51
|
Hodges RS, Mills J, McReynolds S, Kirwan JP, Tripet B, Osguthorpe D. Identification of a unique "stability control region" that controls protein stability of tropomyosin: A two-stranded alpha-helical coiled-coil. J Mol Biol 2009; 392:747-62. [PMID: 19627992 DOI: 10.1016/j.jmb.2009.07.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 07/10/2009] [Accepted: 07/14/2009] [Indexed: 10/20/2022]
Abstract
Nine recombinant chicken skeletal alpha-tropomyosin proteins were prepared, eight C-terminal deletion constructs and the full length protein (1-81, 1-92, 1-99, 1-105, 1-110, 1-119, 1-131, 1-260 and 1-284) and characterized by circular dichroism spectroscopy and analytical ultracentrifugation. We identified for the first time, a stability control region between residues 97 and 118. Fragments of tropomyosin lacking this region (1-81, 1-92, and 1-99) still fold into two-stranded alpha-helical coiled-coils but are significantly less stable (T(m) between 26-28.5 degrees C) than longer fragments containing this region (1-119, 1-131, 1-260 and 1-284) which show a large increase in their thermal midpoints (T(m) 40-43 degrees C) for a DeltaT(m) of 16-18 degrees C between 1-99 and 1-119. We further investigated two additional fragments that ended between residues 99 and 119, that is fragments 1-105 and 1-110. These fragments were more stable than 1-99 and less stable than 1-119, and showed that there were three separate sites that synergistically contribute to the large jump in protein stability (electrostatic clusters 97-104 and 112-118, and a hydrophobic interaction from Leu 110). All the residues involved in these stabilizing interactions are located outside the hydrophobic core a and d positions that have been shown to be the major contributor to coiled-coil stability. Our results show clearly that protein stability is more complex than previously thought and unique sites can synergistically control protein stability over long distances.
Collapse
Affiliation(s)
- Robert S Hodges
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, 80045, USA.
| | | | | | | | | | | |
Collapse
|
52
|
Jagatheesan G, Rajan S, Schulz EM, Ahmed RPH, Petrashevskaya N, Schwartz A, Boivin GP, Arteaga GM, Wang T, Wang YG, Ashraf M, Liggett SB, Lorenz J, Solaro RJ, Wieczorek DF. An internal domain of beta-tropomyosin increases myofilament Ca(2+) sensitivity. Am J Physiol Heart Circ Physiol 2009; 297:H181-90. [PMID: 19429821 DOI: 10.1152/ajpheart.00329.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tropomyosin (TM) is involved in Ca(2+)-mediated muscle contraction and relaxation in the heart. Striated muscle alpha-TM is the major isoform expressed in the heart. The expression of striated muscle beta-TM in the murine myocardium results in a decreased rate of relaxation and increased myofilament Ca(2+) sensitivity. Replacing the carboxyl terminus (amino acids 258-284) of alpha-TM with beta-TM (a troponin T-binding region) results in decreased rates of contraction and relaxation in the heart and decreased myofilament Ca(2+) sensitivity. We hypothesized that the putative internal troponin T-binding domain (amino acids 175-190) of beta-TM may be responsible for the increased myofilament Ca(2+) sensitivity observed when the entire beta-TM is expressed in the heart. To test this hypothesis, we generated transgenic mice that expressed chimeric TM containing beta-TM amino acids 175-190 in the backbone of alpha-TM (amino acids 1-174 and 191-284). These mice expressed 16-57% chimeric TM and did not develop cardiac hypertrophy or any other morphological changes. Physiological analysis showed that these hearts exhibited decreased rates of contraction and relaxation and a positive response to isoproterenol. Skinned fiber bundle analyses showed a significant increase in myofilament Ca(2+) sensitivity. Biophysical experiments demonstrated that the exchanged amino acids did not influence the flexibility of the TM. This is the first study to demonstrate that a specific domain within TM can increase the Ca(2+) sensitivity of the thin filament and affect sarcomeric performance. Furthermore, these results enhance the understanding of why TM mutations associated with familial hypertrophic cardiomyopathy demonstrate increased myofilament sensitivity to Ca(2+).
Collapse
Affiliation(s)
- Ganapathy Jagatheesan
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0524, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Rao VS, Marongelli EN, Guilford WH. Phosphorylation of tropomyosin extends cooperative binding of myosin beyond a single regulatory unit. ACTA ACUST UNITED AC 2009; 66:10-23. [PMID: 18985725 DOI: 10.1002/cm.20321] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tropomyosin (Tm) is one of the major phosphoproteins comprising the thin filament of muscle. However, the specific role of Tm phosphorylation in modulating the mechanics of actomyosin interaction has not been determined. Here we show that Tm phosphorylation is necessary for long-range cooperative activation of myosin binding. We used a novel optical trapping assay to measure the isometric stall force of an ensemble of myosin molecules moving actin filaments reconstituted with either natively phosphorylated or dephosphorylated Tm. The data show that the thin filament is cooperatively activated by myosin across regulatory units when Tm is phosphorylated. When Tm is dephosphorylated, this "long-range" cooperative activation is lost and the filament behaves identically to bare actin filaments. However, these effects are not due to dissociation of dephosphorylated Tm from the reconstituted thin filament. The data suggest that end-to-end interactions of adjacent Tm molecules are strengthened when Tm is phosphorylated, and that phosphorylation is thus essential for long range cooperative activation along the thin filament.
Collapse
Affiliation(s)
- Vijay S Rao
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
54
|
Greenfield NJ, Kotlyanskaya L, Hitchcock-DeGregori SE. Structure of the N terminus of a nonmuscle alpha-tropomyosin in complex with the C terminus: implications for actin binding. Biochemistry 2009; 48:1272-83. [PMID: 19170537 PMCID: PMC4410877 DOI: 10.1021/bi801861k] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Tropomyosin is a coiled-coil actin binding protein that stabilizes the filament, protects it from severing, and cooperatively regulates actin's interaction with myosin. Depending on the first coding exon, tropomyosins are low molecular weight (LMW), found in the cytoskeleton and predominant in transformed cells, or high molecular weight (HMW), found in muscle and nonmuscle cells. The N- and C-terminal ends form a complex that allows tropomyosin to associate N terminus-to-C terminus along the actin filament. We determined the structure of a LMW tropomyosin N-terminal model peptide complexed with a smooth/nonmuscle tropomyosin C-terminal peptide. Using NMR and circular dichroism we showed that both ends become more helical upon complex formation but that the C-terminal peptide is partially unfolded at 20 degrees C. The first five residues of the N terminus that are disordered in the free peptide are more helical and are part of the overlap complex. NMR data indicate residues 2-17 bind to the C terminus in the complex. The data support a model for the LMW overlap complex that is homologous to the striated muscle tropomyosin complex in which the ends are oriented in parallel N terminus-to-C terminus with the plane of the N-terminal coiled coil perpendicular to the plane of the C terminus. The main difference is that the overlap spans 16 residues in the LMW tropomyosin complex compared to 11 residues in the HMW striated muscle overlap complex. We discuss the relevance of a stable but dynamic intermolecular junction for high-affinity binding to actin.
Collapse
Affiliation(s)
- Norma J. Greenfield
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Lucy Kotlyanskaya
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | | |
Collapse
|
55
|
Gestalt-binding of tropomyosin to actin filaments. J Muscle Res Cell Motil 2008; 29:213-9. [PMID: 19116763 DOI: 10.1007/s10974-008-9157-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 12/01/2008] [Indexed: 01/26/2023]
Abstract
We argue that the overall behavior of tropomyosin on F-actin cannot be easily discerned by examining thin filaments reduced to their smallest interacting units. In isolation, the individual interactions of actin and tropomyosin, by themselves, are too weak to account for the specificity of the system. Instead the association of tropomyosin on actin can only be fully explained after considering the concerted action of the entire acto-tropomyosin system. We propose that the low K ( a ) describing tropomyosin:actin interaction, when taken together with the form-fitting complementarity of tropomyosin strands on F-actin and the tendency for tropomyosin to polymerize end-to-end, make possible unique thin filament functions both locally and at higher levels of filament organization.
Collapse
|
56
|
Wilbur JD, Chen CY, Manalo V, Hwang PK, Fletterick RJ, Brodsky FM. Actin binding by Hip1 (huntingtin-interacting protein 1) and Hip1R (Hip1-related protein) is regulated by clathrin light chain. J Biol Chem 2008; 283:32870-9. [PMID: 18790740 DOI: 10.1074/jbc.m802863200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The huntingtin-interacting protein family members (Hip1 and Hip1R in mammals and Sla2p in yeast) link clathrin-mediated membrane traffic to actin cytoskeleton dynamics. Genetic data in yeast have implicated the light chain subunit of clathrin in regulating this link. To test this hypothesis, the biophysical properties of mammalian Hip1 and Hip1R and their interaction with clathrin light chain and actin were analyzed. The coiled-coil domains (clathrin light chain-binding) of Hip1 and Hip1R were found to be stable homodimers with no propensity to heterodimerize in vitro. Homodimers were also predominant in vivo, accounting for cellular segregation of Hip1 and Hip1R functions. Coiled-coil domains of Hip1 and Hip1R differed in their stability and flexibility, correlating with slightly different affinities for clathrin light chain and more markedly with effects of clathrin light chain binding on Hip protein-actin interactions. Clathrin light chain binding induced a compact conformation of both Hip1 and Hip1R and significantly reduced actin binding by their THATCH domains. Thus, clathrin is a negative regulator of Hip-actin interactions. These observations necessarily change models proposed for Hip protein function.
Collapse
Affiliation(s)
- Jeremy D Wilbur
- Graduate Program in Biophysics, University of California, San Francisco, California 94143-0552, USA
| | | | | | | | | | | |
Collapse
|
57
|
Thin filament proteins mutations associated with skeletal myopathies: Defective regulation of muscle contraction. J Mol Med (Berl) 2008; 86:1197-204. [DOI: 10.1007/s00109-008-0380-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 05/19/2008] [Accepted: 06/09/2008] [Indexed: 01/11/2023]
|
58
|
Wang H, Mao S, Chalovich JM, Marriott G. Tropomyosin dynamics in cardiac thin filaments: a multisite forster resonance energy transfer and anisotropy study. Biophys J 2008; 94:4358-69. [PMID: 18310249 PMCID: PMC2480674 DOI: 10.1529/biophysj.107.121129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Accepted: 01/15/2008] [Indexed: 11/18/2022] Open
Abstract
Cryoelectron microscopy studies have identified distinct locations of tropomyosin (Tm) within the Ca(2+)-free, Ca(2+)-saturated, and myosin-S1-saturated states of the thin filament. On the other hand, steady-state Förster resonance energy transfer (FRET) studies using functional, reconstituted thin filaments under physiological conditions of temperature and solvent have failed to detect any movement of Tm upon Ca(2+) binding. In this investigation, an optimized system for FRET and anisotropy analyses of cardiac tropomyosin (cTm) dynamics was developed that employed a single tethered donor probe within a Tm dimer. Multisite FRET and fluorescence anisotropy analyses showed that S1 binding to Ca(2+) thin filaments triggered a uniform displacement of cTm toward F-actin but that Ca(2+) binding alone did not change FRET efficiency, most likely due to thermally driven fluctuations of cTm on the thin filament that decreased the effective separation of the donor probe between the blocked and closed states. Although Ca(2+) binding to the thin filament did not significantly change FRET efficiency, such a change was demonstrated when the thin filament was partially saturated with S1. FRET was also used to show that stoichiometric binding of S1 to Ca(2+)-activated thin filaments decreased the amplitude of Tm fluctuations and revealed a strong correlation between the cooperative binding of S1 to the closed state and the movement of cTm.
Collapse
Affiliation(s)
- Hui Wang
- Department of Physiology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
59
|
Ochala J, Li M, Ohlsson M, Oldfors A, Larsson L. Defective regulation of contractile function in muscle fibres carrying an E41K beta-tropomyosin mutation. J Physiol 2008; 586:2993-3004. [PMID: 18420702 DOI: 10.1113/jphysiol.2008.153650] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A novel E41K beta-tropomyosin (beta-Tm) mutation, associated with congenital myopathy and muscle weakness, was recently identified in a woman and her daughter. In both patients, muscle weakness was coupled with muscle fibre atrophy. It remains unknown, however, whether the E41K beta-Tm mutation directly affects regulation of muscle contraction, contributing to the muscle weakness. To address this question, we studied a broad range of contractile characteristics in skinned muscle fibres from the two patients and eight healthy controls. Results showed decreases (i) in speed of contraction at saturated Ca(2+) concentration (apparent rate constant of force redevelopment (k(tr)) and unloaded shortening speed (V(0))); and (ii) in contraction sensitivity to Ca(2+) concentration, in fibres from patients compared with controls, suggesting that the mutation has a negative effect on contractile function, contributing to the muscle weakness. To investigate whether these negative impacts are reversible, we exposed skinned muscle fibres to the Ca(2+) sensitizer EMD 57033. In fibres from patients, 30 mum of EMD 57033 (i) had no effect on speed of contraction (k(tr) and V(0)) at saturated Ca(2+) concentration but (ii) increased Ca(2+) sensitivity of contraction, suggesting a potential therapeutic approach in patients carrying the E41K beta-Tm mutation.
Collapse
Affiliation(s)
- Julien Ochala
- Department of Neuroscience, Clinical Neurophysiology, University Hospital, Entrance 85, 3rd floor, SE-751 85 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
60
|
Hitchcock-DeGregori SE. Tropomyosin: Function Follows Structure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 644:60-72. [DOI: 10.1007/978-0-387-85766-4_5] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
61
|
Tropomyosin and the steric mechanism of muscle regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 644:95-109. [PMID: 19209816 DOI: 10.1007/978-0-387-85766-4_8] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Contraction in all muscles must be precisely regulated and requisite control systems must be able to adjust to changes in physiological and myopathic stimuli. In this chapter, we outline the structural evidence for a steric mechanism that governs muscle activity. The mechanism involves calcium and myosin induced changes in the position of tropomyosin along actin-based thin filaments. This process either blocks or uncovers myosin crossbridge binding sites on actin and consequently regulates crossbridge cycling on thin filaments, the sliding of thin and thick filaments and muscle shortening and force production.
Collapse
|
62
|
Sumida JP, Wu E, Lehrer SS. Conserved Asp-137 imparts flexibility to tropomyosin and affects function. J Biol Chem 2007; 283:6728-34. [PMID: 18165684 DOI: 10.1074/jbc.m707485200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tropomyosin (Tm) is an alpha-helical coiled-coil that controls muscle contraction by sterically regulating the myosin-actin interaction. Tm moves between three states on F-actin as either a uniform or a non-uniform semi-flexible rod. Tm is stabilized by hydrophobic residues in the "a" and "d" positions of the heptad repeat. The highly conserved Asp-137 is unusual in that it introduces a negative charge on each chain in a position typically occupied by hydrophobic residues. The occurrence of two charged residues in the hydrophobic region is expected to destabilize the region and impart flexibility. To determine whether this region is unstable, we have substituted hydrophobic Leu for Asp-137 and studied changes in Tm susceptibility to limited proteolysis by trypsin and changes in regulation. We found that native and Tm controls that contain Asp-137 were readily cleaved at Arg-133 with t 1/2 of 5 min. In contrast, the Leu-137 mutant was not cleaved under the same conditions. Actin stabilized Tm, causing a 10-fold reduction in the rate of cleavage at Arg-133. The actin-myosin subfragment S1 ATPase activity was greater for the Leu mutant compared with controls in the absence of troponin and in the presence of troponin and Ca2+. We conclude that the highly conserved Asp-137 destabilizes the middle of Tm, resulting in a more flexible region that is important for the cooperative activation of the thin filament by myosin. We thus have shown a link between the dynamic properties of Tm and its function.
Collapse
Affiliation(s)
- John P Sumida
- Cardiovascular Program, Boston Biomedical Research Institute, Watertown, Massachusetts 02472, USA
| | | | | |
Collapse
|
63
|
Greenfield NJ. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat Protoc 2007; 1:2527-35. [PMID: 17406506 PMCID: PMC2752288 DOI: 10.1038/nprot.2006.204] [Citation(s) in RCA: 646] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Circular dichroism (CD) is an excellent spectroscopic technique for following the unfolding and folding of proteins as a function of temperature. One of its principal applications is to determine the effects of mutations and ligands on protein and polypeptide stability. If the change in CD as a function of temperature is reversible, analysis of the data may be used to determined the van't Hoff enthalpy and entropy of unfolding, the midpoint of the unfolding transition and the free energy of unfolding. Binding constants of protein-protein and protein-ligand interactions may also be estimated from the unfolding curves. Analysis of CD spectra obtained as a function of temperature is also useful to determine whether a protein has unfolding intermediates. Measurement of the spectra of five folded proteins and their unfolding curves at a single wavelength requires approximately 8 h.
Collapse
Affiliation(s)
- Norma J Greenfield
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635, USA.
| |
Collapse
|
64
|
Skoumpla K, Coulton AT, Lehman W, Geeves MA, Mulvihill DP. Acetylation regulates tropomyosin function in the fission yeast Schizosaccharomyces pombe. J Cell Sci 2007; 120:1635-45. [PMID: 17452625 DOI: 10.1242/jcs.001115] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Tropomyosin is an evolutionarily conserved alpha-helical coiled-coil protein that promotes and maintains actin filaments. In yeast, Tropomyosin-stabilised filaments are used by molecular motors to transport cargoes or to generate motile forces by altering the dynamics of filament growth and shrinkage. The Schizosaccharomyces pombe tropomyosin Cdc8 localises to the cytokinetic actomyosin ring during mitosis and is absolutely required for its formation and function. We show that Cdc8 associates with actin filaments throughout the cell cycle and is subjected to post-translational modification that does not vary with cell cycle progression. At any given point in the cell cycle 80% of Cdc8 molecules are acetylated, which significantly enhances their affinity for actin. Reconstructions of electron microscopic images of actin-Cdc8 filaments establish that the majority of Cdc8 strands sit in the 'closed' position on actin filaments, suggesting a role in the regulation of myosin binding. We show that Cdc8 regulates the equilibrium binding of myosin to actin without affecting the rate of myosin binding. Unacetylated Cdc8 isoforms bind actin, but have a reduced ability to regulate myosin binding to actin. We conclude that although acetylation of Cdc8 is not essential, it provides a regulatory mechanism for modulating actin filament integrity and myosin function.
Collapse
Affiliation(s)
- Kalomoira Skoumpla
- Cell and Developmental Biology Group, Department of Biosciences, University of Kent at Canterbury, Canterbury, CT2 7NJ, UK
| | | | | | | | | |
Collapse
|
65
|
Zhang M, Wang Y, Middleton FA, Horton JA, Farnum CE, Damron TA. Growth plate zonal microarray analysis shows upregulation of extracellular matrix genes and downregulation of metalloproteinases and cathepsins following irradiation. Calcif Tissue Int 2007; 81:26-38. [PMID: 17549535 DOI: 10.1007/s00223-007-9025-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 02/18/2007] [Indexed: 10/23/2022]
Abstract
Although the growth plate matrix area fraction increases after irradiation, extracellular matrix (ECM) gene expression in this context has not been studied. The hypothesis was that normally expressed ECM genes would be upregulated after irradiation. The right limbs of six Sprague-Dawley 5-week-old rats were irradiated with the left limbs as controls. Half of the animals were harvested after 1 week and half after 2. Microarray was conducted from normal and irradiated tibial growth plate proliferative zone (PZ) and hypertrophic zone (HZ) chondrocytes separated by laser microdissection at each time point. In situ hybridization (ISH) and real-time polymerase chain reaction (PCR) were used to confirm expression of selected genes. At 1 and 2 weeks after irradiation, both normally expressed ECM genes and others not highly expressed in the normal growth plate showed upregulation. Metalloproteinases and cathepsins were downregulated. PZ gene expression after irradiation exhibited features of the normal HZ, suggesting premature terminal differentiation. ECM genes not highly expressed in the normal growth plate included several members of the small leucine-rich proteins and the ezrin-radixin-moesin family. The effects of irradiation on cathepsin K (Ctsk), integrin binding sialoprotein (Ibsp), and procollagen II alpha 1 (Col2a1), as determined by ISH and real-time PCR, were highly correlated with the microarray results. Accumulation of matrix following radiation injury to the growth plate correlated well with changes in gene expression. Upregulation of genes not normally highly expressed in the noninjured growth plate suggests their importance in the injury and repair response.
Collapse
Affiliation(s)
- Mingliang Zhang
- Musculoskeletal Sciences Research Laboratory, Department of Orthopedic Surgery, State University of New York Upstate Medical University, Suite 130, 550 Harrison Street, Syracuse, NY 13210, USA
| | | | | | | | | | | |
Collapse
|
66
|
Rajan S, Ahmed RPH, Jagatheesan G, Petrashevskaya N, Boivin GP, Urboniene D, Arteaga GM, Wolska BM, Solaro RJ, Liggett SB, Wieczorek DF. Dilated cardiomyopathy mutant tropomyosin mice develop cardiac dysfunction with significantly decreased fractional shortening and myofilament calcium sensitivity. Circ Res 2007; 101:205-14. [PMID: 17556658 DOI: 10.1161/circresaha.107.148379] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutations in striated muscle alpha-tropomyosin (alpha-TM), an essential thin filament protein, cause both dilated cardiomyopathy (DCM) and familial hypertrophic cardiomyopathy. Two distinct point mutations within alpha-tropomyosin are associated with the development of DCM in humans: Glu40Lys and Glu54Lys. To investigate the functional consequences of alpha-TM mutations associated with DCM, we generated transgenic mice that express mutant alpha-TM (Glu54Lys) in the adult heart. Results showed that an increase in transgenic protein expression led to a reciprocal decrease in endogenous alpha-TM levels, with total myofilament TM protein levels remaining unaltered. Histological and morphological analyses revealed development of DCM with progression to heart failure and frequently death by 6 months. Echocardiographic analyses confirmed the dilated phenotype of the heart with a significant decrease in the left ventricular fractional shortening. Work-performing heart analyses showed significantly impaired systolic, and diastolic functions and the force measurements of cardiac myofibers revealed that the myofilaments had significantly decreased Ca(2+) sensitivity and tension generation. Real-time RT-PCR quantification demonstrated an increased expression of beta-myosin heavy chain, brain natriuretic peptide, and skeletal actin and a decreased expression of the Ca(2+) handling proteins sarcoplasmic reticulum Ca(2+)-ATPase and ryanodine receptor. Furthermore, our study also indicates that the alpha-TM54 mutation decreases tropomyosin flexibility, which may influence actin binding and myofilament Ca(2+) sensitivity. The pathological and physiological phenotypes exhibited by these mice are consistent with those seen in human DCM and heart failure. As such, this is the first mouse model in which a mutation in a sarcomeric thin filament protein, specifically TM, leads to DCM.
Collapse
MESH Headings
- Actin Cytoskeleton/genetics
- Actin Cytoskeleton/metabolism
- Actin Cytoskeleton/pathology
- Actins/biosynthesis
- Animals
- Calcium/metabolism
- Calcium-Transporting ATPases/biosynthesis
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Hypertrophic, Familial/genetics
- Cardiomyopathy, Hypertrophic, Familial/metabolism
- Cardiomyopathy, Hypertrophic, Familial/pathology
- Disease Models, Animal
- Echocardiography
- Gene Expression Regulation/genetics
- Humans
- Mice
- Mice, Mutant Strains
- Mice, Transgenic
- Muscle Contraction/genetics
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Mutation, Missense
- Natriuretic Peptide, Brain/biosynthesis
- Reverse Transcriptase Polymerase Chain Reaction
- Ryanodine Receptor Calcium Release Channel/biosynthesis
- Sarcoplasmic Reticulum/metabolism
- Sarcoplasmic Reticulum/pathology
- Tropomyosin/genetics
- Tropomyosin/metabolism
- Ventricular Myosins/metabolism
Collapse
Affiliation(s)
- Sudarsan Rajan
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati Medical Center, Cincinnati, OH 45267-0524, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Corrêa F, Farah CS. Different effects of trifluoroethanol and glycerol on the stability of tropomyosin helices and the head-to-tail complex. Biophys J 2007; 92:2463-75. [PMID: 17218461 PMCID: PMC1864823 DOI: 10.1529/biophysj.106.098541] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tropomyosin (Tm) is a dimeric coiled-coil protein, composed of 284 amino acids (410 A), that forms linear homopolymers through head-to-tail interactions at low ionic strength. The head-to-tail complex involves the overlap of approximately nine N-terminal residues of one molecule with nine C-terminal residues of another Tm molecule. In this study, we investigate the influence of 2,2,2-trifluoroethanol (TFE) and glycerol on the stability of recombinant Tm fragments (ASTm1-142, Tm143-284(5OHW269)) and of the dimeric head-to-tail complex formed by the association of these two fragments. The C-terminal fragment (Tm143-284(5OHW269)) contains a 5-hydroxytryptophan (5OHW) probe at position 269 whose fluorescence is sensitive to the head-to-tail interaction and allows us to accompany titrations of Tm143-284(5OHW269) with ASTm1-142 to calculate the dissociation constant (Kd) and the interaction energy at TFE and glycerol concentrations between 0% and 15%. We observe that TFE, but not glycerol, reduces the stability of the head-to-tail complex. Thermal denaturation experiments also showed that the head-to-tail complex increases the overall conformational stability of the Tm fragments. Urea and thermal denaturation assays demonstrated that both TFE and glycerol increase the stability of the isolated N- and C-terminal fragments; however, only TFE caused a significant reduction in the cooperativity of unfolding these fragments. Our results show that these two cosolvents stabilize the structures of individual Tm fragments in different manners and that these differences may be related to their opposing effects on head-to-tail complex formation.
Collapse
Affiliation(s)
- Fernando Corrêa
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
68
|
Nitanai Y, Minakata S, Maeda K, Oda N, Maéda Y. Crystal structures of tropomyosin: flexible coiled-coil. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 592:137-51. [PMID: 17278362 DOI: 10.1007/978-4-431-38453-3_13] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Tropomyosin (Tm) is a 400 angstroms long coiled coil protein, and with troponin it regulates contraction in skeletal and cardiac muscles in a [Ca2+]-dependent manner. Tm consists of multiple domains with diverse stabilities in the coiled coil form, thus providing Tm with dynamic flexibility. This flexibility must play important roles in the actin binding and the cooperative transition between the calcium regulated states of the entire muscle thin filament. In order to understand the flexibility of Tm in its entirety, the atomic coordinates of Tm are needed. Here we report the two crystal structures of Tm segments. One is rabbit skeletal muscle alpha-Tm encompassing residues 176-284 with an N-terminal extension of 25 residues from the leucine zipper sequence of GCN4, which includes the region that interacts with the troponin core domain. The other is alpha-Tm encompassing residues 176-273 with N- and C-terminal extensions of the leucine zipper sequences. These two crystal structures imply that this molecule is a flexible coiled coil. First, Tm's are not homogeneous and smooth coiled coils, but instead they undulate, with highly fluctuating local parameters specifying the coiled coil. Independent fluctuating showed by two crystal structures is important. Second, in the first crystal, the coiled coil is bent by 9 degrees in the region centered about Y214-E218-Y221, where the inter-helical distance has its maximum. On the other hand, no bend is observed at the same region in the second crystal even if its inter-helical distance has also its maximum. E218, an unusual negatively charged residue at the a position in the heptad repeat, seems to play the key role in destabilizing the coiled coil with alanine destabilizing clusters.
Collapse
Affiliation(s)
- Yasushi Nitanai
- ERATO Actin Filament Dynamics Project, JST, Sayo, Hyogo 679-5148, Japan
| | | | | | | | | |
Collapse
|
69
|
Robinson P, Lipscomb S, Preston LC, Altin E, Watkins H, Ashley CC, Redwood CS. Mutations in fast skeletal troponin I, troponin T, and β‐tropomyosin that cause distal arthrogryposis all increase contractile function. FASEB J 2006; 21:896-905. [PMID: 17194691 DOI: 10.1096/fj.06-6899com] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Distal arthrogryposes (DAs) are a group of disorders characterized by congenital contractures of distal limbs without overt neurological or muscle disease. Unexpectedly, mutations in genes encoding the fast skeletal muscle regulatory proteins troponin T (TnT), troponin I (TnI), and beta-tropomyosin (beta-TM) have been shown to cause autosomal dominant DA. We tested how these mutations affect contractile function by comparing wild-type (WT) and mutant proteins in actomyosin ATPase assays and in troponin-replaced rabbit psoas fibers. We have analyzed all four reported mutants: Arg63His TnT, Arg91Gly beta-TM, Arg174Gln TnI, and a TnI truncation mutant (Arg156ter). Thin filaments, reconstituted using actin and WT troponin and beta-TM, activated myosin subfragment-1 ATPase in a calcium-dependent, cooperative manner. Thin filaments containing either a troponin or beta-TM DA mutant produced significantly enhanced ATPase rates at all calcium concentrations without alternating calcium-sensitivity or cooperativity. In troponin-exchanged skinned fibers, each mutant caused a significant increase in Ca2+ sensitivity, and Arg156ter TnI generated significantly higher maximum force. Arg91Gly beta-TM was found to have a lower actin affinity than WT and form a less stable coiled coil. We propose the mutations cause increased contractility of developing fast-twitch skeletal muscles, thus causing muscle contractures and the development of the observed limb deformities.
Collapse
Affiliation(s)
- Paul Robinson
- Department of Cardiovascular Medicine, University of Oxford, Oxford OX3 7BN, UK
| | | | | | | | | | | | | |
Collapse
|
70
|
Mizuno H, Hamada A, Shimada K, Honda H. Tropomyosin as a regulator of the sliding movement of actin filaments. Biosystems 2006; 90:449-55. [PMID: 17184900 DOI: 10.1016/j.biosystems.2006.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 10/29/2006] [Accepted: 11/04/2006] [Indexed: 11/24/2022]
Abstract
We examined the capacity of tropomyosin molecules regulating the sliding movement of actin filaments on myosin molecules in the presence of ATP molecules to be hydrolyzed. For this objective, we prepared tropomyosin molecules modified to be a little bit stiffer compared to the intact ones by applying a fixed cross-linker between a pair of twisted tropomyosin monomers. The cross-linked tropomyosin molecules, when complexed with actin filaments, were found to inhibit the sliding movement of the filaments on myosin molecules even in the absence of calcium-regulated troponin molecules. It is then suggested that the mechanical flexibility of tropomyosin molecules may be instrumental to actualizing the proper functional regulation of the sliding movement of actin filaments.
Collapse
Affiliation(s)
- Hiroaki Mizuno
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka 940-2188, Japan.
| | | | | | | |
Collapse
|
71
|
Greenfield NJ, Huang YJ, Swapna GVT, Bhattacharya A, Rapp B, Singh A, Montelione GT, Hitchcock-DeGregori SE. Solution NMR Structure of the Junction between Tropomyosin Molecules: Implications for Actin Binding and Regulation. J Mol Biol 2006; 364:80-96. [PMID: 16999976 DOI: 10.1016/j.jmb.2006.08.033] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2006] [Accepted: 08/07/2006] [Indexed: 10/24/2022]
Abstract
Tropomyosin is a coiled-coil protein that binds head-to-tail along the length of actin filaments in eukaryotic cells, stabilizing them and providing protection from severing proteins. Tropomyosin cooperatively regulates actin's interaction with myosin and mediates the Ca2+ -dependent regulation of contraction by troponin in striated muscles. The N-terminal and C-terminal ends are critical functional determinants that form an "overlap complex". Here we report the solution NMR structure of an overlap complex formed of model peptides. In the complex, the chains of the C-terminal coiled coil spread apart to allow insertion of 11 residues of the N-terminal coiled coil into the resulting cleft. The plane of the N-terminal coiled coil is rotated 90 degrees relative to the plane of the C terminus. A consequence of the geometry is that the orientation of postulated periodic actin binding sites on the coiled-coil surface is retained from one molecule to the next along the actin filament when the overlap complex is modeled into the X-ray structure of tropomyosin determined at 7 Angstroms. Nuclear relaxation NMR data reveal flexibility of the junction, which may function to optimize binding along the helical actin filament and to allow mobility of tropomyosin on the filament surface as it switches between regulatory states.
Collapse
Affiliation(s)
- Norma J Greenfield
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Swartz DR, Yang Z, Sen A, Tikunova SB, Davis JP. Myofibrillar troponin exists in three states and there is signal transduction along skeletal myofibrillar thin filaments. J Mol Biol 2006; 361:420-35. [PMID: 16857209 PMCID: PMC2834179 DOI: 10.1016/j.jmb.2006.05.078] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 05/24/2006] [Accepted: 05/24/2006] [Indexed: 11/29/2022]
Abstract
Activation of striated muscle contraction is a highly cooperative signal transduction process converting calcium binding by troponin C (TnC) into interactions between thin and thick filaments. Once calcium is bound, transduction involves changes in protein interactions along the thin filament. The process is thought to involve three different states of actin-tropomyosin (Tm) resulting from changes in troponin's (Tn) interaction with actin-Tm: a blocked (B) state preventing myosin interaction, a closed (C) state allowing weak myosin interactions and favored by calcium binding to Tn, and an open or M state allowing strong myosin interactions. This was tested by measuring the apparent rate of Tn dissociation from rigor skeletal myofibrils using labeled Tn exchange. The location and rate of exchange of Tn or its subunits were measured by high-resolution fluorescence microscopy and image analysis. Three different rates of Tn exchange were observed that were dependent on calcium concentration and strong cross-bridge binding that strongly support the three-state model. The rate of Tn dissociation in the non-overlap region was 200-fold faster at pCa 4 (C-state region) than at pCa 9 (B-state region). When Tn contained engineered TnC mutants with weakened regulatory TnI interactions, the apparent exchange rate at pCa 4 in the non-overlap region increased proportionately with TnI-TnC regulatory affinity. This suggests that the mechanism of calcium enhancement of the rate of Tn dissociation is by favoring a TnI-TnC interaction over a TnI-actin-Tm interaction. At pCa 9, the rate of Tn dissociation in the overlap region (M-state region) was 100-fold faster than the non-overlap region (B-state region) suggesting that strong cross-bridges increase the rate of Tn dissociation. At pCa 4, the rate of Tn dissociation was twofold faster in the non-overlap region (C-state region) than the overlap region (M-state region) that likely involved a strong cross-bridge influence on TnT's interaction with actin-Tm. At sub-maximal calcium (pCa 6.2-5.8), there was a long-range influence of the strong cross-bridge on Tn to enhance its dissociation rate, tens of nanometers from the strong cross-bridge. These observations suggest that the three different states of actin-Tm are associated with three different states of Tn. They also support a model in which strong cross-bridges shift the regulatory equilibrium from a TnI-actin-Tm interaction to a TnC-TnI interaction that likely enhances calcium binding by TnC.
Collapse
Affiliation(s)
- Darl R Swartz
- Indiana University School of Medicine, Department of Anatomy and Cell Biology, Indianapolis, IN 46202, USA.
| | | | | | | | | |
Collapse
|
73
|
Singh A, Hitchcock-DeGregori SE. Dual requirement for flexibility and specificity for binding of the coiled-coil tropomyosin to its target, actin. Structure 2006; 14:43-50. [PMID: 16407064 DOI: 10.1016/j.str.2005.09.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 09/15/2005] [Accepted: 09/16/2005] [Indexed: 11/20/2022]
Abstract
The coiled coil is a widespread motif involved in oligomerization and protein-protein interactions, but the structural requirements for binding to target proteins are poorly understood. To address this question, we measured binding of tropomyosin, the prototype coiled coil, to actin as a model system. Tropomyosin binds to the actin filament and cooperatively regulates its function. Our results support the hypothesis that coiled-coil domains that bind to other proteins are flexible. We made mutations that alter interface packing and stability as well as mutations in surface residues in a postulated actin binding site. Actin affinity, measured by cosedimentation, was correlated with coiled-coil stability and local instability and side chain flexibility, analyzed with circular dichroism and fluorescence spectroscopy. The flexibility from interruptions in the stable coiled-coil interface is essential for actin binding. The surface residues in a postulated actin binding site participate in actin binding when the coiled coil within it is poorly packed.
Collapse
Affiliation(s)
- Abhishek Singh
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
74
|
Kremneva E, Nikolaeva O, Maytum R, Arutyunyan AM, Kleimenov SY, Geeves MA, Levitsky DI. Thermal unfolding of smooth muscle and nonmuscle tropomyosin alpha-homodimers with alternatively spliced exons. FEBS J 2006; 273:588-600. [PMID: 16420482 DOI: 10.1111/j.1742-4658.2005.05092.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We used differential scanning calorimetry (DSC) and circular dichroism (CD) to investigate thermal unfolding of recombinant fibroblast isoforms of alpha-tropomyosin (Tm) in comparison with that of smooth muscle Tm. These two nonmuscle Tm isoforms 5a and 5b differ internally only by exons 6b/6a, and they both differ from smooth muscle Tm by the N-terminal exon 1b which replaces the muscle-specific exons 1a and 2a. We show that the presence of exon 1b dramatically decreases the measurable calorimetric enthalpy of the thermal unfolding of Tm observed with DSC, although it has no influence on the alpha-helix content of Tm or on the end-to-end interaction between Tm dimers. The results suggest that a significant part of the molecule of fibroblast Tm (but not smooth muscle Tm) unfolds noncooperatively, with the enthalpy no longer visible in the cooperative thermal transitions measured. On the other hand, both DSC and CD studies show that replacement of muscle exons 1a and 2a by nonmuscle exon 1b not only increases the thermal stability of the N-terminal part of Tm, but also significantly stabilizes Tm by shifting the major thermal transition of Tm to higher temperature. Replacement of exon 6b by exon 6a leads to additional increase in the alpha-Tm thermal stability. Thus, our data show for the first time a significant difference in the thermal unfolding between muscle and nonmuscle alpha-Tm isoforms, and indicate that replacement of alternatively spliced exons alters the stability of the entire Tm molecule.
Collapse
Affiliation(s)
- Elena Kremneva
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
75
|
Brown JH, Zhou Z, Reshetnikova L, Robinson H, Yammani RD, Tobacman LS, Cohen C. Structure of the mid-region of tropomyosin: bending and binding sites for actin. Proc Natl Acad Sci U S A 2005; 102:18878-83. [PMID: 16365313 PMCID: PMC1323185 DOI: 10.1073/pnas.0509269102] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tropomyosin is a two-chain alpha-helical coiled coil whose periodic interactions with the F-actin helix are critical for thin filament stabilization and the regulation of muscle contraction. Here we deduce the mechanical and chemical basis of these interactions from the 2.3-A-resolution crystal structure of the middle three of tropomyosin's seven periods. Geometrically specific bends of the coiled coil, produced by clusters of core alanines, and variable bends about gaps in the core, produced by isolated alanines, occur along the molecule. The crystal packing is notable in signifying that the functionally important fifth period includes an especially favorable protein-binding site, comprising an unusual apolar patch on the surface together with surrounding charged residues. Based on these and other results, we have constructed a specific model of the thin filament, with the N-terminal halves of each period (i.e., the so-called "alpha zones") of tropomyosin axially aligned with subdomain 3 of each monomer in F-actin.
Collapse
Affiliation(s)
- Jerry H Brown
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| | | | | | | | | | | | | |
Collapse
|
76
|
Yuan W, Zheng Y, Huo R, Lu L, Huang XY, Yin LL, Li JM, Zhou ZM, Sha JH. Expression of a novel alternative transcript of the novel retinal pigment epithelial cell gene NORPEG in human testes. Asian J Androl 2005; 7:277-88. [PMID: 16110356 DOI: 10.1111/j.1745-7262.2005.00040.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AIM To identify a novel alternative transcript of the novel retinal pigment epithelial cell gene (NORPEG) expressed in the human testis. METHODS A human testis cDNA microarray was established and hybridized with cDNA probes from human fetal testes, adult testes and human spermatozoa. Differentially expressed clones were sequenced and analyzed. One of these clones was a short transcript of NORPEG which we proceeded to analyze by RT-PCR. RESULTS The novel short alternative transcript of NORPEG was isolated and named sNORPEG. It was 3486 bp in length and contained a 2952-bp open reading frame, encoding a 110.4-kDa protein of 983 amino acids. Amino acid sequence analysis showed that the sNORPEG protein contains six ankyrin repeats and two coiled-coil domains. It shares a high homology with the NORPEG and ankycorbin proteins in both its sequence and motifs. Blasting the human genome database localized sNORPEG to human chromosome 5p13.2-13.3. Expression profiles showed that sNORPEG was expressed in human fetal testes, adult testes and spermatozoa. Moreover, sNORPEG was found to be ubiquitously expressed in human tissues. CONCLUSION sNORPEG is expressed in different developmental stages of the testis and encodes a protein that may have roles in human testis development and spermatogenesis.
Collapse
Affiliation(s)
- Wa Yuan
- Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Chang AN, Harada K, Ackerman MJ, Potter JD. Functional Consequences of Hypertrophic and Dilated Cardiomyopathy-causing Mutations in α-Tropomyosin. J Biol Chem 2005; 280:34343-9. [PMID: 16043485 DOI: 10.1074/jbc.m505014200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To study the functional consequences of various cardiomyopathic mutations in human cardiac alpha-tropomyosin (Tm), a method of depletion/reconstitution of native Tm and troponin (Tn) complex (Tm-Tn) in cardiac myofibril preparations has been developed. The endogenous Tm-Tn complex was selectively removed from myofibrils and replaced with recombinant wild-type or mutant proteins. Successful depletion and reconstitution steps were verified by SDS-gel electrophoresis and by the loss and regain of Ca2+-dependent regulation of ATPase activity. Five Tm mutations were chosen for this study: the hypertrophic cardiomyopathy (HCM) mutations E62Q, E180G, and L185R and the dilated cardiomyopathy (DCM) mutations E40K and E54K. Through the use of this new depletion/reconstitution method, the functional consequences of these mutations were determined utilizing myofibrillar ATPase measurements. The results of our studies showed that 1) depletion of >80% of Tm-Tn from myofibrils resulted in a complete loss of the Ca2+-regulated ATPase activity and a significant loss in the maximal ATPase activity, 2) reconstitution of exogenous wild-type Tm-Tn resulted in complete regain in the calcium regulation and in the maximal ATPase activity, and 3) all HCM-associated Tm mutations increased the Ca2+ sensitivity of ATPase activity and all had decreased abilities to inhibit ATPase activity. In contrast, the DCM-associated mutations both decreased the Ca2+ sensitivity of ATPase activity and had no effect on the inhibition of ATPase activity. These findings have demonstrated that the mutations which cause HCM and DCM disrupt discrete mechanisms, which may culminate in the distinct cardiomyopathic phenotypes.
Collapse
Affiliation(s)
- Audrey N Chang
- Department of Medicine, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
78
|
Abstract
Although well known as the location of the mechanism by which the cardiac sarcomere is activated by Ca2+ to generate force and shortening, the thin filament is now also recognized as a vital component determining the dynamics of contraction and relaxation. Molecular signaling in the thin filament involves steric, allosteric, and cooperative mechanisms that are modified by protein phosphorylation, sarcomere length and load, the chemical environment, and isoform composition. Approaches employing transgenesis and mutagenesis now permit investigation of these processes at the level of the systems biology of the heart. These studies reveal that the thin filaments are not merely slaves to the levels of Ca2+ determined by membrane channels, transporters and exchangers, but are actively involved in beat to beat control of cardiac function by neural and hormonal factors and by the Frank-Starling mechanism.
Collapse
Affiliation(s)
- Tomoyoshi Kobayashi
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
79
|
Brown JH, Cohen C. Regulation of muscle contraction by tropomyosin and troponin: how structure illuminates function. ADVANCES IN PROTEIN CHEMISTRY 2005; 71:121-59. [PMID: 16230111 DOI: 10.1016/s0065-3233(04)71004-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jerry H Brown
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | | |
Collapse
|
80
|
Kwok SC, Hodges RS. Effect of chain length on coiled-coil stability: Decreasing stability with increasing chain length. Biopolymers 2004; 76:378-90. [PMID: 15372485 DOI: 10.1002/bip.20141] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The de novo design and biophysical characterization of three series of two-stranded alpha-helical coiled coils with different chain lengths are described. Our goal was to examine how increasing chain length would affect protein folding and stability when one or more heptad repeat(s) of K-A-E-A-L-E-G (gabcdef) was inserted into the central region of different coiled-coil host proteins. This heptad was designed to maintain the continuous 3-4 hydrophobic repeat of the coiled-coil host and introduce an Ala and Leu residue in the hydrophobic core at the a and d position, respectively, and a pair of stabilizing interchain ionic i to i' + 5 (g to e') interactions per heptad inserted. The secondary structures of the three series of disulfide-bridged polypeptides were studied by CD spectroscopy and their stabilities determined by chemical and thermal denaturation. The results showed that successive insertions of this heptad systematically decreased the stability of all the coiled coils studied regardless of the overall initial stability of the host coiled coil. These observations are in contrast to the generally accepted implication that the folding and stability of coiled coils are enhanced with increasing chain length. Our results imply that, in these examples where an Ala and Leu hydrophobic residue were introduced into the coiled-coil core per inserted heptad, there was still insufficient stability to overcome unfavorable entropy associated with chain length extension, even though the inserted heptad contained the most stabilizing hydrophobic residue (Leu) at position d and stabilizing ionic attractions.
Collapse
Affiliation(s)
- Stanley C Kwok
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center at Fitzsimons, Aurora, CO 80045-0511, USA
| | | |
Collapse
|
81
|
Kremneva E, Boussouf S, Nikolaeva O, Maytum R, Geeves MA, Levitsky DI. Effects of two familial hypertrophic cardiomyopathy mutations in alpha-tropomyosin, Asp175Asn and Glu180Gly, on the thermal unfolding of actin-bound tropomyosin. Biophys J 2004; 87:3922-33. [PMID: 15454401 PMCID: PMC1304903 DOI: 10.1529/biophysj.104.048793] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Differential scanning calorimetry was used to investigate the thermal unfolding of native alpha-tropomyosin (Tm), wild-type alpha-Tm expressed in Escherichia coli and the wild-type alpha-Tm carrying either of two missense mutations associated with familial hypertrophic cardiomyopathy, D175N or E180G. Recombinant alpha-Tm was expressed with an N-terminal Ala-Ser extension to substitute for the essential N-terminal acetylation of the native Tm. Native and Ala-Ser-Tm were indistinguishable in our assays. In the absence of F-actin, the thermal unfolding of Tm was reversible and the heat sorption curve of Tm with Cys-190 reduced was decomposed into two separate calorimetric domains with maxima at approximately 42 and 51 degrees C. In the presence of phalloidin-stabilized F-actin, a new cooperative transition appears at 46-47 degrees C and completely disappears after the irreversible denaturation of F-actin. A good correlation was found to exist between the maximum of this peak and the temperature of half-maximal dissociation of the F-actin/Tm complex as determined by light scattering experiments. We conclude that Tm thermal denaturation only occurs upon its dissociation from F-actin. In the presence of F-actin, D175N alpha-Tm shows a melting profile and temperature dependence of dissociation from F-actin similar to those for wild-type alpha-Tm. The actin-induced stabilization of E180G alpha-Tm is significantly less than for wild-type alpha-Tm and D175N alpha-Tm, and this property could contribute to the more severe myopathy phenotype reported for this mutation.
Collapse
Affiliation(s)
- Elena Kremneva
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | | | | | | | | | | |
Collapse
|
82
|
Chen L, Chen LR, Zhou XE, Wang Y, Kahsai MA, Clark AT, Edmondson SP, Liu ZJ, Rose JP, Wang BC, Meehan EJ, Shriver JW. The hyperthermophile protein Sso10a is a dimer of winged helix DNA-binding domains linked by an antiparallel coiled coil rod. J Mol Biol 2004; 341:73-91. [PMID: 15312764 DOI: 10.1016/j.jmb.2004.05.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 03/19/2004] [Accepted: 05/18/2004] [Indexed: 01/01/2023]
Abstract
Sso10a is a member of a group of DNA-binding proteins thought to be important in chromatin structure and regulation in the hyperthermophilic archaeon Sulfolobus solfataricus. We have determined the structure of Sso10a to 1.47A resolution directly with unlabelled native crystals by a novel approach using sulfur single-wavelength anomalous scattering (SAS) from a chromium X-ray source. The 95 amino acid residue protein contains a winged helix DNA-binding domain with an extended C-terminal alpha-helix that leads to dimerization by forming a two-stranded, antiparallel coiled-coil rod. The winged helix domains are at opposite ends of the extended coiled coil with two putative DNA-recognition helices separated by 55A and rotated by 83 degrees. Formation of stable dimers in solution is demonstrated by both analytical ultracentrifugation and differential scanning calorimetry. With a T0 of 109 degrees C, Sso10a is one of the most stable two-stranded coiled coils known. The coiled coil contains a rare aspartate residue (D69) in the normally hydrophobic d position of the heptad repeat, with two aspartate-lysine (d-g') interhelical ion pairs in the symmetrical dimer. Mutation of D69 to alanine resulted in an increase in thermal stability, indicating that destabilization resulting from the partially buried aspartate residue cannot be offset by ion pair formation. Possible DNA-binding interactions are discussed on the basis of comparisons to other winged helix proteins. The structure of Sso10a provides insight into the structures of the conserved domain represented by COG3432, a group of more than 20 hypothetical transcriptional regulators coded in the genomic sequences of both crenarchaeota and euryarchaeota.
Collapse
Affiliation(s)
- Liqing Chen
- Laboratory for Structural Biology, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Kwok SC, Hodges RS. Stabilizing and Destabilizing Clusters in the Hydrophobic Core of Long Two-stranded α-Helical Coiled-coils. J Biol Chem 2004; 279:21576-88. [PMID: 15020585 DOI: 10.1074/jbc.m401074200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Detailed sequence analyses of the hydrophobic core residues of two long two-stranded alpha-helical coiled-coils that differ dramatically in sequence, function, and length were performed (tropomyosin of 284 residues and the coiled-coil domain of the myosin rod of 1086 residues). Three types of regions were present in the hydrophobic core of both proteins: stabilizing clusters and destabilizing clusters, defined as three or more consecutive core residues of either stabilizing (Leu, Ile, Val, Met, Phe, and Tyr) or destabilizing (Gly, Ala, Cys, Ser, Thr, Asn, Gln, Asp, Glu, His, Arg, Lys, and Trp) residues, and intervening regions that consist of both stabilizing and destabilizing residues in the hydrophobic core but no clusters. Subsequently, we designed a series of two-stranded coiled-coils to determine what defines a destabilizing cluster and varied the length of the destabilizing cluster from 3 to 7 residues to determine the length effect of the destabilizing cluster on protein stability. The results showed a dramatic destabilization, caused by a single Leu to Ala substitution, on formation of a 3-residue destabilizing cluster (DeltaT(m) of 17-21 degrees C) regardless of the stability of the coiled-coil. Any further substitution of Leu to Ala that increased the size of the destabilizing cluster to 5 or 7 hydrophobic core residues in length had little effect on stability (DeltaT(m) of 1.4-2.8 degrees C). These results suggested that the contribution of Leu to protein stability is context-dependent on whether the hydrophobe is in a stabilizing cluster or its proximity to neighboring destabilizing and stabilizing clusters.
Collapse
Affiliation(s)
- Stanley C Kwok
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | |
Collapse
|