51
|
Pace RJ, Stranger R, Petrie S. Why nature chose Mn for the water oxidase in Photosystem II. Dalton Trans 2012; 41:7179-89. [DOI: 10.1039/c2dt30185g] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
52
|
Abstract
This special issue is focussed on arguably the most important fundamental question in contemporary chemical research: how to efficiently and economically convert abundant and thermodynamically stable molecules, such as H2O, CO2, and N2 into useable fuel and food sources. The 3 billion year evolutionary experiment of nature has provided a blueprint for the answer: multi-electron catalysis. However, unlike one-electron transfer, we have no refined theories for multi-electron processes. This is despite its centrality to much of chemistry, particularly in catalysis and biology. In this article we highlight recent research developments relevant to this theme with emphasis on the key physical concepts and premises: (i) multi-electron processes as stepwise single-electron transfer events; (ii) proton-coupled electron transfer; (iii) stimulated, concerted, and co-operative phenomena; (iv) feedback mechanisms that may enhance electron transfer rates by minimizing activation barriers; and (v) non-linearity and far-from-equilibrium considerations. The aim of our discussion is to provide inspiration for new directions in chemical research, in the context of an urgent contemporary issue.
Collapse
|
53
|
Ames W, Pantazis DA, Krewald V, Cox N, Messinger J, Lubitz W, Neese F. Theoretical evaluation of structural models of the S2 state in the oxygen evolving complex of Photosystem II: protonation states and magnetic interactions. J Am Chem Soc 2011; 133:19743-57. [PMID: 22092013 DOI: 10.1021/ja2041805] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protonation states of water ligands and oxo bridges are intimately involved in tuning the electronic structures and oxidation potentials of the oxygen evolving complex (OEC) in Photosystem II, steering the mechanistic pathway, which involves at least five redox state intermediates S(n) (n = 0-4) resulting in the oxidation of water to molecular oxygen. Although protons are practically invisible in protein crystallography, their effects on the electronic structure and magnetic properties of metal active sites can be probed using spectroscopy. With the twin purpose of aiding the interpretation of the complex electron paramagnetic resonance (EPR) spectroscopic data of the OEC and of improving the view of the cluster at the atomic level, a complete set of protonation configurations for the S(2) state of the OEC were investigated, and their distinctive effects on magnetic properties of the cluster were evaluated. The most recent X-ray structure of Photosystem II at 1.9 Å resolution was used and refined to obtain the optimum structure for the Mn(4)O(5)Ca core within the protein pocket. Employing this model, a set of 26 structures was constructed that tested various protonation scenarios of the water ligands and oxo bridges. Our results suggest that one of the two water molecules that are proposed to coordinate the outer Mn ion (Mn(A)) of the cluster is deprotonated in the S(2) state, as this leads to optimal experimental agreement, reproducing the correct ground state spin multiplicity (S = 1/2), spin expectation values, and EXAFS-derived metal-metal distances. Deprotonation of Ca(2+)-bound water molecules is strongly disfavored in the S(2) state, but dissociation of one of the two water ligands appears to be facile. The computed isotropic hyperfine couplings presented here allow distinctions between models to be made and call into question the assumption that the largest coupling is always attributable to Mn(III). The present results impose limits for the total charge and the proton configuration of the OEC in the S(2) state, with implications for the cascade of events in the Kok cycle and for the water splitting mechanism.
Collapse
Affiliation(s)
- William Ames
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | | | | | | | | | | | | |
Collapse
|
54
|
Kusunoki M. S1-state Mn4Ca complex of Photosystem II exists in equilibrium between the two most-stable isomeric substates: XRD and EXAFS evidence. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:100-10. [DOI: 10.1016/j.jphotobiol.2011.03.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/21/2011] [Accepted: 03/02/2011] [Indexed: 10/18/2022]
|
55
|
Yachandra VK, Yano J. Calcium in the oxygen-evolving complex: structural and mechanistic role determined by X-ray spectroscopy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:51-9. [PMID: 21524917 DOI: 10.1016/j.jphotobiol.2011.02.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/22/2011] [Accepted: 02/24/2011] [Indexed: 11/25/2022]
Abstract
This review describes the results from X-ray Absorption Spectroscopy studies that have contributed to an understanding of the role of Ca in the photosynthetic water-oxidation reaction. The results include the first Mn, Ca and Sr X-ray spectroscopy studies using Ca or Sr-substituted PS II samples that established the presence of a MnCa heteronuclear structure and its orientation, and the most recent Sr X-ray spectroscopy study using biosynthetically prepared Sr-containing PS II in the various S-states that provide important insights into the requirement for Ca in the mechanism of the Mn(4)Ca catalytic center.
Collapse
Affiliation(s)
- Vittal K Yachandra
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | |
Collapse
|
56
|
Cox N, Rapatskiy L, Su JH, Pantazis DA, Sugiura M, Kulik L, Dorlet P, Rutherford AW, Neese F, Boussac A, Lubitz W, Messinger J. Effect of Ca2+/Sr2+ substitution on the electronic structure of the oxygen-evolving complex of photosystem II: a combined multifrequency EPR, 55Mn-ENDOR, and DFT study of the S2 state. J Am Chem Soc 2011; 133:3635-48. [PMID: 21341708 DOI: 10.1021/ja110145v] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electronic structures of the native Mn(4)O(x)Ca cluster and the biosynthetically substituted Mn(4)O(x)Sr cluster of the oxygen evolving complex (OEC) of photosystem II (PSII) core complexes isolated from Thermosynechococcus elongatus, poised in the S(2) state, were studied by X- and Q-band CW-EPR and by pulsed Q-band (55)Mn-ENDOR spectroscopy. Both wild type and tyrosine D less mutants grown photoautotrophically in either CaCl(2) or SrCl(2) containing media were measured. The obtained CW-EPR spectra of the S(2) state displayed the characteristic, clearly noticeable differences in the hyperfine pattern of the multiline EPR signal [Boussac et al. J. Biol. Chem.2004, 279, 22809-22819]. In sharp contrast, the manganese ((55)Mn) ENDOR spectra of the Ca and Sr forms of the OEC were remarkably similar. Multifrequency simulations of the X- and Q-band CW-EPR and (55)Mn-pulsed ENDOR spectra using the Spin Hamiltonian formalism were performed to investigate this surprising result. It is shown that (i) all four manganese ions contribute to the (55)Mn-ENDOR spectra; (ii) only small changes are seen in the fitted isotropic hyperfine values for the Ca(2+) and Sr(2+) containing OEC, suggesting that there is no change in the overall spin distribution (electronic coupling scheme) upon Ca(2+)/Sr(2+) substitution; (iii) the changes in the CW-EPR hyperfine pattern can be explained by a small decrease in the anisotropy of at least two hyperfine tensors. It is proposed that modifications at the Ca(2+) site may modulate the fine structure tensor of the Mn(III) ion. DFT calculations support the above conclusions. Our data analysis also provides strong support for the notion that in the S(2) state the coordination of the Mn(III) ion is square-pyramidal (5-coordinate) or octahedral (6-coordinate) with tetragonal elongation. In addition, it is shown that only one of the currently published OEC models, the Siegbahn structure [Siegbahn, P. E. M. Acc. Chem. Res.2009, 42, 1871-1880, Pantazis, D. A. et al. Phys. Chem. Chem. Phys.2009, 11, 6788-6798], is consistent with all data presented here. These results provide important information for the structure of the OEC and the water-splitting mechanism. In particular, the 5-coordinate Mn(III) is a potential site for substrate 'water' (H(2)O, OH(-)) binding. Its location within the cuboidal structural unit, as opposed to the external 'dangler' position, may have important consequences for the mechanism of O-O bond formation.
Collapse
Affiliation(s)
- Nicholas Cox
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Lieb D, Zahl A, Shubina TE, Ivanović-Burmazović I. Water exchange on manganese(III) porphyrins. Mechanistic insights relevant for oxygen evolving complex and superoxide dismutation catalysis. J Am Chem Soc 2010; 132:7282-4. [PMID: 20462177 DOI: 10.1021/ja1014585] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work the rate constants (k(ex)) and the activation parameters (DeltaH(double dagger), DeltaS(double dagger), and DeltaV(double dagger)) for the water exchange process on Mn(III) centers have experimentally been determined using temperature and pressure dependent (17)O NMR techniques. For the investigations the Mn(III) porphyrin complexes [Mn(III)(TPPS)S(2)](n-) and [Mn(III)(TMpyP)S(2)](n+) (S = H(2)O and/or OH(-)) have been selected due to their high solution stability in a wide pH range, enabling the measurements of water exchange in the case of both diaqua and aqua-hydroxo complexes. We have experimentally demonstrated that the water exchange on Mn(III) porphyrins is a fast process (k(ex) approximately = 10(7) s(-1)) of an I(d) to I mechanism, strongly influenced by a Jahn-Teller effect and as such almost independent of a porphyrin charge and a trans ligand. This is also supported by our DFT calculations which show only a slight difference in an average Mn(III)-OH(2) bond found for a positively charged model porphyrin with protonated pyridine groups (2.446 A) and for a simple model without any substituents on the porphyrin ring (2.437 A). The calculated effective charge on the Mn center, which is significantly lower than its formal +3 charge (ca. +1.5 for diaqua; +1.4 for aqua-hydroxo), also contributes to its substitution lability. The herein presented results are discussed in connection to a possible fast exchanging substrate binding site in photosystem II and corresponding inorganic model complexes, as well as in the context of a possible inner-sphere catalytic pathway for superoxide dismutation on Mn centers.
Collapse
Affiliation(s)
- Dominik Lieb
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Chemie und Pharmazie, Egerlandstr. 1, 91058 Erlangen, Germany
| | | | | | | |
Collapse
|
58
|
Su JH, Messinger J. Is Mn-Bound Substrate Water Protonated in the S(2) State of Photosystem II? APPLIED MAGNETIC RESONANCE 2010; 37:123-136. [PMID: 19960065 PMCID: PMC2784071 DOI: 10.1007/s00723-009-0051-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 06/23/2009] [Indexed: 05/28/2023]
Abstract
In spite of great progress in resolving the geometric structure of the water-splitting Mn(4)O(x)Ca cluster in photosystem II, the binding sites and modes of the two substrate water molecules are still insufficiently characterized. While time-resolved membrane-inlet mass spectrometry measurements indicate that both substrate water molecules are bound to the oxygen-evolving complex (OEC) in the S(2) and S(3) states (Hendry and Wydrzynski in Biochemistry 41:13328-13334, 2002), it is not known (1) if they are both Mn-bound, (2) if they are terminal or bridging ligands, and (3) in what protonation state they are bound in the different oxidation states S(i) (i = 0, 1, 2, 3, 4) of the OEC. By employing (17)O hyperfine sublevel correlation (HYSCORE) spectroscopy we recently demonstrated that in the S(2) state there is only one (type of) Mn-bound oxygen that is water exchangeable. We therefore tentatively identified this oxygen as one substrate 'water' molecule, and on the basis of the finding that it has a hyperfine interaction of about 10 MHz with the electron spin of the Mn(4)O(x)Ca cluster, we suggest that it is bound as a Mn-O-Mn bridge within a bis-mu(2) oxo-bridged unit (Su et al. in J Am Chem Soc 130:786-787, 2008). Employing pulse electron paramagnetic resonance, (1)H/(2)H Mims electron-nuclear double resonance and (2)H-HYSCORE spectroscopies together with (1)H/(2)H-exchange here, we test this hypothesis by probing the protonation state of this exchangeable oxygen. We conclude that this oxygen is fully deprotonated. This result is discussed in the light of earlier reports in the literature.
Collapse
Affiliation(s)
- Ji-Hu Su
- Max-Planck-Institut für Bioanorganische Chemie, Mülheim an der Ruhr, Germany
| | - Johannes Messinger
- Max-Planck-Institut für Bioanorganische Chemie, Mülheim an der Ruhr, Germany
- Department of Chemistry, Chemical Biological Center (KBC), Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
59
|
Sproviero EM, Newcomer MB, Gascón JA, Batista ER, Brudvig GW, Batista VS. The MoD-QM/MM methodology for structural refinement of photosystem II and other biological macromolecules. PHOTOSYNTHESIS RESEARCH 2009; 102:455-470. [PMID: 19633920 PMCID: PMC2954272 DOI: 10.1007/s11120-009-9467-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 06/25/2009] [Indexed: 05/28/2023]
Abstract
Quantum mechanics/molecular mechanics (QM/MM) hybrid methods are currently the most powerful computational tools for studies of structure/function relations and structural refinement of macrobiomolecules (e.g., proteins and nucleic acids). These methods are highly efficient, since they implement quantum chemistry techniques for modeling only the small part of the system (QM layer) that undergoes chemical modifications, charge transfer, etc., under the influence of the surrounding environment. The rest of the system (MM layer) is described in terms of molecular mechanics force fields, assuming that its influence on the QM layer can be roughly decomposed in terms of electrostatic interactions and steric hindrance. Common limitations of QM/MM methods include inaccuracies in the MM force fields, when polarization effects are not explicitly considered, and the approximate treatment of electrostatic interactions at the boundaries between QM and MM layers. This article reviews recent advances in the development of computational protocols that allow for rigorous modeling of electrostatic interactions in extended systems beyond the common limitations of QM/MM hybrid methods. We focus on the moving-domain QM/MM (MoD-QM/MM) methodology that partitions the system into many molecular domains and obtains the electrostatic and structural properties of the whole system from an iterative self-consistent treatment of the constituent molecular fragments. We illustrate the MoD-QM/MM method as applied to the description of photosystem II as well as in conjunction with the application of spectroscopically constrained QM/MM optimization methods, based on high-resolution spectroscopic data (extended X-ray absorption fine structure spectra, and exchange coupling constants).
Collapse
Affiliation(s)
- Eduardo M. Sproviero
- Yale University, Department of Chemistry, P. O. Box 208107, New Haven Connecticut 06520-8107 USA
| | - Michael B. Newcomer
- Yale University, Department of Chemistry, P. O. Box 208107, New Haven Connecticut 06520-8107 USA
| | | | - Enrique R. Batista
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Gary W. Brudvig
- Yale University, Department of Chemistry, P. O. Box 208107, New Haven Connecticut 06520-8107 USA
| | - Victor S. Batista
- Yale University, Department of Chemistry, P. O. Box 208107, New Haven Connecticut 06520-8107 USA
| |
Collapse
|
60
|
Beckmann K, Messinger J, Badger MR, Wydrzynski T, Hillier W. On-line mass spectrometry: membrane inlet sampling. PHOTOSYNTHESIS RESEARCH 2009; 102:511-22. [PMID: 19653116 PMCID: PMC2847165 DOI: 10.1007/s11120-009-9474-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 07/09/2009] [Indexed: 05/18/2023]
Abstract
Significant insights into plant photosynthesis and respiration have been achieved using membrane inlet mass spectrometry (MIMS) for the analysis of stable isotope distribution of gases. The MIMS approach is based on using a gas permeable membrane to enable the entry of gas molecules into the mass spectrometer source. This is a simple yet durable approach for the analysis of volatile gases, particularly atmospheric gases. The MIMS technique strongly lends itself to the study of reaction flux where isotopic labeling is employed to differentiate two competing processes; i.e., O(2) evolution versus O(2) uptake reactions from PSII or terminal oxidase/rubisco reactions. Such investigations have been used for in vitro studies of whole leaves and isolated cells. The MIMS approach is also able to follow rates of isotopic exchange, which is useful for obtaining chemical exchange rates. These types of measurements have been employed for oxygen ligand exchange in PSII and to discern reaction rates of the carbonic anhydrase reactions. Recent developments have also engaged MIMS for online isotopic fractionation and for the study of reactions in inorganic systems that are capable of water splitting or H(2) generation. The simplicity of the sampling approach coupled to the high sensitivity of modern instrumentation is a reason for the growing applicability of this technique for a range of problems in plant photosynthesis and respiration. This review offers some insights into the sampling approaches and and the experiments that have been conducted with MIMS.
Collapse
Affiliation(s)
- Katrin Beckmann
- School of Biology, Australian National University, Canberra, ACT 0200 Australia
- Max Planck Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany
| | - Johannes Messinger
- School of Biology, Australian National University, Canberra, ACT 0200 Australia
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | | | - Tom Wydrzynski
- School of Biology, Australian National University, Canberra, ACT 0200 Australia
| | - Warwick Hillier
- School of Biology, Australian National University, Canberra, ACT 0200 Australia
| |
Collapse
|
61
|
Sugiura M, Rappaport F, Hillier W, Dorlet P, Ohno Y, Hayashi H, Boussac A. Evidence that D1-His332 in photosystem II from Thermosynechococcus elongatus interacts with the S3-state and not with the S2-state. Biochemistry 2009; 48:7856-66. [PMID: 19624137 DOI: 10.1021/bi901067b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxygen evolution by Photosystem II (PSII) is catalyzed by a Mn(4)Ca cluster. Thus far, from the crystallographic three-dimensional (3D) structures, seven amino acid residues have been identified as possible ligands of the Mn(4)Ca cluster. Among them, there is only one histidine, His332, which belongs to the D1 polypeptide. The relationships of the D1-His332 amino acid with kinetics and thermodynamic properties of the Mn(4)Ca cluster in the S(2)- and S(3)-states of the catalytic cycle were investigated in purified PSII from Thermosynechococcus elongatus. This was done by examining site-directed D1-His332Gln and D1-His332Ser mutants by a variety of spectroscopic techniques such as time-resolved UV-visible absorption change spectroscopy, cw- and pulse-EPR, thermoluminescence, and measurement of substrate water exchange. Both mutants grew photo-autotrophically and active PSII could be purified. On the basis of the parameters assessed in this work, the D1-His332(Gln, Ser) mutations had no effect in the S(2)-state. Electron spin-echo envelope modulation (ESEEM) spectroscopy also showed that possible interactions between the nuclear spin of the nitrogen(s) of D1-His332 with the electronic spin S = 1/2 of the Mn(4)Ca cluster in the S(2)-state were not detectable and that the D1-His332Ser mutation did not affect the detected hyperfine couplings. In contrast, the following changes were observed in the S(3)-state of the D1-His332 mutants: (1) The redox potential of the S(3)/S(2) couple was slightly increased by < or = 20 meV, (2) The S(3)-EPR spectrum was slightly modified, (3) The D1-His332Gln mutation resulted in a approximately 3 fold decrease of the slow (tightly bound) exchange rate and a approximately 2 fold increase of the fast exchange rate of the water substrate molecules. All these results suggest that the D1-His332 would be more involved in S(3) than in S(2). This could be one element of the conformational changes put forward in the S(2) to S(3) transition.
Collapse
Affiliation(s)
- Miwa Sugiura
- Cell-Free Science and Technology Research Center, Ehime University, Bunkyo-cho, Matsuyama Ehime, 790-8577, Japan.
| | | | | | | | | | | | | |
Collapse
|
62
|
Semin BK, Davletshina LN, Ivanov II, Rubin AB, Seibert M. Decoupling of the processes of molecular oxygen synthesis and electron transport in Ca2+-depleted PSII membranes. PHOTOSYNTHESIS RESEARCH 2008; 98:235-249. [PMID: 18814052 DOI: 10.1007/s11120-008-9347-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 07/30/2008] [Indexed: 05/26/2023]
Abstract
Extraction of Ca(2+) from the O(2)-evolving complex (OEC) of photosystem II (PSII) membranes with 2 M NaCl in the light (PSII(-Ca/NaCl)) results in 90% inhibition of the O(2)-evolution reaction. However, electron transfer from the donor to acceptor side of PSII, measured as the reduction of the exogenous acceptor 2,6-dichlorophenolindophenol (DCIP) under continuous light, is inhibited by only 30%. Thus, calcium extraction from the OEC inhibits the synthesis of molecular O(2) but not the oxidation of a substrate we term X, the source of electrons for DCIP reduction. The presence of electron transfer across PSII(-Ca/NaCl) membranes was demonstrated using fluorescence induction kinetics, a method that does not require an artificial acceptor. The calcium chelator, EGTA (5 mM), when added to PSII(-Ca/NaCl) membranes, does not affect the inhibition of O(2) evolution by NaCl but does inhibit DCIP reduction up to 92% (the reason why electron transport in Ca(2+)-depleted materials has not been noticed before). Another chelator, sodium citrate (citrate/low pH method of calcium extraction), also inhibits both O(2) evolution and DCIP reduction. The role of all buffer components (including bicarbonate and sucrose) as possible sources of electrons for PSII(-Ca/NaCl) membranes was investigated, but only the absence of chloride anions strongly inhibited the rate of DCIP reduction. Substitution of other anions for chloride indicates that Cl(-) serves its well-known role as an OEC cofactor, but it is not substrate X. Multiple turnover flash experiments have shown a period of four oscillations of the fluorescence yield (both the maximum level, F(max), and the fluorescence level measured 50 s after an actinic flash in the presence of DCMU) in native PSII membranes, reflecting the normal function of the OEC, but the absence of oscillations in PSII(-Ca/NaCl) samples. Thus, PSII(-Ca/NaCl) samples do not evolve O(2) but do transfer electrons from the donor to acceptor sides and exhibit a disrupted S-state cycle. We explain these results as follows. In Ca(2+)-depleted PSII membranes, obtained without chelators, the oxidation of the OEC stops after the absorption of three quanta of light (from the S1 state), which should convert the native OEC to the S4 state. An one-electron oxidation of the water molecule bound to the Mn cluster then occurs (the second substrate water molecule is absent due to the absence of calcium), and the OEC returns to the S3 state. The appearance of a sub-cycle within the S-state cycle between S3-like and S4-like states supplies electrons (substrate X is postulated to be OH(-)), explains the absence of O(2) production, and results in the absence of a period of four oscillation of the normal functional parameters, such as the fluorescence yield or the EPR signal from S2. Chloride anions probably keep the redox potential of the Mn cluster low enough for its oxidation by Y(Z)(*).
Collapse
Affiliation(s)
- Boris K Semin
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | | | | | | |
Collapse
|
63
|
Conlan B. Designing photosystem II: molecular engineering of photo-catalytic proteins. PHOTOSYNTHESIS RESEARCH 2008; 98:687-700. [PMID: 18777102 DOI: 10.1007/s11120-008-9355-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 08/11/2008] [Indexed: 05/26/2023]
Abstract
Biological photosynthesis utilizes membrane-bound pigment/protein complexes to convert light into chemical energy through a series of electron-transfer events. In the unique photosystem II (PSII) complex these electron-transfer events result in the oxidation of water to molecular oxygen. PSII is an extremely complex enzyme and in order to exploit its unique ability to convert sunlight into chemical energy it will be necessary to make a minimal model. Here we will briefly describe how PSII functions and identify those aspects that are essential in order to catalyze the oxidation of water into O(2), and review previous attempts to design simple photo-catalytic proteins and summarize our current research exploiting the E. coli bacterioferritin protein as a scaffold into which multiple cofactors can be bound, to oxidize a manganese metal center upon illumination. Through the reverse engineering of PSII and light driven water splitting reactions it may be possible to provide a blueprint for catalysts that can produce clean green fuel for human energy needs.
Collapse
Affiliation(s)
- Brendon Conlan
- Research School of Biological Science, Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
64
|
McConnell IL. Substrate water binding and oxidation in photosystem II. PHOTOSYNTHESIS RESEARCH 2008; 98:261-276. [PMID: 18766463 DOI: 10.1007/s11120-008-9337-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 07/19/2008] [Indexed: 05/26/2023]
Abstract
This mini review presents a general introduction to photosystem II with an emphasis on the oxygen evolving complex. An attempt is made to summarise what is currently known about substrate interaction in the oxygen evolving complex of photosystem II in terms of the nature of the substrate, the timing and the location of its binding. As the nature of substrate water binding has a direct bearing on the mechanism of O-O bond formation in PSII, a discussion of O-O bond formation follows the summary of current opinion in substrate interaction.
Collapse
Affiliation(s)
- Iain L McConnell
- Research School of Biological Sciences, The Australian National University, 0200 Canberra, ACT, Australia.
| |
Collapse
|
65
|
Govindjee. Recollections of Thomas John Wydrzynski. PHOTOSYNTHESIS RESEARCH 2008; 98:13-31. [PMID: 18770010 DOI: 10.1007/s11120-008-9341-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 07/23/2008] [Indexed: 05/26/2023]
Abstract
In appreciation of his contribution to the Photosystsem II research and commemoration of the book Photosystem II: The Light-Driven Water-Plastoquinone Oxido-Reductase, co-edited with Kimiyuki Satoh, I present here some of my recollections of Thomas John Wydrzynski and by several others with whom he has associated over the years at Urbana (Illinois), Berkeley (California), Standard Oil Company-Indiana (Illinois), Berlin (Germany), Gothenburg (Sweden), and Canberra (Australia). We not only recognize him for his unique career path in Photosystem II research, but also for his qualities as a collaborative scientist working on the only system on Earth that has the ability to oxidize water to molecular oxygen using the energy of sunlight.
Collapse
|
66
|
Ho FM. Uncovering channels in photosystem II by computer modelling: current progress, future prospects, and lessons from analogous systems. PHOTOSYNTHESIS RESEARCH 2008; 98:503-522. [PMID: 18798008 DOI: 10.1007/s11120-008-9358-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 08/18/2008] [Indexed: 05/26/2023]
Abstract
Even prior to the publication of the crystal structures for photosystem II (PSII), it had already been suggested that water, O(2) and H(+) channels exist in PSII to achieve directed transport of these molecules, and to avoid undesirable side reactions. Computational efforts to uncover these channels and investigate their properties are still at early stages, and have so far only been based on the static PSII structure. The rationale behind the proposals for such channels and the computer modelling studies thus far are reviewed here. The need to take the dynamic protein into account is then highlighted with reference to the specific issues and techniques applicable to the simulation of each of the three channels. In particular, lessons are drawn from simulation studies on other protein systems containing similar channels.
Collapse
Affiliation(s)
- Felix M Ho
- Department of Photochemistry and Molecular Science, The Angström Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
67
|
Sproviero EM, McEvoy JP, Gascón JA, Brudvig GW, Batista VS. Computational insights into the O2-evolving complex of photosystem II. PHOTOSYNTHESIS RESEARCH 2008; 97:91-114. [PMID: 18483777 PMCID: PMC2728911 DOI: 10.1007/s11120-008-9307-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Accepted: 04/10/2008] [Indexed: 05/04/2023]
Abstract
Mechanistic investigations of the water-splitting reaction of the oxygen-evolving complex (OEC) of photosystem II (PSII) are fundamentally informed by structural studies. Many physical techniques have provided important insights into the OEC structure and function, including X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy as well as mass spectrometry (MS), electron paramagnetic resonance (EPR) spectroscopy, and Fourier transform infrared spectroscopy applied in conjunction with mutagenesis studies. However, experimental studies have yet to yield consensus as to the exact configuration of the catalytic metal cluster and its ligation scheme. Computational modeling studies, including density functional (DFT) theory combined with quantum mechanics/molecular mechanics (QM/MM) hybrid methods for explicitly including the influence of the surrounding protein, have proposed chemically satisfactory models of the fully ligated OEC within PSII that are maximally consistent with experimental results. The inorganic core of these models is similar to the crystallographic model upon which they were based, but comprises important modifications due to structural refinement, hydration, and proteinaceous ligation which improve agreement with a wide range of experimental data. The computational models are useful for rationalizing spectroscopic and crystallographic results and for building a complete structure-based mechanism of water-splitting in PSII as described by the intermediate oxidation states of the OEC. This review summarizes these recent advances in QM/MM modeling of PSII within the context of recent experimental studies.
Collapse
|
68
|
Sproviero EM, Shinopoulos K, Gascón JA, McEvoy JP, Brudvig GW, Batista VS. QM/MM computational studies of substrate water binding to the oxygen-evolving centre of photosystem II. Philos Trans R Soc Lond B Biol Sci 2008; 363:1149-56; discussion 1156. [PMID: 17971333 DOI: 10.1098/rstb.2007.2210] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This paper reports computational studies of substrate water binding to the oxygen-evolving centre (OEC) of photosystem II (PSII), completely ligated by amino acid residues, water, hydroxide and chloride. The calculations are based on quantum mechanics/molecular mechanics hybrid models of the OEC of PSII, recently developed in conjunction with the X-ray crystal structure of PSII from the cyanobacterium Thermosynechococcus elongatus. The model OEC involves a cuboidal Mn3CaO4Mn metal cluster with three closely associated manganese ions linked to a single mu4-oxo-ligated Mn ion, often called the 'dangling manganese'. Two water molecules bound to calcium and the dangling manganese are postulated to be substrate molecules, responsible for dioxygen formation. It is found that the energy barriers for the Mn(4)-bound water agree nicely with those of model complexes. However, the barriers for Ca-bound waters are substantially larger. Water binding is not simply correlated to the formal oxidation states of the metal centres but rather to their corresponding electrostatic potential atomic charges as modulated by charge-transfer interactions. The calculations of structural rearrangements during water exchange provide support for the experimental finding that the exchange rates with bulk 18 O-labelled water should be smaller for water molecules coordinated to calcium than for water molecules attached to the dangling manganese. The models also predict that the S1-->S2 transition should produce opposite effects on the two water-exchange rates.
Collapse
Affiliation(s)
- Eduardo M Sproviero
- Department of Chemistry, Yale University, PO Box 208107, New Haven, CT 06520-8107, USA
| | | | | | | | | | | |
Collapse
|
69
|
Noguchi T. FTIR detection of water reactions in the oxygen-evolving centre of photosystem II. Philos Trans R Soc Lond B Biol Sci 2008; 363:1189-94; discussion 1194-5. [PMID: 17965007 DOI: 10.1098/rstb.2007.2214] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Flash-induced Fourier transform infrared (FTIR) difference spectroscopy has been used to study the water-oxidizing reactions in the oxygen-evolving centre of photosystem II. Reactions of water molecules were directly monitored by detecting the OH stretching bands of weakly H-bonded OH of water in the 3700-3500 cm(-1) region in FTIR difference spectra during S-state cycling. In the S1-->S2 transition, a band shift from 3588 to 3617 cm(-1) was observed, indicative of a weakened H-bond. Decoupling experiments using D2O:H2O (1:1) showed that this OH arose from a water molecule with an asymmetric H-bonding structure and this asymmetry became more significant upon S2 formation. In the S2-->S3, S3-->S0 and S0-->S1 transitions, negative bands were observed at 3634, 3621 and 3612 cm(-1), respectively, representing formation of a strong H-bond or a proton release reaction. In addition, using complex spectral features in the carboxylate stretching region (1600-1300 cm-(1)) as 'fingerprints' of individual S-state transitions, pH dependency of the transition efficiencies and the effect of dehydration were examined to obtain the information of proton release and water insertion steps in the S-state cycle. Low-pH inhibition of the S2-->S3, S3-->S0 and S0-->S1 transitions was consistent with a view that protons are released in the three transitions other than S1-->S2, while relatively high susceptibility to dehydration in the S2-->S3 and S3-->S0 transitions suggested the insertion of substrate water into the system during these transitions. Thus, a possible mechanism of water oxidation to explain the FTIR data is proposed.
Collapse
Affiliation(s)
- Takumi Noguchi
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan.
| |
Collapse
|
70
|
Ishida N, Sugiura M, Rappaport F, Lai TL, Rutherford AW, Boussac A. Biosynthetic Exchange of Bromide for Chloride and Strontium for Calcium in the Photosystem II Oxygen-evolving Enzymes. J Biol Chem 2008; 283:13330-40. [DOI: 10.1074/jbc.m710583200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
71
|
Abstract
Photosystem II (PSII) uses light energy to split water into protons, electrons and O2. In this reaction, nature has solved the difficult chemical problem of efficient four-electron oxidation of water to yield O2 without significant amounts of reactive intermediate species such as superoxide, hydrogen peroxide and hydroxyl radicals. In order to use nature's solution for the design of artificial catalysts that split water, it is important to understand the mechanism of the reaction. The recently published X-ray crystal structures of cyanobacterial PSII complexes provide information on the structure of the Mn and Ca ions, the redox-active tyrosine called YZ and the surrounding amino acids that comprise the O2-evolving complex (OEC). The emerging structure of the OEC provides constraints on the different hypothesized mechanisms for O2 evolution. The water oxidation mechanism of PSII is discussed in the light of biophysical and computational studies, inorganic chemistry and X-ray crystallographic information.
Collapse
Affiliation(s)
- Gary W Brudvig
- Department of Chemistry, Yale University, PO Box 208107, New Haven, CT 06520-8107, USA.
| |
Collapse
|
72
|
Structural changes in the Mn4Ca cluster and the mechanism of photosynthetic water splitting. Proc Natl Acad Sci U S A 2008; 105:1879-84. [PMID: 18250316 DOI: 10.1073/pnas.0707092105] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photosynthetic water oxidation, where water is oxidized to dioxygen, is a fundamental chemical reaction that sustains the biosphere. This reaction is catalyzed by a Mn4Ca complex in the photosystem II (PS II) oxygen-evolving complex (OEC): a multiprotein assembly embedded in the thylakoid membranes of green plants, cyanobacteria, and algae. The mechanism of photosynthetic water oxidation by the Mn4Ca cluster in photosystem II is the subject of much debate, although lacking structural characterization of the catalytic intermediates. Biosynthetically exchanged Ca/Sr-PS II preparations and x-ray spectroscopy, including extended x-ray absorption fine structure (EXAFS), allowed us to monitor Mn-Mn and Ca(Sr)-Mn distances in the four intermediate S states, S0 through S3, of the catalytic cycle that couples the one-electron photochemistry occurring at the PS II reaction center with the four-electron water-oxidation chemistry taking place at the Mn4Ca(Sr) cluster. We have detected significant changes in the structure of the complex, especially in the Mn-Mn and Ca(Sr)-Mn distances, on the S2-to-S3 and S3-to-S0 transitions. These results implicate the involvement of at least one common bridging oxygen atom between the Mn-Mn and Mn-Ca(Sr) atoms in the O-O bond formation. Because PS II cannot advance beyond the S2 state in preparations that lack Ca(Sr), these results show that Ca(Sr) is one of the critical components in the mechanism of the enzyme. The results also show that Ca is not just a spectator atom involved in providing a structural framework, but is actively involved in the mechanism of water oxidation and represents a rare example of a catalytically active Ca cofactor.
Collapse
|
73
|
Computational studies of the O(2)-evolving complex of photosystem II and biomimetic oxomanganese complexes. Coord Chem Rev 2008; 252:395-415. [PMID: 19190716 DOI: 10.1016/j.ccr.2007.09.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In recent years, there has been considerable interest in studies of catalytic metal clusters in metalloproteins based on Density Functional Theory (DFT) quantum mechanics/molecular mechanics (QM/MM) hybrid methods. These methods explicitly include the perturbational influence of the surrounding protein environment on the structural/functional properties of the catalytic centers. In conjunction with recent breakthroughs in X-ray crystallography and advances in spectroscopic and biophysical studies, computational chemists are trying to understand the structural and mechanistic properties of the oxygen-evolving complex (OEC) embedded in photosystem II (PSII). Recent studies include the development of DFT-QM/MM computational models of the Mn(4)Ca cluster, responsible for photosynthetic water oxidation, and comparative quantum mechanical studies of biomimetic oxomanganese complexes. A number of computational models, varying in oxidation and protonation states and ligation of the catalytic center by amino acid residues, water, hydroxide and chloride have been characterized along the PSII catalytic cycle of water splitting. The resulting QM/MM models are consistent with available mechanistic data, Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction data and extended X-ray absorption fine structure (EXAFS) measurements. Here, we review these computational efforts focused towards understanding the catalytic mechanism of water oxidation at the detailed molecular level.
Collapse
|
74
|
Cady CW, Crabtree RH, Brudvig GW. Functional Models for the Oxygen-Evolving Complex of Photosystem II. Coord Chem Rev 2008; 252:444-455. [PMID: 21037800 PMCID: PMC2966027 DOI: 10.1016/j.ccr.2007.06.002] [Citation(s) in RCA: 316] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the last ten years, a number of advances have been made in the study of the oxygen-evolving complex (OEC) of photosystem II (PSII). Along with this new understanding of the natural system has come rapid advance in chemical models of this system. The advance of PSII model chemistry is seen most strikingly in the area of functional models where the few known systems available when this topic was last reviewed has grown into two families of model systems. In concert with this work, numerous mechanistic proposals for photosynthetic water oxidation have been proposed. Here, we review the recent efforts in functional model chemistry of the oxygen-evolving complex of photosystem II.
Collapse
Affiliation(s)
- Clyde W Cady
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520-8107, USA
| | | | | |
Collapse
|
75
|
Kulik LV, Epel B, Lubitz W, Messinger J. Electronic structure of the Mn4OxCa cluster in the S0 and S2 states of the oxygen-evolving complex of photosystem II based on pulse 55Mn-ENDOR and EPR spectroscopy. J Am Chem Soc 2007; 129:13421-35. [PMID: 17927172 DOI: 10.1021/ja071487f] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The heart of the oxygen-evolving complex (OEC) of photosystem II is a Mn4OxCa cluster that cycles through five different oxidation states (S0 to S4) during the light-driven water-splitting reaction cycle. In this study we interpret the recently obtained 55Mn hyperfine coupling constants of the S0 and S2 states of the OEC [Kulik et al. J. Am. Chem. Soc. 2005, 127, 2392-2393] on the basis of Y-shaped spin-coupling schemes with up to four nonzero exchange coupling constants, J. This analysis rules out the presence of one or more Mn(II) ions in S0 in methanol (3%) containing samples and thereby establishes that the oxidation states of the manganese ions in S0 and S2 are, at 4 K, Mn4(III, III, III, IV) and Mn4(III, IV, IV, IV), respectively. By applying a "structure filter" that is based on the recently reported single-crystal EXAFS data on the Mn4OxCa cluster [Yano et al. Science 2006, 314, 821-825] we (i) show that this new structural model is fully consistent with EPR and 55Mn-ENDOR data, (ii) assign the Mn oxidation states to the individual Mn ions, and (iii) propose that the known shortening of one 2.85 A Mn-Mn distance in S0 to 2.75 A in S1 [Robblee et al. J. Am. Chem. Soc. 2002, 124, 7459-7471] corresponds to a deprotonation of a mu-hydroxo bridge between MnA and MnB, i.e., between the outer Mn and its neighboring Mn of the mu3-oxo bridged moiety of the cluster. We summarize our results in a molecular model for the S0 --> S1 and S1 --> S2 transitions.
Collapse
Affiliation(s)
- Leonid V Kulik
- Max Planck Institute for Bioinorganic Chemistry, Stiftstrasse 34-36, Mülheim an der Ruhr, Germany.
| | | | | | | |
Collapse
|
76
|
Boisvert S, Joly D, Leclerc S, Govindachary S, Harnois J, Carpentier R. Inhibition of the oxygen-evolving complex of photosystem II and depletion of extrinsic polypeptides by nickel. Biometals 2007; 20:879-89. [PMID: 17588196 DOI: 10.1007/s10534-007-9081-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 01/10/2007] [Indexed: 10/23/2022]
Abstract
The toxic effect of Ni(2+) on photosynthetic electron transport was studied in a photosystem II submembrane fraction. It was shown that Ni(2+) strongly inhibits oxygen evolution in the millimolar range of concentration. The inhibition was insensitive to NaCl but significantly decreased in the presence of CaCl(2). Maximal chlorophyll fluorescence, together with variable fluorescence, maximal quantum yield of photosystem II, and flash-induced fluorescence decays were all significantly declined by Ni(2+). Further, the extrinsic polypeptides of 16 and 24 kDa associated with the oxygen-evolving complex of photosystem II were depleted following Ni(2+) treatment. It was deduced that interaction of Ni(2+) with these polypeptides caused a conformational change that induced their release together with Ca(2+) from the oxygen-evolving complex of photosystem II with consequent inhibition of the electron transport activity.
Collapse
Affiliation(s)
- Steve Boisvert
- Groupe de recherche en Biologie Végétale, Université du Québec à Trois-Rivières, CP 500, Trois-Rivières, Québec, Canada G9A 5H7
| | | | | | | | | | | |
Collapse
|
77
|
Taguchi Y, Noguchi T. Drastic changes in the ligand structure of the oxygen-evolving Mn cluster upon Ca2+ depletion as revealed by FTIR difference spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:535-40. [PMID: 17184726 DOI: 10.1016/j.bbabio.2006.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 10/30/2006] [Accepted: 11/02/2006] [Indexed: 10/23/2022]
Abstract
A Fourier transform infrared (FTIR) difference spectrum of the oxygen-evolving Mn cluster upon the S(1)-to-S(2) transition was obtained with Ca(2+)-depleted photosystem II (PSII) membranes to investigate the structural relevance of Ca(2+) to the Mn cluster. Previously, Noguchi et al. [Biochim. Biophys. Acta 1228 (1995) 189] observed drastic changes in the carboxylate stretching region of the S(2)/S(1) FTIR spectrum upon Ca(2+) depletion, whereas Kimura and co-workers [Biochemistry 40 (2001) 14061; ibid. 41 (2002) 5844] later claimed that these changes were not ascribed to Ca(2+) depletion itself but caused by the interaction of EDTA to the Mn cluster and/or binding of K(+) at the Ca(2+) site. In the present study, the preparation of the Ca(2+)-depleted PSII sample and its FTIR measurement were performed in the absence of EDTA and K(+). The obtained S(2)/S(1) spectrum exhibited the loss of carboxylate bands at 1587/1562 and 1364/1403 cm(-1) and diminished amide I intensities, which were identical to the previous observations in the presence of EDTA and K(+). This result indicates that the drastic FTIR changes are a pure effect of Ca(2+) depletion, and provides solid evidence for the general view that Ca(2+) is strongly coupled with the Mn cluster.
Collapse
Affiliation(s)
- Yuta Taguchi
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | | |
Collapse
|
78
|
Kusunoki M. Mono-manganese mechanism of the photosytem II water splitting reaction by a unique Mn4Ca cluster. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:484-92. [PMID: 17490604 DOI: 10.1016/j.bbabio.2007.03.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 03/19/2007] [Accepted: 03/27/2007] [Indexed: 11/26/2022]
Abstract
The molecular mechanism of the water oxidation reaction in photosystem II (PSII) of green plants remains a great mystery in life science. This reaction is known to take place in the oxygen evolving complex (OEC) incorporating four manganese, one calcium and one chloride cofactors, that is light-driven to cycle four intermediates, designated S(0) through S(4), to produce four protons, five electrons and lastly one molecular oxygen, for indispensable resources in biosphere. Recent advancements of X-ray crystallography models established the existence of a catalytic Mn(4)Ca cluster ligated by seven protein amino acids, but its functional structure is not yet resolved. The (18)O exchange rates of two substrate water molecules were recently measured for four S(i)-state samples (i=0-3) leading to (34)O(2) and (36)O(2) formations, revealing asymmetric substrate binding sites significantly depending on the S(i)-state. In this paper, we present a chemically complete model for the Mn(4)Ca cluster and its surrounding enzyme field, which we found out from some possible models by using the hybrid density functional theoretic geometry optimization method to confirm good agreements with the 3.0 A resolution PSII model [B. Loll, J. Kern, W. Saenger, A. Zouni , J. Biesiadka, Nature 438 (2005) 1040-1044] and the S-state dependence of (18)O exchange rates [W. Hillier and T. Wydrzynski, Phys. Chem. Chem. Phys. 6 (2004) 4882-4889]. Furthermore, we have verified that two substrate water molecules are bound to asymmetric cis-positions on the terminal Mn ion being triply bridged (mu-oxo, mu-carboxylato, and a hydrogen bond) to the Mn(3)CaO(3)(OH) core, by developing a generalized theory of (18)O exchange kinetics in OEC to obtain an experimental evidence for the cross exchange pathway from the slow to the fast exchange process. Some important experimental data will be discussed in terms of this model and its possible tautomers, to suggest that a cofactor, Cl(-) ion, may be bound to CP43-Arg357 nearby Ca(2+) ion and that D1-His337 may be used to trap a released proton only in the S(2)-state.
Collapse
Affiliation(s)
- Masami Kusunoki
- Department of Physics, School of Science and Technology, Meiji University, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
| |
Collapse
|
79
|
Miqyass M, van Gorkom HJ, Yocum CF. The PSII calcium site revisited. PHOTOSYNTHESIS RESEARCH 2007; 92:275-87. [PMID: 17235491 DOI: 10.1007/s11120-006-9124-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 12/08/2006] [Indexed: 05/07/2023]
Abstract
Oxidation of H2O by photosystem II is a unique redox reaction in that it requires Ca2+ as well as Cl- as obligatory activators/cofactors of the reaction, which is catalyzed by Mn atoms. The properties of the binding site for Ca2+ in this reaction resemble those of other Ca2+ binding proteins, and recent X-ray structural data confirm that the metal is in fact ligated at least in part by amino acid side chain oxo anions. Removal of Ca2+ blocks water oxidation chemistry at an early stage in the cycle of redox reactions that result in O-O bond formation, and the intimate involvement of Ca2+ in this reaction that is implied by this result is confirmed by an ever-improving set of crystal structures of the cyanobacterial enzyme. Here, we revisit the photosystem II Ca2+ site, in part to discuss the additional information that has appeared since our earlier review of this subject (van Gorkom HJ, Yocum CF In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water:plastoquinone oxidoreductase), and also to reexamine earlier data, which lead us to conclude that all S-state transitions require Ca2+.
Collapse
Affiliation(s)
- M Miqyass
- Department of Biophysics, Huygens Laboratory, Leiden University, P.O. Box 9504, Leiden, RA 2300, The Netherlands
| | | | | |
Collapse
|
80
|
Tagore R, Crabtree RH, Brudvig GW. Distinct Mechanisms of Bridging-Oxo Exchange in Di-μ-O Dimanganese Complexes with and without Water-Binding Sites: Implications for Water Binding in the O2-Evolving Complex of Photosystem II. Inorg Chem 2007; 46:2193-203. [PMID: 17295472 DOI: 10.1021/ic061968k] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Isotopic exchange between oxygens of water and mu-O bridges in the di-mu-O dimanganese complexes, [(mes-terpy)2Mn2(III/IV)(mu-O)2(H2O)2](NO3)3 (1, mes-terpy = 4'-mesityl-2,2':6',2' '-terpyridine) and [(phen)4Mn2III/IV(mu-O)2](ClO4)3 (2, phen = 1,10-phenanthroline), has been investigated by a study of the kinetics of exchange. The data provide evidence for distinct mechanisms of exchange in 1 and 2 and suggest that these differences arise due to the presence and absence of terminal water-binding sites in 1 and 2, respectively. Exchange of oxygen atoms between water and mu-O bridges must involve the elementary steps of bridge protonation, deprotonation, opening, and closing. On the basis of the existing literature on these reactions in oxo-bridged metal complexes and our present data, we propose pathways of exchange in 1 and 2. The mechanism proposed for 1 involves an initial fast protonation of an oxo-bridge by water coordinated to Mn(IV), followed by a slow opening of the protonated bridge as proposed earlier for an analogous complex on the basis of DFT calculations. The mechanism proposed for 2 involves initial dissociation of phen, followed by coordination of water at the vacated sites, as observed for rearrangement of 2 to a trinuclear complex. The subsequent steps are proposed to be analogous to those for 1. Our results are discussed in the context of data on 18O-labeled water isotope exchange in photosystem II and provide support for the existence of fully protonated terminal waters bound to Mn in the O2-evolving complex of photosystem II.
Collapse
Affiliation(s)
- Ranitendranath Tagore
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, USA
| | | | | |
Collapse
|
81
|
Affiliation(s)
- James P McEvoy
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, USA
| | | |
Collapse
|
82
|
Siegbahn PEM. OO Bond Formation in the S4 State of the Oxygen-Evolving Complex in Photosystem II. Chemistry 2006; 12:9217-27. [PMID: 17029313 DOI: 10.1002/chem.200600774] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Based on recent X-ray structures of the oxygen-evolving complex in photosystem II, quantum chemical geometry optimizations of several thousand structures have been performed in order to elucidate the mechanism for dioxygen formation. Many of the results of these calculations have been presented previously. The energetically most stable structure of the S(4) state has been used in the present study to investigate essentially all the possible ways the O--O bond can be formed in this structure. A key feature, emphasized previously, of the S(4) state is that an oxygen radical ligand is present rather than an Mn(V) state. Previous studies have indicated that this oxygen radical can form an O--O bond by an attack from a water molecule in the second coordination shell. The present systematic investigation has led to a new type of mechanism that is significantly favored over the previous one. A calculated transition-state barrier of 12.5 kcal mol(-1) was found for this mechanism, whereas the best previous results gave 18-20 kcal mol(-1). A requirement on the spin alignment for a low barrier is formulated.
Collapse
Affiliation(s)
- Per E M Siegbahn
- Department of Physics, Stockholm University, AlbaNova University Center, Stockholm Center for Physics, Astronomy and Biotechnology, 10691 Stockholm, Sweden.
| |
Collapse
|
83
|
De Riso A, Jenson DL, Barry BA. Calcium exchange and structural changes during the photosynthetic oxygen evolving cycle. Biophys J 2006; 91:1999-2008. [PMID: 16782800 PMCID: PMC1544287 DOI: 10.1529/biophysj.106.087171] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 06/01/2006] [Indexed: 11/18/2022] Open
Abstract
PSII catalyzes the oxidation of water and reduction of plastoquinone in oxygenic photosynthesis. PSII contains an oxygen-evolving complex, which is located on the lumenal side of the PSII reaction center and which contains manganese, calcium, and chloride. Four sequential photooxidation reactions are required to generate oxygen. This process produces five Sn-states, where n refers to the number of oxidizing equivalents stored. Calcium is required for oxygen production. Strontium is the only divalent cation that replaces calcium and maintains activity. In our previous FT-IR work, we assessed the effect of strontium substitution on substrate-limited PSII preparations, which were inhibited at the S3 to S0 transition. In this work, we report reaction-induced FT-IR studies of hydrated PSII preparations, which undergo the full S-state cycle. The observed difference FT-IR spectra reflect long-lived photoinduced conformational changes in the oxygen-evolving complex; strontium exchange identifies vibrational bands sensitive to substitutions at the calcium site. During the S1' to S2' transition, the data are consistent with an electrostatic or structural perturbation of the calcium site. During the S3' to S0' and S0' to S1' transitions, the data are consistent with a perturbation of a hydrogen bonding network, which contains calcium, water, and peptide carbonyl groups. To explain our data, persistent shifts in divalent cation coordination must occur when strontium is substituted for calcium. A modified S-state model is proposed to explain these results and results in the literature.
Collapse
Affiliation(s)
- Antonio De Riso
- School of Chemistry and Biochemistry and the Petit Institute for Bioscience and Bioengineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | | |
Collapse
|
84
|
Tagore R, Chen H, Crabtree RH, Brudvig GW. Determination of μ-Oxo Exchange Rates in Di-μ-Oxo Dimanganese Complexes by Electrospray Ionization Mass Spectrometry. J Am Chem Soc 2006; 128:9457-65. [PMID: 16848483 DOI: 10.1021/ja061348i] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A time-resolved mass spectrometric technique has been used for the determination of rates of exchange of mu-O atoms with water for the complexes [(mes-terpy)2Mn2(III/IV)(mu-O)2(H2O)2](NO3)3 (1, mes-terpy = 4'-mesityl-2,2':6',2' '-terpyridine), [(bpy)4Mn2(III/IV)(mu-O)2](ClO4)3 (2, bpy = 2,2'-bipyridine), [(phen)4Mn2(III/IV)(mu-O)2](ClO4)3 (3, phen = 1,10-phenanthroline), [(bpea)2Mn2(III/IV)(mu-O)2(mu-OAc)](ClO4)2 (4, bpea = bis(2-pyridyl)ethylamine), [(bpea)2Mn2(IV/IV)(mu-O)2(mu-OAc)](ClO4)3 (4ox), [(terpy)4Mn4(IV/IV/IV/IV)(mu-O)5(H2O)2](ClO4)6 (5, terpy = 2,2':6',2''-terpyridine), and [(tacn)4Mn4(IV/IV/IV/IV)(mu-O)6]Br(3.5)(OH)0.5.6H2O (6, tacn = 1,4,7-triazacyclononane). The rate of exchange of mu-OAc bridges with free acetate in solution has been measured for complexes 4 and 4ox. These are the first measurements of rates of ligand exchange on biologically relevant high-valent Mn complexes. The data analysis method developed here is of general utility in the quantitation of isotope exchange processes by mass spectrometry. We find that the presence of labile coordination sites on Mn increases mu-O exchange rates, and that all-Mn(IV) states are more inert toward exchange than mixed Mn(III)-Mn(IV) states. The rates of mu-O exchange obtained in this work for a di-mu-oxo Mn2(III/IV) dimer with labile coordination sites are compared with the oxygen isotope incorporation rates from substrate water to evolved dioxygen measured in different S states of the oxygen evolving complex (OEC) of photosystem II (PSII). On the basis of this comparison, we propose that both substrate waters are not bound as mu-O bridges between Mn atoms in the S2 and S3 states of the OEC.
Collapse
Affiliation(s)
- Ranitendranath Tagore
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, USA
| | | | | | | |
Collapse
|
85
|
Abstract
Water oxidation at photosystem II Mn-cluster is mediated by the redox-active tyrosine Y(Z). We calculated the redox potential (E(m)) of Y(Z) and its symmetrical counterpart Y(D), by solving the linearized Poisson-Boltzmann equation. The calculated E(m)(Y( )/Y(-)) were +926 mV/+694 mV for Y(Z)/Y(D) with the Mn-cluster in S2 state. Together with the asymmetric position of the Mn-cluster relative to Y(Z/D), differences in H-bond network between Y(Z) (Y(Z)/D1-His(190)/D1-Asn(298)) and Y(D) (Y(D)/D2-His(189)/D2-Arg(294)/CP47-Glu(364)) are crucial for E(m)(Y(Z/D)). When D1-His(190) is protonated, corresponding to a thermally activated state, the calculated E(m)(Y(Z)) was +1216 mV, which is as high as the E(m) for P(D1/D2). We observed deprotonation at CP43-Arg(357) upon S-state transition, which may suggest its involvement in the proton exit pathway. E(m)(Y(D)) was affected by formation of P(D2)(+) (but not P(D1)(+)) and sensitive to the protonation state of D2-Arg(180). This points to an electrostatic link between Y(D) and P(D2).
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | | |
Collapse
|
86
|
Barry BA, Hicks C, De Riso A, Jenson DL. Calcium ligation in photosystem II under inhibiting conditions. Biophys J 2005; 89:393-401. [PMID: 15985425 PMCID: PMC1366539 DOI: 10.1529/biophysj.105.059667] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In oxygenic photosynthesis, PSII carries out the oxidation of water and reduction of plastoquinone. The product of water oxidation is molecular oxygen. The water splitting complex is located on the lumenal side of the PSII reaction center and contains manganese, calcium, and chloride. Four sequential photooxidation reactions are required to generate oxygen from water; the five sequentially oxidized forms of the water splitting complex are known as the Sn states, where n refers to the number of oxidizing equivalents stored. Calcium plays a role in water oxidation; removal of calcium is associated with an inhibition of the S state cycle. Although calcium can be replaced by other cations in vitro, only strontium maintains activity, and the steady-state rate of oxygen evolution is decreased in strontium-reconstituted PSII. In this article, we study the role of calcium in PSII that is limited in water content. We report that strontium substitution or 18OH2 exchange causes conformational changes in the calcium ligation shell. The conformational change is detected because of a perturbation to calcium ligation during the S1 to S2 and S2 to S3 transition under water-limited conditions.
Collapse
Affiliation(s)
- Bridgette A Barry
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | | | | | | |
Collapse
|
87
|
Raval MK, Biswal B, Biswal UC. The mystery of oxygen evolution: analysis of structure and function of photosystem II, the water-plastoquinone oxido-reductase. PHOTOSYNTHESIS RESEARCH 2005; 85:267-93. [PMID: 16170631 DOI: 10.1007/s11120-005-8163-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Accepted: 05/26/2005] [Indexed: 05/04/2023]
Abstract
Photosystem II (PS II) of thylakoid membrane of photosynthetic organisms has drawn attention of researchers over the years because it is the only system on Earth that provides us with oxygen that we breathe. In the recent past, structure of PS II has been the focus of research in plant science. The report of X-ray crystallographic structure of PS II complex by the research groups of James Barber and So Iwata in UK is a milestone in the area of research in photosynthesis. It follows the pioneering and elegant work from the laboratories of Horst Witt and W. Saenger in Germany, and J. Shen in Japan. It is time to analyze the historic events during the long journey made by the researchers to arrive at this point. This review makes an attempt to critically review the growth of the advancement of concepts and knowledge on the photosystem in the background of technological development. We conclude the review with perspectives on research and technology that should reveal the complete story of PS II of thylakoid in the future.
Collapse
Affiliation(s)
- M K Raval
- P.G. Department of Chemistry, Government College, Sundargarh, Orissa, India.
| | | | | |
Collapse
|
88
|
van Gorkom HJ, Yocum CF. The Calcium and Chloride Cofactors. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2005. [DOI: 10.1007/1-4020-4254-x_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
89
|
McEvoy JP, Gascon JA, Batista VS, Brudvig GW. The mechanism of photosynthetic water splitting. Photochem Photobiol Sci 2005; 4:940-9. [PMID: 16307106 DOI: 10.1039/b506755c] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxygenic photosynthesis, which provides the biosphere with most of its chemical energy, uses water as its source of electrons. Water is photochemically oxidized by the protein complex photosystem II (PSII), which is found, along with other proteins of the photosynthetic light reactions, in the thylakoid membranes of cyanobacteria and of green plant chloroplasts. Water splitting is catalyzed by the oxygen-evolving complex (OEC) of PSII, producing dioxygen gas, protons and electrons. O(2) is released into the atmosphere, sustaining all aerobic life on earth; product protons are released into the thylakoid lumen, augmenting a proton concentration gradient across the membrane; and photo-energized electrons pass to the rest of the electron-transfer pathway. The OEC contains four manganese ions, one calcium ion and (almost certainly) a chloride ion, but its precise structure and catalytic mechanism remain unclear. In this paper, we develop a chemically complete structure of the OEC and its environment by using molecular mechanics calculations to extend and slightly adjust the recently-obtained X-ray crystallographic model with reference to this structure and to some important recent experimental results.
Collapse
Affiliation(s)
- James P McEvoy
- Department of Chemistry, Yale University, PO Box 208107, New Haven, CT 06520-8107, USA
| | | | | | | |
Collapse
|
90
|
Clausen J, Junge W. Detection of an intermediate of photosynthetic water oxidation. Nature 2004; 430:480-3. [PMID: 15269775 DOI: 10.1038/nature02676] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Accepted: 05/18/2004] [Indexed: 11/09/2022]
Abstract
The oxygen that we breathe is produced by photosystem II of cyanobacteria and plants. The catalytic centre, a Mn4Ca cluster, accumulates four oxidizing equivalents before oxygen is formed, seemingly in a single reaction step 2H2O<==>O2 + 4H+ + 4e-. The energy and cycling of this reaction derives solely from light. No intermediate oxidation product of water has been detected so far. Here, we shifted the equilibrium of the terminal reaction backward by increasing the oxygen pressure and monitoring (by absorption transients in the near-ultraviolet spectrum) the electron transfer from bound water into the catalytic centre. A tenfold increase of ambient oxygen pressure (2.3 bar) half-suppressed the full progression to oxygen. The remaining electron transfer at saturating pressure (30 bar) was compatible with the formation of a stabilized intermediate. The abstraction of four electrons from water was probably split into at least two electron transfers: mildly endergonic from the centre's highest oxidation state to an intermediate, and exergonic from the intermediate to oxygen. There is little leeway for photosynthetic organisms to push the atmospheric oxygen concentration much above the present level.
Collapse
Affiliation(s)
- Juergen Clausen
- Division of Biophysics, Department of Biology/Chemistry, Universität Osnabrück, D-49069 Osnabrück, Germany.
| | | |
Collapse
|
91
|
Boussac A, Rappaport F, Carrier P, Verbavatz JM, Gobin R, Kirilovsky D, Rutherford AW, Sugiura M. Biosynthetic Ca2+/Sr2+ Exchange in the Photosystem II Oxygen-evolving Enzyme of Thermosynechococcus elongatus. J Biol Chem 2004; 279:22809-19. [PMID: 14990562 DOI: 10.1074/jbc.m401677200] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The thermophilic cyanobacterium, Thermosynechococcus elongatus, has been grown in the presence of Sr2+ instead of Ca2+ with the aim of biosynthetically replacing the Ca2+ of the oxygen-evolving enzyme with Sr2+. Not only were the cells able to grow normally with Sr2+, they actively accumulated the ion to levels higher than those of Ca2+ in the normal cultures. A protocol was developed to purify a fully active Sr(2+)-containing photosystem II (PSII). The modified enzyme contained a normal polypeptide profile and 1 strontium/4 manganese, indicating that the normal enzyme contains 1 calcium/4 manganese. The Sr(2+)- and Ca(2+)-containing enzymes were compared using EPR spectroscopy, UV-visible absorption spectroscopy, and O2 polarography. The Ca2+/Sr2+ exchange resulted in the modification of the EPR spectrum of the manganese cluster and a slower turnover of the redox cycle (the so-called S-state cycle), resulting in diminished O2 evolution activity under continuous saturating light: all features reported previously by biochemical Ca2+/Sr2+ exchange in plant PSII. This allays doubts that these changes could be because of secondary effects induced by the biochemical treatments themselves. In addition, the Sr(2+)-containing PSII has other kinetics modifications: 1) it has an increased stability of the S3 redox state; 2) it shows an increase in the rate of electron donation from TyrD, the redox-active tyrosine of the D2 protein, to the oxygen-evolving complex in the S3-state forming S2; 3) the rate of oxidation of the S0-state to the S1-state by TyrD* is increased; and 4) the release of O2 is slowed down to an extent similar to that seen for the slowdown of the S3TyrZ* to S0TyrZ transition, consistent with the latter constituting the limiting step of the water oxidation mechanism in Sr(2+)-substituted enzyme as well as in the normal enzyme. The replacement of Ca2+ by Sr2+ appears to have multiple effects on kinetics properties of the enzyme that may be explained by S-state-dependent shifts in the redox properties of both the manganese complex and TyrZ as well as structural effects.
Collapse
Affiliation(s)
- Alain Boussac
- Service de Bioénergétique, DBJC, URA CNRS 2096, CEA Saclay, 91191 Gif sur Yvette, France.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Britt RD, Campbell KA, Peloquin JM, Gilchrist ML, Aznar CP, Dicus MM, Robblee J, Messinger J. Recent pulsed EPR studies of the Photosystem II oxygen-evolving complex: implications as to water oxidation mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1655:158-71. [PMID: 15100028 DOI: 10.1016/j.bbabio.2003.11.009] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Accepted: 11/20/2003] [Indexed: 10/26/2022]
Abstract
The pulsed electron paramagnetic resonance (EPR) methods of electron spin echo envelope modulation (ESEEM) and electron spin echo-electron nuclear double resonance (ESE-ENDOR) are used to investigate the structure of the Photosystem II oxygen-evolving complex (OEC), including the paramagnetic manganese cluster and its immediate surroundings. Recent unpublished results from the pulsed EPR laboratory at UC-Davis are discussed, along with aspects of recent publications, with a focus on substrate and cofactor interactions. New data on the proximity of exchangeable deuterons around the Mn cluster poised in the S(0)-state are presented and interpreted. These pulsed EPR results are used in an evaluation of several recently proposed mechanisms for PSII water oxidation. We strongly favor mechanistic models where the substrate waters bind within the OEC early in the S-state cycle. Models in which the O-O bond is formed by a nucleophilic attack by a Ca(2+)-bound water on a strong S(4)-state electrophile provide a good match to the pulsed EPR data.
Collapse
Affiliation(s)
- R David Britt
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
93
|
DasguptaThese authors contributed e J, van Willigen RT, Dismukes GC. Consequences of structural and biophysical studies for the molecular mechanism of photosynthetic oxygen evolution: functional roles for calcium and bicarbonate. Phys Chem Chem Phys 2004. [DOI: 10.1039/b408270b] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
94
|
Messinger J. Evaluation of different mechanistic proposals for water oxidation in photosynthesis on the basis of Mn4OxCa structures for the catalytic site and spectroscopic data. Phys Chem Chem Phys 2004. [DOI: 10.1039/b406437b] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
95
|
Barber J, Ferreira K, Maghlaoui K, Iwata S. Structural model of the oxygen-evolving centre of photosystem II with mechanistic implications. Phys Chem Chem Phys 2004. [DOI: 10.1039/b407981g] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
96
|
McEvoy JP, Brudvig GW. Structure-based mechanism of photosynthetic water oxidation. Phys Chem Chem Phys 2004. [DOI: 10.1039/b407500e] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
97
|
Hillier W, Wydrzynski T. Substrate water interactions within the Photosystem II oxygen evolving complex. Phys Chem Chem Phys 2004. [DOI: 10.1039/b407269c] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|