOI: 10.1093/nar/29.13.e62] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Molecular beacons are hairpin-shaped, single-stranded oligonucleotides constituting sensitive fluorescent DNA probes widely used to report the presence of specific nucleic acids. In its closed form the stem of the hairpin holds the fluorophore covalently attached to one end, close to the quencher, which is covalently attached to the other end. Here we report that in the closed form the fluorophore and the quencher form a ground state intramolecular heterodimer whose spectral properties can be described by exciton theory. Formation of the heterodimers was found to be poorly sensitive to the stem sequence, the respective positions of the dyes and the nature of the nucleic acid (DNA or RNA). The heterodimer allows strong coupling between the transition dipoles of the two chromophores, leading to dramatic changes in the absorption spectrum that are not compatible with a Förster-type fluorescence resonance energy transfer (FRET) mechanism. The excitonic heterodimer and its associated absorption spectrum are extremely sensitive to the orientation of and distance between the dyes. Accordingly, the application of molecular beacons can be extended to monitoring short range modifications of the stem structure. Moreover, the excitonic interaction was also found to operate for doubly end-labeled duplexes.
Collapse
Affiliation(s)
- S Bernacchi
- Laboratoire de Pharmacologie et Physico-Chimie des Interactions Cellulaires et Moléculaires, UMR 7034 CNRS, Faculté de Pharmacie, Université Louis Pasteur, 74 Route du Rhin, 67401 Illkirch Cedex, France
| | | |
Collapse
|
78
|
Williams MC, Rouzina I, Wenner JR, Gorelick RJ, Musier-Forsyth K, Bloomfield VA. Mechanism for nucleic acid chaperone activity of HIV-1 nucleocapsid protein revealed by single molecule stretching. Proc Natl Acad Sci U S A 2001; 98:6121-6. [PMID: 11344257 PMCID: PMC33432 DOI: 10.1073/pnas.101033198] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nucleocapsid protein (NC) of HIV type 1 is a nucleic acid chaperone that facilitates the rearrangement of nucleic acids into conformations containing the maximum number of complementary base pairs. We use an optical tweezers instrument to stretch single DNA molecules from the helix to coil state at room temperature in the presence of NC and a mutant form (SSHS NC) that lacks the two zinc finger structures present in NC. Although both NC and SSHS NC facilitate annealing of complementary strands through electrostatic attraction, only NC destabilizes the helical form of DNA and reduces the cooperativity of the helix-coil transition. In particular, we find that the helix-coil transition free energy at room temperature is significantly reduced in the presence of NC. Thus, upon NC binding, it is likely that thermodynamic fluctuations cause continuous melting and reannealing of base pairs so that DNA strands are able to rapidly sample configurations to find the lowest energy state. The reduced cooperativity allows these fluctuations to occur in the middle of complex double-stranded structures. The reduced stability and cooperativity, coupled with the electrostatic attraction generated by the high charge density of NC, is responsible for the nucleic acid chaperone activity of this protein.
Collapse
Affiliation(s)
- M C Williams
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN 55108, USA
| | | | | | | | | | | |
Collapse
|
79
|
Tisné C, Roques BP, Dardel F. Heteronuclear NMR studies of the interaction of tRNA(Lys)3 with HIV-1 nucleocapsid protein. J Mol Biol 2001; 306:443-54. [PMID: 11178904 DOI: 10.1006/jmbi.2000.4391] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reverse transcription of HIV-1 viral RNA uses human tRNA(Lys)3 as a primer. Recombinant tRNA(Lys)3 was previously overexpressed in Escherichia coli, 15N-labelled and purified for NMR studies. It was shown to be functional for priming of HIV-1 reverse transcription. Using heteronuclear 2D and 3D NMR, we have been able to assign almost all the imino groups in the helical regions and involved in the tertiary base interactions of tRNA(Lys)3. This crucial step enabled us to address the question of the annealing mechanism of tRNA(Lys)3 by the nucleocapsid protein (NC) using heteronuclear NMR. Moreover, structural aspects of the tRNA(Lys)3/(12-53)NCp7 interaction have been characterised. The (12-53)NCp7 protein binds preferentially to the inside of the L-shape of the tRNA(Lys)3, on the acceptor and D stems, and at the level of the tertiary interactions between the D and T-psi-C loops. (12-53)NCp7 binding does not induce the melting of any single base-pair or unwinding of the tRNA(Lys)3 helical domains. Moreover, NMR provides a unique means to investigate the base-pairs that are destabilised by (12-53)NCp7 binding. Indeed, the measurements of the longitudinal relaxation time T1 and of the exchange time of the imino protons revealed two major regions sensitive to catalysis by the protein, namely the G6-U67 and T54(A58) pairs. It is interesting that for the biological role of the NC protein, these pairs could be the starting points of the tRNA melting required for the hybridisation to the viral RNA.
Collapse
MESH Headings
- Anticodon/chemistry
- Anticodon/genetics
- Anticodon/metabolism
- Base Pairing
- Base Sequence
- Capsid/chemistry
- Capsid/metabolism
- Capsid Proteins
- Gene Products, gag/chemistry
- Gene Products, gag/metabolism
- HIV-1
- Humans
- Kinetics
- Models, Molecular
- Molecular Sequence Data
- Nitrogen/metabolism
- Nuclear Magnetic Resonance, Biomolecular
- Nucleic Acid Conformation
- Nucleic Acid Denaturation
- Peptide Fragments/chemistry
- Peptide Fragments/metabolism
- Protein Binding
- Protons
- RNA, Transfer, Lys/chemistry
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Lys/metabolism
- Viral Proteins
- gag Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- C Tisné
- Laboratoire de Cristallographie et RMN Biologiques, EP 2075 CNRS Faculté de Pharmacie, 4 avenue de l'Observatoire, Paris, 75006, France.
| | | | | |
Collapse
|
80
|
Guo J, Wu T, Anderson J, Kane BF, Johnson DG, Gorelick RJ, Henderson LE, Levin JG. Zinc finger structures in the human immunodeficiency virus type 1 nucleocapsid protein facilitate efficient minus- and plus-strand transfer. J Virol 2000; 74:8980-8. [PMID: 10982342 PMCID: PMC102094 DOI: 10.1128/jvi.74.19.8980-8988.2000] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleocapsid protein (NC) of human immunodeficiency virus type 1 (HIV-1) has two zinc fingers, each containing the invariant metal ion binding residues CCHC. Recent reports indicate that mutations in the CCHC motifs are deleterious for reverse transcription in vivo. To identify reverse transcriptase (RT) reactions affected by such changes, we have probed zinc finger functions in NC-dependent RT-catalyzed HIV-1 minus- and plus-strand transfer model systems. Our approach was to examine the activities of wild-type NC and a mutant in which all six cysteine residues were replaced by serine (SSHS NC); this mutation severely disrupts zinc coordination. We find that the zinc fingers contribute to the role of NC in complete tRNA primer removal from minus-strand DNA during plus-strand transfer. Annealing of the primer binding site sequences in plus-strand strong-stop DNA [(+) SSDNA] to its complement in minus-strand acceptor DNA is not dependent on NC zinc fingers. In contrast, the rate of annealing of the complementary R regions in (-) SSDNA and 3' viral RNA during minus-strand transfer is approximately eightfold lower when SSHS NC is used in place of wild-type NC. Moreover, unlike wild-type NC, SSHS NC has only a small stimulatory effect on minus-strand transfer and is essentially unable to block TAR-induced self-priming from (-) SSDNA. Our results strongly suggest that NC zinc finger structures are needed to unfold highly structured RNA and DNA strand transfer intermediates. Thus, it appears that in these cases, zinc finger interactions are important components of NC nucleic acid chaperone activity.
Collapse
Affiliation(s)
- J Guo
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|