51
|
Sobczak K, de Mezer M, Michlewski G, Krol J, Krzyzosiak WJ. RNA structure of trinucleotide repeats associated with human neurological diseases. Nucleic Acids Res 2003; 31:5469-82. [PMID: 14500809 PMCID: PMC206466 DOI: 10.1093/nar/gkg766] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The tandem repeats of trinucleotide sequences are present in many human genes and their expansion in specific genes causes a number of hereditary neurological disorders. The normal function of triplet repeats in transcripts is barely known and the role of expanded RNA repeats in the pathogenesis of Triplet Repeat Expansion Diseases needs to be more fully elucidated. Here we have described the structures formed by transcripts composed of AAG, CAG, CCG, CGG and CUG repeats, which were determined by chemical and enzymatic structure probing. With the exception of the repeated AAG motif, all studied repeats form hairpin structures and these hairpins show several alternative alignments. We have determined the molecular architectures of these co-existing hairpin structures by using transcripts with GC-clamps which imposed single alignments of hairpins. We have provided experimental evidence that CCUG repeats implicated in myotonic dystrophy type 2 also form hairpin structures with properties similar to that composed of the CUG repeats.
Collapse
Affiliation(s)
- Krzysztof Sobczak
- Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Science, Noskowskiego 12/14, 61-704 Poznan, Poland
| | | | | | | | | |
Collapse
|
52
|
Dunham CM, Murray JB, Scott WG. A helical twist-induced conformational switch activates cleavage in the hammerhead ribozyme. J Mol Biol 2003; 332:327-36. [PMID: 12948485 DOI: 10.1016/s0022-2836(03)00843-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have captured the structure of a pre-catalytic conformational intermediate of the hammerhead ribozyme using a phosphodiester tether formed between I and Stem II. This phosphodiester tether appears to mimic interactions in the wild-type hammerhead RNA that enable switching between nuclease and ligase activities, both of which are required in the replicative cycles of the satellite RNA viruses from which the hammerhead ribozyme is derived. The structure of this conformational intermediate reveals how the attacking nucleophile is positioned prior to cleavage, and demonstrates how restricting the ability of Stem I to rotate about its helical axis, via interactions with Stem II, can inhibit cleavage. Analogous covalent crosslinking experiments have demonstrated that imposing such restrictions on interhelical movement can change the hammerhead ribozyme from a nuclease to a ligase. Taken together, these results permit us to suggest that switching between ligase and nuclease activity is determined by the helical orientation of Stem I relative to Stem II.
Collapse
Affiliation(s)
- Christine M Dunham
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | |
Collapse
|
53
|
Knobloch B, Da Costa CP, Linert W, Sigel H. Stability constants of metal ion complexes formed with N3-deprotonated uridine in aqueous solution. INORG CHEM COMMUN 2003. [DOI: 10.1016/s1387-7003(02)00686-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
54
|
Abstract
Inversion of configuration at phosphorus during ribozyme-catalyzed cleavage of RNA is usually considered unequivocal proof of in-line attack, but the relevant pseudorotation diagram for formation of the 2('),3(')-cyclic phosphate shows that inversion is not inconsistent with adjacent attack as long as breakdown of the trigonal bipyramid is in-line. For the reaction to occur by adjacent attack, a normally unstable apical oxyanion in the trigonal bipyramidal intermediate would have to be stabilized. Density-functional calculations show that a metal ion such as magnesium could perform this stabilization. We conclude that the possibility of adjacent attack should not be too hastily dismissed in cases where the setup is closer to adjacent than to in-line geometry.
Collapse
Affiliation(s)
- Ralf Stowasser
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301, USA
| | | |
Collapse
|
55
|
Abstract
The hepatitis delta virus (HDV) ribozymes are self-cleaving RNA sequences critical to the replication of a small RNA genome. A recently determined crystal structure together with biochemical and biophysical studies provides new insight into the possible catalytic mechanism of these ribozymes. The HDV ribozymes are examples of naturally occurring small ribozymes that catalyze cleavage of the RNA backbone with a rate enhancement of 10(6)- to 10(7)-fold over the uncatalyzed rate. To achieve this level of rate enhancement, the HDV ribozymes have been proposed to employ several catalytic strategies that include the use of metal ions, intrinsic binding energy, and a novel example of general acid-base catalysis with a cytosine side chain acting as a proton donor or acceptor.
Collapse
Affiliation(s)
- I-hung Shih
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
56
|
Affiliation(s)
- L David
- Département d'Informatique et de Recherche Opérationnelle, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | | | |
Collapse
|
57
|
Affiliation(s)
- L A Kirsebom
- Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden
| |
Collapse
|
58
|
Wrzesinski J, Legiewicz M, Smólska B, Ciesiolka J. Catalytic cleavage of cis- and trans-acting antigenomic delta ribozymes in the presence of various divalent metal ions. Nucleic Acids Res 2001; 29:4482-92. [PMID: 11691936 PMCID: PMC60188 DOI: 10.1093/nar/29.21.4482] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Catalytic activity of four structural variants of the antigenomic delta ribozyme, two cis- and two trans-acting, has been compared in the presence of selected divalent metal ions that effectively support catalysis. The ribozymes differ in regions that are not directly involved in formation of the ribozyme active site: the region immediately preceding the catalytic cleavage site, the P4 stem and a stretch of the viral RNA sequence extending the minimal ribozyme sequence at its 3'-terminus. The variants show high cleavage activity in the presence of Mg(2+), Ca(2+) and Mn(2+), lower with Co(2+) and Sr(2+) and some variants are also active with Cd(2+) and Zn(2+) ions. In the presence of a particular metal ion the ribozymes cleave, however with different initial rates, according to pseudo-first or higher order kinetics and to different final cleavage extents. On the other hand, relatively small differences are observed in the reactions induced by various metal ions. The cleavage of trans-acting ribozymes induced by Mg(2+) is partially inhibited in the presence of Na(+), spermidine and some other divalent metal ions. The inert Co(NH(3))(6)(3+) complex is unable to support catalysis, as reported earlier for the genomic ribozyme. The results are discussed in terms of the influence of structural elements peripheral to the ribozyme active site on its cleavage rate and efficiency as well as the role of metal ions in the cleavage mechanism. Some implications concerning further studies and possible applications of delta ribozymes are also considered.
Collapse
Affiliation(s)
- J Wrzesinski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | | | | | | |
Collapse
|
59
|
Hertweck M, Mueller MW. Mapping divalent metal ion binding sites in a group II intron by Mn(2+)- and Zn(2+)-induced site-specific RNA cleavage. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4610-20. [PMID: 11531997 DOI: 10.1046/j.1432-1327.2001.02389.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The function of group II introns depends on positively charged divalent metal ions that stabilize the ribozyme structure and may be directly involved in catalysis. We investigated Mn2+- and Zn2+-induced site-specific RNA cleavage to identify metal ions that fit into binding pockets within the structurally conserved bI1 group II intron domains (DI-DVI), which might fulfill essential roles in intron function. Ten cleavage sites were identified in DI, two sites in DIII and two in DVI. All cleavage sites are located in the center or close to single-stranded and flexible RNA structures. Strand scissions mediated by Mn2+/Zn2+ are competed for by Mg2+, indicating the existence of Mg2+ binding pockets in physical proximity to the observed Mn2+-/Zn2+-induced cleavage positions. To distinguish between metal ions with a role in structure stabilization and those that play a more specific and critical role in the catalytic process of intron splicing, we combined structural and functional assays, comparing wild-type precursor and multiple splicing-deficient mutants. We identified six regions with binding pockets for Mg2+ ions presumably playing an important role in bI1 structure stabilization. Remarkably, assays with DI deletions and branch point mutants revealed the existence of one Mg2+ binding pocket near the branching A, which is involved in first-step catalysis. This pocket formation depends on precise interaction between the branching nucleotide and the 5' splice site, but does not require exon-binding site 1/intron binding site 1 interaction. This Mg2+ ion might support the correct placing of the branching A into the 'first-step active site'.
Collapse
Affiliation(s)
- M Hertweck
- Vienna BioCenter, Institute of Microbiology and Genetics, Austria
| | | |
Collapse
|
60
|
Doherty EA, Doudna JA. Ribozyme structures and mechanisms. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 30:457-75. [PMID: 11441810 DOI: 10.1146/annurev.biophys.30.1.457] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The past few years have seen exciting advances in understanding the structure and function of catalytic RNA. Crystal structures of several ribozymes have provided detailed insight into the folds of RNA molecules. Models of other biologically important RNAs have been constructed based on structural, phylogenetic, and biochemical data. However, many questions regarding the catalytic mechanisms of ribozymes remain. This review compares the structures and possible catalytic mechanisms of four small self-cleaving RNAs: the hammerhead, hairpin, hepatitis delta virus, and in vitro-selected lead-dependent ribozymes. The organization of these small catalysts is contrasted to that of larger ribozymes, such as the group I intron.
Collapse
Affiliation(s)
- E A Doherty
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
61
|
Abstract
The past few years have seen exciting advances in understanding the structure and function of catalytic RNA. Crystal structures of several ribozymes have provided detailed insight into the folds of RNA molecules. Models of other biologically important RNAs have been constructed based on structural, phylogenetic, and biochemical data. However, many questions regarding the catalytic mechanisms of ribozymes remain. This review compares the structures and possible catalytic mechanisms of four small self-cleaving RNAs: the hammerhead, hairpin, hepatitis delta virus, and in vitro-selected lead-dependent ribozymes. The organization of these small catalysts is contrasted to that of larger ribozymes, such as the group I intron.
Collapse
Affiliation(s)
- E A Doherty
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
62
|
Shih IH, Been MD. Involvement of a cytosine side chain in proton transfer in the rate-determining step of ribozyme self-cleavage. Proc Natl Acad Sci U S A 2001; 98:1489-94. [PMID: 11171978 PMCID: PMC29284 DOI: 10.1073/pnas.98.4.1489] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ribozymes of hepatitis delta virus have been proposed to use an active-site cytosine as an acid-base catalyst in the self-cleavage reaction. In this study, we have examined the role of cytosine in more detail with the antigenomic ribozyme. Evidence that proton transfer in the rate-determining step involved cytosine 76 (C76) was obtained from examining cleavage activity of the wild-type and imidazole buffer-rescued C76-deleted (C76 Delta) ribozymes in D(2)O and H(2)O. In both reactions, a similar kinetic isotope effect and shift in the apparent pKa indicate that the buffer is functionally substituting for the side chain in proton transfer. Proton inventory of the wild-type reaction supported a mechanism of a single proton transfer at the transition state. This proton transfer step was further characterized by exogenous base rescue of a C76 Delta mutant with cytosine and imidazole analogues. For the imidazole analogues that rescued activity, the apparent pKa of the rescue reaction, measured under k(cat)/K(M) conditions, correlated with the pKa of the base. From these data a Brønsted coefficient (beta) of 0.51 was determined for the base-rescued reaction of C76 Delta. This value is consistent with that expected for proton transfer in the transition state. Together, these data provide strong support for a mechanism where an RNA side chain participates directly in general acid or general base catalysis of the wild-type ribozyme to facilitate RNA cleavage.
Collapse
Affiliation(s)
- I H Shih
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
63
|
Kuo TC, Herrin DL. Quantitative studies of Mn(2+)-promoted specific and non-specific cleavages of a large RNA: Mn(2+)-GAAA ribozymes and the evolution of small ribozymes. Nucleic Acids Res 2000; 28:4197-206. [PMID: 11058117 PMCID: PMC113148 DOI: 10.1093/nar/28.21.4197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2000] [Revised: 09/14/2000] [Accepted: 09/14/2000] [Indexed: 11/13/2022] Open
Abstract
Manganese (Mn(2+)) promotes specific cleavage at two major (I and III) and four minor (II, IV, V and VI) sites, in addition to slow non-specific cleavage, in a 659-nucleotide RNA containing the Cr.LSU group I intron. The specific cleavages occurred between G and AAA sequences and thus can be considered Mn(2+)-GAAA ribozymes. We have estimated rates of specific and non-specific cleavages under different conditions. Comparisons of the rates of major-specific and background cleavages gave a maximal specificity of approximately 900 for GAAA cleavage. Both specific and non-specific cleavages showed hyperbolic kinetics and there was no evidence of cooperativity with Mn(2+) concentration. Interestingly, at site III, Mg(2+) alone promoted weak, but the same specific cleavage as Mn(2+). When added with Mn(2+), Mg(2+) had a synergistic effect on cleavage at site III, but inhibited cleavage at the other sites. Mn(2+) cleavage at site III also exhibited lower values of K (Mn(2+) requirement), pH-dependency and activation energy than did cleavage at the other sites. In contrast, the pH-dependency and activation energy for cleavage at site I was similar to non-specific cleavage. These results increase our understanding of the Mn(2+)-GAAA ribozyme. The implications for evolution of small ribozymes are also discussed.
Collapse
MESH Headings
- Base Sequence
- Catalysis/drug effects
- Dose-Response Relationship, Drug
- Drug Synergism
- Evolution, Molecular
- Hydrogen-Ion Concentration
- Kinetics
- Magnesium/pharmacology
- Manganese/pharmacology
- Mutation/genetics
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Substrate Specificity/drug effects
- Temperature
Collapse
Affiliation(s)
- T C Kuo
- Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, BIO 311 24th Street and Whitis Avenue, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
64
|
Sarzynska J, Kulinski T, Nilsson L. Conformational dynamics of a 5S rRNA hairpin domain containing loop D and a single nucleotide bulge. Biophys J 2000; 79:1213-27. [PMID: 10968986 PMCID: PMC1301018 DOI: 10.1016/s0006-3495(00)76376-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Molecular modeling and molecular dynamics have been employed to study the conformation and flexibility of a 15-nucleotide fragment of the plant 5S rRNA containing loop D and a single uridine bulge. Two different model built initial structures were used: one with the bulge localized inside the helical stem and another with the bulge pointing out from the helix. Several independent 700-ps-long trajectories in aqueous solution with Na(+) conterions were produced for each starting structure. The bulge nucleotide inside the helix stayed in two main conformations, both of which affected the geometry of the stem part opposite the bulge. When the bulge nucleotide was located outside the helix, we found high base mobility and local backbone flexibility. The dynamics of the hydrogen bond network and conformational changes from a direct to a water mediated hydrogen bond in the sheared G-A basepair in the tetraloop was described. Our results correlate with lead ion induced cleavage patterns in 5S rRNA. Sites resistant to nonspecific lead cleavage appeared in all our simulations as the most rigid fragments independent of the localization of the bulge nucleotide.
Collapse
Affiliation(s)
- J Sarzynska
- Center for Structural Biochemistry, Department of Bioscience at NOVUM, Karolinska Institutet, SE-141 57 Huddinge, Sweden
| | | | | |
Collapse
|
65
|
Affiliation(s)
- T Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Illinois 60637, USA
| |
Collapse
|
66
|
Jovine L, Djordjevic S, Rhodes D. The crystal structure of yeast phenylalanine tRNA at 2.0 A resolution: cleavage by Mg(2+) in 15-year old crystals. J Mol Biol 2000; 301:401-14. [PMID: 10926517 DOI: 10.1006/jmbi.2000.3950] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have re-determined the crystal structure of yeast tRNA(Phe) to 2. 0 A resolution using 15 year old crystals. The accuracy of the new structure, due both to higher resolution data and formerly unavailable refinement methods, consolidates the previous structural information, but also reveals novel details. In particular, the water structure around the tightly bound Mg(2+) is now clearly resolved, and hence provides more accurate information on the geometry of the magnesium-binding sites and the role of water molecules in coordinating the metal ions to the tRNA. We have assigned a total of ten magnesium ions and identified a partly conserved geometry for high-affinity Mg(2+ )binding. In the electron density map there is also clear density for a spermine molecule binding in the major groove of the TPsiC arm and also contacting a symmetry-related tRNA molecule. Interestingly, we have also found that two specific regions of the tRNA in the crystals are partially cleaved. The sites of hydrolysis are within the D and anticodon loops in the vicinity of Mg(2+).
Collapse
Affiliation(s)
- L Jovine
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK
| | | | | |
Collapse
|
67
|
Polacek N, Patzke S, Nierhaus KH, Barta A. Periodic Conformational Changes in rRNA. Mol Cell 2000. [DOI: 10.1016/s1097-2765(05)00009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
68
|
Sudarsanakumar C, Xiong Y, Sundaralingam M. Crystal structure of an adenine bulge in the RNA chain of a DNA.RNA hybrid, d(CTCCTCTTC).r(gaagagagag). J Mol Biol 2000; 299:103-12. [PMID: 10860725 DOI: 10.1006/jmbi.2000.3730] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Crystal structure of a DNA.RNA hybrid, d(CTCCTCTTC).r(gaagagagag), with an adenine bulge in the polypurine RNA strand was determined at 2.3 A resolution. The structure was solved by the molecular replacement method and refined to a final R-factor of 19.9% (Rfree 22.2%). The hybrid duplex crystallized in the space group I222 with unit cell dimensions, a = 46.66 A, b = 47.61 A and c = 54.05 A, and adopts the A-form conformation. All RNA and DNA sugars are in the C3'-endo conformation, the glycosyl angles in anti conformation and the majority of the C4'-C5' torsion angles in g+ except two trans angles, in conformity with the C3'-endo rigid nucleotide hypothesis. The adenine bulge is looped out and it is also in the anti C3'-endo conformation. The bulge is involved in a base-triple (C.g)*a interaction with the end base-pair (C9.g10) in the minor groove of a symmetry-related molecule. The 2' hydroxyl group of g15 is hydrogen bonded to O2P and O5' of g17, skipping the bulged adenine a16 and stabilizing the sugar-phosphate backbone of the hybrid. The hydrogen bonding and the backbone conformation at the bulged adenine site is very similar to that found in the crystal structure of a protein-RNA complex.
Collapse
Affiliation(s)
- C Sudarsanakumar
- Department of Chemistry, Biochemistry, Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
69
|
Walter NG, Yang N, Burke JM. Probing non-selective cation binding in the hairpin ribozyme with Tb(III). J Mol Biol 2000; 298:539-55. [PMID: 10772868 DOI: 10.1006/jmbi.2000.3691] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Catalysis by the hairpin ribozyme is stimulated by a wide range of both simple and complex metallic and organic cations. This independence from divalent metal ion binding unequivocally excludes inner-sphere coordination to RNA as an obligatory role for metal ions in catalysis. Hence, the hairpin ribozyme is a unique model to study the role of outer-sphere coordinated cations in folding of a catalytically functional RNA structure. Here, we demonstrate that micromolar concentrations of a deprotonated aqueous complex of the lanthanide metal ion terbium(III), Tb(OH)(aq)(2+), reversibly inhibit the ribozyme by competing for a crucial, yet non-selective cation binding site. Tb(OH)(aq)(2+) also reports a likely location of this binding site through backbone hydrolysis, and permits the analysis of metal binding through sensitized luminescence. We propose that the critical cation-binding site is located at a position within the catalytic core that displays an appropriately-sized pocket and a high negative charge density. We show that cationic occupancy of this site is required for tertiary folding and catalysis, yet the site can be productively occupied by a wide variety of cations. It is striking that micromolar Tb(OH)(aq)(2+) concentrations are compatible with tertiary folding, yet interfere with catalysis. The motif implicated here in cation-binding has also been found to organize the structure of multi-helix loops in evolutionary ancient ribosomal RNAs. Our findings, therefore, illuminate general principles of non-selective outer-sphere cation binding in RNA structure and function that may have prevailed in primitive ribozymes of an early "RNA world".
Collapse
Affiliation(s)
- N G Walter
- Markey Center for Molecular Genetics, Department of Microbiology and Molecular Genetics, The University of Vermont, 306 Stafford Hall, Burlington, VT, 05405, USA.
| | | | | |
Collapse
|
70
|
Li J, Zheng W, Kwon AH, Lu Y. In vitro selection and characterization of a highly efficient Zn(II)-dependent RNA-cleaving deoxyribozyme. Nucleic Acids Res 2000; 28:481-8. [PMID: 10606646 PMCID: PMC102519 DOI: 10.1093/nar/28.2.481] [Citation(s) in RCA: 346] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A group of highly efficient Zn(II)-dependent RNA-cleaving deoxyribozymes has been obtained through in vitro selection. They share a common motif with the '8-17' deoxyribozyme isolated under different conditions, including different design of the random pool and metal ion cofactor. We found that this commonly selected motif can efficiently cleave both RNA and DNA/RNA chimeric substrates. It can cleave any substrate containing rNG (where rN is any ribo-nucleotide base and G can be either ribo- or deoxy-ribo-G). The pH profile and reaction products of this deoxyribozyme are similar to those reported for hammerhead ribozyme. This deoxyribozyme has higher activity in the presence of transition metal ions compared to alkaline earth metal ions. At saturating concentrations of Zn(2+), the cleavage rate is 1.35 min(-1)at pH 6.0; based on pH profile this rate is estimated to be at least approximately 30 times faster at pH 7.5, where most assays of Mg(2+)-dependent DNA and RNA enzymes are carried out. This work represents a comprehensive characterization of a nucleic acid-based endonuclease that prefers transition metal ions to alkaline earth metal ions. The results demonstrate that nucleic acid enzymes are capable of binding transition metal ions such as Zn(2+)with high affinity, and the resulting enzymes are more efficient at RNA cleavage than most Mg(2+)-dependent nucleic acid enzymes under similar conditions.
Collapse
Affiliation(s)
- J Li
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
71
|
Abstract
Several new and unexpected insights into the metalloenzymology of ribozymes have been achieved in the past year. From a mechanistic point of view, the NMR and crystal structures of a small Pb(2+)-dependent ribozyme have been particularly revealing.
Collapse
Affiliation(s)
- W G Scott
- Department of Chemistry and Biochemistry, Sinsheimer Laboratories, The Center for the Molecular Biology of RNA, University of California at Santa Cruz, Santa Cruz, 95064, USA. . edu
| |
Collapse
|
72
|
|
73
|
Auffinger P, Westhof E. Singly and bifurcated hydrogen-bonded base-pairs in tRNA anticodon hairpins and ribozymes. J Mol Biol 1999; 292:467-83. [PMID: 10497015 DOI: 10.1006/jmbi.1999.3080] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tRNA anticodon loops always comprise seven nucleotides and is involved in many recognition processes with proteins and RNA fragments. We have investigated the nature and the possible interactions between the first (32) and last (38) residues of the loop on the basis of the available sequences and crystal structures. The data demonstrate the conservation of a bifurcated hydrogen bond interaction between residues 32 and 38, located at the stem/loop junction. This interaction leads to the formation of a non-canonical base-pair which is preserved in the known crystal structures of tRNA/synthetase complexes. Among the tRNA and tDNA sequences, 93 % of the 32.38 oppositions can be assigned to two families of isosteric base-pairs, one with a large (86 %) and the other with a much smaller (7 %) population. The remainder (7 %) of the oppositions have been assigned to a third family due to the lack of evidence for assigning them into the first two sets. In all families, the Y32.R38 base-pairs are not isosteric upon reversal (like the sheared G.A or wobble G.U pairs), explaining the strong conservation of a pyrimidine at position 32. Thus, the 32.38 interaction extends the sequence signature of the anticodon loop beyond the conserved U-turn at position 33 and the usually modified purine at position 37. A comparison with other loops containing both a singly hydrogen-bonded base-pair and a U-turn suggests that the 32.38 pair could be involved in the formation of a base triple with a residue in a ribosomal RNA component. It is also observed that two crystal structures of ribozymes (hammerhead and leadzyme) present similar base-pairs at the cleavage site.
Collapse
Affiliation(s)
- P Auffinger
- Modélisations et Simulations des Acides Nucléiques, UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15 rue René Descartes, Strasbourg Cedex, 67084, France
| | | |
Collapse
|
74
|
Abstract
Aminoglycoside antibiotics have recently been found to bind to a variety of unrelated RNA molecules, including sequences that are important for retroviral replication. We report the binding of neomycin B, kanamycin A, and Neo-Neo (a synthetic neomycin-neomycin dimer) to tRNA(Phe). Using thermal denaturation studies, fluorescence spectroscopy, Pb2+-mediated tRNA(Phe) cleavage, and gel mobility shift assays, we have established that aminoglycosides interact with yeast tRNA(Phe) and are likely to induce a conformational change. Thermal denaturation studies revealed that aminoglycosides have a substantial stabilizing effect on tRNA(Phe) secondary and tertiary structures, much greater than the stabilization effect of spermine, an unstructured polyamine. Aminoglycoside-induced inhibition of Pb2+-mediated tRNA(Phe) cleavage yielded IC50 values of: 5 microM for Neo-Neo, 100 microM for neomycin B, > 1 mM for kanamycin A, and > 10 mM for spermine. Enzymatic and chemical footprinting indicate that the anticodon stem as well as the junction of the TpsiC and D loops are preferred aminoglycoside binding sites.
Collapse
Affiliation(s)
- S R Kirk
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla 92093-0358, USA
| | | |
Collapse
|
75
|
Matysiak M, Wrzesinski J, Ciesiołka J. Sequential folding of the genomic ribozyme of the hepatitis delta virus: structural analysis of RNA transcription intermediates. J Mol Biol 1999; 291:283-94. [PMID: 10438621 DOI: 10.1006/jmbi.1999.2955] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The structures of the model oligoribonucleotides that mimic the consecutive stages in the transcription of genomic HDV ribozyme have been analyzed by the Pb(2+)-induced cleavage method, partial digestion with specific nucleases and chemical probing. In the transcription intermediates, the P1 and P4 helical segments are found to be present in the final folded forms in which they exist in the full-length transcript. However, the region corresponding to the central hairpin forms another thermodynamically stable hairpin structure. Its correct folding requires the presence of a ribozyme 3'-terminal sequence and the formation of helix P2. This confirms the ribozyme structure of the pseudoknot type and points to the crucial role of helix P2 in its overall folding. Moreover, we show that the J4/2 region can be specifically cleaved in the presence of selected divalent metal ions in the full-length transcript, but not in a shorter one lacking six 3'-terminal nucleotides, which cannot form the pseudoknotted structure. Thus, a particular RNA conformation around that cleavage site is required for specific hydrolysis, and the J4/2 region seems to be involved in the formation of a general metal ion binding site. Recently, it has been proposed that, in the antigenomic ribozyme, a four nucleotide sequence within the J1/2 region may contribute to the folding pathway, being part of a mechanism responsible for controlling ribozyme cleavage activity. Our study shows that in the genomic ribozyme the central hairpin region may contribute to a similar mechanism, providing a barrier to the formation of an active structure in the ribozyme folding pathway.
Collapse
Affiliation(s)
- M Matysiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań, 61-704, Poland
| | | | | |
Collapse
|
76
|
Abstract
The small nucleolytic ribozymes are largely (but not exclusively) found in the RNA of plant pathogens and are involved in the self-catalysed processing of the concatameric RNA resulting from rolling circle replication. They catalyse a site-specific transesterification reaction in which their 2' hydroxyl attacks the 3' phosphate, with the exclusion of the 5' oxyanion. This requires an in-line geometry, which is not present in normal RNA structure. A significant part of the activation is probably provided by a distortion of the local conformation in order to facilitate the trajectory into the transition state and, thus, RNA folding and catalysis are intimately connected. A second element of the catalysis is provided by bound metal ions; however, a number of recent experiments cast doubt on the direct role of metal ions in the catalytic chemistry.
Collapse
Affiliation(s)
- D M Lilley
- Cancer Research Campaign Nucleic Acid Structure Research Group, Department of Biochemistry, The University of Dundee, UK.
| |
Collapse
|
77
|
Abstract
Divalent metal ions are absolutely required for the structure and catalytic activities of ribosomes. They are partly coordinated to highly structured RNA, which therefore possesses high-affinity metal ion binding pockets. As metal ion induced RNA cleavages are useful for characterising metal ion binding sites and RNA structures, we analysed europium (Eu3+) induced specific cleavages in both 16S and 23S rRNA of E. coli. The cleavage sites were identified by primer extension and compared to those previously identified for calcium, lead, magnesium, and manganese ions. Several Eu3+ cleavage sites, mostly those at which a general metal ion binding site had been already identified, were identical to previously described divalent metal ions. Overall, the Eu3+ cleavages are most similar to the Ca2+ cleavage pattern, probably due to a similar ion radius. Interestingly, several cleavage sites which were specific for Eu3+ were located in regions implicated in the binding of tRNA and antibiotics. The binding of erythromycin and chloramphenicol, but not tetracycline and streptomycin, significantly reduced Eu3+ cleavage efficiencies in the peptidyl transferase center. The identification of specific Eu3+ binding sites near the active sites on the ribosome will allow to use the fluorescent properties of europium for probing the environment of metal ion binding pockets at the ribosome's active center.
Collapse
Affiliation(s)
- S Dorner
- Institut für Biochemie, Universität Wien, Vienna Biocenter, Austria
| | | |
Collapse
|
78
|
Arts GJ, Kuersten S, Romby P, Ehresmann B, Mattaj IW. The role of exportin-t in selective nuclear export of mature tRNAs. EMBO J 1998; 17:7430-41. [PMID: 9857198 PMCID: PMC1171087 DOI: 10.1093/emboj/17.24.7430] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Exportin-t (Xpo-t) is a vertebrate nuclear export receptor for tRNAs that binds tRNA cooperatively with GTP-loaded Ran. Xpo-t antibodies are shown to efficiently block tRNA export from Xenopus oocyte nuclei suggesting that it is responsible for at least the majority of tRNA export in these cells. We examine the mechanism by which Xpo-t-RanGTP specifically exports mature tRNAs rather than other forms of nuclear RNA, including tRNA precursors. Chemical and enzymatic footprinting together with phosphate modification interference reveals an extensive interaction between the backbone of the TPsiC and acceptor arms of tRNAPhe and Xpo-t-RanGTP. Analysis of mutant or precursor tRNA forms demonstrates that, aside from these recognition elements, accurate 5' and 3' end-processing of tRNA affects Xpo-t-RanGTP interaction and nuclear export, while aminoacylation is not essential. Intron-containing, end-processed, pre-tRNAs can be bound by Xpo-t-RanGTP and are rapidly exported from the nucleus if Xpo-t is present in excess. These results suggest that at least two mechanisms are involved in discrimination of pre-tRNAs and mature tRNAs prior to nuclear export.
Collapse
Affiliation(s)
- G J Arts
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
79
|
Hoogstraten CG, Legault P, Pardi A. NMR solution structure of the lead-dependent ribozyme: evidence for dynamics in RNA catalysis. J Mol Biol 1998; 284:337-50. [PMID: 9813122 DOI: 10.1006/jmbi.1998.2182] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The NMR solution structure of a lead-dependent ribozyme, known as the leadzyme, is presented. This ribozyme is among the smallest of the known catalytic RNAs, with an active site consisting of a six-nucleotide asymmetric internal loop. This loop has a roughly double-helical structure, including a protonated adenine-cytosine wobble base-pair, that positions the cytosine base 5' to the cleavage site in a double-helical conformation. The deviations from helical structure consist of two bulged guanosine residues, G7 and G9, where G7 is the residue 3' to the cleavage site. The scissile phosphate group of the leadzyme is not positioned for in-line nucleophilic attack. Therefore, a conformational rearrangement in the active site is required to reach the proposed transition state for this ribozyme. This is similar to previous observations in X-ray studies of the hammerhead ribozyme, and emphasizes the necessity for dynamic structural fluctuations in the catalytic mechanism of small ribozymes. A model for metal-binding in the leadzyme is proposed in which a lead ion binds to a bulged guanine base that is critical for leadzyme function.
Collapse
Affiliation(s)
- C G Hoogstraten
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Campus Box 215, Boulder, CO, 80309, USA
| | | | | |
Collapse
|
80
|
Hermann T, Westhof E. Exploration of metal ion binding sites in RNA folds by Brownian-dynamics simulations. Structure 1998; 6:1303-14. [PMID: 9782053 DOI: 10.1016/s0969-2126(98)00130-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Metal ions participate in the three-dimensional folding of RNA and provide active centers in catalytic RNA molecules. The positions of metal ions are known for a few RNA structures determined by X-ray crystallography. In addition to the crystallographically identified sites, solution studies point to many more metal ion binding sites around structured RNAs. Metal ions are also present in RNA structures determined by nuclear magnetic resonance (NMR) spectroscopy, but the positions of the ions are usually not revealed. RESULTS A novel method for predicting metal ion binding sites in RNA folds has been successfully applied to a number of different RNA structures. The method is based on Brownian-dynamics simulations of cations diffusing under the influence of random Brownian motion within the electrostatic field generated by the static three-dimensional fold of an RNA molecule. In test runs, the crystallographic positions of Mg2+ ions were reproduced with deviations between 0.3 and 2.7 A for several RNA molecules for which X-ray structures are available. In addition to the crystallographically identified metal ions, more binding sites for cations were revealed: for example, tRNAs were shown to bind more than ten Mg2+ ions in solution. Predictions for metal ion binding sites in four NMR structures of RNA molecules are discussed. CONCLUSIONS The successful reproduction of experimentally observed metal ion binding sites demonstrates the efficiency of the prediction method. A promising application of the method is the prediction of cation-binding sites in RNA solution structures, determined by NMR.
Collapse
Affiliation(s)
- T Hermann
- Institut de Biologie Moléculaire et Cellulaire du CNRS UPR 9002, 15 rue René Descartes, F-67084, Strasbourg, France
| | | |
Collapse
|
81
|
Zagórowska I, Kuusela S, Lönnberg H. Metal ion-dependent hydrolysis of RNA phosphodiester bonds within hairpin loops. A comparative kinetic study on chimeric ribo/2'-O-methylribo oligonucleotides. Nucleic Acids Res 1998; 26:3392-6. [PMID: 9649624 PMCID: PMC147710 DOI: 10.1093/nar/26.14.3392] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Several chimeric ribo/2'- O -methylribo oligonucleotides were synthesized and their hydrolytic cleavage studied in the presence of Mg2+, Zn2+, Pb2+and the 1,4,9-triaza-cyclododecane chelate of Zn2+(Zn2+[12]aneN3) to evaluate the importance of RNA secondary structure as a factor determining the reactivity of phosphodiester bonds. In all the cases studied, a phosphodiester bond within a 4-7 nt loop was hydrolytically more stable than a similar bond within a linear single strand, but markedly less stable than that in a double helix. With Zn2+and Zn2+[12]aneN3, the hydrolytic stability of a phosphodiester bond within a hairpin loop gradually decreased on increasing the distance from the stem. A similar but less systematic trend was observed with Pb2+. Zn2+- and Pb2+-promoted cleavage was observed to be considerably more sensitive to the secondary structure of the chain than that induced by Zn2+[12]aneN3. This difference in behaviour may be attributed to bidentate binding of uncomplexed aquo ions to two different phosphodiester bonds. Mg2+was observed to be catalytically virtually inactive compared with the other cleaving agents studied.
Collapse
Affiliation(s)
- I Zagórowska
- University of Turku, Department of Chemistry, FIN-20500 Turku, Finland
| | | | | |
Collapse
|
82
|
Toward the development of metal-based synthetic nucleases and peptidases: a rationale and progress report in applying the principles of coordination chemistry. Coord Chem Rev 1998. [DOI: 10.1016/s0010-8545(98)00157-x] [Citation(s) in RCA: 487] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
83
|
Murray JB, Terwey DP, Maloney L, Karpeisky A, Usman N, Beigelman L, Scott WG. The structural basis of hammerhead ribozyme self-cleavage. Cell 1998; 92:665-73. [PMID: 9506521 DOI: 10.1016/s0092-8674(00)81134-4] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have captured an 8.7 A conformational change that takes place in the cleavage site of the hammerhead ribozyme during self-cleavage, using X-ray crystallography combined with physical and chemical trapping techniques. This rearrangement brings the hammerhead ribozyme from the ground state into a conformation that is poised to form the transition state geometry required for hammerhead RNA self-cleavage. Use of a 5'-C-methylated ribose adjacent to the cleavage site permits this ordinarily transient conformational change to be kinetically trapped and observed crystallographically after initiating the hammerhead ribozyme reaction in the crystal. Cleavage of the corresponding unmodified hammerhead ribozyme in the crystal under otherwise identical conditions is faster than in solution, indicating that we have indeed trapped a catalytically relevant intermediate form of this RNA enzyme.
Collapse
Affiliation(s)
- J B Murray
- Department of Chemistry, Indiana University, Bloomington 47405, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Maglott EJ, Glick GD. Probing structural elements in RNA using engineered disulfide cross-links. Nucleic Acids Res 1998; 26:1301-8. [PMID: 9469841 PMCID: PMC147396 DOI: 10.1093/nar/26.5.1301] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Three analogs of unmodified yeast tRNAPhe, each possessing a single disulfide cross-link, have been designed and synthesized. One cross-link is between G1 and C72 in the amino acid acceptor stem, a second cross-link is in the central D region of yeast tRNAPhe between C11 and C25 and the third cross-link bridges U16 and C60 at the D loop/T loop interface. Air oxidation to form the cross-links is quantitative and analysis of the cross-linked products by native and denaturing PAGE, RNase T1 mapping, Pb(II) cleavage, UV cross-linking and thermal denaturation demonstrates that the disulfide bridges do not alter folding of the modified tRNAs relative to the parent sequence. The finding that cross-link formation between thiol-derivatized residues correlates with the position of these groups in the crystal structure of native yeast tRNAPhe and that the modifications do not significantly perturb native structure suggests that this methodology should be applicable to the study of RNA structure, conformational dynamics and folding pathways.
Collapse
MESH Headings
- Base Sequence
- Cross-Linking Reagents
- Disulfides/chemistry
- Hot Temperature
- Magnetic Resonance Spectroscopy
- Models, Molecular
- Molecular Sequence Data
- Molecular Structure
- Nucleic Acid Conformation
- Nucleic Acid Denaturation
- RNA, Fungal/chemical synthesis
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Transfer, Phe/chemical synthesis
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- Saccharomyces cerevisiae/genetics
Collapse
Affiliation(s)
- E J Maglott
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|
85
|
Berens C, Streicher B, Schroeder R, Hillen W. Visualizing metal-ion-binding sites in group I introns by iron(II)-mediated Fenton reactions. CHEMISTRY & BIOLOGY 1998; 5:163-75. [PMID: 9545425 DOI: 10.1016/s1074-5521(98)90061-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Most catalytic RNAs depend on divalent metal ions for folding and catalysis. A thorough structure-function analysis of catalytic RNA therefore requires the identification of the metal-ion-binding sites. Here, we probed the binding sites using Fenton chemistry, which makes use of the ability of Fe2+ to functionally or structurally replace Mg2+ at ion-binding sites and to generate short-lived and highly reactive hydroxyl radicals that can cleave nucleic acid and protein backbones in spatial proximity of these ion-binding sites. RESULTS Incubation of group I intron RNA with Fe2+, sodium ascorbate and hydrogen peroxide yields distinctly cleaved regions that occur only in the correctly folded RNA in the presence of Mg2+ and can be competed by additional Mg2+, suggesting that Fe2+ and Mg2+ interact with the same sites. Cleaved regions in the catalytic core are conserved for three different group I introns, and there is good correlation between metal-ion-binding sites determined using our method and those determined using other techniques. In a model of the T4 phage-derived td intron, cleaved regions separated in the secondary structure come together in three-dimensional space to form several metal-ion-binding pockets. CONCLUSIONS In contrast to structural probing with Fe2+/EDTA, cleavage with Fe2+ detects metal-ion-binding sites located primarily in the inside of the RNA. Essentially all metal-ion-binding pockets detected are formed by tertiary structure elements. Using this method, we confirmed proposed metal-ion-binding sites and identified new ones in group I intron RNAs. This approach should allow the localization of metal-ion-binding sites in RNAs of interest.
Collapse
Affiliation(s)
- C Berens
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie, Universität Erlangen-Nürnberg, Germany.
| | | | | | | |
Collapse
|
86
|
Effect of lanthanum ions on tRNAphe structure: Imino proton NMR spectroscopy. CHINESE SCIENCE BULLETIN-CHINESE 1998. [DOI: 10.1007/bf02883817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
87
|
Ciesiołka J, Michałowski D, Wrzesinski J, Krajewski J, Krzyzosiak WJ. Patterns of cleavages induced by lead ions in defined RNA secondary structure motifs. J Mol Biol 1998; 275:211-20. [PMID: 9466904 DOI: 10.1006/jmbi.1997.1462] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have characterized the susceptibility of various RNA bulges, loops and other single-stranded sequences to hydrolysis promoted by Pb2+. The reactivity of bulges depends primarily on the structural context of the flanking base-pairs and the effect of nucleotide present at the 5' side of the bulge is particularly strong. The efficiency of stacking interactions between the bulged residue and its neighbors seems to determine cleavage specificity and efficiency. Hydrolysis of two- and three-nucleotide bulges depends only slightly on their nucleotide composition. In the case of terminal loops, the efficiency of their hydrolysis usually increases with the loop size and strongly depends on its nucleotide composition. Stable tetraloops UUCG, CUUG and GCAA are resistant to hydrolysis, while in some other loops of the GNRA family a single, weak cleavage occurs, suggesting the existence of structural subclasses within the family. A very efficient, specific hydrolysis of a phosphodiester bond in the single-stranded region adjacent to the stem in oligomer 12 resembles highly specific cleavages of some tRNA molecules. The reaction occurs in the presence of Pb2+, but not in the presence of several other metal ions. The Pb(2+)-cleavable RNA domain may be considered another example of leadzyme. The results of Pb(2+)-induced hydrolysis in model RNA oligomers should be useful in interpretation of cleavage patterns of much larger, naturally occurring RNA molecules.
Collapse
Affiliation(s)
- J Ciesiołka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | | | | | | | | |
Collapse
|
88
|
|
89
|
Napierała M, Krzyzosiak WJ. CUG repeats present in myotonin kinase RNA form metastable "slippery" hairpins. J Biol Chem 1997; 272:31079-85. [PMID: 9388259 DOI: 10.1074/jbc.272.49.31079] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We show that CUG repeats form "slippery" hairpins in their natural sequence context of the myotonin kinase gene transcript. This novel type of RNA structure is characterized by strong S1 and T1 nuclease and lead cleavages in the terminal loop and by mild lead cleavages in the hairpin stem. The latter effect indicates a relaxed metastable structure of the stem. (CUG)5 repeats do not form any detectable secondary structure, whereas hairpins of increasing stability are formed by (CUG)11, (CUG)21, and (CUG)49. The potential role of the RNA hairpin structure in the pathogenesis of myotonic dystrophy is discussed.
Collapse
Affiliation(s)
- M Napierała
- Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | | |
Collapse
|
90
|
Bukhman YV, Draper DE. Affinities and selectivities of divalent cation binding sites within an RNA tertiary structure. J Mol Biol 1997; 273:1020-31. [PMID: 9367788 DOI: 10.1006/jmbi.1997.1383] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A 58 nucleotide fragment of Escherichia coli large subunit ribosomal RNA, nucleotides 1051 to 1108, adopts a specific tertiary structure normally requiring both monovalent (NH4+ or K+) and divalent (Mg2+) ions to fold; this ion-dependent structure is a prerequisite for recognition by ribosomal protein L11. Melting experiments have been used to show that a sequence variant of this fragment, GACG RNA, is able to adopt a stable tertiary structure in the presence of 1.6 M NH4Cl and absence of divalent ions. The similarity of this high-salt structure to the tertiary structure formed under more typical salt conditions (0.1 M NH4Cl and several mM MgCl2) was shown by its following properties: (i) an unusual ratio of hyperchromicity at 260 nm and 280 nm upon unfolding, (ii) selectivity for NH4+ over K+ or Na+, (iii) stabilization by L11 protein, and (iv) further stabilization by added Mg2+. Delocalized electrostatic interactions of divalent ions with nucleic acids should be very weak in the presence of >1 M monovalent salt; thus stabilization of the tertiary structure by low (<1 mM) Mg2+ concentrations in these high-salt conditions suggests that Mg2+ binds at specific site(s). GACG RNA tertiary structure unfolding in 1.6 M NH4Cl (Tm approximately 39 degrees C) is distinct from melting of the secondary structure (centered at approximately 72 degrees C), and it has been possible to calculate the free energy of tertiary structure stabilization upon addition of various divalent cations. From these binding free energies, ion-RNA binding isotherms for Mn2+, Mg2+, Ca2+, Sr2+ and Ba2+ have been obtained. All of these ions bind at two sites: one site favors Mg2+ and Ba2+ and discriminates against Ca2+, while the other site favors binding of smaller ions over larger ones (Mg2+ >Ca2+ >Sr2+ >Ba2+). Weak cooperative or anticooperative interactions between the sites, also dependent on ion radius, may also be taking place.
Collapse
Affiliation(s)
- Y V Bukhman
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
91
|
Lima WF, Crooke ST. Cleavage of single strand RNA adjacent to RNA-DNA duplex regions by Escherichia coli RNase H1. J Biol Chem 1997; 272:27513-6. [PMID: 9346880 DOI: 10.1074/jbc.272.44.27513] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RNase H1 from Escherichia coli cleaves single strand RNA extending 3' from an RNA-DNA duplex. Substrates consisting of a 25-mer RNA annealed to complementary DNA ranging in length from 9-17 nucleotides were designed to create overhanging single strand RNA regions extending 5' and 3' from the RNA-DNA duplex. Digestion of single strand RNA was observed exclusively within the 3' overhang region and not the 5' overhang region. RNase H digestion of the 3' overhang region resulted in digestion products with 5'-phosphate and 3'-hydroxyl termini. The number of single strand RNA residues cleaved by RNase H is influenced by the sequence of the single strand RNA immediately adjacent to the RNA-DNA duplex and appears to be a function of the stacking properties of the RNA residues adjacent to the RNA-DNA duplex. RNase H digestion of the 3' overhang region was not observed for a substrate that contained a 2'-methoxy antisense strand. The introduction of 3 deoxynucleotides at the 5' terminus of the 2'-methoxy antisense oligonucleotide resulted in cleavage. These results offer additional insights into the binding directionality of RNase H with respect to the heteroduplex substrate.
Collapse
Affiliation(s)
- W F Lima
- Isis Pharmaceuticals, Inc., Carlsbad, California 92008, USA.
| | | |
Collapse
|
92
|
|
93
|
Thomas JM. The Ineluctable Need for in Situ Methods of Characterising Solid Catalysts as a Prerequisite to Engineering Active Sites. Chemistry 1997. [DOI: 10.1002/chem.19970031004] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
94
|
Young KJ, Gill F, Grasby JA. Metal ions play a passive role in the hairpin ribozyme catalysed reaction. Nucleic Acids Res 1997; 25:3760-6. [PMID: 9380495 PMCID: PMC146958 DOI: 10.1093/nar/25.19.3760] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The hairpin ribozyme is an example of a small catalytic RNA which catalyses the endonucleolytic transesterification of RNA in a highly sequence-specific manner. The hairpin ribozyme, in common with all other small ribozymes such as the hammerhead, requires the presence of a divalent metal ion co-factor (typically magnesium) for the reaction to take place. To investigate the role of magnesium ions in the hairpin catalysed reaction we have synthesised two epimeric modified substrates in which a phosphorothioate replaces the scissile phosphodiester bond. Previously, Burke and co-workers have reported that no thio-effect is observed with the Rp-phosphorothioate isomer. We observe the absence of a thio-effect with both diastereomeric phosphorothioate hairpin substrates. Furthermore we report that inert cobalt (III) complexes are capable of supporting the hairpin ribozyme reaction, with a similar efficiency to Mg2+,even in the presence of EDTA. Variation of the net charge on the inert cobalt complex does not change the observed rate of reaction. These results suggest that metal ions play a passive role in the hairpin ribozyme catalysed reaction and are probably required for structural purposes only. This places the hairpin ribozyme in a different mechanistic class to other small ribozymes such as the hammerhead.
Collapse
Affiliation(s)
- K J Young
- Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield S3 7HF, UK
| | | | | |
Collapse
|
95
|
Häner R, Hall J. The sequence-specific cleavage of RNA by artificial chemical ribonucleases. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1997; 7:423-30. [PMID: 9303194 DOI: 10.1089/oli.1.1997.7.423] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Based on work spanning 50 years, several groups have recently achieved the specific cleavage of RNA by attaching RNA-cleaving chemical moieties to antisense oligonucleotides. Such artificial chemical ribonucleases have potential as a possible next generation of antisense compounds and also as probes for structural and functional investigations of RNA. Different chemical moieties, such as polyamines, imidazoles, and metal complexes, have been used as the catalytic part of the artificial nucleases. To be of practical use as therapeutics, however, the conjugates must fulfil a number of strict requirements, such as ease of preparation, chemical stability, selectivity, nontoxicity, and, for metal complexes, inertness to loss of cation from the ligand. In addition, high cleavage efficiency is essential to overcome short lifetimes of cellular mRNA targets, and the reaction should not depend on additional cofactors. Based on these criteria, we believe that metal complexes, in particular macrocyclic lanthanide complexes, have the best chance of success for said purpose.
Collapse
Affiliation(s)
- R Häner
- Novartis Pharma AG, Basel, Switzerland
| | | |
Collapse
|
96
|
Geyer CR, Sen D. Evidence for the metal-cofactor independence of an RNA phosphodiester-cleaving DNA enzyme. CHEMISTRY & BIOLOGY 1997; 4:579-93. [PMID: 9281526 DOI: 10.1016/s1074-5521(97)90244-1] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND RNA and DNA are polymers that lack the diversity of chemical functionalities that make proteins so suited to biological catalysis. All naturally occurring ribozymes (RNA catalysts) that catalyze the formation, transfer and hydrolysis of phosphodiesters require metal-ion cofactors for their catalytic activity. We wished to investigate whether, and to what extent, DNA molecules could catalyze the cleavage (by either hydrolysis or transesterification) of a ribonucleotide phosphodiester in the absence of divalent or higher-valent metal ions or, indeed, any other cofactors. RESULTS We performed in vitro selection and amplification experiments on a library of random-sequence DNA that incorporated a single ribonucleotide, a suitable site for cleavage. Following 12 cycles of selection and amplification, a 'first generation' of DNA enzymes (DNAzymes) cleaved their internal ribonucleotide phosphodiesters at rates approximately 10(7)-fold faster than the spontaneous rate of cleavage of the dinucleotide ApA in the absence of divalent cations. Re-selection from a partially randomized DNA pool yielded 'second generation' DNAzymes that self-cleaved at rates of approximately 0.01 min-1 (a 10(8)-fold rate enhancement over the cleavage rate of ApA). The properties of these selected catalysts were different in key respects from those of metal-utilizing ribozymes and DNAzymes. The catalyzed cleavage took place in the presence of different chelators and ribonuclease inhibitors. Trace-metal analysis of the reaction buffer (containing very high purity reagents) by inductively coupled plasma-optical emission spectrophotometry indicated that divalent or higher-valent metal ions do not mediate catalysis by the DNAzymes. CONCLUSIONS Our results indicate that, although ribozymes are sometimes regarded generically to be metalloenzymes, the nucleic acid components of ribozymes may play a substantial role in the overall catalysis. Given that metal cofactors increase the rate of catalysis by ribozymes only approximately 10(2)-10(3)-fold above that of the DNAzyme described in this paper, it is conceivable that substrate positioning, transition-state stabilization or general acid/base catalysis by the nucleic acid components of ribozymes and DNAzymes may contribute significantly to their overall catalytic performance.
Collapse
Affiliation(s)
- C R Geyer
- Institute of Molecular Biology and Biochemistry, Simon Fraser University Burnaby, BC, Canada V5A 1S6
| | | |
Collapse
|
97
|
Abstract
Ribozymes are RNA molecules capable of catalyzing chemical reactions. Natural ribozymes generally accelerate the rate of cleavage and ligation of specific phosphodiester bonds. In vitro selection of RNA is now being used as a powerful technique to isolate novel and variant ribozymes that carry out catalysis at phosphodiester and carbon bonds. The range of reactions catalyzed by in vitro selected ribozymes is now well beyond the scope of known natural ribozymes.
Collapse
Affiliation(s)
- T Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
98
|
Winter D, Polacek N, Halama I, Streicher B, Barta A. Lead-catalysed specific cleavage of ribosomal RNAs. Nucleic Acids Res 1997; 25:1817-24. [PMID: 9108166 PMCID: PMC146643 DOI: 10.1093/nar/25.9.1817] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ribosomes have long been known to require divalent metal ions for their functional integrity. Pb2+-induced cleavage of the sugar-phosphate backbone has now been used to probe for metal binding sites in rRNA. Only three prominent Pb2+cleavages have been detected, with cleavage sites 5' of G240 in 16S rRNA and two sites 5' of A505 and C2347 in 23S rRNA. All cleavages occur in non-paired regions of the secondary structure models of the rRNAs and can be competed for by high concentrations of Mg2+, Mn2+, Ca2+ and Zn2+ ions, suggesting that lead is bound to general metal binding sites. Although Pb2+ cleavage is very efficient, ribosomes with fragmented RNAs are still functional in binding tRNA and in peptidyl transferase activity, indicating that the scissions do not significantly alter ribosomal structure. One of the lead cleavage sites (C2347 in 23S RNA) occurs in the vicinity of a region which is implicated in tRNA binding and peptidyl transferase activity. These results are discussed in the light of a recent model which proposes that peptide bond formation might be a metal-catalysed process.
Collapse
MESH Headings
- Anti-Bacterial Agents/metabolism
- Base Sequence
- Binding, Competitive
- Catalysis
- Cations, Divalent
- Hydrogen-Ion Concentration
- Hydrolysis
- Lead/metabolism
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- RNA, Transfer/metabolism
Collapse
Affiliation(s)
- D Winter
- Institute of Biochemistry, University of Vienna, Vienna Biocenter, Dr Bohr-Gasse 9/3, A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
99
|
Pontius BW, Lott WB, von Hippel PH. Observations on catalysis by hammerhead ribozymes are consistent with a two-divalent-metal-ion mechanism. Proc Natl Acad Sci U S A 1997; 94:2290-4. [PMID: 9122187 PMCID: PMC20080 DOI: 10.1073/pnas.94.6.2290] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Significant cleavage by hammerhead ribozymes requires activation by divalent metal ions. Several models have been proposed to account for the influence of metal ions on hammerhead activity. A number of recent papers have presented data that have been interpreted as supporting a one-metal-hydroxide-ion mechanism. In addition, a solvent deuterium isotope effect has been taken as evidence against a proton transfer in the rate-limiting step of the cleavage reaction. We propose that these data are more easily explained by a two-metal-ion mechanism that does not involve a metal hydroxide, but does involve a proton transfer in the rate-limiting step.
Collapse
Affiliation(s)
- B W Pontius
- Department of Chemistry, University of Oregon, Eugene 97403-1129, USA
| | | | | |
Collapse
|
100
|
Bruice TC, Tsubouchi A, Dempcy RO, Olson LP. One- and Two-Metal Ion Catalysis of the Hydrolysis of Adenosine 3‘-Alkyl Phosphate Esters. Models for One- and Two-Metal Ion Catalysis of RNA Hydrolysis. J Am Chem Soc 1996. [DOI: 10.1021/ja9607300] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas C. Bruice
- Contribution from the Department of Chemistry, University of California at Santa Barbara, Santa Barbara, California 93106
| | - Akira Tsubouchi
- Contribution from the Department of Chemistry, University of California at Santa Barbara, Santa Barbara, California 93106
| | - Robert O. Dempcy
- Contribution from the Department of Chemistry, University of California at Santa Barbara, Santa Barbara, California 93106
| | - Leif P. Olson
- Contribution from the Department of Chemistry, University of California at Santa Barbara, Santa Barbara, California 93106
| |
Collapse
|