51
|
Mechanistic predictions of the influence of collagen-binding domain sequences on human LL37 interactions with model lipids using quartz crystal microbalance with dissipation. Biointerphases 2019; 14:021006. [PMID: 31039613 DOI: 10.1116/1.5089759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Modifications of human-derived antimicrobial peptide LL37 with collagen binding domains (CBD-LL37) hold promise as alternatives to antibiotics due to their wider therapeutic ratio than unmodified LL37 when interacting with collagen substrates such as commercial wound dressings. However, CBD-LL37 lipid membrane interaction mechanisms (against both mammalian and bacterial lipids) are not well understood. Our goal was to develop a mechanistic explanation of how CBDs modulate peptide-lipid interactions leading to their observed bioactivities, in order to better understand their potential for clinical applications. The authors studied time- and concentration-dependent interactions of CBD-LL37 modified with collagenase (cCBD) and fibronectin (fCBD) CBDs, with zwitterionic and anionic supported lipid bilayers, in order to model mammalian erythrocytes and bacterial cells, respectively. Quartz crystal microbalance with dissipation monitoring (QCM-D) was used to characterize peptide-lipid interactions at concentrations in the immunomodulatory (0.5-1.0 μM), antimicrobial (1.0-5.0 μM), and cytotoxic (5.0-10.0 μM) ranges. Their prior work with zwitterionic membranes demonstrated that cCBD-LL37 formed transmembrane pores while fCBD-LL37 underwent surface adsorption. Our goal in this study is to better interpret these results, by investigating the data at a wider concentration range and for two types of lipids, and by applying the Voigt-Kelvin viscoelastic model to calculate thickness and density changes of the peptide-lipid films as a function of time and concentration, thus providing information to help build detailed mechanisms of peptide/bilayer interactions. For pore-forming cCBD-LL37 and unmodified LL37, they found that there was a relationship between layer thicknesses and pore formation, which was attributed to different peptide orientation changes influenced by bilayer charge prior to pore formation. Specifically, cCBD-LL37 at 0.5 and 1.0 μM demonstrated higher thicknesses on zwitterionic than anionic membranes, indicating that prior to insertion into zwitterionic membranes, it orients perpendicular to the surface, which was also consistent with the higher dissipation changes observed on zwitterionic membranes. fCBD-LL37 demonstrated a bilayer adsorption mechanism with a preference toward anionic lipids. Adsorption of fCBD-LL37 onto anionic lipids demonstrated a rapid first adsorption step that transitioned depending on the number of fCBD-LL37 molecules on the bilayer. For this peptide at higher concentrations, greater dissipation changes were observed than for fCBD-LL37 physically adsorbed onto surfaces without bilayers. This suggests that peptide-peptide interactions promoted by the fCBD domain dominated after saturation. The development of a structure-function relationship for cCBD-LL37 and fCBD-LL37 demonstrates promise for using QCM-D predictions to inform the rational design of novel, antimicrobial, and noncytotoxic CBD-LL37 for clinical applications.
Collapse
|
52
|
Miyazaki Y, Okazaki S, Shinoda W. Free energy analysis of membrane pore formation process in the presence of multiple melittin peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1409-1419. [PMID: 30885804 DOI: 10.1016/j.bbamem.2019.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 11/30/2022]
Abstract
Understanding the molecular mechanism underlying pore formation in lipid membranes by antimicrobial peptides is of great importance in biological sciences as well as in drug design applications. Melittin has been widely studied as a pore forming peptide, though the molecular mechanism for pore formation is still illusive. We examined the free energy barrier for the creation of a pore in lipid membranes with and without multiple melittin peptides. It was found that six melittin peptides significantly stabilized a pore, though a small barrier (a few kBT) for the formation still existed. With five melittin peptides or fewer, the pore formation barrier was much higher, though the established pore was in a local energy minimum. Although seven melittins effectively reduced the free energy barrier, a single melittin peptide left the pore after a long time MD simulation probably because of the overcrowded environment around the bilayer pore. Thus, it is highly selective for the number of melittin peptides to stabilize the membrane pore, as was also suggested by the line tension evaluations. The free energy cost required to insert a single melittin into the membrane is too high to explain the one-by-one insertion mechanism for pore formation, which also supports the collective melittin mechanism for pore formation.
Collapse
Affiliation(s)
- Yusuke Miyazaki
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Susumu Okazaki
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| |
Collapse
|
53
|
Britt HM, Mosely JA, Sanderson JM. The influence of cholesterol on melittin lipidation in neutral membranes. Phys Chem Chem Phys 2019; 21:631-640. [DOI: 10.1039/c8cp06661b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cholesterol inclusion in membranes influences the rate and selectivity of acyl transfer from lipids to a membrane-embedded peptide.
Collapse
|
54
|
Effects of the peptide Magainin H2 on Supported Lipid Bilayers studied by different biophysical techniques. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2635-2643. [DOI: 10.1016/j.bbamem.2018.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/02/2018] [Indexed: 11/24/2022]
|
55
|
Lyu Y, Fitriyanti M, Narsimhan G. Nucleation and growth of pores in 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) / cholesterol bilayer by antimicrobial peptides melittin, its mutants and cecropin P1. Colloids Surf B Biointerfaces 2018; 173:121-127. [PMID: 30278360 DOI: 10.1016/j.colsurfb.2018.09.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 10/28/2022]
Abstract
Antimicrobial peptides are one of the most promising alternatives to antibiotics for targeting pathogens without developing resistance. In this study, pore formation in 1,2-Dimyristoyl-snglycero-3-phosphocholine (DMPC) / cholesterol liposome induced by native melittin, its two mutant variants (G1I and I17 K), and cecropin P1 was investigated by monitoring the dynamics of fluorescence dye leakage. A critical peptide concentration was required for dye leakage with the rate of leakage being dependent on peptide concentration above a critical value. A lag time was required for dye leakage for low peptide concentrations that are above the critical value, which decreased at higher peptide concentrations eventually approaching zero. Lag time was found to be in the order I17 K mutant with lower hydrophobicity and higher net charge > G1I with higher hydrophobicity > melittin > cecropin P1. Cecropin P1 exhibited the highest rate of dye leakage followed by melittin, G1I, and I17 K. Size distribution and transmission electron microscopy (TEM) of liposomes exposed to peptides of different concentrations indicated pore formation with accompanied stretching of liposomes at low peptide concentrations for both melittin and cecropin P1. At much higher concentrations, however, size distribution indicated three peaks for both peptides. In both cases, TEM images show that the middle and small peaks are shown to be due to stretched liposome and broken stretched liposome respectively. For melittin, the large peak is due to peptide aggregates as well as aggregates of liposome. For cecropin P1, however, the large peak indicates cecropin P1 aggregates with solubilized lipids thus suggesting carpet mechanism.
Collapse
Affiliation(s)
- Yuan Lyu
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Maya Fitriyanti
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Ganesan Narsimhan
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
56
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 459] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
57
|
Yang Z, Weisshaar JC. HaloTag Assay Suggests Common Mechanism of E. coli Membrane Permeabilization Induced by Cationic Peptides. ACS Chem Biol 2018; 13:2161-2169. [PMID: 29812894 DOI: 10.1021/acschembio.8b00336] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Permeabilization of the Gram-negative bacterial outer membrane (OM) by antimicrobial peptides (AMPs) is the initial step enabling access of the AMP to the cytoplasmic membrane. We present a new single-cell, time-resolved fluorescence microscopy assay that reports on the permeabilization of the E. coli OM to small molecules with a time resolution of 3 s or better. When profluorophore JF646 (702 Da) crosses the outer membrane (OM) and gains access to the periplasm, it binds to the localized HaloTag protein (34 kDa) and fluoresces in a characteristic hollow spatial pattern. Previous work used the much larger periplasmic GFP (27 kDa) probe, which reports on OM permeabilization to globular proteins. We test the assay on three cationic agents: Gellman random β-peptide copolymer MM63:CHx37, human AMP LL-37, and synthetic hybrid AMP CM15. These results combined with the previous work suggest a unifying sequence of OM and cytoplasmic membrane (CM) events that may prove commonplace in the attack of cationic peptides on Gram-negative bacteria. The peptide initially induces gradual OM permeabilization to small molecules, likely including the peptide itself. After a lag time, abrupt permeabilization of the OM, abrupt resealing of the OM, and abrupt permeabilization of the CM (all to globular proteins) occur in rapid sequence. We propose a mechanism based on membrane curvature stress induced by the time-dependent differential binding of peptide to the outer leaflet of the OM and CM. The results provide fresh insight into the critical OM-permeabilization step leading to a variety of damaging downstream events.
Collapse
Affiliation(s)
- Zhilin Yang
- Department of Chemistry and Molecular Biophysics Program University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - James C. Weisshaar
- Department of Chemistry and Molecular Biophysics Program University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
58
|
Lozeau LD, Youssefian S, Rahbar N, Camesano TA, Rolle MW. Concentration-Dependent, Membrane-Selective Activity of Human LL37 Peptides Modified with Collagen Binding Domain Sequences. Biomacromolecules 2018; 19:4513-4523. [DOI: 10.1021/acs.biomac.8b00802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
59
|
Lyu Y, Xiang N, Zhu X, Narsimhan G. Potential of mean force for insertion of antimicrobial peptide melittin into a pore in mixed DOPC/DOPG lipid bilayer by molecular dynamics simulation. J Chem Phys 2018; 146:155101. [PMID: 28433027 DOI: 10.1063/1.4979613] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Antimicrobial peptides (AMPs) inactivate microorganisms by forming transmembrane pores in a cell membrane through adsorption and aggregation. Energetics of addition of an AMP to a transmembrane pore is important for evaluation of its formation and growth. Such information is essential for the characterization of pore forming ability of peptides in cell membranes. This study quantifies the potential of mean force through molecular dynamics (MD) simulation for the addition of melittin, a naturally occurring AMP, into a DOPC/DOPG mixed bilayer, a mimic of bacterial membrane, for different extents of insertion into either a bilayer or a pore consisting of three to six transmembrane peptides. The energy barrier for insertion of a melittin molecule into the bilayer was highest in the absence of transmembrane peptides and decreased for the number of transmembrane peptides from three to six, eventually approaching zero. The decrease in free energy for complete insertion of peptide was found to be higher for larger pore size. Water channel formation occurred only for insertion into pores consisting of three or more transmembrane peptides with the radius of water channel being larger for a larger number of transmembrane peptides. The structure of the pore was found to be paraboloid. The estimated free energy barrier for insertion of melittin into an ideal paraboloid pore accounting for different intermolecular interactions was consistent with MD simulation results. The results reported in this manuscript will be useful for the development of a model for nucleation of pores and a rational methodology for selection of synthetic antimicrobial peptides.
Collapse
Affiliation(s)
- Yuan Lyu
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Ning Xiang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Xiao Zhu
- Research Computing, Rosen Center for Advanced Computing, Purdue University, West Lafayette, Indiana 47907, USA
| | - Ganesan Narsimhan
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
60
|
Rajabnejad SH, Mokhtarzadeh A, Abnous K, Taghdisi SM, Ramezani M, Razavi BM. Targeted delivery of melittin to cancer cells by AS1411 anti-nucleolin aptamer. Drug Dev Ind Pharm 2018; 44:982-987. [PMID: 29325460 DOI: 10.1080/03639045.2018.1427760] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 12/17/2017] [Accepted: 01/10/2018] [Indexed: 01/14/2023]
Abstract
Melittin, a small water-soluble cationic amphipathic α-helical linear peptide, consisted of 26 amino acids, is the honeybee venom major constituent. Several reports have proved the lytic and apoptotic effects of melittin in several cancerous cell lines. In this study, we aimed to fabricate an AS1411 aptamer-melittin to specifically deliver melittin to nucleolin positive cells (A549). Melittin was covalently attached to antinucleolin aptamer (AS1411) and its toxicity in A549 (nucleolin positive) and L929 (nucleolin negative) was studied using MTT and Annexin V flow cytometry methods. Aptamer-melittin conjugate formation was confirmed by gel electrophoresis. Hemolytic effect of aptamer-melittin conjugate was compared to melittin alone. The aptamer-melittin conjugate showed efficient cell uptake and was more cytotoxic in A549 cells than melittin (p < .001). This complex was less toxic in control cells. Competitive inhibition assay confirmed that aptamer-melittin complex delivery occurred through receptor-ligand interaction on the cell surface. Moreover, aptamer-melittin showed a significantly less hemolytic activity as compared with free melittin. This study showed that melittin could be specifically delivered to A549 cells when it was covalently conjugated to antinucleolin aptamer (AS1411) in vitro. This system can reduce the cytotoxic effects of melittin on cells with no nucleolin receptor overexpression which comprise most of normal cells such as L929 cells.
Collapse
Affiliation(s)
- Seyed Hossein Rajabnejad
- a Pharmaceutical Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran
- b Research Institute of Food Science and Technology , Mashhad , Iran
| | - Ahad Mokhtarzadeh
- c Immunology Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
- d Department of Biotechnology , Higher Education Institute of Rab-Rashid , Tabriz , Iran
| | - Khalil Abnous
- a Pharmaceutical Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Seyed Mohammad Taghdisi
- e Targeted Drug Delivery Research Center, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mohammad Ramezani
- a Pharmaceutical Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Bibi Marjan Razavi
- e Targeted Drug Delivery Research Center, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
61
|
Abstract
Bacterial membranes represent an attractive target for the design of new antibiotics to combat widespread bacterial resistance to traditional inhibitor-based antibiotics. Understanding how antimicrobial peptides (AMPs) and other membrane-active agents attack membranes could facilitate the design of new, effective antimicrobials. AMPs, which are small, gene-encoded host defense proteins, offer a promising basis for the study of membrane-active antimicrobial agents. These peptides are cationic and amphipathic, spontaneously binding to bacterial membranes and inducing transmembrane permeability to small molecules. Yet there are often confusions surrounding the details of the molecular mechanisms of AMPs. Following the doctrine of structure-function relationship, AMPs are often viewed as the molecular scaffolding of pores in membranes. Instead we believe that the full mechanism of AMPs is understandable if we consider the interactions of AMPs with the whole membrane domain, where interactions induce structural transformations of the entire membrane, rather than forming localized molecular structures. We believe that it is necessary to consider the entire soft matter peptide-membrane system as it evolves through several distinct states. Accordingly, we have developed experimental techniques to investigate the state and structure of the membrane as a function of the bound peptide to lipid ratio, exactly as AMPs in solution progressively bind to the membrane and induce structural changes to the entire system. The results from these studies suggest that global interactions of AMPs with the membrane domain are of fundamental importance to understanding the antimicrobial mechanisms of AMPs.
Collapse
|
62
|
Lozeau LD, Rolle MW, Camesano TA. A QCM-D study of the concentration- and time-dependent interactions of human LL37 with model mammalian lipid bilayers. Colloids Surf B Biointerfaces 2018; 167:229-238. [PMID: 29660601 DOI: 10.1016/j.colsurfb.2018.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/05/2018] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
Abstract
The human antimicrobial peptide LL37 is promising as an alternative to antibiotics due to its biophysical interactions with charged bacterial lipids. However, its clinical potential is limited due to its interactions with zwitterionic mammalian lipids leading to cytotoxicity. Mechanistic insight into the LL37 interactions with mammalian lipids may enable rational design of less toxic LL37-based therapeutics. To this end, we studied concentration- and time-dependent interactions of LL37 with zwitterionic model phosphatidylcholine (PC) bilayers with quartz crystal microbalance with dissipation (QCM-D). LL37 mass adsorption and PC bilayer viscoelasticity changes were monitored by measuring changes in frequency (Δf) and dissipation (ΔD), respectively. The Voigt-Kelvin viscoelastic model was applied to Δf and ΔD to study changes in bilayer thickness and density with LL37 concentration. At low concentrations (0.10-1.00 μM), LL37 adsorbed onto bilayers in a concentration-dependent manner. Further analyses of Δf, ΔD and thickness revealed that peptide saturation on the bilayers was a threshold for interactions observed above 2.00 μM, interactions that were rapid, multi-step, and reached equilibrium in a concentration- and time-dependent manner. Based on these data, we proposed a model of stable transmembrane pore formation at 2.00-10.0 μM, or transition from a primarily lipid to a primarily protein film with a transmembrane pore formation intermediate state at concentrations of LL37 > 10 μM. The concentration-dependent interactions between LL37 and PC bilayers correlated with the observed concentration-dependent biological activities of LL37 (antimicrobial, immunomodulatory and non-cytotoxic at 0.1-1.0 μM, hemolytic and some cytotoxicity at 2.0-13 μM and cytotoxic at >13 μM).
Collapse
Affiliation(s)
- Lindsay D Lozeau
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Marsha W Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Terri A Camesano
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA.
| |
Collapse
|
63
|
Ahmed TAE, Hammami R. Recent insights into structure-function relationships of antimicrobial peptides. J Food Biochem 2018; 43:e12546. [PMID: 31353490 DOI: 10.1111/jfbc.12546] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 12/23/2022]
Abstract
The application of antimicrobial peptides (AMPs) in food preservation presents a promising alternative and offers many benefits, such as reducing the use of chemical preservatives, reducing food losses due to spoilage, and development of health-promoting food supplements. The biological activity of AMPs largely dependent on several physicochemical features including charge, the degree of helicity, hydrophobicity, and sequence. The present review provides an overview of the structural classification of AMPs emphasizing the importance of their structural features for biological activity, followed by the description of some antimicrobial mechanism of action. Despite the several hurdles that must be overcome for the exploitation of food-derived AMPs in drug discovery and food systems, the developments discussed in this review offer a taste of future trends in food and pharmaceutical applications of these intriguing molecules. PRACTICAL APPLICATIONS: Numerous AMPs have been reported in recent years as naturally present or released from food proteins upon enzymatic digestion during food processing, fermentation, or gastrointestinal transit. Particularly, food-released AMPs is a promising alternative to satisfy consumer demands for safe, ready-to-eat, extended shelf-life, fresh-tasting, and minimally processed foods, without chemical additives. The potential of several AMPs to inhibit foodborne pathogens is increasingly studied in various food matrices including dairy products, meat, fruits, and beverages. Although extensive progress has been made with respect to our understanding of AMPs structure/function, additional thorough investigation of the factors influencing peptide activity is required. The time has now come for the development of nutraceuticals and pharmaceutical products containing food-derived AMPs. Despite the several hurdles that must be overcome for the exploitation of AMPs, the features and developments discussed in this review offer a taste of future trends in food and pharmaceutical applications of these intriguing molecules.
Collapse
Affiliation(s)
- Tamer A E Ahmed
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications (SRTA-City), Alexandria, Egypt
| | - Riadh Hammami
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
64
|
Chang CC, Edwald E, Veatch S, Steel DG, Gafni A. Interactions of amyloid-β peptides on lipid bilayer studied by single molecule imaging and tracking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1616-1624. [PMID: 29580771 DOI: 10.1016/j.bbamem.2018.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 12/17/2022]
Abstract
The amyloid-β peptides (Aβ40 and Aβ42) feature prominently in the synaptic dysfunction and neuronal loss associated with Alzheimer's disease (AD). This has been proposed to be due either to interactions between Aβ and cell surface receptors affecting cell signaling, or to the formation of calcium-permeable channels in the membrane that disrupt calcium homeostasis. In both mechanisms the cell membrane is the primary cellular structure with which Aβ interacts. Aβ concentrations in human bodily fluids are very low (pM-nM) rendering studies of the size, composition, cellular binding sites and mechanism of action of the oligomers formed in vivo very challenging. Most studies, therefore, have utilized Aβ oligomers prepared at micromolar peptide concentrations, where Aβ forms oligomeric species which possess easily observable cell toxicity. Such toxicity has not been observed when nM concentrations of peptide are used in the experiment highlighting the importance of employing physiologically relevant peptide concentrations for the results to be of biological significance. In this paper single-molecule microscopy was used to monitor Aβ oligomer formation and diffusion on a supported lipid bilayer at nanomolar peptide concentrations. Aβ monomers, the dominant species in solution, tightly associate with the membrane and are highly mobile whereas trimers and higher-order oligomers are largely immobile. Aβ dimers exist in a mixture of mobile and immobile states. Oligomer growth on the membrane is more rapid for Aβ40 than for the more amyloidogenic Aβ42 but is largely inhibited for a 1:1 Aβ40:Aβ42 mixture. The mechanism underlying these Aβ40-Aβ42 interactions may feature in Alzheimer's pathology.
Collapse
Affiliation(s)
- Chun-Chieh Chang
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elin Edwald
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Duncan G Steel
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ari Gafni
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
65
|
Hasan M, Karal MAS, Levadnyy V, Yamazaki M. Mechanism of Initial Stage of Pore Formation Induced by Antimicrobial Peptide Magainin 2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3349-3362. [PMID: 29446954 DOI: 10.1021/acs.langmuir.7b04219] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Antimicrobial peptide magainin 2 forms pores in lipid bilayers, a property that is considered the main cause of its bactericidal activity. Recent data suggest that tension or stretching of the inner monolayer plays an important role in magainin 2-induced pore formation in lipid bilayers. Here, to elucidate the mechanism of magainin 2-induced pore formation, we investigated the effect on pore formation of asymmetric lipid distribution in two monolayers. First, we developed a method to prepare giant unilamellar vesicles (GUVs) composed of dioleoylphosphatidylglycerol (DOPG), dioleoylphosphatidylcholine (DOPC), and lyso-PC (LPC) in the inner monolayer and of DOPG/DOPC in the outer monolayer. We consider that in these GUVs, the lipid packing in the inner monolayer was larger than that in the outer monolayer. Next, we investigated the interaction of magainin 2 with these GUVs with an asymmetric distribution of LPC using the single GUV method, and found that the rate constant of magainin 2-induced pore formation, kp, decreased with increasing LPC concentration in the inner monolayer. We constructed a quantitative model of magainin 2-induced pore formation, whereby the binding of magainin 2 to the outer monolayer of a GUV induces stretching of the inner monolayer, causing pore formation. A theoretical equation defining kp as a function of magainin 2 surface concentration, X, reasonably explains the experimental relationship between kp and X. This model quantitatively explains the effect on kp of the LPC concentration in the inner monolayer. On the basis of these results, we discuss the mechanism of the initial stage of magainin 2-induced pore formation.
Collapse
Affiliation(s)
- Moynul Hasan
- Integrated Bioscience Section, Graduate School of Science and Technology , Shizuoka University , Shizuoka 422-8529 , Japan
| | - Mohammad Abu Sayem Karal
- Integrated Bioscience Section, Graduate School of Science and Technology , Shizuoka University , Shizuoka 422-8529 , Japan
| | - Victor Levadnyy
- Integrated Bioscience Section, Graduate School of Science and Technology , Shizuoka University , Shizuoka 422-8529 , Japan
- Theoretical Problem Center of Physico-Chemical Pharmacology , Russian Academy of Sciences , Kosugina, 4 , 117977 Moscow , Russia
| | - Masahito Yamazaki
- Integrated Bioscience Section, Graduate School of Science and Technology , Shizuoka University , Shizuoka 422-8529 , Japan
- Nanomaterials Research Division, Research Institute of Electronics , Shizuoka University , 836 Oya , Suruga-ku, Shizuoka 422-8529 , Japan
- Department of Physics, Faculty of Science , Shizuoka University , Shizuoka 422-8529 , Japan
| |
Collapse
|
66
|
Silva T, Claro B, Silva BFB, Vale N, Gomes P, Gomes MS, Funari SS, Teixeira J, Uhríková D, Bastos M. Unravelling a Mechanism of Action for a Cecropin A-Melittin Hybrid Antimicrobial Peptide: The Induced Formation of Multilamellar Lipid Stacks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2158-2170. [PMID: 29304549 DOI: 10.1021/acs.langmuir.7b03639] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An understanding of the mechanism of action of antimicrobial peptides is fundamental to the development of new and more active antibiotics. In the present work, we use a wide range of techniques (SANS, SAXD, DSC, ITC, CD, and confocal and electron microscopy) in order to fully characterize the interaction of a cecropin A-melittin hybrid antimicrobial peptide, CA(1-7)M(2-9), of known antimicrobial activity, with a bacterial model membrane of POPE/POPG in an effort to unravel its mechanism of action. We found that CA(1-7)M(2-9) disrupts the vesicles, inducing membrane condensation and forming an onionlike structure of multilamellar stacks, held together by the intercalated peptides. SANS and SAXD revealed changes induced by the peptide in the lipid bilayer thickness and the bilayer stiffening in a tightly packed liquid-crystalline lamellar phase. The analysis of the observed abrupt changes in the repeat distance upon the phase transition to the gel state suggests the formation of an Lγ phase. To the extent of our knowledge, this is the first time that the Lγ phase is identified as part of the mechanism of action of antimicrobial peptides. The energetics of interaction depends on temperature, and ITC results indicate that CA(1-7)M(2-9) interacts with the outer leaflet. This further supports the idea of a surface interaction that leads to membrane condensation and not to pore formation. As a result, we propose that this peptide exerts its antimicrobial action against bacteria through extensive membrane disruption that leads to cell death.
Collapse
Affiliation(s)
- Tânia Silva
- CIQ-UP - Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto , 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto , 4150-171 Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto , 4050-313 Porto, Portugal
| | - Bárbara Claro
- CIQ-UP - Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Bruno F B Silva
- INL - International Iberian Nanotechnology Laboratory , 4715-330 Braga, Portugal
| | - Nuno Vale
- UCIBIO/REQUIMTE, Laboratório de Farmacologia, Departamento de Ciências do Medicamento, Faculdade de Farmácia, Universidade do Porto , 4050-313 Porto, Portugal
| | - Paula Gomes
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Maria Salomé Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto , 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto , 4150-171 Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto , 4050-313 Porto, Portugal
| | | | - José Teixeira
- Laboratoire Léon Brillouin (CEA-CNRS) , CEA Saclay, 91191 Gif sur Yvette Cedex, France
| | - Daniela Uhríková
- Faculty of Pharmacy, Comenius University in Bratislava , 832 32 Bratislava, Slovak Republic
| | - Margarida Bastos
- CIQ-UP - Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| |
Collapse
|
67
|
Ultrastructural damage in Streptococcus mutans incubated with saliva and histatin 5. Arch Oral Biol 2018; 87:226-234. [PMID: 29328950 DOI: 10.1016/j.archoralbio.2018.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 12/15/2017] [Accepted: 01/07/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To study the ultrastructural alterations induced in Streptococcus mutans (ATCC 25175) incubated with saliva, saliva plus histatin 5 and histatin 5. METHODS S. mutans incubated with saliva histatin 5 or a combination of both were morphologically analyzed and counted. The results were expressed as (CFU)ml-1. Ultrastructural damage was evaluated by transmission electron microscopy. Ultrastructural localization of histatin 5 was examined using immunogold labeling. Apoptotic cell death was determined by flow cytometry (TUNEL). RESULTS A decrease in the bacteria numbers was observed after incubation with saliva, saliva with histatin 5 or histatin 5 compared to the control group (p<0.0001). Ultrastructural damage in S. mutans incubated with saliva was found in the cell wall. Saliva plus histatin 5 induced a cytoplasmic granular pattern and decreased the distance between the plasma membrane bilayers, also found after incubation with histatin 5, together with pyknotic nucleoids. Histatin 5 was localized on the bacterial cell walls, plasma membranes, cytoplasm and nucleoids. Apoptosis was found in the bacteria incubated with saliva (63.9%), saliva plus histatin 5 (71.4%) and histatin 5 (29.3%). Apoptosis in the control bacteria was 0.2%. CONCLUSIONS Antibacterial activity against S. mutans and the morphological description of damage induced by saliva and histatin 5 was demonstrated. Pyknotic nucleoids observed in S. mutans exposed to saliva, saliva plus histatin 5 and histatin 5 could be an apoptosis-like death mechanism. The knowledge of the damage generated by histatin 5 and its intracellular localization could favor the design of an ideal peptide as a therapeutic agent.
Collapse
|
68
|
Lee MT. Biophysical characterization of peptide–membrane interactions. ADVANCES IN PHYSICS: X 2018. [DOI: 10.1080/23746149.2017.1408428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Ming-Tao Lee
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
- Department of Physics, National Central University, Jhongli, Taiwan
| |
Collapse
|
69
|
Kalathingal M, Sumikama T, Mori T, Oiki S, Saito S. Structure and dynamics of solvent molecules inside the polytheonamide B channel in different environments: a molecular dynamics study. Phys Chem Chem Phys 2018; 20:3334-3348. [DOI: 10.1039/c7cp06299k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The β6.3-helical channel of the marine cytotoxic peptide, polytheonamide B (pTB), is examined in water, the POPC bilayer, and a 1 : 1 chloroform/methanol mixture using all-atom molecular dynamics simulations.
Collapse
Affiliation(s)
- Mahroof Kalathingal
- Institute for Molecular Science
- Myodaiji
- Okazaki
- Aichi 444-8585
- Japan & School of Physical Sciences
| | - Takashi Sumikama
- Department of Molecular Physiology and Biophysics
- Faculty of Medical Sciences
- University of Fukui
- Fukui 910-1193
- Japan
| | - Toshifumi Mori
- Institute for Molecular Science
- Myodaiji
- Okazaki
- Aichi 444-8585
- Japan & School of Physical Sciences
| | - Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics
- Faculty of Medical Sciences
- University of Fukui
- Fukui 910-1193
- Japan
| | - Shinji Saito
- Institute for Molecular Science
- Myodaiji
- Okazaki
- Aichi 444-8585
- Japan & School of Physical Sciences
| |
Collapse
|
70
|
Karmakar S, Maity P, Halder A. Charge-Driven Interaction of Antimicrobial Peptide NK-2 with Phospholipid Membranes. ACS OMEGA 2017; 2:8859-8867. [PMID: 30023594 PMCID: PMC6044622 DOI: 10.1021/acsomega.7b01222] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/28/2017] [Indexed: 05/24/2023]
Abstract
NK-2, derived from a cationic core region of NK-lysin, displays antimicrobial activity toward negatively charged bacterial membranes. We have studied the interaction of NK-2 with various phospholipid membranes, using a variety of experimental techniques, such as, isothermal titration calorimetry (ITC), ζ potential, and dynamic light scattering. As bacteria mimicking membranes, we have chosen large unilamellar vesicles (LUVs) composed of negatively charged phospholipid and neutral phospholipids. ITC and ζ potential results show the stronger binding affinity of NK-2 to negatively charged membranes than to neutral membranes. Saturation of the isotherm, obtained from ITC, at a given lipid to NK-2 ratio, was found to be consistent with the charge compensation, determined from ζ potential. A surface partition model with electrostatic contribution was used to estimate the intrinsic binding constant and other thermodynamical parameters of binding kinetics of NK-2. The size distribution of negatively charged LUV in the presence of NK-2 was found to increase drastically, indicating the presence of large aggregates. Such a large aggregate has not been observed in neutral membranes, which supports the ITC and ζ potential results.
Collapse
|
71
|
Lee EY, Lee MW, Fulan BM, Ferguson AL, Wong GCL. What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning? Interface Focus 2017; 7:20160153. [PMID: 29147555 DOI: 10.1098/rsfs.2016.0153] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Antimicrobial peptides (AMPs) are a diverse class of well-studied membrane-permeating peptides with important functions in innate host defense. In this short review, we provide a historical overview of AMPs, summarize previous applications of machine learning to AMPs, and discuss the results of our studies in the context of the latest AMP literature. Much work has been recently done in leveraging computational tools to design new AMP candidates with high therapeutic efficacies for drug-resistant infections. We show that machine learning on AMPs can be used to identify essential physico-chemical determinants of AMP functionality, and identify and design peptide sequences to generate membrane curvature. In a broader scope, we discuss the implications of our findings for the discovery of membrane-active peptides in general, and uncovering membrane activity in new and existing peptide taxonomies.
Collapse
Affiliation(s)
- Ernest Y Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Michelle W Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Benjamin M Fulan
- Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew L Ferguson
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
72
|
Smart M, Rajagopal A, Liu WK, Ha BY. Opposing effects of cationic antimicrobial peptides and divalent cations on bacterial lipopolysaccharides. Phys Rev E 2017; 96:042405. [PMID: 29347628 DOI: 10.1103/physreve.96.042405] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Indexed: 12/15/2022]
Abstract
The permeability of the bacterial outer membrane, enclosing Gram-negative bacteria, depends on the interactions of the outer, lipopolysaccharide (LPS) layer, with surrounding ions and molecules. We present a coarse-grained model for describing how cationic amphiphilic molecules (e.g., antimicrobial peptides) interact with and perturb the LPS layer in a biologically relevant medium, containing monovalent and divalent salt ions (e.g., Mg^{2+}). In our approach, peptide binding is driven by electrostatic and hydrophobic interactions and is assumed to expand the LPS layer, eventually priming it for disruption. Our results suggest that in parameter ranges of biological relevance (e.g., at micromolar concentrations) the antimicrobial peptide magainin 2 effectively disrupts the LPS layer, even though it has to compete with Mg^{2+} for the layer. They also show how the integrity of LPS is restored with an increasing concentration of Mg^{2+}. Using the approach, we make a number of predictions relevant for optimizing peptide parameters against Gram-negative bacteria and for understanding bacterial strategies to develop resistance against cationic peptides.
Collapse
Affiliation(s)
- Matthew Smart
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Aruna Rajagopal
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Wing-Ki Liu
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Bae-Yeun Ha
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
73
|
Lipid topology and electrostatic interactions underpin lytic activity of linear cationic antimicrobial peptides in membranes. Proc Natl Acad Sci U S A 2017; 114:E8324-E8332. [PMID: 28931578 DOI: 10.1073/pnas.1704489114] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Linear cationic antimicrobial peptides are a diverse class of molecules that interact with a wide range of cell membranes. Many of these peptides disrupt cell integrity by forming membrane-spanning pores that ultimately lead to their death. Despite these peptides high potency and ability to evade acquired bacterial drug resistance, there is a lack of knowledge on their selectivity and activity mechanisms. Such an understanding would provide an informative framework for rational design and could lead to potential antimicrobial therapeutic targets. In this paper, we use a high-throughput microfluidic platform as a quantitative screen to assess peptide activity and selectivity by precisely controlling exposure to vesicles with lipid compositions that mimic both bacterial and mammalian cell membranes. We explore the complexity of the lipid-peptide interactions governing membrane-disruptive behaviors and establish a link between peptide pore formation and both lipid-peptide charge and topological interactions. We propose a topological model for linear antimicrobial peptide activity based on the increase in membrane strain caused by the continuous adsorption of peptides to the target vesicle coupled with the effects of both lipid-peptide charge and topographical interactions. We also show the validity of the proposed model by investigating the activity of two prototypical linear cationic peptides: magainin 2 amide (which is selective for bacterial cells) and melittin (which targets both mammalian and bacterial cells indiscriminately). Finally, we propose the existence of a negative feedback mechanism that governs the pore formation process and controls the membrane's apparent permeability.
Collapse
|
74
|
Peña‐Blanco A, García‐Sáez AJ. Bax, Bak and beyond — mitochondrial performance in apoptosis. FEBS J 2017; 285:416-431. [DOI: 10.1111/febs.14186] [Citation(s) in RCA: 628] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/12/2017] [Accepted: 07/26/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Aida Peña‐Blanco
- Interfaculty Institute of Biochemistry Tübingen University Germany
| | - Ana J. García‐Sáez
- Interfaculty Institute of Biochemistry Tübingen University Germany
- Max‐Planck Institute for Intelligent Systems Stuttgart Germany
| |
Collapse
|
75
|
The interaction of antimicrobial peptides with membranes. Adv Colloid Interface Sci 2017; 247:521-532. [PMID: 28606715 DOI: 10.1016/j.cis.2017.06.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/30/2017] [Accepted: 06/03/2017] [Indexed: 11/22/2022]
Abstract
The interaction of antimicrobial peptides (AMPs) with biological membranes is in the focus of research since several years, and the most important features and modes of action of AMPs are described in this review. Different model systems can be used to understand such interactions on a molecular level. As a special example, we use 2D and 3D model membranes to investigate the interaction of the natural cyclic (Ar-1) and the synthetic linear molecule arenicin with selected amphiphiles and phospholipids. A panoply of sophisticated methods has been used to analyze these interactions on a molecular level. As a general trend, one observes that cationic antimicrobial peptides do not interact with cationic amphiphiles due to electrostatic repulsion, whereas with non-ionic amphiphiles, the peptide interacts only with aggregated systems and not with monomers. The interaction is weak (hydrophobic interaction) and requires an aggregated state with a large surface (cylindrical micelles). Anionic amphiphiles (as monomers or micelles) exhibit strong electrostatic interactions with the AMPs leading to changes in the peptide conformation. Both types of peptides interact strongly with anionic phospholipid monolayers with a preference for fluid layers. The interaction with a zwitterionic layer is almost absent for the linear derivative but measurable for the cyclic arenicin Ar-1. This is in accordance with biological experiments showing that Ar-1 forms well defined stable pores in phospholipid and lipopolysaccharide (LPS) membranes (cytotoxicity). The synthetic linear arenicin, which is less cytotoxic, does not affect the mammalian lipids to such an extent. The interaction of arenicin with bacterial membrane lipids is dominated by hydrogen bonding together with electrostatic and hydrophobic interactions.
Collapse
|
76
|
Simulations of Membrane-Disrupting Peptides I: Alamethicin Pore Stability and Spontaneous Insertion. Biophys J 2017; 111:1248-1257. [PMID: 27653483 DOI: 10.1016/j.bpj.2016.08.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 11/23/2022] Open
Abstract
An all-atom molecular dynamics simulation of the archetype barrel-stave alamethicin (alm) pore in a 1,2-dioleoyl-sn-glycero-3-phosphocholine bilayer at 313 K indicates that ∼7 μs is required for equilibration of a preformed 6-peptide pore; the pore remains stable for the duration of the remaining 7 μs of the trajectory, and the structure factors agree well with experiment. A 5 μs simulation of 10 surface-bound alm peptides shows significant peptide unfolding and some unbinding, but no insertion. Simulations at 363 and 413 K with a -0.2 V electric field yield peptide insertion in 1 μs. Insertion is initiated by the folding of residues 3-11 into an α-helix, and mediated by membrane water or by previously inserted peptides. The stability of five alm pore peptides at 413 K with a -0.2 V electric field demonstrates a significant preference for a transmembrane orientation. Hence, and in contrast to the cationic antimicrobial peptide described in the following article, alm shows a strong preference for the inserted over the surface-bound state.
Collapse
|
77
|
Perrin BS, Fu R, Cotten ML, Pastor RW. Simulations of Membrane-Disrupting Peptides II: AMP Piscidin 1 Favors Surface Defects over Pores. Biophys J 2017; 111:1258-1266. [PMID: 27653484 DOI: 10.1016/j.bpj.2016.08.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/29/2016] [Accepted: 08/10/2016] [Indexed: 11/29/2022] Open
Abstract
Antimicrobial peptides (AMPs) that disrupt bacterial membranes are promising therapeutics against the growing number of antibiotic-resistant bacteria. The mechanism of membrane disruption by the AMP piscidin 1 was examined with multimicrosecond all-atom molecular dynamics simulations and solid-state NMR spectroscopy. The primary simulation was initialized with 20 peptides in four barrel-stave pores in a fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol bilayer. The four pores relaxed to toroidal by 200 ns, only one porelike structure containing two transmembrane helices remained at 26 μs, and none of the 18 peptides released to the surface reinserted to form pores. The simulation was repeated at 413 K with an applied electric field and all peptides were surface-bound by 200 ns. Trajectories of surface-bound piscidin with and without applied fields at 313 and 413 K and totaling 6 μs show transient distortions of the bilayer/water interface (consistent with (31)P NMR), but no insertion to transmembrane or pore states. (15)N chemical shifts confirm a fully surface-bound conformation. Taken together, the simulation and experimental results imply that transient defects rather than stable pores are responsible for membrane disruption by piscidin 1, and likely other AMPs.
Collapse
Affiliation(s)
- B Scott Perrin
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Tallahassee, Florida
| | - Myriam L Cotten
- Department of Applied Science, The College of William & Mary, Williamsburg, Virginia
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
78
|
Abstract
Aurein 1.2 is a potent antimicrobial peptide secreted by frog Litoria aurea. As a short membrane-active peptide with only 13 amino acids in sequence, it has been found to be residing on the surface of lipid bilayer and permeabilizing bacterial membranes at high concentration. However, the detail at the molecular level is largely unknown. In this study, we investigated the action of Aurein 1.2 in charged lipid bilayers composed of DMPC/DMPG. Oriented Circular Dichroism results showed that the peptide was on the surface of lipid bilayer regardless of the charged lipid ratio. Only at a very high peptide-to-lipid ratio (~1/10), the peptide became perpendicular to the bilayer, however no pore was detected by neutron in-plane scattering. To further understand how it interacted with charged lipid bilayers, we employed Small Angle Neutron Scattering to probe lipid distribution across bilayer leaflets in lipid vesicles. The results showed that Aurein 1.2 interacted strongly with negatively charged DMPG, causing strong asymmetry in lipid bilayer. At high concentration, while the vesicles were intact, we found additional structure feature on the bilayer. Our study provides a glimpse into how Aurein 1.2 disturbs anionic lipid-containing membranes without pore formation.
Collapse
|
79
|
Das D, Pal SK. Liquid Crystal Unveiled Interactions between Melittin and Phospholipids at Aqueous-Liquid Crystal Interface. ChemistrySelect 2017. [DOI: 10.1002/slct.201700604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dibyendu Das
- Department of Chemical Sciences; Indian Institute of Science Education and Research Mohali (IISERM), Sector-81, SAS Nagar, Knowledge City; Manauli- 140306 India
| | - Santanu Kumar Pal
- Department of Chemical Sciences; Indian Institute of Science Education and Research Mohali (IISERM), Sector-81, SAS Nagar, Knowledge City; Manauli- 140306 India
| |
Collapse
|
80
|
Rangel M, Castro FFDS, Mota-Lima LD, Clissa PB, Martins DB, Cabrera MPDS, Mortari MR. Polydim-I antimicrobial activity against MDR bacteria and its model membrane interaction. PLoS One 2017; 12:e0178785. [PMID: 28570651 PMCID: PMC5453574 DOI: 10.1371/journal.pone.0178785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/18/2017] [Indexed: 01/26/2023] Open
Abstract
The rapid spread of multi-drug resistant pathogens represents a serious threat to public health, considering factors such as high mortality rates, treatment restrictions and high prevalence of multi-drug resistant bacteria in the hospital environment. Antimicrobial peptides (AMPs) may exhibit powerful antimicrobial activity against different and diverse microorganisms, also presenting the advantage of absence or low toxicity towards animal cells. In this study, the evaluation of the antimicrobial activity against multi-drug resistant bacteria of a recently described AMP from wasp, Polydim-I, was performed. Polydim-I presented activity against standard strains (non-carriers of multi-resistant genes) that are susceptible to commercial antimicrobials, and also against multi-drug resistant strains at concentrations bellow 1μg/ml (0.41 μM). This is a rather low concentration among those reported for AMPs. At this concentration we found out that Polydim-I inhibits almost 100% of the tested pathogens growth, while with the ATCC strains the minimum inhibitory concentration (MIC100) is 400 times higher. Also, in relation to in vitro activity of conventional drugs against multi-drug resistant bacteria strains, Polydim-I is almost 10 times more efficient and with broader spectrum. Cationic AMPs are known as multi-target compounds and specially for targeting the phospholipid matrix of bacterial membranes. Exploring the interactions of Polydim-I with lipid bilayers, we have confirmed that this interaction is involved in the mechanism of action. Circular dichroism experiments showed that Polydim-I undergoes a conformational transition from random coil to a mostly helical conformation in the presence of membrane mimetic environments. Zeta potential measurements confirmed the binding and partial charge neutralization of anionic asolectin vesicles, and also suggested a possible aggregation of peptide molecules. FTIR experiments confirmed that some peptide aggregation occurs, which is minimized in the presence of strongly anionic micelles of sodium dodecyl sulfate. Also, Polydim-I induced channel-like structures formation to asolectin lipid bilayers, as demonstrated in the electrophysiology experiments. We suggest that cationic Polydim-I targets the membrane lipids due to electrostatic attraction, partially accumulates, neutralizing the opposite charges and induces pore formation. Similar mechanism of action has already been suggested for other peptides from wasp venoms, especially mastoparans.
Collapse
Affiliation(s)
- Marisa Rangel
- Immunopathology Laboratory, Butantan Institute, Sao Paulo-SP, Brazil
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília-DF, Brazil
- * E-mail:
| | - Fabíola Fernandes dos Santos Castro
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília-DF, Brazil
| | | | | | - Danubia Batista Martins
- Departamento de Física, Universidade Estadual Paulista, UNESP, São José do Rio Preto, SP, Brazil
| | - Marcia Perez dos Santos Cabrera
- Departamento de Física, Universidade Estadual Paulista, UNESP, São José do Rio Preto, SP, Brazil
- Departamento de Química e Ciências Ambientais, Universidade Estadual Paulista, UNESP, São José do Rio Preto, SP, Brazil
| | - Marcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília-DF, Brazil
| |
Collapse
|
81
|
Wu X, Wei PH, Zhu X, Wirth MJ, Bhunia A, Narsimhan G. Effect of immobilization on the antimicrobial activity of a cysteine-terminated antimicrobial Peptide Cecropin P1 tethered to silica nanoparticle against E. coli O157:H7 EDL933. Colloids Surf B Biointerfaces 2017; 156:305-312. [PMID: 28544962 DOI: 10.1016/j.colsurfb.2017.05.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 01/08/2023]
Abstract
Antimicrobial peptides (AMPs) have the ability to penetrate the cell membrane, form pores which eventually lead to cell death. Immobilization of AMP on nanoparticles can play a major role in antimicrobial materials, biosensors for pathogen detection and in food safety. The minimum inhibitory concentration (MIC) of free Cecropin P1 (CP1, sequence SWLSTAKKLENSAKKRLSEGIAIAIQGGPR) and adsorbed on silica nanoparticle against E. coli O157:H7 EDL933 were 0.78μg/ml. This was found to be consistent with preservation of α-helical secondary structure of CP1 upon adsorption as indicated by circular dichroism (CD). Cysteine-terminus modified Cecropin P1 (CP1C, sequence SWLSTAKKLENSAKKRLSEGIAIAIQGGPRC) was chemically immobilized onto silica nanoparticles with maleimide-PEG-NHS ester cross-linkers of different PEG chain lengths. The antimicrobial activity of CP1C in solution and adsorbed on silica nanoparticles against E. coli O157:H7 EDL933 were found to be the same as those for CP1. However, tethered CP1C exhibited much higher MIC of 24.38, 37.55 and 109.82μg/ml for (PEG)20, (PEG)6 and (PEG)2 linkers respectively. The antimicrobial activity of CP1C tethered to silica nanoparticles with (PEG)20 linker was found to be lower for lower surface coverage with MIC values being 86.06, 36.89, 24.38 and 17.84μg/ml for surface coverage of 12.3%, 24.4%, 52.8% and 83.8% respectively. All atom MD simulation of 1:3 DOPG/DOPC mixed membrane interacting with free and PEGlyated CP1C indicated that presence of PEG linker prevented CP1C from interacting with the bilayer which may explain the loss of antimicrobial activity of tethered CP1C.
Collapse
Affiliation(s)
- Xi Wu
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Pei-Hsun Wei
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Xiao Zhu
- Department of Research Computing, Purdue University, West Lafayette, IN 47907, United States
| | - Mary J Wirth
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Arun Bhunia
- Department of Food Science, Purdue University, West Lafayette, IN 47907, United States
| | - Ganesan Narsimhan
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
82
|
Baradaran M, Jalali A, soorki MN, Galehdari H. A Novel Defensin-Like Peptide Associated with Two Other New Cationic Antimicrobial Peptides in Transcriptome of the Iranian Scorpion Venom. IRANIAN BIOMEDICAL JOURNAL 2017; 21:190-6. [PMID: 27794585 PMCID: PMC5392222 DOI: 10.18869/acadpub.ibj.21.3.190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 06/27/2016] [Accepted: 07/02/2016] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Scorpion venom is a source of bioactive peptides, and some antimicrobial peptides (AMPs) have been found in the venom gland of scorpions. Therefore, the discovery of new anti-infective agents is an essential need to overcome the problem of antibiotic resistance of clinical isolates. Here, we describe three new cationic AMPs, including meuVAP-6, meuAP-18-1, and meuPep34 from the venom gland of the Iranian scorpion, Mesobuthus eupeus. METHODS The cDNA sequences encoding all the three peptides were obtained from the cDNA library of scorpion venom gland and were deposited in the GenBank database. RESULTS MeuVAP-6 and meuAP-18-1 are non-disulphide-bridged antimicrobial peptides, while meuPep34 is a cysteine-rich defensin-like peptide. DISCUSSION All three identified AMPs are rich in arginine and tryptophan. The overall results from the length, net charge, and hydrophobicity index suggested that meuPep34 could be the most active AMPs with the potential ability of biofilm inhibition. The data from molecular characterization of identified AMPs can provide a platform for further investigations in the drug design.
Collapse
Affiliation(s)
- Masoumeh Baradaran
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Jalali
- Department of Pharmacology and Toxicology, Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Naderi soorki
- Department of Genetics, Sciences Faculty, Shahid Chamran University, Ahvaz, Iran
| | - Hamid Galehdari
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
83
|
Meikle TG, Zabara A, Waddington LJ, Separovic F, Drummond CJ, Conn CE. Incorporation of antimicrobial peptides in nanostructured lipid membrane mimetic bilayer cubosomes. Colloids Surf B Biointerfaces 2017; 152:143-151. [DOI: 10.1016/j.colsurfb.2017.01.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/27/2016] [Accepted: 01/03/2017] [Indexed: 11/28/2022]
|
84
|
Hsieh MH, Shiau YS, Liou HH, Jeng US, Lee MT, Lou KL. Measurement of Hanatoxin-Induced Membrane Thinning with Lamellar X-ray Diffraction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2885-2889. [PMID: 28260386 DOI: 10.1021/acs.langmuir.7b00064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Membrane perturbation induced by cysteine-rich peptides is a crucial biological phenomenon but scarcely investigated, in particular with effective biophysical-chemical methodologies. Hanatoxin (HaTx), a 35-residue polypeptide from spider venom, works as an inhibitor of drk1 (Kv2.1) channels, most likely by interacting with the voltage-sensor. However, how this water-soluble peptide modifies the gating remains poorly understood, as the voltage sensor was proposed to be deeply embedded within the bilayer. To see how HaTx interacts with phospholipid bilayers, we observe the toxin-induced perturbation on POPC/DOPG-membranes through measurements of the change in membrane thickness. Lamellar X-ray diffraction (LXD) was applied on stacked planar bilayers in the near-fully hydrated state. The results provide quantitative evidence for the membrane thinning in a concentration-dependent manner, leading to novel and direct combinatory approaches by discovering how to investigate such a biologically relevant interaction between gating-modifier toxins and phospholipid bilayers.
Collapse
Affiliation(s)
- Meng-Hsuan Hsieh
- Institute of Biotechnology, National Taiwan University , Taipei 10672, Taiwan
| | - Yu-Shuan Shiau
- Membrane Protein Research Core, Center for Biotechnology, National Taiwan University , Taipei 10672, Taiwan
| | - Horng-Huei Liou
- Division of Neurology, National Taiwan University Hospital , Taipei 10002, Taiwan
- Institute of Pharmacology, National Taiwan University , Taipei 10051, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center , Hsinchu 30076, Taiwan
| | - Ming-Tao Lee
- National Synchrotron Radiation Research Center , Hsinchu 30076, Taiwan
- Department of Physics, National Central University , Jhongli 32001, Taiwan
| | - Kuo-Long Lou
- Institute of Biotechnology, National Taiwan University , Taipei 10672, Taiwan
- Membrane Protein Research Core, Center for Biotechnology, National Taiwan University , Taipei 10672, Taiwan
| |
Collapse
|
85
|
Hanatoxin inserts into phospholipid membranes without pore formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:917-923. [PMID: 28143758 DOI: 10.1016/j.bbamem.2017.01.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/21/2017] [Accepted: 01/26/2017] [Indexed: 11/23/2022]
Abstract
Hanatoxin (HaTx), a 35-residue polypeptide from spider venom, functions as an inhibitor of Kv2.1 channels by interacting with phospholipids prior to affecting the voltage-sensor. However, how this water-soluble peptide modifies the gating remains poorly understood, as the voltage-sensor is deeply embedded within the bilayer. To determine how HaTx interacts with phospholipid bilayers, in this study, we examined the toxin-induced partitioning of liposomal membranes. HPLC-results from high-speed spin-down vesicles with HaTx demonstrated direct binding. Dynamic light scattering (DLS) and leakage assay results further indicated that neither membrane pores nor membrane fragmentations were observed in the presence of HaTx. To clarify the binding details, Langmuir trough experiments were performed with phospholipid monolayers by mimicking the external leaflet of membrane bilayers, indicating the involvement of acyl chains in such interactions between HaTx and phospholipids. Our current study thus describes the interaction pattern of HaTx with vesicle membranes, defining a membrane-partitioning mechanism for peptide insertion involving the membrane hydrocarbon core without pore formation.
Collapse
|
86
|
Woo SY, Lee H. Effect of lipid shape on toroidal pore formation and peptide orientation in lipid bilayers. Phys Chem Chem Phys 2017; 19:21340-21349. [DOI: 10.1039/c7cp02708g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Disordered and thinner bilayer w/lyso-lipids; tilted orientation of peptides in bilayer w/lyso-lipids; toroidal pores stabilized by peptides and lyso-lipids.
Collapse
Affiliation(s)
- Sun Young Woo
- Department of Chemical Engineering
- Dankook University
- Yongin
- South Korea
| | - Hwankyu Lee
- Department of Chemical Engineering
- Dankook University
- Yongin
- South Korea
| |
Collapse
|
87
|
Ilton M, DiMaria C, Dalnoki-Veress K. Direct Measurement of the Critical Pore Size in a Model Membrane. PHYSICAL REVIEW LETTERS 2016; 117:257801. [PMID: 28036217 DOI: 10.1103/physrevlett.117.257801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Indexed: 05/27/2023]
Abstract
We study pore nucleation in a model membrane system, a freestanding polymer film. Nucleated pores smaller than a critical size close, while pores larger than the critical size grow. Holes of varying size were purposefully prepared in liquid polymer films, and their evolution in time was monitored using optical and atomic force microscopy to extract a critical radius. The critical radius scales linearly with film thickness for a homopolymer film. The results agree with a simple model which takes into account the energy cost due to surface area at the edge of the pore. The energy cost at the edge of the pore is experimentally varied by using a lamellar-forming diblock copolymer membrane. The underlying molecular architecture causes increased frustration at the pore edge resulting in an enhanced cost of pore formation.
Collapse
Affiliation(s)
- Mark Ilton
- Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Christian DiMaria
- Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Kari Dalnoki-Veress
- Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
- Laboratoire de Physico-Chimie Théorique, UMR CNRS Gulliver 7083, ESPCI ParisTech, PSL Research University, 75005 Paris, France
| |
Collapse
|
88
|
Cosentino K, García-Sáez AJ. Bax and Bak Pores: Are We Closing the Circle? Trends Cell Biol 2016; 27:266-275. [PMID: 27932064 DOI: 10.1016/j.tcb.2016.11.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/28/2016] [Accepted: 11/07/2016] [Indexed: 01/19/2023]
Abstract
Bax and its homolog Bak are key regulators of the mitochondrial pathway of apoptosis. On cell stress Bax and Bak accumulate at distinct foci on the mitochondrial surface where they undergo a conformational change, oligomerize, and mediate cytochrome c release, leading to cell death. The molecular mechanisms of Bax and Bak assembly and mitochondrial permeabilization have remained a longstanding question in the field. Recent structural and biophysical studies at several length scales have shed light on key aspects of Bax and Bak function that have shifted how we think this process occurs. These discoveries reveal an unexpected molecular mechanism in which Bax (and likely Bak) dimers assemble into oligomers with an even number of molecules that fully or partially delineate pores of different sizes to permeabilize the mitochondrial outer membrane (MOM) during apoptosis.
Collapse
Affiliation(s)
- Katia Cosentino
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany; Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, Germany.
| |
Collapse
|
89
|
Prince A, Sandhu P, Ror P, Dash E, Sharma S, Arakha M, Jha S, Akhter Y, Saleem M. Lipid-II Independent Antimicrobial Mechanism of Nisin Depends On Its Crowding And Degree Of Oligomerization. Sci Rep 2016; 6:37908. [PMID: 27897200 PMCID: PMC5126574 DOI: 10.1038/srep37908] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023] Open
Abstract
Nisin inhibits bacterial growth by generating pores in cell membrane and interrupting cell-wall biosynthesis through specific lipid II interaction. However, the role of the hinge region and C-terminus residues of the peptide in antibacterial action of nisin is largely unknown. Here, using molecular dynamics simulations and experimental approach, we report that at high concentration regimes of nisin, interaction with phospholipids may equally deform the bacterial cell membranes even under significantly varying amounts of lipid-II. Membrane thinning, destabilization and decrease in lipid density depend on the degree of oligomerization of nisin. Growth kinetics of Bacillus subtilis and Escherichia coli interestingly show recovery by extended lag phase under low concentrations of nisin treatment while high concentrations of nisin caused decrease in cell viability as recorded by striking reduction in membrane potential and surface area. The significant changes in the dipole potential and fluorescence anisotropy were observed in negatively charged membranes in the absence of lipid-II with increasing concentration of nisin. The identical correlation of cell viability, membrane potential dissipation and morphology with the concentration regime of nisin, in both Bacillus subtilis (lipid II rich) and Escherichia coli (lipid II impoverished), hints at a non-specific physical mechanism where degree of membrane deformation depends on degree of crowding and oligomerization of nisin.
Collapse
Affiliation(s)
- Ashutosh Prince
- Department of Life Sciences, National Institute of Technology, Rourkela, India
| | - Padmani Sandhu
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, India
| | - Pankaj Ror
- Department of Life Sciences, National Institute of Technology, Rourkela, India
| | - Eva Dash
- Department of Life Sciences, National Institute of Technology, Rourkela, India
| | - Shingarika Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, India
| | - Manoranjan Arakha
- Department of Life Sciences, National Institute of Technology, Rourkela, India
| | - Suman Jha
- Department of Life Sciences, National Institute of Technology, Rourkela, India
| | - Yusuf Akhter
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, India
| | - Mohammed Saleem
- Department of Life Sciences, National Institute of Technology, Rourkela, India
| |
Collapse
|
90
|
Xiang N, Lyu Y, Zhu X, Bhunia AK, Narsimhan G. Methodology for identification of pore forming antimicrobial peptides from soy protein subunits β-conglycinin and glycinin. Peptides 2016; 85:27-40. [PMID: 27612614 DOI: 10.1016/j.peptides.2016.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 01/07/2023]
Abstract
Antimicrobial peptides (AMPs) inactivate microbial cells through pore formation in cell membrane. Because of their different mode of action compared to antibiotics, AMPs can be effectively used to combat drug resistant bacteria in human health. AMPs can also be used to replace antibiotics in animal feed and immobilized on food packaging films. In this research, we developed a methodology based on mechanistic evaluation of peptide-lipid bilayer interaction to identify AMPs from soy protein. Production of AMPs from soy protein is an attractive, cost-saving alternative for commercial consideration, because soy protein is an abundant and common protein resource. This methodology is also applicable for identification of AMPs from any protein. Initial screening of peptide segments from soy glycinin (11S) and soy β-conglycinin (7S) subunits was based on their hydrophobicity, hydrophobic moment and net charge. Delicate balance between hydrophilic and hydrophobic interactions is necessary for pore formation. High hydrophobicity decreases the peptide solubility in aqueous phase whereas high hydrophilicity limits binding of the peptide to the bilayer. Out of several candidates chosen from the initial screening, two peptides satisfied the criteria for antimicrobial activity, viz. (i) lipid-peptide binding in surface state and (ii) pore formation in transmembrane state of the aggregate. This method of identification of antimicrobial activity via molecular dynamics simulation was shown to be robust in that it is insensitive to the number of peptides employed in the simulation, initial peptide structure and force field. Their antimicrobial activity against Listeria monocytogenes and Escherichia coli was further confirmed by spot-on-lawn test.
Collapse
Affiliation(s)
- Ning Xiang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Yuan Lyu
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Xiao Zhu
- Research Computing, Rosen Center for Advanced Computing, Purdue University, West Lafayette, IN 47907, United States
| | - Arun K Bhunia
- Department of Food Science, Purdue University, West Lafayette, IN 47907, United States; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, United States
| | - Ganesan Narsimhan
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
91
|
Therrien A, Lafleur M. Melittin-Induced Lipid Extraction Modulated by the Methylation Level of Phosphatidylcholine Headgroups. Biophys J 2016; 110:400-410. [PMID: 26789763 DOI: 10.1016/j.bpj.2015.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 01/06/2023] Open
Abstract
Protein- and peptide-induced lipid extraction from membranes is a critical process for many biological events, including reverse cholesterol transport and sperm capacitation. In this work, we examine whether such processes could display specificity for some lipid species. Melittin, the main component of dry bee venom, was used as a model amphipathic α-helical peptide. We specifically determined the modulation of melittin-induced lipid extraction from membranes by the change of the methylation level of phospholipid headgroups. Phosphatidylcholine (PC) bilayers were demethylated either by substitution with phosphatidylethanolamine (PE) or chemically by using mono- and dimethylated PE. It is shown that demethylation reduces the association of melittin with membranes, likely because of the resulting tighter chain packing of the phospholipids, which reduces the capacity of the membranes to accommodate inserted melittin. This reduced binding of the peptide is accompanied by an inhibition of the lipid extraction caused by melittin. We demonstrate that melittin selectively extracts PC from PC/PE membranes. This selectivity is proposed to be a consequence of a PE depletion in the surroundings of bound melittin to minimize disruption of the interphospholipid interactions. The resulting PC-enriched vicinity of melittin would be responsible for the observed formation of PC-enriched lipid/peptide particles resulting from the lipid efflux. These findings reveal that modulating the methylation level of phospholipid headgroups is a simple way to control the specificity of lipid extraction from membranes by peptides/proteins and thereby modulate the lipid composition of the membranes.
Collapse
Affiliation(s)
- Alexandre Therrien
- Department of Chemistry, Center for Self-Assembled Chemical Structures, Université de Montréal, Montréal, Québec, Canada
| | - Michel Lafleur
- Department of Chemistry, Center for Self-Assembled Chemical Structures, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
92
|
Pro-apoptotic cBid and Bax exhibit distinct membrane remodeling activities: An AFM study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:17-27. [PMID: 27755971 DOI: 10.1016/j.bbamem.2016.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 09/16/2016] [Accepted: 10/13/2016] [Indexed: 11/22/2022]
Abstract
Bcl-2 proteins are key regulators of the mitochondrial outer membrane (MOM) permeabilization that mediates apoptosis. During apoptosis, Bid is cleaved (cBid) and translocates to the MOM, where it activates Bax. Bax then oligomerizes and induces MOM permeabilization. However, little is known about how these proteins affect membrane organization aside from pore formation. In previous studies, we have shown that both cBid and Bax are able to remodel membranes and stabilize curvature. Here, we dissected the independent effects of Bax and cBid on supported lipid structures mimicking the mitochondrial composition by means of atomic force spectroscopy. We show that cBid did not permeabilize the membrane but lowered the membrane breakthrough force. On the other hand, Bax effects were dependent on its oligomeric state. Monomeric Bax did not affect the membrane properties. In contrast, oligomeric Bax lowered the breakthrough force of the membrane, which in the context of pore formation, implies a lowering of the line tension at the edge of the pore.
Collapse
|
93
|
Savoie JD, Otis F, Bürck J, Ulrich AS, Voyer N. Crown ether helical peptides are preferentially inserted in lipid bilayers as a transmembrane ion channels. Biopolymers 2016; 104:427-33. [PMID: 25753314 DOI: 10.1002/bip.22633] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/18/2015] [Accepted: 02/23/2015] [Indexed: 11/08/2022]
Abstract
Oriented circular dichroism was used to study the alignment crown ether-modified peptides. The influence of different N- and C-functionalities was assessed using at variable peptide:lipid ratios from 1:20 to 1:200. Neither the functionalities nor the concentration had any major effect on the orientation. The alignment of the 21-mer peptides was also examined with lipid membranes of different bilayer thickness. The use of synchrotron radiation as light source allowed the study of peptide:lipid molar ratios from 1:20 to 1:1000. For all conditions studied, the peptides were found to be predominantly incorporated as a transmembrane helix into the membrane, especially at low peptide concentration, but started to aggregate on the membrane surface at higher peptide:lipid ratios. The structural information on the preferred trans-bilayer alignment of the crown ether functional groups explains their ion conductivity and is useful for the further development of membrane-active nanochemotherapeutics.
Collapse
Affiliation(s)
- Jean-Daniel Savoie
- Faculté des Sciences et de Génie, Département de chimie and PROTEO, Université Laval, Québec, QC, G1V 0A6, Canada.,Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021, Karlsruhe, Germany
| | - François Otis
- Faculté des Sciences et de Génie, Département de chimie and PROTEO, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021, Karlsruhe, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021, Karlsruhe, Germany
| | - Normand Voyer
- Faculté des Sciences et de Génie, Département de chimie and PROTEO, Université Laval, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
94
|
Ridgway Z, Picciano AL, Gosavi PM, Moroz YS, Angevine CE, Chavis AE, Reiner JE, Korendovych IV, Caputo GA. Functional characterization of a melittin analog containing a non-natural tryptophan analog. Biopolymers 2016; 104:384-394. [PMID: 25670241 DOI: 10.1002/bip.22624] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/13/2015] [Accepted: 01/18/2015] [Indexed: 02/06/2023]
Abstract
Tryptophan (Trp) is a naturally occurring amino acid, which exhibits fluorescence emission properties that are dependent on the polarity of the local environment around the Trp side chain. However, this sensitivity also complicates interpretation of fluorescence emission data. A non-natural analogue of tryptophan, β-(1-azulenyl)-L-alanine, exhibits fluorescence insensitive to local solvent polarity and does not impact the structure or characteristics of several peptides examined. In this study, we investigated the effect of replacing Trp with β-(1-azulenyl)-L-alanine in the well-known bee-venom peptide melittin. This peptide provides a model framework for investigating the impact of replacing Trp with β-(1-azulenyl)-L-alanine in a functional peptide system that undergoes significant shifts in Trp fluorescence emission upon binding to lipid bilayers. Microbiological methods including assessment of the antimicrobial activity by minimal inhibitory concentration (MIC) assays and bacterial membrane permeability assays indicated little difference between the Trp and the β-(1-azulenyl)-L-alanine-substituted versions of melittin. Circular dichroism spectroscopy showed both that peptides adopted the expected α-helical structures when bound to phospholipid bilayers and electrophysiological analysis indicated that both created membrane disruptions leading to significant conductance increases across model membranes. Both peptides exhibited a marked protection of the respective fluorophores when bound to bilayers indicating a similar membrane-bound topology. As expected, while fluorescence quenching and CD indicate the peptides are stably bound to lipid vesicles, the peptide containing β-(1-azulenyl)-L-alanine exhibited no fluorescence emission shift upon binding while the natural Trp exhibited >10 nm shift in emission spectrum barycenter. Taken together, the β-(1-azulenyl)-L-alanine can serve as a solvent insensitive alternative to Trp that does not have significant impacts on structure or function of membrane interacting peptides.
Collapse
Affiliation(s)
- Zachary Ridgway
- Department of Chemistry and Biochemistry, Rowan University, Glassboro NJ 08028
| | - Angela L Picciano
- Department of Chemistry and Biochemistry, Rowan University, Glassboro NJ 08028
| | | | - Yurii S Moroz
- Department of Chemistry, Syracuse University, Syracuse NY 13244.,Present affiliation: ChemBioCenter, Kyiv National Taras Shevchenko University, 61 Chervonotkatska Street, Kyiv 02094, Ukraine
| | | | - Amy E Chavis
- Department of Physics, Virginia Commonwealth University, Richmond VA 23284
| | - Joseph E Reiner
- Department of Physics, Virginia Commonwealth University, Richmond VA 23284
| | | | - Gregory A Caputo
- Department of Chemistry and Biochemistry, Rowan University, Glassboro NJ 08028.,School of Biomedical Sciences, Rowan University, Glassboro NJ, 08028
| |
Collapse
|
95
|
Sharma VK, Mamontov E, Tyagi M, Qian S, Rai DK, Urban VS. Dynamical and Phase Behavior of a Phospholipid Membrane Altered by an Antimicrobial Peptide at Low Concentration. J Phys Chem Lett 2016; 7:2394-401. [PMID: 27232190 DOI: 10.1021/acs.jpclett.6b01006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The mechanism of action of antimicrobial peptides is traditionally attributed to the formation of pores in the lipid cell membranes of pathogens, which requires a substantial peptide to lipid ratio. However, using incoherent neutron scattering, we show that even at a concentration too low for pore formation, an archetypal antimicrobial peptide, melittin, disrupts the regular phase behavior of the microscopic dynamics in a phospholipid membrane, dimyristoylphosphatidylcholine (DMPC). At the same time, another antimicrobial peptide, alamethicin, does not exert a similar effect on the DMPC microscopic dynamics. The melittin-altered lateral motion of DMPC at physiological temperature no longer resembles the fluid-phase behavior characteristic of functional membranes of the living cells. The disruptive effect demonstrated by melittin even at low concentrations reveals a new mechanism of antimicrobial action relevant in more realistic scenarios, when peptide concentration is not as high as would be required for pore formation, which may facilitate treatment with antimicrobial peptides.
Collapse
Affiliation(s)
- V K Sharma
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
- Solid State Physics Division, Bhabha Atomic Research Centre , Mumbai 400085, India
| | - E Mamontov
- Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - M Tyagi
- National Institute of Standards and Technology Center for Neutron Research , Gaithersburg, Maryland 20899, United States
- Department of Materials Science and Engineering, University of Maryland , College Park, Maryland 20742, United States
| | - S Qian
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - D K Rai
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - V S Urban
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
96
|
Pan J, Khadka NK. Kinetic Defects Induced by Melittin in Model Lipid Membranes: A Solution Atomic Force Microscopy Study. J Phys Chem B 2016; 120:4625-34. [PMID: 27167473 DOI: 10.1021/acs.jpcb.6b02332] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quantitative characterization of membrane defects (pores) is important for elucidating the molecular basis of many membrane-active peptides. We study kinetic defects induced by melittin in vesicular and planar lipid bilayers. Fluorescence spectroscopy measurements indicate that melittin induces time-dependent calcein leakage. Solution atomic force microscopy (AFM) is used to visualize melittin-induced membrane defects. After initial equilibration, the most probable defect radius is ∼3.8 nm in 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) bilayers. Unexpectedly, defects become larger with longer incubation, accompanied by substantial shape transformation. The initial defect radius is ∼4.7 nm in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers. Addition of 30 mol % cholesterol to DOPC bilayers suppresses defect kinetics, although the inhibitory impact is negated by longer incubation. Overall, the kinetic rate of defect development follows DLPC > DOPC > DOPC/cholesterol. Kinetic defects are also observed when anionic lipids are present. Based on the observation that defects can occupy as large as 40% of the bilayer surface, we propose a kinetic defect growth model. We also study the effect of melittin on the phase behavior of DOPC/egg-sphingomyelin/cholesterol bilayers. We find that melittin initially suppresses or eliminates liquid-ordered (Lo) domains; Lo domains gradually emerge and become the dominant species with longer incubation; and defects in phase-coexisting bilayers have a most probable radius of ∼5 nm and are exclusively localized in the liquid-disordered (Ld) phase. Our experimental data highlight that melittin-induced membrane defects are not static; conversely, spontaneous defect growth is intrinsically associated with membrane permeabilization exerted by melittin.
Collapse
Affiliation(s)
- Jianjun Pan
- Department of Physics, University of South Florida , Tampa, Florida 33620, United States
| | - Nawal K Khadka
- Department of Physics, University of South Florida , Tampa, Florida 33620, United States
| |
Collapse
|
97
|
Therrien A, Fournier A, Lafleur M. Role of the Cationic C-Terminal Segment of Melittin on Membrane Fragmentation. J Phys Chem B 2016; 120:3993-4002. [PMID: 27054924 DOI: 10.1021/acs.jpcb.5b11705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The widespread distribution of cationic antimicrobial peptides capable of membrane fragmentation in nature underlines their importance to living organisms. In the present work, we determined the impact of the electrostatic interactions associated with the cationic C-terminal segment of melittin, a 26-amino acid peptide from bee venom (net charge +6), on its binding to model membranes and on the resulting fragmentation. In order to detail the role played by the C-terminal charges, we prepared a melittin analogue for which the four cationic amino acids in positions 21-24 were substituted with the polar residue citrulline, providing a peptide with the same length and amphiphilicity but with a lower net charge (+2). We compared the peptide bilayer affinity and the membrane fragmentation for bilayers prepared from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine (DPPS) mixtures. It is shown that neutralization of the C-terminal considerably increased melittin affinity for zwitterionic membranes. The unfavorable contribution associated with transferring the cationic C-terminal in a less polar environment was reduced, leaving the hydrophobic interactions, which drive the peptide insertion in bilayers, with limited counterbalancing interactions. The presence of negatively charged lipids (DPPS) in bilayers increased melittin binding by introducing attractive electrostatic interactions, the augmentation being, as expected, greater for native melittin than for its citrullinated analogue. The membrane fragmentation power of the peptide was shown to be controlled by electrostatic interactions and could be modulated by the charge carried by both the membrane and the lytic peptide. The analysis of the lipid composition of the extracted fragments from DPPC/DPPS bilayers revealed no lipid specificity. It is proposed that extended phase separations are more susceptible to lead to the extraction of a lipid species in a specific manner than a specific lipid-peptide affinity. The present work on the lipid extraction by melittin and citrullinated melittin with model membranes emphasizes the complex relation between the affinity, the lipid extraction/membrane fragmentation, and the lipid specificity.
Collapse
Affiliation(s)
- Alexandre Therrien
- Department of Chemistry, Center for Self-Assembled Chemical Structures (CSACS), Université de Montréal , C.P. 6128, Succ. Centre Ville, Montréal (Québec) H3C 3J7, Canada
| | - Alain Fournier
- Centre INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, 531 Boul. des Prairies, Ville de Laval (Québec) H7V 1B7, Canada
| | - Michel Lafleur
- Department of Chemistry, Center for Self-Assembled Chemical Structures (CSACS), Université de Montréal , C.P. 6128, Succ. Centre Ville, Montréal (Québec) H3C 3J7, Canada
| |
Collapse
|
98
|
Chen J, Zhang B, Xia F, Xie Y, Jiang S, Su R, Lu Y, Wu W. Transmembrane delivery of anticancer drugs through self-assembly of cyclic peptide nanotubes. NANOSCALE 2016; 8:7127-7136. [PMID: 26964879 DOI: 10.1039/c5nr06804e] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Breaking the natural barriers of cell membranes achieves fast entry of therapeutics, which leads to enhanced efficacy and helps overcome multiple drug resistance. Herein, transmembrane delivery of a series of small molecule anticancer drugs was achieved by the construction of artificial transmembrane nanochannels formed by self-assembly of cyclic peptide (cyclo[Gln-(d-Leu-Trp)4-d-Leu], CP) nanotubes (CPNTs) in the lipid bilayers. Our in vitro study in liposomes indicated that the transport of molecules with sizes smaller than 1.0 nm, which is the internal diameter of the CPNTs, could be significantly enhanced by CPNTs in a size-selective and dose-dependent manner. Facilitated uptake of 5-fluorouracil (5-FU) was also confirmed in the BEL7402 cell line. On the contrary, CPs could facilitate neither the transport across liposomal membranes nor the uptake by cell lines of cytarabine, a counterevidence drug with a size of 1.1 nm. CPs had a very weak anticancer efficacy, but could significantly reduce the IC50 of 5-FU in BEL7402, HeLa and S180 cell lines. Analysis by a q test revealed that a combination of 5-FU and CP had a synergistic effect in BEL7402 at all CP levels, in S180 at CP levels higher than 64 μg mL(-1), but not in HeLa, where an additive effect was observed. Temporarily, intratumoral injection is believed to be the best way for CP administration. In vivo imaging using (125)I radio-labelled CP confirmed that CPNPTs were completely localized in the tumor tissues, and translocation to other tissues was negligible. In vivo anticancer efficacy was studied in the grafted S180 solid tumor model in mice, and the results indicated that tumor growth was greatly inhibited by the combinatory use of 5-FU and CP, and a synergistic effect was observed at CP doses of 0.25 mg per kg bw. It is concluded that facilitated transmembrane delivery of anticancer drugs with sizes smaller than 1.0 nm was achieved, and the synergistic anticancer effect was confirmed both in cell lines and in vivo through the combinatory use of 5-FU and CP.
Collapse
Affiliation(s)
- Jian Chen
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai 201203, China.
| | - Bei Zhang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai 201203, China.
| | - Fei Xia
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai 201203, China.
| | - Yunchang Xie
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai 201203, China.
| | - Sifan Jiang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai 201203, China.
| | - Rui Su
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai 201203, China.
| | - Yi Lu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai 201203, China.
| | - Wei Wu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai 201203, China.
| |
Collapse
|
99
|
Characterization of antimicrobial activity against Listeria and cytotoxicity of native melittin and its mutant variants. Colloids Surf B Biointerfaces 2016; 143:194-205. [PMID: 27011349 DOI: 10.1016/j.colsurfb.2016.03.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 03/10/2016] [Accepted: 03/13/2016] [Indexed: 01/30/2023]
Abstract
Antimicrobial peptides (AMPs) are relatively short peptides that have the ability to penetrate the cell membrane, form pores leading to cell death. This study compares both antimicrobial activity and cytotoxicity of native melittin and its two mutants, namely, melittin I17K (GIGAVLKVLTTGLPALKSWIKRKRQQ) with a higher charge and lower hydrophobicity and mutant G1I (IIGAVLKVLTTGLPALISWIKRKRQQ) of higher hydrophobicity. The antimicrobial activity against different strains of Listeria was investigated by bioassay, viability studies, fluorescence and transmission electron microscopy. Cytotoxicity was examined by lactate dehydrogenase (LDH) assay on mammalian Caco-2 cells. The minimum inhibitory concentration of native, mutant I17K, mutant G1I against Listeria monocytogenes F4244 was 0.315±0.008, 0.814±0.006 and 0.494±0.037μg/ml respectively, whereas the minimum bactericidal concentration values were 3.263±0.0034, 7.412±0.017 and 5.366±0.019μg/ml respectively. Lag time for inactivation of L. monocytogenes F4244 was observed at concentrations below 0.20 and 0.78μg/ml for native and mutant melittin I17K respectively. The antimicrobial activity against L. monocytogenes F4244 was in the order native>G1I>I17K. Native melittin was cytotoxic to mammalian Caco-2 cells above concentration of 2μg/ml, whereas the two mutants exhibited negligible cytotoxicity up to a concentration of 8μg/ml. Pore formation in cell wall/membrane was observed by transmission electron microscopy. Molecular dynamics (MD) simulation of native and its mutants indicated that (i) surface native melittin and G1I exhibited higher tendency to penetrate a mimic of bacterial cell membrane and (ii) transmembrane native and I17K formed water channel in mimics of bacterial and mammalian cell membranes.
Collapse
|
100
|
Ghio S, Kamp F, Cauchi R, Giese A, Vassallo N. Interaction of α-synuclein with biomembranes in Parkinson's disease--role of cardiolipin. Prog Lipid Res 2015; 61:73-82. [PMID: 26703192 DOI: 10.1016/j.plipres.2015.10.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/14/2015] [Accepted: 10/30/2015] [Indexed: 12/15/2022]
Abstract
One of the key molecular events underlying the pathogenesis of Parkinson's disease (PD) is the aberrant misfolding and aggregation of the α-synuclein (αS) protein into higher-order oligomers that play a key role in neuronal dysfunction and degeneration. A wealth of experimental data supports the hypothesis that the neurotoxicity of αS oligomers is intrinsically linked with their ability to interact with, and disrupt, biological membranes; especially those membranes having negatively-charged surfaces and/or lipid packing defects. Consequences of αS-lipid interaction include increased membrane tension, permeation by pore formation, membrane lysis and/or leakage due to the extraction of lipids from the bilayer. Moreover, we assert that the interaction of αS with a liquid-disordering phospholipid uniquely enriched in mitochondrial membranes, namely cardiolipin (1,3-diphosphatidyl-sn-glycerol, CL), helps target the αS oligomeric complexes intracellularly to mitochondria. Binding mediated by CL may thus represent an important pathomechanism by which cytosolic αS could physically associate with mitochondrial membranes and disrupt their integrity. Impaired mitochondrial function culminates in a cellular bioenergetic crisis and apoptotic death. To conclude, we advocate the accelerated discovery of new drugs targeting this pathway in order to restore mitochondrial function in PD.
Collapse
Affiliation(s)
- Stephanie Ghio
- Dept. of Physiology and Biochemistry, University of Malta, Msida, Malta
| | - Frits Kamp
- Biomedical Center (BMC), Biochemistry, Ludwig-Maximilians-University & DZNE, 81377 Munich, Germany
| | - Ruben Cauchi
- Dept. of Physiology and Biochemistry, University of Malta, Msida, Malta
| | - Armin Giese
- Zentrum für Neuropathologie und Prionforschung, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Neville Vassallo
- Dept. of Physiology and Biochemistry, University of Malta, Msida, Malta.
| |
Collapse
|