51
|
Ebrahimi KH, Hagedoorn PL, Hagen WR. A Conserved Tyrosine in Ferritin Is a Molecular Capacitor. Chembiochem 2013; 14:1123-33. [DOI: 10.1002/cbic.201300149] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Indexed: 11/06/2022]
|
52
|
Keogh MJ, Morris CM, Chinnery PF. Neuroferritinopathy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 110:91-123. [DOI: 10.1016/b978-0-12-410502-7.00006-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
53
|
Ebrahimi KH, Hagedoorn PL, Hagen WR. A synthetic peptide with the putative iron binding motif of amyloid precursor protein (APP) does not catalytically oxidize iron. PLoS One 2012; 7:e40287. [PMID: 22916096 PMCID: PMC3419245 DOI: 10.1371/journal.pone.0040287] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 06/07/2012] [Indexed: 11/21/2022] Open
Abstract
The β-amyloid precursor protein (APP), which is a key player in Alzheimer's disease, was recently reported to possess an Fe(II) binding site within its E2 domain which exhibits ferroxidase activity [Duce et al. 2010, Cell 142: 857]. The putative ligands of this site were compared to those in the ferroxidase site of ferritin. The activity was indirectly measured using transferrin, which scavenges the Fe(III) product of the reaction. A 22-residue synthetic peptide, named FD1, with the putative ferroxidase site of APP, and the E2 domain of APP were each reported to exhibit 40% of the ferroxidase activity of APP and of ceruloplasmin. It was also claimed that the ferroxidase activity of APP is inhibited by Zn(II) just as in ferritin. We measured the ferroxidase activity indirectly (i) by the incorporation of the Fe(III) product of the ferroxidase reaction into transferrin and directly (ii) by monitoring consumption of the substrate molecular oxygen. The results with the FD1 peptide were compared to the established ferroxidase activities of human H-chain ferritin and of ceruloplasmin. For FD1 we observed no activity above the background of non-enzymatic Fe(II) oxidation by molecular oxygen. Zn(II) binds to transferrin and diminishes its Fe(III) incorporation capacity and rate but it does not specifically bind to a putative ferroxidase site of FD1. Based on these results, and on comparison of the putative ligands of the ferroxidase site of APP with those of ferritin, we conclude that the previously reported results for ferroxidase activity of FD1 and - by implication - of APP should be re-evaluated.
Collapse
Affiliation(s)
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Wilfred R. Hagen
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
54
|
Lehn A, Boyle R, Brown H, Airey C, Mellick G. Neuroferritinopathy. Parkinsonism Relat Disord 2012; 18:909-15. [PMID: 22818529 DOI: 10.1016/j.parkreldis.2012.06.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/19/2012] [Accepted: 06/26/2012] [Indexed: 11/25/2022]
Abstract
Neuroferritinopathy is an autosomal dominantly inherited disorder caused by mutations in the gene encoding the ferritin light chain polypeptide. It leads to iron deposition particularly in the cerebellum, basal ganglia and motor cortex. The disease becomes clinically apparent in adulthood mainly with extrapyramidal signs and progresses slowly over decades. Patients usually have intact cognition until the very late stages of this disorder. Neuroimaging is the most helpful investigation and shows a very distinctive picture. So far no medication has been shown to have a disease-modifying effect. We present five new cases of this condition and review the current understanding of the pathogenesis and its clinical findings.
Collapse
Affiliation(s)
- Alexander Lehn
- Department of Neurology, Princess Alexandra Hospital, Brisbane, Queensland, Australia.
| | | | | | | | | |
Collapse
|
55
|
Liao X, Lv C, Zhang X, Masuda T, Li M, Zhao G. A novel strategy of natural plant ferritin to protect DNA from oxidative damage during iron oxidation. Free Radic Biol Med 2012; 53:375-82. [PMID: 22580341 DOI: 10.1016/j.freeradbiomed.2012.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/01/2012] [Accepted: 05/01/2012] [Indexed: 11/16/2022]
Abstract
Plant ferritin is a naturally occurring heteropolymer in plastids, where Fe(2+) is oxidatively deposited into the protein. However, the effect of this process on the coexistence of DNA and plant ferritin in the plastids is unknown. To investigate this effect, we built a system in which various plant ferritins and DNA coexist, followed by treatment with ferrous ions under aerobic conditions. Interestingly, naturally occurring soybean seed ferritin (SSF), a heteropolymer with an H-1/H-2 ratio of 1 to 1 in the apo form, completely protected DNA from oxidative damage during iron oxidative deposition into protein, and a similar result was obtained with its recombinant form, but not with its homopolymeric counterparts, apo rH-1 and apo rH-2. We demonstrate that the difference in DNA protection between heteropolymeric and homopolymeric plant ferritins stems from their different strategies to control iron chemistry during the above oxidative process. For example, the detoxification reaction occurs only in the presence of apo heteropolymeric SSF (hSSF), thereby preventing the production of hydroxyl radicals. In contrast, hydroxyl radicals are apparently generated via the Fenton reaction when apo rH-1 or rH-2 is used instead of apo hSSF. Thus, a combination of H-1 and H-2 subunits in hSSF seems to impart a unique DNA-protective function to the protein, which was previously unrecognized. This new finding advances our understanding of the structure and function of ferritin and of the widespread occurrence of heteropolymeric plant ferritin in nature.
Collapse
Affiliation(s)
- Xiayun Liao
- CAU & ACC Joint Laboratory of Space Food, College of Food Science and Nutritional Engineering, China Agricultural University, and Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | | | | | | | | | | |
Collapse
|
56
|
Ebrahimi KH, Hagedoorn PL, van der Weel L, Verhaert PDEM, Hagen WR. A novel mechanism of iron-core formation by Pyrococcus furiosus archaeoferritin, a member of an uncharacterized branch of the ferritin-like superfamily. J Biol Inorg Chem 2012; 17:975-85. [PMID: 22739810 PMCID: PMC3401498 DOI: 10.1007/s00775-012-0913-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
Abstract
Storage of iron in a nontoxic and bioavailable form is essential for many forms of life. Three subfamilies of the ferritin-like superfamily, namely, ferritin, bacterioferritin, and Dps (DNA-binding proteins from starved cells), are able to store iron. Although the function of these iron-storage proteins is constitutive to many organisms to sustain life, the genome of some organisms appears not to encode any of these proteins. In an attempt to identify new iron-storage systems, we have found and characterized a new member of the ferritin-like superfamily of proteins, which unlike the multimeric storage system of ferritin, bacterioferritin, and Dps is monomeric in the absence of iron. Monomers catalyze oxidation of Fe(II) and they store the Fe(III) product as they assemble to form structures comparable to those of 24-meric ferritin. We propose that this mechanism is an alternative method of iron storage by the ferritin-like superfamily of proteins in organisms that lack the regular preassociated 24-meric/12-meric ferritins.
Collapse
|
57
|
Bertini I, Lalli D, Mangani S, Pozzi C, Rosa C, Theil EC, Turano P. Structural insights into the ferroxidase site of ferritins from higher eukaryotes. J Am Chem Soc 2012; 134:6169-76. [PMID: 22424302 PMCID: PMC4159105 DOI: 10.1021/ja210084n] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The first step of iron biomineralization mediated by ferritin is the oxidation at the ferroxidase active site of two ferrous ions to a diferric oxo/hydroxo species. Metal-loaded ferritin crystals obtained by soaking crystals of frog ferritin in FeSO(4) and CuSO(4) solutions followed by flash freezing provided X-ray crystal structures of the tripositive iron and bipositive copper adducts at 2.7 and 2.8 Å resolution, respectively. At variance with the already available structures, the crystal form used in this study contains 24 independent subunits in the asymmetric unit permitting comparison between them. For the first time, the diferric species at the ferroxidase site is identified in ferritins from higher eukaryotes. Anomalous difference Fourier maps for crystals (iron crystal 1) obtained after long soaking times in FeSO(4) solution invariantly showed diferric species with a Fe-Fe average distance of 3.1 ± 0.1 Å, strongly indicative of the presence of a μ-oxo/hydroxo bridge between the irons; protein ligands for each iron ion (Fe1 and Fe2) were also unequivocally identified and found to be the same in all subunits. For copper bound ferritin, dicopper(II) centers are also observed. While copper at site 1 is essentially in the same position and has the same coordination environment as Fe1, copper at site 2 is displaced toward His54, now acting as a ligand; this results in an increased intermetal distance (4.3 ± 0.4 Å). His54 coordination and longer metal-metal distances might represent peculiar features of divalent cations at the ferroxidase site. This oxidation-dependent structural information may provide key features for the mechanistic pathway in ferritins from higher eukaryotes that drive uptake of bivalent cation and release of ferric products at the catalytic site. This mechanism is supported by the X-ray picture obtained after only 1 min of soaking in FeSO(4) solutions (iron crystal 2) which reasonably contain the metal at different oxidation states. Here two different di-iron species are trapped in the active site, with intermetal distances corresponding to those of the ferric dimer in crystal 1 and of the dicopper centers and corresponding rearrangement of the His54 side chain.
Collapse
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Florence, Italy.
| | | | | | | | | | | | | |
Collapse
|
58
|
Galatro A, Robello E, Puntarulo S. Soybean ferritin: isolation, characterization, and free radical generation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:45-54. [PMID: 22112169 DOI: 10.1111/j.1744-7909.2011.01091.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The main aim of this work was to assess the multi-task role of ferritin (Ft) in the oxidative metabolism of soybean (Glycine max). Soybean seeds incubated for 24 h yielded 41 ± 5 μg Ft/g fresh weight. The rate of in vitro incorporation of iron (Fe) into Ft was tested by supplementing the reaction medium with physiological Fe chelators. The control rate, observed in the presence of 100 μM Fe, was not significantly different from the values observed in the presence of 100 μM Fe-his. However, it was significantly higher in the presence of 100 μM Fe-citrate (approximately 4.5-fold) or of 100 μM Fe-ATP (approximately 14-fold). Moreover, a substantial decrease in the Trp-dependent fluorescence of the Ft protein was determined during Fe uptake from Fe-citrate, as compared with the control. On the other hand, Ft addition to homogenates from soybean embryonic axes reduced endogenously generated ascorbyl radical, according to its capacity for Fe uptake. The data presented here suggest that Ft could be involved in the generation of free radicals, such as hydroxyl radical, by Fe-catalyzed reactions. Moreover, the scavenging of these radicals by Ft itself could then lead to protein damage. However, Ft could also prevent cellular damage by the uptake of catalytically active Fe.
Collapse
Affiliation(s)
- Andrea Galatro
- Physical Chemistry-PRALIB, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires C1113AAD, Argentina
| | | | | |
Collapse
|
59
|
Wang W, Zhang M, Sun L. Ferritin M of Cynoglossus semilaevis: an iron-binding protein and a broad-spectrum antimicrobial that depends on the integrity of the ferroxidase center and nucleation center for biological activity. FISH & SHELLFISH IMMUNOLOGY 2011; 31:269-274. [PMID: 21651984 DOI: 10.1016/j.fsi.2011.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 04/02/2011] [Accepted: 05/13/2011] [Indexed: 05/30/2023]
Abstract
Ferritin is a major intracellular iron storage protein in higher vertebrates and plays an important role in iron metabolism. In this study, we identified and analyzed the biological activity of a ferritin M subunit (CsFerM) from half-smooth tongue sole (Cynoglossus semilaevis). The open reading frame (ORF) of CsFerM is 534 bp and encodes a protein that shares 79.7-86.4% overall sequence identities with the ferritin M subunits of a number of teleosts. In silico analysis identified in CsFerM a eukaryotic ferritin domain with conserved ferroxidase diiron center and ferrihydrite nucleation center. Quantitative real time RT-PCR analysis showed that under normal physiological conditions, expression of CsFerM was highest in liver, moderate in gill, spleen, and muscle, and low in gut, heart, and brain. Following experimental challenge with bacterial pathogens, CsFerM expression was significantly upregulated in kidney, spleen, and liver in time-dependent manners. Biological activity analysis showed that recombinant CsFerM purified from Escherichia coli exhibited apparent iron-binding activity and, when present in the culture medium of six different species of fish bacterial pathogens, completely inhibited bacterial growth. In contrast, a mutant CsFerM that bears alanine substitution at two conserved residues of the ferroxidase diiron center and ferrihydrite nucleation center was abolished in both iron-binding and antimicrobial capacity. These results demonstrate that CsFerM is a biologically active iron chelator with broad-spectrum antibacterial activity, which suggests a role for CsFerM in not only iron storage but also innate immunity. These results also indicate the importance of the conserved iron uptake and mineralization sites to the function of CsFerM.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China
| | | | | |
Collapse
|
60
|
Haldar S, Bevers LE, Tosha T, Theil EC. Moving Iron through ferritin protein nanocages depends on residues throughout each four α-helix bundle subunit. J Biol Chem 2011; 286:25620-7. [PMID: 21592958 DOI: 10.1074/jbc.m110.205278] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic H ferritins move iron through protein cages to form biologically required, iron mineral concentrates. The biominerals are synthesized during protein-based Fe²⁺/O₂ oxidoreduction and formation of [Fe³⁺O](n) multimers within the protein cage, en route to the cavity, at sites distributed over ~50 Å. Recent NMR and Co²⁺-protein x-ray diffraction (XRD) studies identified the entire iron path and new metal-protein interactions: (i) lines of metal ions in 8 Fe²⁺ ion entry channels with three-way metal distribution points at channel exits and (ii) interior Fe³⁺O nucleation channels. To obtain functional information on the newly identified metal-protein interactions, we analyzed effects of amino acid substitution on formation of the earliest catalytic intermediate (diferric peroxo-A(650 nm)) and on mineral growth (Fe³⁺O-A(350 nm)), in A26S, V42G, D127A, E130A, and T149C. The results show that all of the residues influenced catalysis significantly (p < 0.01), with effects on four functions: (i) Fe²⁺ access/selectivity to the active sites (Glu¹³⁰), (ii) distribution of Fe²⁺ to each of the three active sites near each ion channel (Asp¹²⁷), (iii) product (diferric oxo) release into the Fe³⁺O nucleation channels (Ala²⁶), and (iv) [Fe³⁺O](n) transit through subunits (Val⁴², Thr¹⁴⁹). Synthesis of ferritin biominerals depends on residues along the entire length of H subunits from Fe²⁺ substrate entry at 3-fold cage axes at one subunit end through active sites and nucleation channels, at the other subunit end, inside the cage at 4-fold cage axes. Ferritin subunit-subunit geometry contributes to mineral order and explains the physiological impact of ferritin H and L subunits.
Collapse
Affiliation(s)
- Suranjana Haldar
- Children's Hospital Oakland Research Institute, Oakland, California 94609 , USA
| | | | | | | |
Collapse
|
61
|
The characterization of Thermotoga maritima ferritin reveals an unusual subunit dissociation behavior and efficient DNA protection from iron-mediated oxidative stress. Extremophiles 2011; 15:431-9. [DOI: 10.1007/s00792-011-0374-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 03/31/2011] [Indexed: 11/26/2022]
|
62
|
Non-reductive iron release from horse spleen ferritin using desferoxamine chelation. J Inorg Biochem 2011; 105:202-7. [DOI: 10.1016/j.jinorgbio.2010.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 11/03/2010] [Accepted: 11/05/2010] [Indexed: 11/17/2022]
|
63
|
Bottcher A, Nobile PM, Martins PF, Conte FF, Azevedo RA, Mazzafera P. A role for ferritin in the antioxidant system in coffee cell cultures. Biometals 2010; 24:225-37. [PMID: 21046200 DOI: 10.1007/s10534-010-9388-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 10/22/2010] [Indexed: 11/24/2022]
Abstract
Iron (Fe) is an essential nutrient for plants, but it can generate oxidative stress at high concentrations. In this study, Coffea arabica L. cell suspension cultures were exposed to excess Fe (60 and 240 μM) to investigate changes in the gene expression of ferritin and antioxidant enzymes. Iron content accumulated during cell growth, and Western blot analysis showed an increase of ferritin in cells treated with Fe. The expression of two ferritin genes retrieved from the Brazilian coffee EST database was studied. CaFER1, but not CaFER2, transcripts were induced by Fe exposure. Phylogenetic analysis revealed that CaFER1 is not similar to CaFER2 or to any ferritin that has been characterised in detail. The increase in ferritin gene expression was accompanied by an increase in the activity of antioxidant enzymes. Superoxide dismutase, guaiacol peroxidase, catalase, and glutathione reductase activities increased in cells grown in the presence of excess Fe, especially at 60 μM, while the activity of glutathione S-transferase decreased. These data suggest that Fe induces oxidative stress in coffee cell suspension cultures and that ferritin participates in the antioxidant system to protect cells against oxidative damage. Thus, cellular Fe concentrations must be finely regulated to avoid cellular damage most likely caused by increased oxidative stress induced by Fe. However, transcriptional analyses indicate that ferritin genes are differentially controlled, as only CaFER1 expression was responsive to Fe treatment.
Collapse
Affiliation(s)
- Alexandra Bottcher
- Departamento de Biologia Vegetal, Instituto de Biologia, CP 6109, Universidade Estadual de Campinas, Campinas, SP, 13083-970, Brazil
| | | | | | | | | | | |
Collapse
|
64
|
Salgado JC, Olivera-Nappa A, Gerdtzen ZP, Tapia V, Theil EC, Conca C, Nuñez MT. Mathematical modeling of the dynamic storage of iron in ferritin. BMC SYSTEMS BIOLOGY 2010; 4:147. [PMID: 21047430 PMCID: PMC2992510 DOI: 10.1186/1752-0509-4-147] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 11/03/2010] [Indexed: 12/27/2022]
Abstract
BACKGROUND Iron is essential for the maintenance of basic cellular processes. In the regulation of its cellular levels, ferritin acts as the main intracellular iron storage protein. In this work we present a mathematical model for the dynamics of iron storage in ferritin during the process of intestinal iron absorption. A set of differential equations were established considering kinetic expressions for the main reactions and mass balances for ferritin, iron and a discrete population of ferritin species defined by their respective iron content. RESULTS Simulation results showing the evolution of ferritin iron content following a pulse of iron were compared with experimental data for ferritin iron distribution obtained with purified ferritin incubated in vitro with different iron levels. Distinctive features observed experimentally were successfully captured by the model, namely the distribution pattern of iron into ferritin protein nanocages with different iron content and the role of ferritin as a controller of the cytosolic labile iron pool (cLIP). Ferritin stabilizes the cLIP for a wide range of total intracellular iron concentrations, but the model predicts an exponential increment of the cLIP at an iron content > 2,500 Fe/ferritin protein cage, when the storage capacity of ferritin is exceeded. CONCLUSIONS The results presented support the role of ferritin as an iron buffer in a cellular system. Moreover, the model predicts desirable characteristics for a buffer protein such as effective removal of excess iron, which keeps intracellular cLIP levels approximately constant even when large perturbations are introduced, and a freely available source of iron under iron starvation. In addition, the simulated dynamics of the iron removal process are extremely fast, with ferritin acting as a first defense against dangerous iron fluctuations and providing the time required by the cell to activate slower transcriptional regulation mechanisms and adapt to iron stress conditions. In summary, the model captures the complexity of the iron-ferritin equilibrium, and can be used for further theoretical exploration of the role of ferritin in the regulation of intracellular labile iron levels and, in particular, as a relevant regulator of transepithelial iron transport during the process of intestinal iron absorption.
Collapse
Affiliation(s)
- J Cristian Salgado
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering and Biotechnology, University of Chile, Santiago, Chile.
| | | | | | | | | | | | | |
Collapse
|
65
|
Yang H, Fu X, Li M, Leng X, Chen B, Zhao G. Protein association and dissociation regulated by extension peptide: a mode for iron control by phytoferritin in seeds. PLANT PHYSIOLOGY 2010; 154:1481-91. [PMID: 20841455 PMCID: PMC2971622 DOI: 10.1104/pp.110.163063] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/13/2010] [Indexed: 05/10/2023]
Abstract
Most of the iron in legume seeds is stored in ferritin located in the amyloplast, which is used during seed germination. However, there is a lack of information on the regulation of iron by phytoferritin. In this study, soluble and insoluble forms of pea (Pisum sativum) seed ferritin (PSF) isolated from dried seeds were found to be identical 24-mer ferritins comprising H-1 and H-2 subunits. The insoluble form is favored at low pH, whereas the two forms reversibly interconvert in the pH range of 6.0 to 7.8, with an apparent pK(a) of 6.7. This phenomenon was not observed in animal ferritins, indicating that PSF is unique. The pH of the amyloplast was found to be approximately 6.0, thus facilitating PSF association, which is consistent with the role of PSF in long-term iron storage. Similar to previous studies, the results of this work showed that protein degradation occurs in purified PSF during storage, thus proving that phytoferritin also undergoes degradation during seedling germination. In contrast, no degradation was observed in animal ferritins, suggesting that this degradation of phytoferritin may be due to the extension peptide (EP), a specific domain found only in phytoferritin. Indeed, removal of EP from PSF significantly increased protein stability and prevented degradation under identical conditions while promoting protein dissociation. Correlated with such dissociation was a considerable increase in the rate of ascorbate-induced iron release from PSF at pH 6.0. Thus, phytoferritin may have facilitated the evolution of EP to enable it to regulate iron for storage or complement in seeds.
Collapse
Affiliation(s)
| | | | | | | | | | - Guanghua Zhao
- CAU and ACC Joint Laboratory of Space Food, College of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China (H.Y., X.F., M.L., X.L., G.Z.); State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China (B.C.)
| |
Collapse
|
66
|
Deng J, Liao X, Yang H, Zhang X, Hua Z, Masuda T, Goto F, Yoshihara T, Zhao G. Role of H-1 and H-2 subunits of soybean seed ferritin in oxidative deposition of iron in protein. J Biol Chem 2010; 285:32075-86. [PMID: 20702403 PMCID: PMC2952209 DOI: 10.1074/jbc.m110.130435] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Revised: 08/11/2010] [Indexed: 11/06/2022] Open
Abstract
Naturally occurring phytoferritin is a heteropolymer consisting of two different H-type subunits, H-1 and H-2. Prior to this study, however, the function of the two subunits in oxidative deposition of iron in ferritin was unknown. The data show that, upon aerobic addition of 48-200 Fe(2+)/shell to apoferritin, iron oxidation occurs only at the diiron ferroxidase center of recombinant H1 (rH-1). In addition to the diiron ferroxidase mechanism, such oxidation is catalyzed by the extension peptide (a specific domain found in phytoferritin) of rH-2, because the H-1 subunit is able to remove Fe(3+) from the center to the inner cavity better than the H-2 subunit. These findings support the idea that the H-1 and H-2 subunits play different roles in iron mineralization in protein. Interestingly, at medium iron loading (200 irons/shell), wild-type (WT) soybean seed ferritin (SSF) exhibits a stronger activity in catalyzing iron oxidation (1.10 ± 0.13 μm iron/subunit/s) than rH-1 (0.59 ± 0.07 μm iron/subunit/s) and rH-2 (0.48 ± 0.04 μm iron/subunit/s), demonstrating that a synergistic interaction exists between the H-1 and H-2 subunits in SSF during iron mineralization. Such synergistic interaction becomes considerably stronger at high iron loading (400 irons/shell) as indicated by the observation that the iron oxidation activity of WT SSF is ∼10 times larger than those of rH-1 and rH-2. This helps elucidate the widespread occurrence of heteropolymeric ferritins in plants.
Collapse
Affiliation(s)
- Jianjun Deng
- From the CAU and ACC Joint Laboratory of Space Food, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiayun Liao
- From the CAU and ACC Joint Laboratory of Space Food, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Haixia Yang
- From the CAU and ACC Joint Laboratory of Space Food, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiangyu Zhang
- the State Key Laboratory of Pharmaceutical Biotechnology and Department of Biochemistry, College of Life Sciences, Nanjing University, Nanjing 210093, China, and
| | - Zichun Hua
- the State Key Laboratory of Pharmaceutical Biotechnology and Department of Biochemistry, College of Life Sciences, Nanjing University, Nanjing 210093, China, and
| | - Taro Masuda
- the Laboratory of Food Quality Design and Development, Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Fumiyuki Goto
- the Biotechnology Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba 270-1194, Japan
| | - Toshihiro Yoshihara
- the Biotechnology Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba 270-1194, Japan
| | - Guanghua Zhao
- From the CAU and ACC Joint Laboratory of Space Food, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
67
|
Andrews SC. The Ferritin-like superfamily: Evolution of the biological iron storeman from a rubrerythrin-like ancestor. Biochim Biophys Acta Gen Subj 2010; 1800:691-705. [DOI: 10.1016/j.bbagen.2010.05.010] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/20/2010] [Accepted: 05/21/2010] [Indexed: 11/25/2022]
|
68
|
Zhao G. Phytoferritin and its implications for human health and nutrition. Biochim Biophys Acta Gen Subj 2010; 1800:815-23. [DOI: 10.1016/j.bbagen.2010.01.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 01/15/2010] [Accepted: 01/18/2010] [Indexed: 01/02/2023]
|
69
|
The iron redox and hydrolysis chemistry of the ferritins. Biochim Biophys Acta Gen Subj 2010; 1800:719-31. [DOI: 10.1016/j.bbagen.2010.03.021] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/23/2010] [Accepted: 03/26/2010] [Indexed: 12/12/2022]
|
70
|
Zheng WJ, Hu YH, Sun L. Identification and analysis of a Scophthalmus maximus ferritin that is regulated at transcription level by oxidative stress and bacterial infection. Comp Biochem Physiol B Biochem Mol Biol 2010; 156:222-8. [DOI: 10.1016/j.cbpb.2010.03.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 03/29/2010] [Accepted: 03/29/2010] [Indexed: 02/01/2023]
|
71
|
Inhibition and stimulation of formation of the ferroxidase center and the iron core in Pyrococcus furiosus ferritin. J Biol Inorg Chem 2010; 15:1243-53. [PMID: 20582559 PMCID: PMC2988210 DOI: 10.1007/s00775-010-0682-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 06/16/2010] [Indexed: 11/17/2022]
Abstract
Ferritin is a ubiquitous iron-storage protein that has 24 subunits. Each subunit of ferritins that exhibit high Fe(II) oxidation rates has a diiron binding site, the so-called ferroxidase center (FC). The role of the FC appears to be essential for the iron-oxidation catalysis of ferritins. Studies of the iron oxidation by mammalian, bacterial, and archaeal ferritin have indicated different mechanisms are operative for Fe(II) oxidation, and for inhibition of the Fe(II) oxidation by Zn(II). These differences are presumably related to the variations in the amino acid residues of the FC and/or transport channels. We have used a combination of UV–vis spectroscopy, fluorescence spectroscopy, and isothermal titration calorimetry to study the inhibiting action of Zn(II) ions on the iron-oxidation process by apoferritin and by ferritin aerobically preloaded with 48 Fe(II) per 24-meric protein, and to study a possible role of phosphate in initial iron mineralization by Pyrococcus furiosus ferritin (PfFtn). Although the empty FC can accommodate two zinc ions, binding of one zinc ion to the FC suffices to essentially abolish iron-oxidation activity. Zn(II) no longer binds to the FC nor does it inhibit iron core formation once the FC is filled with two Fe(III). Phosphate and vanadate facilitate iron oxidation only after formation of a stable FC, whereupon they become an integral part of the core. These results corroborate our previous proposal that the FC in PfFtn is a stable prosthetic group, and they suggest that its formation is essential for iron-oxidation catalysis by the protein.
Collapse
|
72
|
Weeratunga SK, Lovell S, Yao H, Battaile KP, Fischer CJ, Gee CE, Rivera M. Structural studies of bacterioferritin B from Pseudomonas aeruginosa suggest a gating mechanism for iron uptake via the ferroxidase center . Biochemistry 2010; 49:1160-75. [PMID: 20067302 DOI: 10.1021/bi9015204] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structure of recombinant Pseudomonas aeruginosa bacterioferritin B (Pa BfrB) has been determined from crystals grown from protein devoid of core mineral iron (as-isolated) and from protein mineralized with approximately 600 iron atoms (mineralized). Structures were also obtained from crystals grown from mineralized BfrB after they had been soaked in an FeSO(4) solution (Fe soak) and in separate experiments after they had been soaked in an FeSO(4) solution followed by a soak in a crystallization solution (double soak). Although the structures consist of a typical bacterioferritin fold comprised of a nearly spherical 24-mer assembly that binds 12 heme molecules, comparison of microenvironments observed in the distinct structures provided interesting insights. The ferroxidase center in the as-isolated, mineralized, and double-soak structures is empty. The ferroxidase ligands (except His130) are poised to bind iron with minimal conformational changes. The His130 side chain, on the other hand, must rotate toward the ferroxidase center to coordinate iron. In comparison, the structure obtained from crystals soaked in an FeSO(4) solution displays a fully occupied ferroxidase center and iron bound to the internal, Fe((in)), and external, Fe((out)), surfaces of Pa BfrB. The conformation of His130 in this structure is rotated toward the ferroxidase center and coordinates an iron ion. The structures also revealed a pore on the surface of Pa BfrB that likely serves as a port of entry for Fe(2+) to the ferroxidase center. On its opposite end, the pore is capped by the side chain of His130 when it adopts its "gate-closed" conformation that enables coordination to a ferroxidase iron. A change to its "gate-open", noncoordinative conformation creates a path for the translocation of iron from the ferroxidase center to the interior cavity. These structural observations, together with findings obtained from iron incorporation measurements in solution, suggest that the ferroxidase pore is the dominant entry route for the uptake of iron by Pa BfrB. These findings, which are clearly distinct from those made with Escherichia coli Bfr [Crow, A. C., Lawson, T. L., Lewin, A., Moore, G. R., and Le Brun, N. E. (2009) J. Am. Chem. Soc. 131, 6808-6813], indicate that not all bacterioferritins operate in the same manner.
Collapse
Affiliation(s)
- Saroja K Weeratunga
- Ralph N. Adams Institute for Bioanalytical Chemistry and Department of Chemistry, University of Kansas, Multidisciplinary Research Building, 2030 Becker Drive, Room 220 E, Lawrence, Kansas 66047, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
Iron core mineralisation in prokaryotic ferritins. Biochim Biophys Acta Gen Subj 2010; 1800:732-44. [PMID: 20388533 DOI: 10.1016/j.bbagen.2010.04.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/26/2010] [Accepted: 04/02/2010] [Indexed: 11/20/2022]
Abstract
BACKGROUND To satisfy their requirement for iron while at the same time countering the toxicity of this highly reactive metal ion, prokaryotes have evolved proteins belonging to two distinct sub-families of the ferritin family: the bacterioferritins (BFRs) and the bacterial ferritins (Ftns). Recently, Ftn homologues have also been identified and characterised in archaeon species. All of these prokaryotic ferritins function by solubilising and storing large amounts of iron in the form of a safe but bio-available mineral. SCOPE OF REVIEW The mechanism(s) by which the iron mineral is formed by these proteins is the subject of much current interest. Here we review the available information on these proteins, with particular emphasis on significant advances resulting from recent structural, spectroscopic and kinetic studies. MAJOR CONCLUSIONS Current understanding indicates that at least two distinct mechanisms are in operation in prokaryotic ferritins. In one, the ferroxidase centre acts as a true catalytic centre in driving Fe(2+) oxidation in the cavity; in the other, the centre acts as a gated iron pore by oxidising Fe(2+) and transferring the resulting Fe(3+) into the central cavity. GENERAL SIGNIFICANCE The prokaryotic ferritins exhibit a wide variation in mechanisms of iron core mineralisation. The basis of these differences lies, at least in part, in structural differences at and around the catalytic centre. However, it appears that more subtle differences must also be important in controlling the iron chemistry of these remarkable proteins.
Collapse
|
74
|
Strand KR, Sun C, Li T, Jenney FE, Schut GJ, Adams MWW. Oxidative stress protection and the repair response to hydrogen peroxide in the hyperthermophilic archaeon Pyrococcus furiosus and in related species. Arch Microbiol 2010; 192:447-59. [PMID: 20379702 DOI: 10.1007/s00203-010-0570-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 03/23/2010] [Accepted: 03/25/2010] [Indexed: 11/26/2022]
Abstract
Pyrococcus furiosus is a shallow marine, anaerobic archaeon that grows optimally at 100 degrees C. Addition of H(2)O(2) (0.5 mM) to a growing culture resulted in the cessation of growth with a 2-h lag before normal growth resumed. Whole genome transcriptional profiling revealed that the main response occurs within 30 min of peroxide addition, with the up-regulation of 62 open reading frames (ORFs), 36 of which are part of 10 potential operons. More than half of the up-regulated ORFs are of unknown function, while some others encode proteins that are involved potentially in sequestering iron and sulfide, in DNA repair and in generating NADPH. This response is thought to involve primarily damage repair rather than protection, since cultures exposed to sub-toxic levels of H(2)O(2) were not more resistant to the subsequent addition of H(2)O(2) (0.5-5.0 mM). Consequently, there is little if any induced protective response to peroxide. The organism maintains a constitutive protective mechanism involving high levels of oxidoreductase-type enzymes such as superoxide reductase, rubrerythrin, and alkyl hydroperoxide reductase. Related hyperthermophiles contain homologs of the proteins involved in the constitutive protective mechanism but these organisms were more sensitive to peroxide than P. furiosus and lack several of its peroxide-responsive ORFs.
Collapse
Affiliation(s)
- Kari R Strand
- Department of Biochemistry and Molecular Biology, University of Georgia, Life Sciences Bldg., Athens, GA 30602-7229, USA
| | | | | | | | | | | |
Collapse
|
75
|
Hu YH, Zheng WJ, Sun L. Identification and molecular analysis of a ferritin subunit from red drum (Sciaenops ocellatus). FISH & SHELLFISH IMMUNOLOGY 2010; 28:678-686. [PMID: 20064620 DOI: 10.1016/j.fsi.2010.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 12/23/2009] [Accepted: 01/03/2010] [Indexed: 05/28/2023]
Abstract
Ferritin is a conserved iron binding protein existing ubiquitously in prokaryotes and eukaryotes. In this study, the gene encoding a ferritin M subunit homologue (SoFer1) was cloned from red drum (Sciaenops ocellatus) and analyzed at expression and functional levels. The open reading frame of SoFer1 is 531 bp and preceded by a 5'-untranslated region that contains a putative Iron Regulatory Element (IRE) preserved in many ferritins. The deduced amino acid sequence of SoFer1 possesses both the ferroxidase center of mammalian H ferritin and the iron nucleation site of mammalian L ferritin. Expression of SoFer1 was tissue specific and responded positively to experimental challenges with Gram-positive and Gram-negative fish pathogens. Treatment of red drum liver cells with iron, copper, and oxidant significantly upregulated the expression of SoFer1 in time-dependent manners. To further examine the potential role of SoFer1 in antioxidation, red drum liver cells transfected transiently with SoFer1 were prepared. Compared to control cells, SoFer1 transfectants exhibited reduced production of reactive oxygen species following H(2)O(2) challenge. Finally, to examine the iron binding potential of SoFer1, SoFer1 was expressed in and purified from Escherichia coli as a recombinant protein. Iron-chelating analysis showed that purified recombinant SoFer1 was capable of iron binding. Taken together, these results suggest that SoFer1 is likely to be a functional ferritin involved in iron sequestration, host immune defence against bacterial infection, and antioxidation.
Collapse
Affiliation(s)
- Yong-hua Hu
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China
| | | | | |
Collapse
|
76
|
Fu X, Deng J, Yang H, Masuda T, Goto F, Yoshihara T, Zhao G. A novel EP-involved pathway for iron release from soya bean seed ferritin. Biochem J 2010; 427:313-21. [PMID: 20146668 DOI: 10.1042/bj20100015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Iron in phytoferritin from legume seeds is required for seedling germination and early growth. However, the mechanism by which phytoferritin regulates its iron complement to these physiological processes remains unknown. In the present study, protein degradation is found to occur in purified SSF (soya bean seed ferritin) (consisting of H-1 and H-2 subunits) during storage, consistent with previous results that such degradation also occurs during seedling germination. In contrast, no degradation is observed with animal ferritin under identical conditions, suggesting that SSF autodegradation might be due to the EP (extension peptide) on the exterior surface of the protein, a specific domain found only in phytoferritin. Indeed, EP-deleted SSF becomes stable, confirming the above hypothesis. Further support comes from a protease activity assay showing that EP-1 (corresponding to the EP of the H-1 subunit) exhibits significant serine protease-like activity, whereas the activity of EP-2 (corresponding to the EP of the H-2 subunit) is much weaker. Consistent with the observation above, rH-1 (recombinant H-1 ferritin) is prone to degradation, whereas its analogue, rH-2, becomes very stable under identical conditions. This demonstrates that SSF degradation mainly originates from the serine protease-like activity of EP-1. Associated with EP degradation is a considerable increase in the rate of iron release from SSF induced by ascorbate in the amyloplast (pH range, 5.8-6.1). Thus phytoferritin may have facilitated the evolution of the specific domain to control its iron complement in response to cell iron need in the seedling stage.
Collapse
Affiliation(s)
- Xiaoping Fu
- China Agricultural University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
77
|
May CA, Grady JK, Laue TM, Poli M, Arosio P, Chasteen ND. The sedimentation properties of ferritins. New insights and analysis of methods of nanoparticle preparation. Biochim Biophys Acta Gen Subj 2010; 1800:858-70. [PMID: 20307627 DOI: 10.1016/j.bbagen.2010.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 03/04/2010] [Accepted: 03/16/2010] [Indexed: 11/15/2022]
Abstract
BACKGROUND Ferritin exhibits complex behavior in the ultracentrifuge due to variability in iron core size among molecules. A comprehensive study was undertaken to develop procedures for obtaining more uniform cores and assessing their homogeneity. METHODS Analytical ultracentrifugation was used to measure the mineral core size distributions obtained by adding iron under high- and low-flux conditions to horse spleen (apoHoSF) and human H-chain (apoHuHF) apoferritins. RESULTS More uniform core sizes are obtained with the homopolymer human H-chain ferritin than with the heteropolymer horse spleen HoSF protein in which subpopulations of HoSF molecules with varying iron content are observed. A binomial probability distribution of H- and L-subunits among protein shells qualitatively accounts for the observed subpopulations. The addition of Fe(2+) to apoHuHF produces iron core particle size diameters from 3.8 + or - 0.3 to 6.2 + or - 0.3 nm. Diameters from 3.4 + or - 0.6 to 6.5 + or - 0.6 nm are obtained with natural HoSF after sucrose gradient fractionation. The change in the sedimentation coefficient as iron accumulates in ferritin suggests that the protein shell contracts approximately 10% to a more compact structure, a finding consistent with published electron micrographs. The physicochemical parameters for apoHoSF (15%/85% H/L subunits) are M=484,120 g/mol, nu=0.735 mL/g, s(20,w)=17.0 S and D(20,w)=3.21 x 10(-)(7) cm(2)/s; and for apoHuHF M=506,266 g/mol, nu=0.724 mL/g, s(20,w)=18.3S and D(20,w)=3.18 x 10(-)(7) cm(2)/s. SIGNIFICANCE The methods presented here should prove useful in the synthesis of size controlled nanoparticles of other minerals.
Collapse
Affiliation(s)
- Carrie A May
- Department of Chemistry, University of New Hampshire, Durham, NH 03824-2544, USA
| | | | | | | | | | | |
Collapse
|
78
|
Cohen B, Ziv K, Plaks V, Harmelin A, Neeman M. Ferritin nanoparticles as magnetic resonance reporter gene. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 1:181-8. [PMID: 20049789 DOI: 10.1002/wnan.11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dynamic imaging of gene expression in live animals is among the exciting challenges of molecular imaging. To achieve that, one of the approaches is to use reporter genes that encode for the synthesis of easily detectable products. Such reporter genes can be designed to be expressed under the control of the regulatory elements included in a promoter region of a gene of interest, thus allowing the use of the same reporter gene for the detection of multiple genes. The most commonly used reporter genes include the firefly light-generating enzyme luciferase and the green fluorescent protein detectable by bioluminescence and fluorescence optical imaging, respectively. Over the last years a number of studies demonstrated the ability to use the iron-binding protein ferritin as a reporter gene that allows the detection of gene expression by magnetic resonance imaging (MRI). MRI provides high spatial resolution and soft tissue contrast for deep tissues along with a large arsenal of functional and anatomical contrast mechanisms that can be correlated with gene expression, and can potentially be translated into clinical use.
Collapse
Affiliation(s)
- Batya Cohen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
79
|
Masuda T, Goto F, Yoshihara T, Mikami B. Crystal structure of plant ferritin reveals a novel metal binding site that functions as a transit site for metal transfer in ferritin. J Biol Chem 2010; 285:4049-4059. [PMID: 20007325 PMCID: PMC2823546 DOI: 10.1074/jbc.m109.059790] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 11/25/2009] [Indexed: 11/06/2022] Open
Abstract
Ferritins are important iron storage and detoxification proteins that are widely distributed in living kingdoms. Because plant ferritin possesses both a ferroxidase site and a ferrihydrite nucleation site, it is a suitable model for studying the mechanism of iron storage in ferritin. This article presents for the first time the crystal structure of a plant ferritin from soybean at 1.8-A resolution. The soybean ferritin 4 (SFER4) had a high structural similarity to vertebrate ferritin, except for the N-terminal extension region, the C-terminal short helix E, and the end of the BC-loop. Similar to the crystal structures of other ferritins, metal binding sites were observed in the iron entry channel, ferroxidase center, and nucleation site of SFER4. In addition to these conventional sites, a novel metal binding site was discovered intermediate between the iron entry channel and the ferroxidase site. This site was coordinated by the acidic side chain of Glu(173) and carbonyl oxygen of Thr(168), which correspond, respectively, to Glu(140) and Thr(135) of human H chain ferritin according to their sequences. A comparison of the ferroxidase activities of the native and the E173A mutant of SFER4 clearly showed a delay in the iron oxidation rate of the mutant. This indicated that the glutamate residue functions as a transit site of iron from the 3-fold entry channel to the ferroxidase site, which may be universal among ferritins.
Collapse
Affiliation(s)
- Taro Masuda
- From the Laboratory of Food Quality Design and Development, Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011.
| | - Fumiyuki Goto
- the Biotechnology Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba 270-1194, Japan
| | - Toshihiro Yoshihara
- the Biotechnology Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba 270-1194, Japan
| | - Bunzo Mikami
- the Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011 and
| |
Collapse
|
80
|
Chiancone E, Ceci P. The multifaceted capacity of Dps proteins to combat bacterial stress conditions: Detoxification of iron and hydrogen peroxide and DNA binding. Biochim Biophys Acta Gen Subj 2010; 1800:798-805. [PMID: 20138126 DOI: 10.1016/j.bbagen.2010.01.013] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/25/2010] [Accepted: 01/28/2010] [Indexed: 12/26/2022]
Abstract
BACKGROUND The widely expressed Dps proteins, so named after the DNA-binding properties of the first characterized member of the family in Escherichia coli, are considered major players in the bacterial response to stress. SCOPE OF REVIEW The review describes the distinctive features of the "ferritin-like" ferroxidation reaction, which uses hydrogen peroxide as physiological iron oxidant and therefore permits the concomitant removal of the two reactants that give rise to hydroxyl radicals via Fenton chemistry. It also illustrates the structural elements identified to date that render the interaction of some Dps proteins with DNA possible and outlines briefly the significance of Dps-DNA complex formation and of the Dps interaction with other DNA-binding proteins in relation to the organization of the nucleoid and microbial survival. GENERAL SIGNIFICANCE Understanding in molecular terms the distinctive role of Dps proteins in bacterial resistance to general and specific stress conditions. MAJOR CONCLUSIONS The state of the art is that the response to oxidative and peroxide-mediated stress is mediated directly by Dps proteins via their ferritin-like activity. In contrast, the response to other stress conditions derives from the concerted interplay of diverse interactions that Dps proteins may establish with DNA and with other DNA-binding proteins.
Collapse
Affiliation(s)
- Emilia Chiancone
- Department of Biochemical Sciences 'A. Rossi Fanelli', "Sapienza" University of Rome, Rome, Italy.
| | | |
Collapse
|
81
|
Deng J, Cheng J, Liao X, Zhang T, Leng X, Zhao G. Comparative study on iron release from soybean (Glycine max) seed ferritin induced by anthocyanins and ascorbate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:635-41. [PMID: 19921836 DOI: 10.1021/jf903046u] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Anthocyanins have received much attentions due to their various activities. Phytoferritin represents a novel alternative for iron supplementation. In the present study, it was found that all tested anthocyanins such as cyanidin (Cy), delphinidin (Dp), delphinidin-3-O-glucoside (Dp3glc), malvidin (Mv), petunidin (Pt), and petunidin-3-O-glucoside (Pt3glc) had a strong interaction with SSF, respectively, resulting in iron release from soybean seed ferritin (SSF) just as for ascorbate. The order of iron release from SSF is as follows: Dp>Cy>Pt>Mv>Dp3glc>Pt3glc. Their ability to liberate iron from SSF is associated with the size of the molecules and the chemical structures but mainly depends on their chelating activity with Fe2+. Interestingly, these pigments inhibited SSF degradation during the iron release to different extents while ascorbate did not. The difference in protective effects on SFF between ascorbate and the anthocyanins is in good agreement with their different Fe2+-chelating activities.
Collapse
Affiliation(s)
- Jianjun Deng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | | | | | | | | | | |
Collapse
|
82
|
Deng J, Liao X, Hu J, Leng X, Cheng J, Zhao G. Purification and characterization of new phytoferritin from black bean (Phaseolus vulgaris L.) seed. ACTA ACUST UNITED AC 2010; 147:679-88. [DOI: 10.1093/jb/mvp212] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
83
|
Li C, Qi X, Li M, Zhao G, Hu X. Phosphate facilitates Fe(II) oxidative deposition in pea seed (Pisum sativum) ferritin. Biochimie 2009; 91:1475-81. [PMID: 19735693 DOI: 10.1016/j.biochi.2009.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 08/27/2009] [Indexed: 11/17/2022]
Abstract
The iron core within phytoferritin interior usually contains the high ratio of iron to phosphate, agreeing with the fact that phosphorus and iron are essential nutrient elements for plant growth. It was established that iron oxidation and incorporation into phytoferritin shell occurs in the plastid(s) where the high concentration of phosphate occurs. However, so far, the role of phosphate in iron oxidative deposition in plant ferritin has not been recognized yet. In the present study, Fe(II) oxidative deposition in pea seed ferritin (PSF) was aerobically investigated in the presence of phosphate. Results indicated that phosphate did not affect the stoichiometry of the initial iron(II) oxidation reaction that takes place at ferroxidase centers upon addition of < or =48 Fe(II)/protein to apoferritin, but increased the rate of iron oxidation. At high Fe(II) fluxes into ferritin (>48 Fe(II)/protein), phosphate plays a more significant role in Fe(II) oxidative deposition. For instance, phosphate increased the rate of Fe(II) oxidation about 1-3 fold, and such an increase depends on the concentration of phosphate in the range of 0-2 mM. This effect was attributed to the ability of phosphate to improve the regeneration activity of ferroxidase centers in PSF. In addition, the presence of phosphate caused a significant decrease in the absorption properties of iron core, indicating that phosphate is involved in the formation of the iron core.
Collapse
Affiliation(s)
- Chaorui Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | | | | | | | | |
Collapse
|
84
|
Lawson TL, Crow A, Lewin A, Yasmin S, Moore GR, Le Brun NE. Monitoring the iron status of the ferroxidase center of Escherichia coli bacterioferritin using fluorescence spectroscopy. Biochemistry 2009; 48:9031-9. [PMID: 19705876 DOI: 10.1021/bi900869x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ferritins solubilize and detoxify the essential metal iron through formation of a ferric mineral within the protein's central cavity. Key to this activity is an intrasubunit catalytic dinuclear iron center called the ferroxidase center. Here we show that the fluorescence intensity of Escherichia coli bacterioferritin (BFR), due to the presence of two tryptophan residues (Trp35 and Trp133) in each of the 24 subunits, is highly sensitive to the iron status of the ferroxidase center and is quenched to different extents by Fe2+ and Fe3+. Recovery of the quench following oxidation of Fe2+ to Fe3+ at the ferroxidase center was not observed, indicating that the di-Fe3+ form of the center is stable. Studies of the single-tryptophan variants W35F and W133F showed that Trp133, which lies approximately 10 A from the ferroxidase center, is primarily responsible for the observed fluorescence sensitivity to iron, while studies of a stable E. coli BFR subunit dimer demonstrated that the observed quench properties are principally derived from the interaction of iron with tryptophan residues within the subunit dimer. A double-tryptophan variant (W35F/W133F) was found to exhibit fluorescence from the seven tyrosine residues present in each subunit, which was also sensitive to the iron status of the ferroxidase center. Finally, we demonstrate using Zn2+, a potent competitive inhibitor of Fe2+ binding and oxidation, that the fluorescence response can be used to monitor the loss of iron from the ferroxidase center.
Collapse
Affiliation(s)
- Tamara L Lawson
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | | | | | |
Collapse
|
85
|
Honarmand Ebrahimi K, Hagedoorn PL, Jongejan JA, Hagen WR. Catalysis of iron core formation in Pyrococcus furiosus ferritin. J Biol Inorg Chem 2009; 14:1265-74. [PMID: 19623480 PMCID: PMC2771142 DOI: 10.1007/s00775-009-0571-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 07/09/2009] [Indexed: 11/26/2022]
Abstract
The hollow sphere-shaped 24-meric ferritin can store large amounts of iron as a ferrihydrite-like mineral core. In all subunits of homomeric ferritins and in catalytically active subunits of heteromeric ferritins a diiron binding site is found that is commonly addressed as the ferroxidase center (FC). The FC is involved in the catalytic Fe(II) oxidation by the protein; however, structural differences among different ferritins may be linked to different mechanisms of iron oxidation. Non-heme ferritins are generally believed to operate by the so-called substrate FC model in which the FC cycles by filling with Fe(II), oxidizing the iron, and donating labile Fe(III)–O–Fe(III) units to the cavity. In contrast, the heme-containing bacterial ferritin from Escherichia coli has been proposed to carry a stable FC that indirectly catalyzes Fe(II) oxidation by electron transfer from a core that oxidizes Fe(II). Here, we put forth yet another mechanism for the non-heme archaeal 24-meric ferritin from Pyrococcus furiosus in which a stable iron-containing FC acts as a catalytic center for the oxidation of Fe(II), which is subsequently transferred to a core that is not involved in Fe(II)-oxidation catalysis. The proposal is based on optical spectroscopy and steady-state kinetic measurements of iron oxidation and dioxygen consumption by apoferritin and by ferritin preloaded with different amounts of iron. Oxidation of the first 48 Fe(II) added to apoferritin is spectrally and kinetically different from subsequent iron oxidation and this is interpreted to reflect FC building followed by FC-catalyzed core formation.
Collapse
Affiliation(s)
- Kourosh Honarmand Ebrahimi
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Jaap A. Jongejan
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Wilfred R. Hagen
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| |
Collapse
|
86
|
Li C, Fu X, Qi X, Hu X, Chasteen ND, Zhao G. Protein association and dissociation regulated by ferric ion: a novel pathway for oxidative deposition of iron in pea seed ferritin. J Biol Chem 2009; 284:16743-16751. [PMID: 19398557 PMCID: PMC2719309 DOI: 10.1074/jbc.m109.011528] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 04/22/2009] [Indexed: 11/06/2022] Open
Abstract
Iron stored in phytoferritin plays an important role in the germination and early growth of seedlings. The protein is located in the amyloplast where it stores large amounts of iron as a hydrated ferric oxide mineral core within its shell-like structure. The present work was undertaken to study alternate mechanisms of core formation in pea seed ferritin (PSF). The data reveal a new mechanism for mineral core formation in PSF involving the binding and oxidation of iron at the extension peptide (EP) located on the outer surface of the protein shell. This binding induces aggregation of the protein into large assemblies of approximately 400 monomers. The bound iron is gradually translocated to the mineral core during which time the protein dissociates back into its monomeric state. Either the oxidative addition of Fe(2+) to the apoprotein to form Fe(3+) or the direct addition of Fe(3+) to apoPSF causes protein aggregation once the binding capacity of the 24 ferroxidase centers (48 Fe(3+)/shell) is exceeded. When the EP is enzymatically deleted from PSF, aggregation is not observed, and the rate of iron oxidation is significantly reduced, demonstrating that the EP is a critical structural component for iron binding, oxidation, and protein aggregation. These data point to a functional role for the extension peptide as an iron binding and ferroxidase center that contributes to mineralization of the iron core. As the iron core grows larger, the new pathway becomes less important, and Fe(2+) oxidation and deposition occurs directly on the surface of the iron core.
Collapse
Affiliation(s)
- Chaorui Li
- From the College of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100083, China
| | - Xiaoping Fu
- From the College of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100083, China
| | - Xin Qi
- National Institute of Metrology, Beijing 100013, China
| | - Xiaosong Hu
- From the College of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100083, China
| | - N Dennis Chasteen
- Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824
| | - Guanghua Zhao
- From the College of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100083, China.
| |
Collapse
|
87
|
Cho KJ, Shin HJ, Lee JH, Kim KJ, Park SS, Lee Y, Lee C, Park SS, Kim KH. The crystal structure of ferritin from Helicobacter pylori reveals unusual conformational changes for iron uptake. J Mol Biol 2009; 390:83-98. [PMID: 19427319 DOI: 10.1016/j.jmb.2009.04.078] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 04/28/2009] [Accepted: 04/30/2009] [Indexed: 12/31/2022]
Abstract
The crystal structure of recombinant ferritin from Helicobacter pylori has been determined in its apo, low-iron-bound, intermediate, and high-iron-bound states. Similar to other members of the ferritin family, the bacterial ferritin assembles as a spherical protein shell of 24 subunits, each of which folds into a four-alpha-helix bundle. Significant conformational changes were observed at the BC loop and the entrance of the 4-fold symmetry channel in the intermediate and high-iron-bound states, whereas no change was found in the apo and low-iron-bound states. The imidazole rings of His149 at the channel entrance undergo conformational changes that bear resemblance to heme configuration and are directly coupled to axial translocation of Fe ions through the 4-fold channel. Our results provide the first structural evidence of the translocation of Fe ions through the 4-fold channel in prokaryotes and the transition from a protein-dominated process to a mineral-surface-dominated process during biomineralization.
Collapse
Affiliation(s)
- Ki Joon Cho
- Department of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Hower V, Mendes P, Torti FM, Laubenbacher R, Akman S, Shulaev V, Torti SV. A general map of iron metabolism and tissue-specific subnetworks. MOLECULAR BIOSYSTEMS 2009; 5:422-43. [PMID: 19381358 PMCID: PMC2680238 DOI: 10.1039/b816714c] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Iron is required for survival of mammalian cells. Recently, understanding of iron metabolism and trafficking has increased dramatically, revealing a complex, interacting network largely unknown just a few years ago. This provides an excellent model for systems biology development and analysis. The first step in such an analysis is the construction of a structural network of iron metabolism, which we present here. This network was created using CellDesigner version 3.5.2 and includes reactions occurring in mammalian cells of numerous tissue types. The iron metabolic network contains 151 chemical species and 107 reactions and transport steps. Starting from this general model, we construct iron networks for specific tissues and cells that are fundamental to maintaining body iron homeostasis. We include subnetworks for cells of the intestine and liver, tissues important in iron uptake and storage, respectively, as well as the reticulocyte and macrophage, key cells in iron utilization and recycling. The addition of kinetic information to our structural network will permit the simulation of iron metabolism in different tissues as well as in health and disease.
Collapse
Affiliation(s)
- Valerie Hower
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Blvd, Winston Salem, NC 27157, USA
| | | | | | | | | | | | | |
Collapse
|
89
|
Crow A, Lawson TL, Lewin A, Moore GR, Brun NEL. Structural Basis for Iron Mineralization by Bacterioferritin. J Am Chem Soc 2009; 131:6808-13. [DOI: 10.1021/ja8093444] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Allister Crow
- Centre for Molecular and Structural Biochemistry, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Tamara L. Lawson
- Centre for Molecular and Structural Biochemistry, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Allison Lewin
- Centre for Molecular and Structural Biochemistry, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Geoffrey R. Moore
- Centre for Molecular and Structural Biochemistry, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Nick E. Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, U.K
| |
Collapse
|
90
|
Li C, Hu X, Zhao G. Two different H-type subunits from pea seed (Pisum sativum) ferritin that are responsible for fast Fe(II) oxidation. Biochimie 2009; 91:230-9. [PMID: 18984027 DOI: 10.1016/j.biochi.2008.09.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 09/23/2008] [Indexed: 11/20/2022]
Abstract
It was established that ferritin from pea seed is composed of 26.5 and 28.0kDa subunits, but the relationship between the two subunits is unclear. The present study by both MALDI-TOF-MS and MS/MS indicated that the 28.0kDa subunit is distinct from the 26.5kDa subunit although they might share high homology in amino acid sequence, a result suggesting that pea seed ferritin is encoded by at least two genes. This result is not consistent with previous proposal that the 28.0kDa subunit is converted into the 26.5kDa subunit upon cleavage of its N-terminal sequence by free radical. Also, present results indicated that pea seed ferritin contains two different kinds of ferroxidase centers located in the 28.0 and 26.5kDa subunits, respectively. This is an exception among all known ferritins. Therefore, it is of special interest to know the role of the two subunits in iron oxidative deposition. Spectrophotometric titration and stopped flow results indicated that 48 ferrous ions can be bound and oxidized by oxygen at the ferroxidase sites, demonstrating that all of the ferroxidase sites are active and involved in fast Fe(II) oxidation. However, unlike H and L subunits in horse spleen ferritin (HoSF), both the 28.0 and 26.5 subunits lack cooperation in iron turnover into the inner cavity of pea seed ferritin.
Collapse
Affiliation(s)
- Chaorui Li
- Research Center of Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing, China
| | | | | |
Collapse
|
91
|
Bou-Abdallah F, Zhao G, Biasiotto G, Poli M, Arosio P, Chasteen ND. Facilitated diffusion of iron(II) and dioxygen substrates into human H-chain ferritin. A fluorescence and absorbance study employing the ferroxidase center substitution Y34W. J Am Chem Soc 2009; 130:17801-11. [PMID: 19055359 DOI: 10.1021/ja8054035] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ferritin is a widespread iron mineralizing and detoxification protein that stores iron as a hydrous ferric oxide mineral core within a shell-like structure of 4/3/2 octahedral symmetry. Iron mineralization is initiated at dinuclear ferroxidase centers inside the protein where Fe(2+) and O(2) meet and react to form a mu-1,2-peroxodiferric intermediate that subsequently decays to form mu-oxo dimeric and oligomeric iron(III) species and ultimately the mineral core. Several types of channels penetrate the protein shell and are possible pathways for the diffusion of iron and dioxygen to the ferroxidase centers. In the present study, UV/visible and fluorescence stopped-flow spectrophotometries were used to determine the kinetics and pathways of Fe(2+) diffusion into the protein shell, its binding at the ferroxidase center and its subsequent oxidation by O(2). Three fluorescence variants of human H-chain ferritin were prepared in which Trp34 was introduced near the ferroxidase center. They included a control variant no. 1 (W93F/Y34W), a "1-fold" channel variant no. 2 (W93F/Y34W/Y29Q) and a 3-fold channel variant no. 3 (Y34W/W93F/D131I/E134F). Anaerobic rapid mixing of Fe(2+) with apo-variant no. 1 quenched the fluorescence of Trp34 with a rate exhibiting saturation kinetics with respect to Fe(2+) concentration, consistent with a process involving facilitated diffusion. A half-life of approximately 3 ms for this process is attributed to the time for diffusion of Fe(2+) across the protein shell to the ferroxidase center. No fluorescence quenching was observed with the 3-fold channel variant no. 3 or when Zn(2+) was prebound in each of the eight 3-fold channels of variant no. 1, observations indicating that the hydrophilic channels are the only avenues for rapid Fe(2+) access to the ferroxidase center. Substitution of Tyr29 with glutamine at the entrance of the "1-fold" hydrophobic channel had no effect on the rate of Fe(2+) oxidation to form the mu-1,2-peroxodiferric complex (t(1/2) approximately 38 ms), a finding demonstrating that Tyr29 and, by inference, the "1-fold" channels do not facilitate O(2) transport to the ferroxidase center, contrary to predictions of DFT and molecular dynamics calculations. O(2) diffusion into ferritin occurs on a time scale that is fast relative to the millisecond kinetics of the stopped-flow experiment.
Collapse
Affiliation(s)
- Fadi Bou-Abdallah
- Department of Chemistry, State University of New York, Potsdam, New York 13676, USA
| | | | | | | | | | | |
Collapse
|
92
|
Tosha T, Hasan MR, Theil EC. The ferritin Fe2 site at the diiron catalytic center controls the reaction with O2 in the rapid mineralization pathway. Proc Natl Acad Sci U S A 2008; 105:18182-7. [PMID: 19011101 PMCID: PMC2587572 DOI: 10.1073/pnas.0805083105] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Indexed: 11/18/2022] Open
Abstract
Oxidoreduction in ferritin protein nanocages occurs at sites that bind two Fe(II) substrate ions and O(2), releasing Fe(III)(2)-O products, the biomineral precursors. Diferric peroxo intermediates form in ferritins and in the related diiron cofactor oxygenases. Cofactor iron is retained at diiron sites throughout catalysis, contrasting with ferritin. Four of the 6 active site residues are the same in ferritins and diiron oxygenases; ferritin-specific Gln(137) and variable Asp/Ser/Ala(140) substitute for Glu and His, respectively, in diiron cofactor active sites. To understand the selective functions of diiron substrate and diiron cofactor active site residues, we compared oxidoreductase activity in ferritin with diiron cofactor residues, Gln(137) --> Glu and Asp(140) --> His, to ferritin with natural diiron substrate site variations, Asp(140), Ser(140), or Ala(140). In Gln(137) --> Glu ferritin, diferric peroxo intermediates were undetectable; an altered Fe(III)-O product formed, DeltaA(350) = 50% of wild type. In Asp(140) --> His ferritin, diferric peroxo intermediates were also undetectable, and Fe(II) oxidation rates decreased 40-fold. Ferritin with Asp(140), Ser(140), or Ala(140) formed diferric peroxo intermediates with variable kinetic stabilities and rates: t(1/2) varied 1- to 10-fold; k(cat) varied approximately 2- to 3-fold. Thus, relatively small differences in diiron protein catalytic sites determine whether, and for how long, diferric peroxo intermediates form, and whether the Fe-active site bonds persist throughout the reaction cycle (diiron cofactors) or break to release Fe(III)(2)-O products (diiron substrates). The results and the coding similarities for cofactor and substrate site residues-e.g., Glu/Gln and His/Asp pairs share 2 of 3 nucleotides-illustrate the potential simplicity of evolving active sites for diiron cofactors or diiron substrates.
Collapse
Affiliation(s)
- Takehiko Tosha
- Council on BioIron at Children's Hospital Oakland Research Institute, 5700 Martin Luther King, Jr., Way, Oakland, CA 94609; and
| | - Mohammad R. Hasan
- Council on BioIron at Children's Hospital Oakland Research Institute, 5700 Martin Luther King, Jr., Way, Oakland, CA 94609; and
| | - Elizabeth C. Theil
- Council on BioIron at Children's Hospital Oakland Research Institute, 5700 Martin Luther King, Jr., Way, Oakland, CA 94609; and
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720
| |
Collapse
|
93
|
Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta Gen Subj 2008; 1790:589-99. [PMID: 18929623 DOI: 10.1016/j.bbagen.2008.09.004] [Citation(s) in RCA: 616] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 08/28/2008] [Accepted: 09/09/2008] [Indexed: 01/19/2023]
Abstract
Ferritins are characterized by highly conserved three-dimensional structures similar to spherical shells, designed to accommodate large amounts of iron in a safe, soluble and bioavailable form. They can have different architectures with 12 or 24 equivalent or non-equivalent subunits, all surrounding a large cavity. All ferritins readily interact with Fe(II) to induce its oxidation and deposition in the cavity in a mineral form, in a reaction that is catalyzed by a ferroxidase center. This is an anti-oxidant activity that consumes Fe(II) and peroxides, the reagents that produce toxic free radicals in the Fenton reaction. The mechanism of ferritin iron incorporation has been characterized in detail, while that of iron release and recycling has been less thoroughly studied. Generally ferritin expression is regulated by iron and by oxidative damage, and in vertebrates it has a central role in the control of cellular iron homeostasis. Ferritin is mostly cytosolic but is found also in mammalian mitochondria and nuclei, in plant plastids and is secreted in insects. In vertebrates the cytosolic ferritins are composed of H and L subunit types and their assembly in a tissues specific ratio that permits flexibility to adapt to cell needs. The H-ferritin can translocate to the nuclei in some cell types to protect DNA from iron toxicity, or can be actively secreted, accomplishing various functions. The mitochondrial ferritin is found in mammals, it has a restricted tissue distribution and it seems to protect the mitochondria from iron toxicity and oxidative damage. The various functions attributed to the cytosolic, nuclear, secretory and mitochondrial ferritins are discussed.
Collapse
|
94
|
Campanella A, Rovelli E, Santambrogio P, Cozzi A, Taroni F, Levi S. Mitochondrial ferritin limits oxidative damage regulating mitochondrial iron availability: hypothesis for a protective role in Friedreich ataxia. Hum Mol Genet 2008; 18:1-11. [PMID: 18815198 DOI: 10.1093/hmg/ddn308] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial ferritin (FtMt) is a nuclear-encoded iron-sequestering protein that specifically localizes in mitochondria. In mice it is highly expressed in cells characterized by high-energy consumption, while is undetectable in iron storage tissues like liver and spleen. FtMt expression in mammalian cells was shown to cause a shift of iron from cytosol to mitochondria, and in yeast it rescued the defects associated with frataxin deficiency. To study the role of FtMt in oxidative damage, we analyzed the effect of its expression in HeLa cells after incubation with H(2)O(2) and Antimycin A, and after a long-term growth in glucose-free media that enhances mitochondrial respiratory activity. FtMt reduced the level of reactive oxygen species (ROS), increased the level of adenosine 5'triphosphate and the activity of mitochondrial Fe-S enzymes, and had a positive effect on cell viability. Furthermore, FtMt expression reduces the size of cytosolic and mitochondrial labile iron pools. In cells grown in glucose-free media, FtMt level was reduced owing to faster degradation rate, however it still protected the activity of mitochondrial Fe-S enzymes without affecting the cytosolic iron status. In addition, FtMt expression in fibroblasts from Friedreich ataxia (FRDA) patients prevented the formation of ROS and partially rescued the impaired activity of mitochondrial Fe-S enzymes, caused by frataxin deficiency. These results indicate that the primary function of FtMt involves the control of ROS formation through the regulation of mitochondrial iron availability. They are consistent with the expression pattern of FtMt observed in mouse tissues, suggesting a FtMt protective role in cells characterized by defective iron homeostasis and respiration, such as in FRDA.
Collapse
Affiliation(s)
- Alessandro Campanella
- 1IIT Network, Research Unit of Molecular Neuroscience, Vita-Salute San Raffaele University, Milano 20132, Italy
| | | | | | | | | | | |
Collapse
|
95
|
Schwartz JK, Liu XS, Tosha T, Theil EC, Solomon EI. Spectroscopic definition of the ferroxidase site in M ferritin: comparison of binuclear substrate vs cofactor active sites. J Am Chem Soc 2008; 130:9441-50. [PMID: 18576633 DOI: 10.1021/ja801251q] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Maxi ferritins, 24 subunit protein nanocages, are essential in humans, plants, bacteria, and other animals for the concentration and storage of iron as hydrated ferric oxide, while minimizing free radical generation or use by pathogens. Formation of the precursors to these ferric oxides is catalyzed at a nonheme biferrous substrate site, which has some parallels with the cofactor sites in other biferrous enzymes. A combination of circular dichroism (CD), magnetic circular dichroism (MCD), and variable-temperature, variable-field MCD (VTVH MCD) has been used to probe Fe(II) binding to the substrate active site in frog M ferritin. These data determined that the active site within each subunit consists of two inequivalent five-coordinate (5C) ferrous centers that are weakly antiferromagnetically coupled, consistent with a mu-1,3 carboxylate bridge. The active site ligand set is unusual and likely includes a terminal water bound to each Fe(II) center. The Fe(II) ions bind to the active sites in a concerted manner, and cooperativity among the sites in each subunit is observed, potentially providing a mechanism for the control of ferritin iron loading. Differences in geometric and electronic structure--including a weak ligand field, availability of two water ligands at the biferrous substrate site, and the single carboxylate bridge in ferritin--coincide with the divergent reaction pathways observed between this substrate site and the previously studied cofactor active sites.
Collapse
Affiliation(s)
- Jennifer K Schwartz
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
96
|
Zhang B, Watt GD. Anaerobic iron deposition into horse spleen, recombinant human heavy and light and bacteria ferritins by large oxidants. J Inorg Biochem 2007; 101:1676-85. [PMID: 17804076 DOI: 10.1016/j.jinorgbio.2007.06.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/22/2007] [Accepted: 06/28/2007] [Indexed: 11/17/2022]
Abstract
Large-molecule oxidants oxidize Fe(II) to form Fe(III) cores in the interior of ferritins at rates comparable to or faster than the iron deposition reaction using O(2) as oxidant. Iron deposition into horse spleen ferritin (HoSF) occurs using ferricyanide ion, 2,6-dichlorophenol-indophenol, and several redox proteins: cytochrome c, stellacyanin, and ceruloplasmin. Cytochrome c also loads iron into recombinant human H-chain (rHF), human L-chain (rLF), and A. vinelandii bacterioferritin (AvBF). The enzymatic activities of ferritins were monitored anaerobically using stopped-flow kinetic spectrophotometry. The reactions exhibit saturation kinetics with respect to the large oxidant concentrations, giving apparent Michaelis constants for cytochrome c as oxidant: K(m)=39.6 microM for HoSF and 6.9 microM for AvBF. Comparison of the kinetic parameters with that of iron deposition by O(2) shows that large oxidants load iron into HoSF and AvBF more effectively than O(2) and may use a mechanism different than the ferroxidase center. Large oxidants did not deposit iron as efficiently with rHF and rLF. The results suggest that the heme groups in AvBF and the protein redox centers present in heteropolymers may assist in anaerobic iron deposition by large oxidants. The physiological relevance of iron deposition by large molecules, including protein oxidants is discussed.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | | |
Collapse
|
97
|
Bou-Abdallah F, Carney E, Chasteen ND, Arosio P, Viescas AJ, Papaefthymiou GC. A comparative Mössbauer study of the mineral cores of human H-chain ferritin employing dioxygen and hydrogen peroxide as iron oxidants. Biophys Chem 2007; 130:114-21. [PMID: 17881115 PMCID: PMC2156192 DOI: 10.1016/j.bpc.2007.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 08/04/2007] [Indexed: 11/20/2022]
Abstract
Ferritins are ubiquitous iron storage and detoxification proteins distributed throughout the plant and animal kingdoms. Mammalian ferritins oxidize and accumulate iron as a ferrihydrite mineral within a shell-like protein cavity. Iron deposition utilizes both O(2) and H(2)O(2) as oxidants for Fe(2+) where oxidation can occur either at protein ferroxidase centers or directly on the surface of the growing mineral core. The present study was undertaken to determine whether the nature of the mineral core formed depends on the protein ferroxidase center versus mineral surface mechanism and on H(2)O(2) versus O(2) as the oxidant. The data reveal that similar cores are produced in all instances, suggesting that the structure of the core is thermodynamically, not kinetically controlled. Cores averaging 500 Fe/protein shell and diameter approximately 2.6 nm were prepared and exhibited superparamagnetic blocking temperatures of 19 and 22 K for the H(2)O(2) and O(2) oxidized samples, respectively. The observed blocking temperatures are consistent with the unexpectedly large effective anisotropy constant K(eff)=312 kJ/m(3) recently reported for ferrihydrite nanoparticles formed in reverse micelles [E.L. Duarte, R. Itri, E. Lima Jr., M.S. Batista, T.S. Berquó and G.F. Goya, Large Magnetic Anisotropy in ferrihydrite nanoparticles synthesized from reverse micelles, Nanotechnology 17 (2006) 5549-5555.]. All ferritin samples exhibited two magnetic phases present in nearly equal amounts and ascribed to iron spins at the surface and in the interior of the nanoparticle. At 4.2 K, the surface spins exhibit hyperfine fields, H(hf), of 436 and 445 kOe for the H(2)O(2) and O(2) samples, respectively. As expected, the spins in the interior of the core exhibit larger H(hf) values, i.e. 478 and 486 kOe for the H(2)O(2) and O(2) samples, respectively. The slightly smaller hyperfine field distribution DH(hf) for both surface (78 kOe vs. 92 kOe) and interior spins (45 kOe vs. 54 kOe) of the O(2) sample compared to the H(2)O(2) samples implies that the former is somewhat more crystalline.
Collapse
Affiliation(s)
- Fadi Bou-Abdallah
- Department of Chemistry, University of New Hampshire, Durham, NH 03824, USA
| | | | | | | | | | | |
Collapse
|
98
|
Papaefthymiou GC, Viescas AJ, Horn R, Carney E, Zhao G, Chasteen ND, Lee J, Gorun SM. Deuterium isotope effects on iron core formation in ferritin. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/s10751-006-9280-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
99
|
Zhang B, Wilson PE, Watt GD. Ferritin-catalyzed consumption of hydrogen peroxide by amine buffers causes the variable Fe2+ to O2 stoichiometry of iron deposition in horse spleen ferritin. J Biol Inorg Chem 2006; 11:1075-86. [PMID: 16896807 DOI: 10.1007/s00775-006-0141-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 06/27/2006] [Indexed: 11/24/2022]
Abstract
Ferritin catalyzes the oxidation of Fe2+ by O2 to form a reconstituted Fe3+ oxy-hydroxide mineral core, but extensive studies have shown that the Fe2+ to O2 stoichiometry changes with experimental conditions. At Fe2+ to horse spleen ferritin (HoSF) ratios greater than 200, an upper limit of Fe2+ to O2 of 4 is typically measured, indicating O2 is reduced to 2H2O. In contrast, a lower limit of Fe2+ to O2 of approximately 2 is measured at low Fe2+ to HoSF ratios, implicating H2O2 as a product of Fe2+ deposition. Stoichiometric amounts of H2O2 have not been measured, and H2O2 is proposed to react with an unknown system component. Evidence is presented that identifies this component as amine buffers, including 3-N-morpholinopropanesulfonic acid (MOPS), which is widely used in ferritin studies. In the presence of non-amine buffers, the Fe2+ to O2 stoichiometry was approximately 4.0, but at high concentrations of amine buffers (0.10 M) the Fe2+ to O2 stoichiometry is approximately 2.5 for iron loadings of eight to 30 Fe2+ per HoSF. Decreasing the concentration of amine buffer to zero resulted in an Fe2+ to O2 stoichiometry of approximately 4. Direct evidence for amine buffer modification during Fe2+ deposition was obtained by comparing authentic and modified buffers using mass spectrometry, NMR, and thin layer chromatography. Tris(hydroxymethyl)aminomethane, MOPS, and N-methylmorpholine (a MOPS analog) were all rapidly chemically modified during Fe2+ deposition to form N-oxides. Under identical conditions no modification was detected when amine buffer, H2O2, and O2 were combined with Fe2+ or ferritin separately. Thus, a short-lived ferritin intermediate is required for buffer modification by H2O2. Variation of the Fe2+ to O2 stoichiometry versus the Fe2+ to HoSF ratio and the amine buffer concentration are consistent with buffer modification.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | | | | |
Collapse
|
100
|
Hautot D, Pankhurst QA, Morris CM, Curtis A, Burn J, Dobson J. Preliminary observation of elevated levels of nanocrystalline iron oxide in the basal ganglia of neuroferritinopathy patients. Biochim Biophys Acta Mol Basis Dis 2006; 1772:21-5. [PMID: 17097860 PMCID: PMC1993816 DOI: 10.1016/j.bbadis.2006.09.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 09/26/2006] [Accepted: 09/28/2006] [Indexed: 11/16/2022]
Abstract
Magnetometry analysis of brain tissue sub-samples from two neuroferritinopathy patients provides a preliminary indication that the amount of magnetic iron compounds associated with this rare disease is significantly larger than in age/sex-matched controls. The primary iron compounds contributing to the remnant magnetization of the tissue above 50 K and at body temperature are both blocked and superparamagnetic (SPM) biogenic magnetite (Fe3O4) and/or maghemite (gamma-Fe2O3). The concentration of SPM magnetite is significant and appears to be proportional to the concentration of ferritin, which varies with progression of the disease. The mutated ferritin protein appears to be responsible for the presence of iron oxide nano-particules, which in turn could be responsible for extensive damage in the brain.
Collapse
Affiliation(s)
- Dimitri Hautot
- Institute of Science and Technology in Medicine, Keele University, Stoke on Trent, and Institute for Aging and Health, Newcastle General Hospital, Newcastle upon Tyne, UK.
| | | | | | | | | | | |
Collapse
|