51
|
Lovelock SL, Turner NJ. Bacterial Anabaena variabilis phenylalanine ammonia lyase: a biocatalyst with broad substrate specificity. Bioorg Med Chem 2014; 22:5555-7. [PMID: 25037641 DOI: 10.1016/j.bmc.2014.06.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/11/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
Abstract
Phenylalanine ammonia lyases (PALs) catalyse the regio- and stereoselective hydroamination of cinnamic acid analogues to yield optically enriched α-amino acids. Herein, we demonstrate that a bacterial PAL from Anabaena variabilis (AvPAL) displays significantly higher activity towards a series of non-natural substrates than previously described eukaryotic PALs. Biotransformations performed on a preparative scale led to the synthesis of the 2-chloro- and 4-trifluoromethyl-phenylalanine derivatives in excellent ee, highlighting the enormous potential of bacterial PALs as biocatalysts for the synthesis of high value, non-natural amino acids.
Collapse
Affiliation(s)
- Sarah L Lovelock
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
| | - Nicholas J Turner
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
52
|
Zhu L, Zhou L, Cui W, Liu Z, Zhou Z. Mechanism-based site-directed mutagenesis to shift the optimum pH of the phenylalanine ammonia-lyase from Rhodotorula glutinis JN-1. ACTA ACUST UNITED AC 2014. [PMID: 28626644 PMCID: PMC5466100 DOI: 10.1016/j.btre.2014.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phenylalanine ammonia-lyase (RgPAL) from Rhodotorula glutinis JN-1 stereoselectively catalyzes the conversion of the l-phenylalanine into trans-cinnamic acid and ammonia, and was used in chiral resolution of dl-phenylalanine to produce the d-phenylalanine under acidic condition. However, the optimum pH of RgPAL is 9 and the RgPAL exhibits low catalytic efficiency at acidic side. Therefore, a mutant RgPAL with a lower optimum pH is expected. Based on catalytic mechanism and structure analysis, we constructed a mutant RgPAL-Q137E by site-directed mutagenesis, and found that this mutant had an extended optimum pH 7-9 with activity of 1.8-fold higher than that of the wild type at pH 7. As revealed by Friedel-Crafts-type mechanism of RgPAL, the improvement of the RgPAL-Q137E might be due to the negative charge of Glu137 which could stabilize the intermediate transition states through electrostatic interaction. The RgPAL-Q137E mutant was used to resolve the racemic dl-phenylalanine, and the conversion rate and the eeD value of d-phenylalanine using RgPAL-Q137E at pH 7 were increased by 29% and 48%, and achieved 93% and 86%, respectively. This work provides an effective strategy to shift the optimum pH which is favorable to further applications of RgPAL.
Collapse
Affiliation(s)
- Longbao Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Li Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhongmei Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
53
|
Wybenga GG, Szymanski W, Wu B, Feringa BL, Janssen DB, Dijkstra BW. Structural Investigations into the Stereochemistry and Activity of a Phenylalanine-2,3-aminomutase from Taxus chinensis. Biochemistry 2014; 53:3187-98. [DOI: 10.1021/bi500187a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gjalt G. Wybenga
- Laboratory
of Biophysical Chemistry, University of Groningen, Nijenborgh
7, 9747 AG Groningen, The Netherlands
| | | | | | | | | | - Bauke W. Dijkstra
- Laboratory
of Biophysical Chemistry, University of Groningen, Nijenborgh
7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
54
|
Nestl BM, Hammer SC, Nebel BA, Hauer B. New generation of biocatalysts for organic synthesis. Angew Chem Int Ed Engl 2014; 53:3070-95. [PMID: 24520044 DOI: 10.1002/anie.201302195] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 02/04/2023]
Abstract
The use of enzymes as catalysts for the preparation of novel compounds has received steadily increasing attention over the past few years. High demands are placed on the identification of new biocatalysts for organic synthesis. The catalysis of more ambitious reactions reflects the high expectations of this field of research. Enzymes play an increasingly important role as biocatalysts in the synthesis of key intermediates for the pharmaceutical and chemical industry, and new enzymatic technologies and processes have been established. Enzymes are an important part of the spectrum of catalysts available for synthetic chemistry. The advantages and applications of the most recent and attractive biocatalysts--reductases, transaminases, ammonia lyases, epoxide hydrolases, and dehalogenases--will be discussed herein and exemplified by the syntheses of interesting compounds.
Collapse
Affiliation(s)
- Bettina M Nestl
- Technische Biochemie, Universität Stuttgart, Stuttgart (Germany)
| | | | | | | |
Collapse
|
55
|
Nestl BM, Hammer SC, Nebel BA, Hauer B. Biokatalysatoren für die organische Synthese - die neue Generation. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201302195] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
56
|
Zarei Jaliani H, Farajnia S, Safdari Y, Mohammadi SA, Barzegar A, Talebi S. Optimized condition for enhanced soluble-expression of recombinant mutant anabaena variabilis phenylalanine ammonia lyase. Adv Pharm Bull 2014; 4:261-6. [PMID: 24754010 DOI: 10.5681/apb.2014.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 01/18/2014] [Accepted: 01/20/2014] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Recently discovered Anabaena variabilis phenylalanine ammonia lyase (AvPAL) proved to be a good candidate for enzyme replacement therapy of phenylketonuria. Outstanding stability properties of a mutant version of this enzyme, produced already in our laboratory, have led us to the idea of culture conditions optimization for soluble expression of this therapeutically valuable enzyme in E. coli. METHODS In the present study, the gene encoding mutant version of AvPAL was cloned into the pET28a expression vector. Different concentrations of IPTG, induction period, growth temperature, shaking speed, as well as different types of culture media were examined with respect to the amount of recombinant protein produced and specific activity of the enzyme. RESULTS Based upon our findings, maximum amount of active mutant enzyme was attained by addition of 0.5 mM IPTG at 150 rpm to the TB culture media. The yield of active enzyme at cluture tempreature of 25 °C and induction period of 18 hour was the highest. CONCLUSION The results of this study indicated that the yield of mutant AvPAL production in E. coli can be affected mainly by culture temperature and inducer concentration.
Collapse
Affiliation(s)
- Hossein Zarei Jaliani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences /Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yaghoub Safdari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Abolfazl Barzegar
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran
| | - Saeed Talebi
- Department of Antigen and Antibody Engineering Research, Monoclonal Antibody Research Center (MARC), Avicenna Research Institute (ARI), Tehran, Iran
| |
Collapse
|
57
|
Kovács K, Bánóczi G, Varga A, Szabó I, Holczinger A, Hornyánszky G, Zagyva I, Paizs C, Vértessy BG, Poppe L. Expression and properties of the highly alkalophilic phenylalanine ammonia-lyase of thermophilic Rubrobacter xylanophilus. PLoS One 2014; 9:e85943. [PMID: 24475062 PMCID: PMC3903478 DOI: 10.1371/journal.pone.0085943] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 12/04/2013] [Indexed: 11/18/2022] Open
Abstract
The sequence of a phenylalanine ammonia-lyase (PAL; EC: 4.3.1.24) of the thermophilic and radiotolerant bacterium Rubrobacter xylanophilus (RxPAL) was identified by screening the genomes of bacteria for members of the phenylalanine ammonia-lyase family. A synthetic gene encoding the RxPAL protein was cloned and overexpressed in Escherichia coli TOP 10 in a soluble form with an N-terminal His6-tag and the recombinant RxPAL protein was purified by Ni-NTA affinity chromatography. The activity assay of RxPAL with l-phenylalanine at various pH values exhibited a local maximum at pH 8.5 and a global maximum at pH 11.5. Circular dichroism (CD) studies showed that RxPAL is associated with an extensive α-helical character (far UV CD) and two distinctive near-UV CD peaks. These structural characteristics were well preserved up to pH 11.0. The extremely high pH optimum of RxPAL can be rationalized by a three-dimensional homology model indicating possible disulfide bridges, extensive salt-bridge formation and an excess of negative electrostatic potential on the surface. Due to these properties, RxPAL may be a candidate as biocatalyst in synthetic biotransformations leading to unnatural l- or d-amino acids or as therapeutic enzyme in treatment of phenylketonuria or leukemia.
Collapse
Affiliation(s)
- Klaudia Kovács
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences of Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergely Bánóczi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Andrea Varga
- Biocatalysis Research Group, Babeş-Bolyai University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Izabella Szabó
- Biocatalysis Research Group, Babeş-Bolyai University of Cluj-Napoca, Cluj-Napoca, Romania
| | - András Holczinger
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Gábor Hornyánszky
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Imre Zagyva
- Institute of Enzymology, Research Centre for Natural Sciences of Hungarian Academy of Sciences, Budapest, Hungary
| | - Csaba Paizs
- Biocatalysis Research Group, Babeş-Bolyai University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Beáta G. Vértessy
- Institute of Enzymology, Research Centre for Natural Sciences of Hungarian Academy of Sciences, Budapest, Hungary
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
58
|
Wang ZB, Chen X, Wang W, Cheng KD, Kong JQ. Transcriptome-wide identification and characterization of Ornithogalum saundersiae phenylalanine ammonia lyase gene family. RSC Adv 2014. [DOI: 10.1039/c4ra03385j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transcriptome-wide identification and characterization ofOrnithogalum saundersiaephenylalanine ammonia lyase gene family.
Collapse
Affiliation(s)
- Zhi-Biao Wang
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products)
- Beijing, China
| | - Xi Chen
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products)
- Beijing, China
| | - Wei Wang
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products)
- Beijing, China
| | - Ke-Di Cheng
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products)
- Beijing, China
| | - Jian-Qiang Kong
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products)
- Beijing, China
| |
Collapse
|
59
|
Wang K, Hou Q, Liu Y. Insight into the mechanism of aminomutase reaction: A case study of phenylalanine aminomutase by computational approach. J Mol Graph Model 2013; 46:65-73. [DOI: 10.1016/j.jmgm.2013.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/28/2013] [Accepted: 09/25/2013] [Indexed: 11/24/2022]
|
60
|
Wang S, Zhang S, Zhou T, Zeng J, Zhan J. Design and application of an in vivo reporter assay for phenylalanine ammonia-lyase. Appl Microbiol Biotechnol 2013; 97:7877-85. [DOI: 10.1007/s00253-013-5122-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 06/27/2013] [Accepted: 07/10/2013] [Indexed: 01/22/2023]
|
61
|
Ma W, Wu M, Wu Y, Ren Z, Zhong Y. Cloning and characterisation of a phenylalanine ammonia-lyase gene from Rhus chinensis. PLANT CELL REPORTS 2013; 32:1179-1190. [PMID: 23494390 DOI: 10.1007/s00299-013-1413-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 06/01/2023]
Abstract
The gene and cDNA sequence encoding PAL from Chinese medicinal plant Rhus chinensis were cloned and analyzed, furthermore the biochemical properties, kinetic parameters, differential expression and key sites were studied. Rhus chinensis is a well-known Chinese medicinal plant. Phenylalanine ammonia-lyase (PAL) is the first enzyme of phenylpropanoid pathway. Several recent studies suggested that PAL also play an important role in plant-aphid interaction. In this study, both the cDNA and the genomic sequence encoding PAL from Rhus chinensis (designated as RcPAL) were cloned and analyzed. The 3,833 bp gene contained a 1,342 bp intron and two extrons. The ORF was 2,124 bp and predicted to encode a 707-amino acid polypeptide. The results of real-time PCR showed that RcPAL expressed in all tested tissues and followed the order: stems > young leaves > petioles > roots > seeds > mature leaves. RcPAL was successfully expressed in E. coli with the pET-28a-RcPAL recombinant vector. The recombinant protein exhibited a high level of PAL activity. Biochemical properties and kinetic parameters of recombinant RcPAL were further studied. The results showed that the optimal temperature and pH for RcPAL activity were 45 °C and 9.0, and the K m and K cat values were 7.90 mM and 52.31 s(-1), respectively. The active sites and substrate selectivity site were also investigated with site-directed mutagenesis methods, suggesting that Phe(126) is responsible for the substrate selectivity. To our knowledge, this was the first full-length PAL gene cloned and characterized from the family Anacardiaceae so far.
Collapse
Affiliation(s)
- WenLi Ma
- School of Life Science, Shanxi University, 92, Wucheng Road, Taiyuan, China
| | | | | | | | | |
Collapse
|
62
|
Etaiw SEDH, El-bendary MM. Structure and applications of metal-organic framework based on cyanide and 3,5-dichloropyridine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 110:304-310. [PMID: 23583847 DOI: 10.1016/j.saa.2013.03.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 06/02/2023]
Abstract
The reaction of the aqueous/acetonitrile solutions of K3[Cu(CN)4] and 3,5-dichloropyridine (3,5-dClpy), in the presence of Me3SnCl affords a new metal-organic framework (MOF), (3)∞[(CuCN)2·(3,5-dClpy)2], 1. The structure of the MOF 1 was characterized by IR, UV-visible, TGA and X-ray single crystal analysis. The structure of MOF 1 consists of CuCN building blocks which are connected by CN group forming 1D-zig-zag chains. Each chain is bridged to another chain by hydrogen bonding organizing 2D-sheets. The structure of 1 is further close packed by hydrogen bonds, π-π stacking and lp-π interactions creating 3D-network. The emission spectra and the thermodynamic parameters from TGA of the MOF 1 were discussed. The MOF 1 was used as heterogeneous catalyst for the oxidative discoloration of methylene blue dye (MB) by dilute solution of hydrogen peroxide as oxidant. The in vitro cytotoxic activity has been evaluated against the human breast cancer cell lines MCF-7. The cytotoxic effect of the MOF 1 on the viability of MCF-7 cells was determined by MTT assay.
Collapse
|
63
|
Babich OO, Pokrovsky VS, Anisimova NY, Sokolov NN, Prosekov AY. Recombinant l-phenylalanine ammonia lyase from Rhodosporidium toruloides as a potential anticancer agent. Biotechnol Appl Biochem 2013; 60:316-22. [PMID: 23718781 DOI: 10.1002/bab.1089] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 12/25/2012] [Indexed: 11/10/2022]
Abstract
The recombinant producer strain expressing Rhodosporidium toruloides l-phenylalanine ammonia lyase (PAL) has been obtained, and a purification procedure of PAL has been developed. The purified enzyme, PAL, has the following biochemical and catalytic characteristics: Km for l-Phe of 0.49 mM, pH optimum at 8.5, and temperature optimum at 50°C. PAL exhibited a significant cytotoxic effect toward the following cell lines: MCF7 (IC50 = 1.97 U/mL), DU145 (IC50 = 7.3 U/mL), which are comparable with E. coli l-asparaginase type-II cytotoxicity in vitro. Administration of PAL (200-400 U/kg) to L5178y-bearing mice for five times (a total dose of 1000-2000 U/kg) was well tolerated and showed the increase of life span (ILS) = 12-16%, P < 0.05. Data obtained suggest that PAL from R. toruloides has a potential for cancer treatment.
Collapse
Affiliation(s)
- Olga O Babich
- Kemerovo Technological Institute of Food Industry, Kemerovo, Russia
| | | | | | | | | |
Collapse
|
64
|
Cui JD, Qiu JQ, Fan XW, Jia SR, Tan ZL. Biotechnological production and applications of microbial phenylalanine ammonia lyase: a recent review. Crit Rev Biotechnol 2013; 34:258-68. [PMID: 23688066 DOI: 10.3109/07388551.2013.791660] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Phenylalanine ammonia lyase (PAL) catalyzes the nonoxidative deamination of l-phenylalanine to form trans-cinnamic acid and a free ammonium ion. It plays a major role in the catabolism of l-phenylalanine. The presence of PAL has been reported in diverse plants, some fungi, Streptomyces and few Cyanobacteria. In the past two decades, PAL has gained considerable significance in several clinical, industrial and biotechnological applications. Since its discovery, much knowledge has been gathered with reference to the enzyme's importance in phenyl propanoid pathway of plants. In contrast, there is little knowledge about microbial PAL. Furthermore, the commercial source of the enzyme has been mainly obtained from the fungi. This study focuses on the recent advances on the physiological role of microbial PAL and the improvements of PAL biotechnological production both from our laboratory and many others as well as the latest advances on the new applications of microbial PAL.
Collapse
Affiliation(s)
- Jian Dong Cui
- Research Center for Fermentation Engineering of Hebei, College of Bioscience and Bioengineering, Hebei University of Science and Technology , Shijiazhang , P R China
| | | | | | | | | |
Collapse
|
65
|
Abstract
Many natural products contain unusual aromatic β-amino acids or moieties derived therefrom. The biosynthesis of these β-amino acids was first elucidated during a biosynthetic study of the enediyne antitumor antibiotic C-1027, when an enzyme, SgcC4, was discovered to convert L-tyrosine to (S)-β-tyrosine. SgcC4 is similar in sequence and structure to 4-methylideneimidazole-5-one (MIO)-containing ammonia lyases. Whereas the ammonia lyases use the electrophilic power of the MIO group to catalyze the release of ammonia from aromatic amino acids to generate α,β-unsaturated carboxylic acids as final products, SgcC4 retains the α,β-unsaturated carboxylic acid and amine as intermediates and reappends the amino group to the β-carbon, affording a β-amino acid as the final product. The study of SgcC4 led to the subsequent discovery of other MIO-containing aminomutases with altered substrate specificity and product stereochemistry, including MdpC4 from the biosynthetic pathway of the enediyne antitumor antibiotic maduropeptin. This chapter describes protocols for the enzymatic and structural characterization of these MIO-containing aminomutases as exemplified by SgcC4 and MdpC4. These protocols are applicable to the study of other aminomutases.
Collapse
|
66
|
Cloning, expression and characterization of phenylalanine ammonia-lyase from Rhodotorula glutinis. Biotechnol Lett 2013; 35:751-6. [PMID: 23338700 DOI: 10.1007/s10529-013-1140-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 01/08/2013] [Indexed: 10/27/2022]
Abstract
The industrial-scale production of phenylalanine ammonia-lyase (PAL) mainly uses strains of Rhodotorula. However, the PAL gene from Rhodotorula has not been cloned. Here, the full-length gene of PAL from Rhodotorula glutinis was isolated. It was 2,121 bp, encoding a polypeptide with 706 amino acids and a calculated MW of 75.5 kDa. Though R. glutinis is an anamorph of Rhodosporium toruloides, the amino acid sequences of PALs them are not the same (about 74 % identity). PAL was expressed in E. coli and characterized. Its specific activity was 4.2 U mg(-1) and the k cat/K m was 1.9 × 10(4) mM(-1) s(-1), exhibiting the highest catalytic ability among the reported PALs. The genetic and biochemical information reported here should facilitate future application in industry.
Collapse
|
67
|
Toşa MI, Brem J, Mantu A, Irimie FD, Paizs C, Rétey J. The Interaction of Nitrophenylalanines with Wild Type and Mutant 4-Methylideneimidazole-5-one-less Phenylalanine Ammonia Lyase. ChemCatChem 2013. [DOI: 10.1002/cctc.201200536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
68
|
de Villiers M, Puthan Veetil V, Raj H, de Villiers J, Poelarends GJ. Catalytic mechanisms and biocatalytic applications of aspartate and methylaspartate ammonia lyases. ACS Chem Biol 2012; 7:1618-28. [PMID: 22834890 DOI: 10.1021/cb3002792] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ammonia lyases catalyze the formation of α,β-unsaturated bonds by the elimination of ammonia from their substrates. This conceptually straightforward reaction has been the emphasis of many studies, with the main focus on the catalytic mechanism of these enzymes and/or the use of these enzymes as catalysts for the synthesis of enantiomerically pure α-amino acids. In this Review aspartate ammonia lyase and 3-methylaspartate ammonia lyase, which represent two different enzyme superfamilies, are discussed in detail. In the past few years, the three-dimensional structures of these lyases in complex with their natural substrates have revealed the details of two elegant catalytic strategies. These strategies exploit similar deamination mechanisms that involve general-base catalyzed formation of an enzyme-stabilized enolate anion (aci-carboxylate) intermediate. Recent progress in the engineering and application of these enzymes to prepare enantiopure l-aspartic acid derivatives, which are highly valuable as tools for biological research and as chiral building blocks for pharmaceuticals and food additives, is also discussed.
Collapse
Affiliation(s)
- Marianne de Villiers
- Department
of Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713
AV Groningen, The Netherlands
| | - Vinod Puthan Veetil
- Department
of Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713
AV Groningen, The Netherlands
| | - Hans Raj
- Department
of Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713
AV Groningen, The Netherlands
| | - Jandré de Villiers
- Department
of Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713
AV Groningen, The Netherlands
| | - Gerrit J. Poelarends
- Department
of Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713
AV Groningen, The Netherlands
| |
Collapse
|
69
|
Bagal UR, Leebens-Mack JH, Lorenz WW, Dean JFD. The phenylalanine ammonia lyase (PAL) gene family shows a gymnosperm-specific lineage. BMC Genomics 2012; 13 Suppl 3:S1. [PMID: 22759610 PMCID: PMC3394424 DOI: 10.1186/1471-2164-13-s3-s1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Phenylalanine ammonia lyase (PAL) is a key enzyme of the phenylpropanoid pathway that catalyzes the deamination of phenylalanine to trans-cinnamic acid, a precursor for the lignin and flavonoid biosynthetic pathways. To date, PAL genes have been less extensively studied in gymnosperms than in angiosperms. Our interest in PAL genes stems from their potential role in the defense responses of Pinus taeda, especially with respect to lignification and production of low molecular weight phenolic compounds under various biotic and abiotic stimuli. In contrast to all angiosperms for which reference genome sequences are available, P. taeda has previously been characterized as having only a single PAL gene. Our objective was to re-evaluate this finding, assess the evolutionary history of PAL genes across major angiosperm and gymnosperm lineages, and characterize PAL gene expression patterns in Pinus taeda. Methods We compiled a large set of PAL genes from the largest transcript dataset available for P. taeda and other conifers. The transcript assemblies for P. taeda were validated through sequencing of PCR products amplified using gene-specific primers based on the putative PAL gene assemblies. Verified PAL gene sequences were aligned and a gene tree was estimated. The resulting gene tree was reconciled with a known species tree and the time points for gene duplication events were inferred relative to the divergence of major plant lineages. Results In contrast to angiosperms, gymnosperms have retained a diverse set of PAL genes distributed among three major clades that arose from gene duplication events predating the divergence of these two seed plant lineages. Whereas multiple PAL genes have been identified in sequenced angiosperm genomes, all characterized angiosperm PAL genes form a single clade in the gene PAL tree, suggesting they are derived from a single gene in an ancestral angiosperm genome. The five distinct PAL genes detected and verified in P. taeda were derived from a combination of duplication events predating and postdating the divergence of angiosperms and gymnosperms. Conclusions Gymnosperms have a more phylogenetically diverse set of PAL genes than angiosperms. This inference has contrasting implications for the evolution of PAL gene function in gymnosperms and angiosperms.
Collapse
Affiliation(s)
- Ujwal R Bagal
- Institute of Bioinformatics, The University of Georgia, Athens, GA 30602-7229, USA
| | | | | | | |
Collapse
|
70
|
AlDamen MA, Mubarak MS. Theoretical and experimental study of lone pair interactions in THF/chloranilic acid system. Struct Chem 2012. [DOI: 10.1007/s11224-012-0067-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
71
|
Pilbák S, Farkas Ö, Poppe L. Mechanism of the Tyrosine Ammonia Lyase Reaction-Tandem Nucleophilic and Electrophilic Enhancement by a Proton Transfer. Chemistry 2012; 18:7793-802. [DOI: 10.1002/chem.201103662] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/31/2012] [Indexed: 11/09/2022]
|
72
|
Chesters C, Wilding M, Goodall M, Micklefield J. Thermal bifunctionality of bacterial phenylalanine aminomutase and ammonia lyase enzymes. Angew Chem Int Ed Engl 2012; 51:4344-8. [PMID: 22461423 DOI: 10.1002/anie.201200669] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Christopher Chesters
- School of Chemistry & Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | | | | | |
Collapse
|
73
|
Chesters C, Wilding M, Goodall M, Micklefield J. Thermal Bifunctionality of Bacterial Phenylalanine Aminomutase and Ammonia Lyase Enzymes. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201200669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
74
|
Synthesis, X-ray characterization and computational Studies of N-imidazolyl and N-pyrazolyl pyrimidine derivatives. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
75
|
Strom S, Wanninayake U, Ratnayake ND, Walker KD, Geiger JH. Insights into the Mechanistic Pathway of thePantoea agglomeransPhenylalanine Aminomutase. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108525] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
76
|
Strom S, Wanninayake U, Ratnayake ND, Walker KD, Geiger JH. Insights into the Mechanistic Pathway of thePantoea agglomeransPhenylalanine Aminomutase. Angew Chem Int Ed Engl 2012; 51:2898-902. [DOI: 10.1002/anie.201108525] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/26/2012] [Indexed: 11/11/2022]
|
77
|
Poppe L, Paizs C, Kovács K, Irimie FD, Vértessy B. Preparation of unnatural amino acids with ammonia-lyases and 2,3-aminomutases. Methods Mol Biol 2012; 794:3-19. [PMID: 21956553 DOI: 10.1007/978-1-61779-331-8_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ammonia-lyases catalyze a wide range of processes leading to α,β-unsaturated compounds by elimination of ammonia. In this chapter, ammonia-lyases are reviewed with major emphasis on their synthetic applications in stereoselective preparation of unnatural amino acids. Besides the synthesis of various unnatural α-amino acids with the aid of phenylalanine ammonia-lyases (PALs) utilizing the 3,5-dihydro-5-methylidene-4H-imidazol-4-one (MIO) prosthetic groups, the biotransformations leading to various unnatural β-amino acids with phenylalanine 2,3-aminomutases using the same catalytic MIO prosthetic group are discussed. Cloning, production, purification, and biotransformation protocols for PAL are described in detail.
Collapse
Affiliation(s)
- László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
78
|
Wu B, Szymański W, Wybenga GG, Heberling MM, Bartsch S, de Wildeman S, Poelarends GJ, Feringa BL, Dijkstra BW, Janssen DB. Mechanism-Inspired Engineering of Phenylalanine Aminomutase for Enhanced β-Regioselective Asymmetric Amination of Cinnamates. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201106372] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
79
|
Wu B, Szymański W, Wybenga GG, Heberling MM, Bartsch S, de Wildeman S, Poelarends GJ, Feringa BL, Dijkstra BW, Janssen DB. Mechanism-Inspired Engineering of Phenylalanine Aminomutase for Enhanced β-Regioselective Asymmetric Amination of Cinnamates. Angew Chem Int Ed Engl 2011; 51:482-6. [DOI: 10.1002/anie.201106372] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/12/2011] [Indexed: 11/11/2022]
|
80
|
Zhu Y, Liao S, Ye J, Zhang H. Cloning and characterization of a novel tyrosine ammonia lyase-encoding gene involved in bagremycins biosynthesis in Streptomyces sp. Biotechnol Lett 2011; 34:269-74. [PMID: 22065278 DOI: 10.1007/s10529-011-0755-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/23/2011] [Indexed: 11/26/2022]
Abstract
Tyrosine ammonia lyase catalyzes the deamination of L: -tyrosine to trans-coumaric acid. A novel tyrosine ammonia lyase-encoding gene, bagA, was cloned and sequenced from bagremycins-producing strain Streptomyces sp. Tü 4128 whose protein product contains a Ala-Ser-Gly segment in the active site. The disruption of the bagA gene abolished trans-coumaric acid and bagremycins production. trans-coumaric acid restored the formation of bagremycin A in the mutant, but not bagremycin B. Thus, trans-coumaric acid is a precursor for biosynthesis of bagremycins and the bagA gene codes for tyrosine ammonia lyase to synthesize trans-coumaric acid. This is a novel bacterial tal gene reported in actinomycetes for the second time and for the first time in a Streptomyces sp.
Collapse
Affiliation(s)
- Yunxia Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | | | | | | |
Collapse
|
81
|
Duan XE, Wei XH, Tong HB, Bai SD, Zhang YB, Liu DS. Ferrocene-modified pyrimidinyl acyl-thiourea derivatives: Synthesis, structures and electrochemistry. J Mol Struct 2011. [DOI: 10.1016/j.molstruc.2011.08.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
82
|
|
83
|
Chu J, Chen W, Su G, Song YF. Four new copper(II) complexes with di-substituted s-triazine-based ligands. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2011.06.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
84
|
Characterization, and expression profile of a phenylalanine ammonia lyase gene from Jatropha curcas L. Mol Biol Rep 2011; 39:3443-52. [PMID: 21706349 DOI: 10.1007/s11033-011-1116-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 06/20/2011] [Indexed: 10/18/2022]
Abstract
A PAL gene designated as JcPAL1 was cloned from J. curcas L. The full-length is 2336 bp in size with one intron and two exons, encoding a polypeptide of 713 amino acids. Its 5'-upstream region is rich in putative cis-elements including not only PAL typical TATA box, L-box and transcriptional initiation site (TIS) but also light responding motifs. Expression pattern analysis indicated that JcPAL1 were expressed in all tissues, most highly in flowers. When Treated with ABA, GA3, high and low temperature, expression of JcPAL1 were induced. Recombinant JcPAL1 has a pH optimum at 8.7 and a temperature optimum at 60°C in 100 mM Tris-HCl buffer. The Km and Kcat values are 0.125 mM and 1.73 S(-1) for L: -phenylalanine, and 1.312 mM and 0.109 S(-1) for L: -tyrosine, respectively. These findings suggested that JcPAL1 might involve in the J. curcas responding to various stresses and L: -Phe should be its true physiological substrate. This study is essential prior to uncover whether and how the PAL initiated phenylpropanoid metabolic networks functioning in the defense responses of J. curcas.
Collapse
|
85
|
Quiñonero D, Estarellas C, Frontera A, Deyà PM. A methodological analysis for the assessment of non-covalent π interactions. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
86
|
Wu B, Szymański W, Heberling MM, Feringa BL, Janssen DB. Aminomutases: mechanistic diversity, biotechnological applications and future perspectives. Trends Biotechnol 2011; 29:352-62. [PMID: 21477876 DOI: 10.1016/j.tibtech.2011.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/22/2011] [Accepted: 02/23/2011] [Indexed: 11/26/2022]
Abstract
Aminomutases carry out the chemically challenging exchange of a hydrogen atom and an amine substituent present on neighboring carbon atoms. In recent years, aminomutases have been intensively investigated for their biophysical, structural and mechanistic characteristics. The reactions catalyzed by these enzymes have considerable potential for biotechnological applications. Here, we present an overview of this diverse group of enzymes, with a focus on enzymatic mechanisms and recent developments in their use in applied biocatalysis.
Collapse
Affiliation(s)
- Bian Wu
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
87
|
Turner NJ. Ammonia lyases and aminomutases as biocatalysts for the synthesis of α-amino and β-amino acids. Curr Opin Chem Biol 2011; 15:234-40. [DOI: 10.1016/j.cbpa.2010.11.009] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 11/04/2010] [Accepted: 11/08/2010] [Indexed: 11/26/2022]
|
88
|
Feng L, Wanninayake U, Strom S, Geiger J, Walker KD. Mechanistic, mutational, and structural evaluation of a Taxus phenylalanine aminomutase. Biochemistry 2011; 50:2919-30. [PMID: 21361343 DOI: 10.1021/bi102067r] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure of a phenylalanine aminomutase (TcPAM) from Taxus canadensis has been determined at 2.4 Å resolution. The active site of the TcPAM contains the signature 4-methylidene-1H-imidazol-5(4H)-one prosthesis, observed in all catalysts of the class I lyase-like family. This catalyst isomerizes (S)-α-phenylalanine to the (R)-β-isomer by exchange of the NH2/H pair. The stereochemistry of the TcPAM reaction product is opposite of the (S)-β-tyrosine made by the mechanistically related tyrosine aminomutase (SgTAM) from Streptomyces globisporus. Since TcPAM and SgTAM share similar tertiary- and quaternary-structures and have several highly conserved aliphatic residues positioned analogously in their active sites for substrate recognition, the divergent product stereochemistries of these catalysts likely cannot be explained by differences in active site architecture. The active site of the TcPAM structure also is in complex with (E)-cinnamate; the latter functions as both a substrate and an intermediate. To account for the distinct (3R)-β-amino acid stereochemistry catalyzed by TcPAM, the cinnamate skeleton must rotate the C1-Cα and Cipso-Cβ bonds 180° in the active site prior to exchange and rebinding of the NH2/H pair to the cinnamate, an event that is not required for the corresponding acrylate intermediate in the SgTAM reaction. Moreover, the aromatic ring of the intermediate makes only one direct hydrophobic interaction with Leu-104. A L104A mutant of TcPAM demonstrated an ∼1.5-fold increase in kcat and a decrease in KM values for sterically demanding 3'-methyl-α-phenylalanine and styryl-α-alanine substrates, compared to the kinetic parameters for TcPAM. These parameters did not change significantly for the mutant with 4'-methyl-α-phenylalanine compared to those for TcPAM.
Collapse
Affiliation(s)
- Lei Feng
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | | | | | | | | |
Collapse
|
89
|
Abstract
AbstractThe interplay between two important noncovalent interactions involving different aromatic rings is studied by means of ab initio calculations (MP2/6-31++G**) computing the non-additivity energies. In this study we demonstrate the existence of cooperativity effects when cation-π and lone pair-π interactions coexist in the same system. These effects are studied theoretically using energetic and geometric features of the complexes. In addition we use Bader’s theory of atoms-in-molecules and Molecular Interaction Potential with polarization (MIPp) partition scheme to characterize the interactions. Experimental evidence for this combination of interactions has been obtained from the Cambridge Structural Database.
Collapse
|
90
|
Molecular characterization of phenylalanine ammonia lyase gene from Cistanche deserticola. Mol Biol Rep 2010; 38:3741-50. [DOI: 10.1007/s11033-010-0489-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 11/09/2010] [Indexed: 11/25/2022]
|
91
|
Wang X. Structure, function, and engineering of enzymes in isoflavonoid biosynthesis. Funct Integr Genomics 2010; 11:13-22. [DOI: 10.1007/s10142-010-0197-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/08/2010] [Accepted: 10/13/2010] [Indexed: 01/15/2023]
|
92
|
Seff AL, Pilbák S, Silaghi-Dumitrescu I, Poppe L. Computational investigation of the histidine ammonia-lyase reaction: a modified loop conformation and the role of the zinc(II) ion. J Mol Model 2010; 17:1551-63. [DOI: 10.1007/s00894-010-0849-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 09/02/2010] [Indexed: 10/19/2022]
|
93
|
Cooke HA, Bruner SD. Probing the active site of MIO-dependent aminomutases, key catalysts in the biosynthesis of beta-amino acids incorporated in secondary metabolites. Biopolymers 2010; 93:802-10. [PMID: 20577998 PMCID: PMC3419534 DOI: 10.1002/bip.21500] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The tyrosine aminomutase SgTAM produces (S)-ss-tyrosine from L-tyrosine in the biosynthesis of the enediyne antitumor antibiotic C-1027. This conversion is promoted by the methylideneimidazole-5-one (MIO) prosthetic group. MIO was first identified in the homologous family of ammonia lyases, which deaminate aromatic amino acids to form alpha,ss-unsaturated carboxylates. Studies of substrate specificity have been described for lyases but there have been limited reports in altering the substrate specificity of aminomutases. Furthermore, it remains unclear as to what structural properties are responsible for catalyzing the presumed readdition of the amino group into the alpha,ss-unsaturated intermediates to form ss-amino acids. Attempts to elucidate specificity and mechanistic determinants of SgTAM have also proved to be difficult as it is recalcitrant to perturbations to the active site via mutagenesis. An X-ray cocrystal structure of the SgTAM mutant of the catalytic base with L-tyrosine verified important substrate binding residues as well as the enzymatic base. Further mutagenesis revealed that removal of these crucial interactions renders the enzyme inactive. Proposed structural determinants for mutase activity probed via mutagenesis, time-point assays and X-ray crystallography revealed a complicated role for these residues in maintaining key quaternary structure properties that aid in catalysis.
Collapse
Affiliation(s)
- Heather A Cooke
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467-3860, USA.
| | | |
Collapse
|
94
|
Garcia-Raso A, Albertí FM, Fiol JJ, Lagos Y, Torres M, Molins E, Mata I, Estarellas C, Frontera A, Quiñonero D, Deyà PM. A Combined Experimental and Theoretical Study of Anion-π Interactions in N6- and N9-Decyladenine Salts. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000436] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
95
|
Das A, Choudhury SR, Dey B, Yalamanchili SK, Helliwell M, Gamez P, Mukhopadhyay S, Estarellas C, Frontera A. Supramolecular assembly of Mg(II) complexes directed by associative lone pair-pi/pi-pi/pi-anion-pi/pi-lone pair interactions. J Phys Chem B 2010; 114:4998-5009. [PMID: 20355711 DOI: 10.1021/jp911884x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two Mg(II) malonate complexes with protonated 2-aminopyridine and protonated 2-amino-4-picoline as counterions, namely, (C(5)H(7)N(2))(4)[Mg(C(3)H(2)O(4))(2)(H(2)O)(2)](ClO(4))(2) (1) and (C(6)H(8)N(2)H)(2)[Mg(C(3)H(2)O(4))(2)(H(2)O)(2)] x 4 H(2)O (2) [C(5)H(7)N(2) = protonated 2-aminopyridine, C(3)H(4)O(4) = malonic acid, C(6)H(8)N(2)H = protonated 2-amino-4-picoline], have been synthesized from purely aqueous media, and their crystal structures have been determined by single-crystal X-ray diffraction. The role of lone pair...pi interactions in stabilizing the self-assembly process appears to be of great importance in both complexes. Additional weak forces like anion...pi and noncovalent O...O interactions are also found to be operating in 1. A rare combination of lone pair...pi and anion...pi interactions in 1, of the type lone pair...pi/pi...pi/pi...anion...pi/pi...lone pair, is observed, and this unusual supramolecular network is fully described here. An attempt to prepare an analogous complex with 2-amino-4-picoline resulted in 2, which is isomorphous with our recently reported transition-metal complexes of the type (C(6)H(8)N(2)H)(2)[M(C(3)H(2)O(4))(2)(H(2)O)(2)] x 4 H(2)O (M = Ni/Co/Mn). A high-level DFT-D study (RI-B97-D/TZVP) has been used to characterize the different noncovalent interactions present in the solid state. We have also analyzed some crystal fragments to examine energetically some important assemblies that drive the crystal packing. Finally, we have studied the influence of magnesium on some hydrogen-bonding interactions.
Collapse
Affiliation(s)
- Amrita Das
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Hsieh LS, Yeh CS, Pan HC, Cheng CY, Yang CC, Lee PD. Cloning and expression of a phenylalanine ammonia-lyase gene (BoPAL2) from Bambusa oldhamii in Escherichia coli and Pichia pastoris. Protein Expr Purif 2010; 71:224-30. [PMID: 20064614 DOI: 10.1016/j.pep.2010.01.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/06/2010] [Accepted: 01/06/2010] [Indexed: 11/25/2022]
Abstract
Phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) is the first committed enzyme of phenylpropanoid pathway. A PAL gene, designated as BoPAL2, was cloned from a Bambusa oldhamii cDNA library. The open reading frame of BoPAL2 was 2142bp in size encoding a 713-amino acid polypeptide. BoPAL2 was heterologous expressed in Escherichia coli and Pichia pastoris. The recombinant proteins were exhibited PAL and tyrosine ammonia-lyase activities. The recombinant BoPAL2 had a subunit mass of 80kDa and existed as a homotetramer. The optimum temperature and pH of BoPAL2 were 50-60 degrees C and 8.5-9.0, respectively. The K(m) and k(cat) values of BoPAL2 expressed in E. coli were 250microM and 10.12s(-1). The K(m) and k(cat) values of BoPAL2 expressed in P. pastoris were 331microM and 16.04s(-1). The recombinant proteins had similar biochemical properties and kinetic parameters with PALs reported in other plants.
Collapse
Affiliation(s)
- Lu-Sheng Hsieh
- Institute of Microbiology and Biochemistry, Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
97
|
Janczak J, Kubiak R. Pyrazine control of the supramolecular chemistry of iron(ii) and cobalt(ii) phthalocyanines. CrystEngComm 2010. [DOI: 10.1039/c003440a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
98
|
Barceló-Oliver M, Estarellas C, García-Raso A, Terrón A, Frontera A, Quiñonero D, Mata I, Molins E, Deyà PM. Experimental and theoretical study of uracil derivatives: the crucial role of weak fluorine–fluorine noncovalent interactions. CrystEngComm 2010. [DOI: 10.1039/c0ce00048e] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
99
|
Reichert AI, He XZ, Dixon RA. Phenylalanine ammonia-lyase (PAL) from tobacco (Nicotiana tabacum): characterization of the four tobacco PAL genes and active heterotetrameric enzymes. Biochem J 2009; 424:233-42. [PMID: 19725811 DOI: 10.1042/bj20090620] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PAL (L-phenylalanine ammonia-lyase), the first enzyme of phenylpropanoid biosynthesis, is often encoded by multigene families in plants. A PCR-based approach was used to isolate cDNA clones corresponding to the four PAL genes of tobacco (Nicotiana tabacum). By careful comparison of cDNA and genomic clones, a new PAL gene (PAL4) was defined. PCR amplification of PAL sequences from cDNA led to the generation of chimaeric clones between PAL1 and PAL4, and incorrect annotation of PAL4 ESTs (expressed sequence tags) as PAL1 in the EST database has given rise to a randomly shuffled tentative consensus sequence. The PAL2 previously described in the literature was shown, by domain swapping experiments with PAL1, to possess a single nucleotide substitution leading to an inactive enzyme. The altered amino acid resulting from this substitution maps to the base of the active site pocket in the three-dimensional structure of PAL. The inactive PAL2 allele could not be recovered from 13 different tobacco cultivars examined. PALs 1-4 were co-expressed in multiple plant organs, and were also co-induced following exposure of cell cultures to yeast elicitor or methyl jasmonate. All four tobacco PAL proteins expressed in Escherichia coli displayed normal Michaelis-Menten kinetics, with Km values between 36 and 60 muM. Co-expression of different PAL proteins in E. coli resulted in formation of heterotetramers, which possessed kinetic properties within the same range as those of the individual homotetramers. The potential physiological function of heterotetrameric PAL forms is discussed.
Collapse
Affiliation(s)
- Angelika I Reichert
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | | | | |
Collapse
|
100
|
Structure and chemistry of 4-methylideneimidazole-5-one containing enzymes. Curr Opin Chem Biol 2009; 13:460-8. [PMID: 19620019 DOI: 10.1016/j.cbpa.2009.06.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 06/12/2009] [Indexed: 11/21/2022]
Abstract
The prosthetic group 4-methylideneimidazole-5-one (MIO) is the catalytic component of the ammonia lyase class of enzymes. This family is responsible for the processing of amino acids in a variety of metabolic pathways through the elimination of ammonia to form unsaturated products. Recently, new chemistry has been attributed to this family with the discovery of MIO-based aminomutases. The mechanism of electrophilic chemistry catalyzed by MIO-based enzymes has been investigated for several decades. Recent X-ray crystal structures of members of the family have provided novel insight into the molecular basis for catalysis and substrate recognition. In addition, the inclusion of aminomutases in natural product biosynthetic pathways has spurned recent advances toward rational engineering and chemoenzymatic applications.
Collapse
|