51
|
Abstract
There is a high number of well characterized, commercially available laccases with different redox potentials and low substrate specificity, which in turn makes them attractive for a vast array of biotechnological applications. Laccases operate as batteries, storing electrons from individual substrate oxidation reactions to reduce molecular oxygen, releasing water as the only by-product. Due to society’s increasing environmental awareness and the global intensification of bio-based economies, the biotechnological industry is also expanding. Enzymes such as laccases are seen as a better alternative for use in the wood, paper, textile, and food industries, and they are being applied as biocatalysts, biosensors, and biofuel cells. Almost 140 years from the first description of laccase, industrial implementations of these enzymes still remain scarce in comparison to their potential, which is mostly due to high production costs and the limited control of the enzymatic reaction side product(s). This review summarizes the laccase applications in the last decade, focusing on the published patents during this period.
Collapse
|
52
|
Effect of laccase from Trametes versicolor on the oxidative stability of edible vegetable oils. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
53
|
Arregui L, Ayala M, Gómez-Gil X, Gutiérrez-Soto G, Hernández-Luna CE, Herrera de los Santos M, Levin L, Rojo-Domínguez A, Romero-Martínez D, Saparrat MCN, Trujillo-Roldán MA, Valdez-Cruz NA. Laccases: structure, function, and potential application in water bioremediation. Microb Cell Fact 2019; 18:200. [PMID: 31727078 PMCID: PMC6854816 DOI: 10.1186/s12934-019-1248-0] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/31/2019] [Indexed: 11/11/2022] Open
Abstract
The global rise in urbanization and industrial activity has led to the production and incorporation of foreign contaminant molecules into ecosystems, distorting them and impacting human and animal health. Physical, chemical, and biological strategies have been adopted to eliminate these contaminants from water bodies under anthropogenic stress. Biotechnological processes involving microorganisms and enzymes have been used for this purpose; specifically, laccases, which are broad spectrum biocatalysts, have been used to degrade several compounds, such as those that can be found in the effluents from industries and hospitals. Laccases have shown high potential in the biotransformation of diverse pollutants using crude enzyme extracts or free enzymes. However, their application in bioremediation and water treatment at a large scale is limited by the complex composition and high salt concentration and pH values of contaminated media that affect protein stability, recovery and recycling. These issues are also associated with operational problems and the necessity of large-scale production of laccase. Hence, more knowledge on the molecular characteristics of water bodies is required to identify and develop new laccases that can be used under complex conditions and to develop novel strategies and processes to achieve their efficient application in treating contaminated water. Recently, stability, efficiency, separation and reuse issues have been overcome by the immobilization of enzymes and development of novel biocatalytic materials. This review provides recent information on laccases from different sources, their structures and biochemical properties, mechanisms of action, and application in the bioremediation and biotransformation of contaminant molecules in water. Moreover, we discuss a series of improvements that have been attempted for better organic solvent tolerance, thermo-tolerance, and operational stability of laccases, as per process requirements.
Collapse
Affiliation(s)
- Leticia Arregui
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, C.P. 05348 Mexico City, Mexico
| | - Marcela Ayala
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Ximena Gómez-Gil
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| | - Guadalupe Gutiérrez-Soto
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Francisco Villa, 66059 Colonia Ex hacienda El Canadá, General Escobedo, Nuevo León Mexico
| | - Carlos Eduardo Hernández-Luna
- Laboratorio de Enzimología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Pedro de Alba y Manuel L. Barragán, Cd. Universitaria, 66451 San Nicolás de los Garza, Nuevo León Mexico
| | - Mayra Herrera de los Santos
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| | - Laura Levin
- Laboratorio de Micología Experimental, DBBE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INMIBO-CONICET, Ciudad Universitaria, Pabellón 2, Piso 4, C1428BGA Ciudad Autónoma de Buenos Aires, Argentina
| | - Arturo Rojo-Domínguez
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, C.P. 05348 Mexico City, Mexico
| | - Daniel Romero-Martínez
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| | - Mario C. N. Saparrat
- Instituto de Fisiología Vegetal (INFIVE), Universidad Nacional de La Plata (UNLP)-CCT-La Plata-Consejo Nacional de Investigaciones Científicas y técnicas (CONICET), Diag. 113 y 61, 327CC, 1900, La Plata, Argentina
- Instituto de Botánica Spegazzini, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, 53 # 477, 1900, La Plata, Argentina
| | - Mauricio A. Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| | - Norma A. Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| |
Collapse
|
54
|
Becker J, Wittmann C. A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products. Biotechnol Adv 2019; 37:107360. [DOI: 10.1016/j.biotechadv.2019.02.016] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
|
55
|
Li C, Chen C, Wu X, Tsang CW, Mou J, Yan J, Liu Y, Lin CSK. Recent advancement in lignin biorefinery: With special focus on enzymatic degradation and valorization. BIORESOURCE TECHNOLOGY 2019; 291:121898. [PMID: 31395402 DOI: 10.1016/j.biortech.2019.121898] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 05/07/2023]
Abstract
With the intensive development of lignocellulosic biorefineries to produce fuels and chemicals from biomass-derived carbohydrates, lignin was generated at a large quantity every year. Therefore, lignin has received increasing attention as an abundant aromatics resource in terms of research and development efforts for value-added chemicals production. In this review, studies about lignin degradation especially the crucial enzymes involved and the reaction mechanism were substantially discussed, which provided the molecular basis of lignin biodegradation. Then, the latest improvements in lignin valorization by biological methods were summarized and case studies about value-added compounds from lignin were introduced. Afterwards, challenges, opportunities and prospects regarding biorefinery of lignin were presented.
Collapse
Affiliation(s)
- Chong Li
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, People's Republic of China
| | - Chao Chen
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Xiaofen Wu
- Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, People's Republic of China
| | - Chi-Wing Tsang
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Hong Kong, China
| | - Jinhua Mou
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Jianbin Yan
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, People's Republic of China
| | - Yun Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong.
| |
Collapse
|
56
|
Nawaz A, Mukhtar H, ul Haq I, Mazhar Z, Mumtaz MW. Laccase: An Environmental Benign Pretreatment Agent for Efficient Bioconversion of Lignocellulosic Residues to Bioethanol. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190722163046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abrupt urbanization and industrialization around the world resulted in elevated environmental pollution and depletion of natural energy resources. An eco-friendly and economical alternative for energy production is the need of an hour. This can be achieved by converting the waste material into energy. One such waste is lignocellulosic agricultural residues, produced in billions of tons every year all around the world, which can be converted into bioethanol. The main challenge in this bioconversion is the recalcitrant nature of lignocellulosic material. The removal of cementing material is lignin and to overcome the potential inhibitors produced during the disintegration of lignin is the challenging task for biotechnologist. This task can be achieved by a number of different methods but laccase is the most effective and eco-friendly method that can be used for effective removal of lignin along with the increase the accessibility of cellulose and bioethanol yield.
Collapse
Affiliation(s)
- Ali Nawaz
- Institute of Industrial Biotechnology, GC University, Lahore, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, GC University, Lahore, Pakistan
| | - Ikram ul Haq
- Institute of Industrial Biotechnology, GC University, Lahore, Pakistan
| | - Zainab Mazhar
- Institute of Industrial Biotechnology, GC University, Lahore, Pakistan
| | | |
Collapse
|
57
|
Lee S, Kang M, Bae JH, Sohn JH, Sung BH. Bacterial Valorization of Lignin: Strains, Enzymes, Conversion Pathways, Biosensors, and Perspectives. Front Bioeng Biotechnol 2019; 7:209. [PMID: 31552235 PMCID: PMC6733911 DOI: 10.3389/fbioe.2019.00209] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
Lignin, an aromatic polymer found in plants, has been studied for years in many biological fields. Initially, when biofuel was produced from lignocellulosic biomass, lignin was regarded as waste generated by the biorefinery and had to be removed, because of its inhibitory effects on fermentative bacteria. Although it has since proven to be a natural resource for bio-products with considerable potential, its utilization is confined by its complex structure. Hence, the microbial degradation of lignin has attracted researchers' interest to overcome this problem. From this perspective, the studies have primarily focused on fungal systems, such as extracellular peroxidase and laccase from white- and brown-rot fungi. However, recent reports have suggested that bacteria play an increasing role in breaking down lignin. This paper, therefore, reviews the role of bacteria in lignin and lignin-related research. Several reports on bacterial species in soil that can degrade lignin and their enzymes are included. In addition, a cellulolytic anaerobic bacterium capable of solubilizing lignin and carbohydrate simultaneously has recently been identified, even though the enzyme involved has not been discovered yet. The assimilation of lignin-derived small molecules and their conversion to renewable chemicals by bacteria, such as muconic acid and polyhydroxyalkanoates, including genetic modification to enhance their capability was discussed. This review also covers the indirect use of bacteria for lignin degradation, which is concerned with whole-cell biosensors designed to detect the aromatic chemicals released from lignin transformation.
Collapse
Affiliation(s)
- Siseon Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Minsik Kang
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology, Daejeon, South Korea
| | - Jung-Hoon Bae
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jung-Hoon Sohn
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology, Daejeon, South Korea
| | - Bong Hyun Sung
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
58
|
Prasad RK, Chatterjee S, Mazumder PB, Gupta SK, Sharma S, Vairale MG, Datta S, Dwivedi SK, Gupta DK. Bioethanol production from waste lignocelluloses: A review on microbial degradation potential. CHEMOSPHERE 2019; 231:588-606. [PMID: 31154237 DOI: 10.1016/j.chemosphere.2019.05.142] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 04/02/2019] [Accepted: 05/17/2019] [Indexed: 05/15/2023]
Abstract
Tremendous explosion of population has led to about 200% increment of total energy consumptions in last twenty-five years. Apart from conventional fossil fuel as limited energy source, alternative non-conventional sources are being explored worldwide to cater the energy requirement. Lignocellulosic biomass conversion for biofuel production is an important alternative energy source due to its abundance in nature and creating less harmful impacts on the environment in comparison to the coal or petroleum-based sources. However, lignocellulose biopolymer, the building block of plants, is a recalcitrant substance and difficult to break into desirable products. Commonly used chemical and physical methods for pretreating the substrate are having several limitations. Whereas, utilizing microbial potential to hydrolyse the biomass is an interesting area of research. Because of the complexity of substrate, several enzymes are required that can act synergistically to hydrolyse the biopolymer producing components like bioethanol or other energy substances. Exploring a range of microorganisms, like bacteria, fungi, yeast etc. that utilizes lignocelluloses for their energy through enzymatic breaking down the biomass, is one of the options. Scientists are working upon designing organisms through genetic engineering tools to integrate desired enzymes into a single organism (like bacterial cell). Studies on designer cellulosomes and bacteria consortia development relating consolidated bioprocessing are exciting to overcome the issue of appropriate lignocellulose digestions. This review encompasses up to date information on recent developments for effective microbial degradation processes of lignocelluloses for improved utilization to produce biofuel (bioethanol in particular) from the most plentiful substances of our planet.
Collapse
Affiliation(s)
- Rajesh Kumar Prasad
- Defence Research Laboratory, DRDO, Tezpur, 784001, Assam, India; Assam University, Silchar, 788011, Assam, India
| | | | | | | | - Sonika Sharma
- Defence Research Laboratory, DRDO, Tezpur, 784001, Assam, India
| | | | | | | | - Dharmendra Kumar Gupta
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS), HerrenhäuserStr. 2, 30419, Hannover, Germany
| |
Collapse
|
59
|
Hongyan L, Zexiong Z, Shiwei X, He X, Yinian Z, Haiyun L, Zhongsheng Y. Study on transformation and degradation of bisphenol A by Trametes versicolor laccase and simulation of molecular docking. CHEMOSPHERE 2019; 224:743-750. [PMID: 30851526 DOI: 10.1016/j.chemosphere.2019.02.143] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 02/11/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
As a typical class of environmental endocrine disruptors, bisphenol A poses a potential threat to the sustainable survival and reproduction of living beings and human beings. In this study, the interaction between Trametes versicolor laccase and bisphenol A (BPA) was studied by molecular docking simulation, and the catalytic degradation of BPA was verified by experiments. The conditions for the laccase production of T. versicolor were optimized by orthogonal design, and the degradation of BPA was studied using its crude enzyme solution. The optimum degradation conditions were obtained by response surface methodology (RSM). Ultimately, the transformation products after 3 and 6 h of reaction were detected by gas chromatography-mass spectrometry. Docking results demonstrated that the reaction between laccase and BPA was spontaneous, and the degradation rate in 24 h reached 88.76%. RSM results showed that the highest BPA degradation rate of 97.68% was reached after 1 h reaction at 44.6 °C, 5 mg/L initial BPA concentration, and pH 5.20. The intermediate products of BPA catalyzed by laccase included ethylbenzene, p-xylene, and cyclohexanone 1-methyl-4-isopropenyl-2-cyclohexenol. This finding reveals that BPA degradation by the crude laccase from T. versicolor starts from the C atoms between two benzene rings that connect BPA. Compared with expensive pure enzyme, the crude laccase solution prepared by T. versicolor showed greater efficiency in BPA degradation. This work provides theoretical references and experimental methods for the biological processing of harmful pollutants.
Collapse
Affiliation(s)
- Liu Hongyan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, People's Republic of China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin, 541006, People's Republic of China.
| | - Zhang Zexiong
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, People's Republic of China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin, 541006, People's Republic of China
| | - Xie Shiwei
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, People's Republic of China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin, 541006, People's Republic of China
| | - Xing He
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, People's Republic of China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin, 541006, People's Republic of China
| | - Zhu Yinian
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin, 541006, People's Republic of China
| | - Li Haiyun
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, People's Republic of China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin, 541006, People's Republic of China
| | - Yi Zhongsheng
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, People's Republic of China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin, 541006, People's Republic of China
| |
Collapse
|
60
|
Wei Z, Wilkinson RC, Rashid GMM, Brown D, Fülöp V, Bugg TDH. Characterization of Thiamine Diphosphate-Dependent 4-Hydroxybenzoylformate Decarboxylase Enzymes from Rhodococcus jostii RHA1 and Pseudomonas fluorescens Pf-5 Involved in Degradation of Aryl C 2 Lignin Degradation Fragments. Biochemistry 2019; 58:5281-5293. [PMID: 30946572 DOI: 10.1021/acs.biochem.9b00177] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A thiamine diphosphate-dependent enzyme annotated as a benzoylformate decarboxylase is encoded by gene cluster ro02984-ro02986 in Rhodococcus jostii RHA1 previously shown to generate vanillin and 4-hydroxybenzaldehyde from lignin oxidation, and a closely related gene cluster is also found in the genome of Pseudomonas fluorescens Pf-5. Two hypotheses for possible pathways involving a thiamine diphosphate-dependent cleavage, either C-C cleavage of a ketol or diketone aryl C3 substrate or decarboxylation of an aryl C2 substrate, were investigated by expression and purification of the recombinant enzymes and expression of dehydrogenase and oxidase enzymes also found in the gene clusters. The ThDP-dependent enzymes showed no activity for cleavage of aryl C3 ketol or diketone substrates but showed activity for decarboxylation of benzoylformate and 4-hydroxybenzoylformate. A flavin-dependent oxidase encoded by gene ro02984 was found to oxidize either mandelic acid or phenylglyoxal. The crystal structure of the P. fluorescens decarboxylase enzyme was determined at 1.69 Å resolution, showing similarity to structures of known benzoylformate decarboxylase enzymes. The P. fluorescens decarboxylase enzyme showed enhanced carboligase activity between vanillin and acetaldehyde, rationalized by the presence of alanine versus serine at residue 73 in the enzyme active site, which was investigated further by site-directed mutagenesis of this residue. A hypothesis for a pathway for degradation of aryl C2 fragments arising from oxidative cleavage of phenylcoumaran and diarylpropane structures in lignin is proposed.
Collapse
Affiliation(s)
- Zhen Wei
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | | | - Goran M M Rashid
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - David Brown
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Vilmos Fülöp
- School of Life Sciences , University of Warwick , Coventry CV4 7AL , U.K
| | - Timothy D H Bugg
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| |
Collapse
|
61
|
Maleki N, Kashanian S, Nazari M, Shahabadi N. A novel sensitive laccase biosensor using gold nanoparticles and poly L‐arginine to detect catechol in natural water. Biotechnol Appl Biochem 2019; 66:502-509. [DOI: 10.1002/bab.1746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/24/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Nasim Maleki
- Faculty of ChemistryRazi University Kermanshah Iran
| | - Soheila Kashanian
- Faculty of ChemistryRazi University Kermanshah Iran
- Nano Drug Delivery Research CenterKermanshah University of Medical Sciences Kermanshah Iran
| | - Maryam Nazari
- Faculty of ChemistryRazi University Kermanshah Iran
- Nano Drug Delivery Research CenterKermanshah University of Medical Sciences Kermanshah Iran
| | - Nahid Shahabadi
- Faculty of ChemistryRazi University Kermanshah Iran
- Medical Biology Research CenterKermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
62
|
Advances in microbial lignin degradation and its applications. Curr Opin Biotechnol 2019; 56:179-186. [DOI: 10.1016/j.copbio.2018.11.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/29/2022]
|
63
|
Thermoalkaliphilic laccase treatment for enhanced production of high-value benzaldehyde chemicals from lignin. Int J Biol Macromol 2019; 124:200-208. [DOI: 10.1016/j.ijbiomac.2018.11.144] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 01/29/2023]
|
64
|
Lisov A, Trubitsina L, Lisova Z, Trubitsin I, Zavarzina A, Leontievsky A. Transformation of humic acids by two-domain laccase from Streptomyces anulatus. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
65
|
Characterization of multicopper oxidase CopA from Pseudomonas putida KT2440 and Pseudomonas fluorescens Pf-5: Involvement in bacterial lignin oxidation. Arch Biochem Biophys 2018; 660:97-107. [DOI: 10.1016/j.abb.2018.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/23/2022]
|
66
|
Wang X, Yao B, Su X. Linking Enzymatic Oxidative Degradation of Lignin to Organics Detoxification. Int J Mol Sci 2018; 19:ijms19113373. [PMID: 30373305 PMCID: PMC6274955 DOI: 10.3390/ijms19113373] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 11/16/2022] Open
Abstract
The major enzymes involved in lignin degradation are laccase, class II peroxidases (lignin peroxidase, manganese peroxidase, and versatile peroxidase) and dye peroxidase, which use an oxidative or peroxidative mechanism to deconstruct the complex and recalcitrant lignin. Laccase and manganese peroxidase directly oxidize phenolic lignin components, while lignin peroxidase and versatile peroxidase can act on the more recalcitrant non-phenolic lignin compounds. Mediators or co-oxidants not only increase the catalytic ability of these enzymes, but also largely expand their substrate scope to those with higher redox potential or more complicated structures. Neither laccase nor the peroxidases are stringently selective of substrates. The promiscuous nature in substrate preference can be employed in detoxification of a range of organics.
Collapse
Affiliation(s)
- Xiaolu Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
67
|
Luo C, Li Y, Liao H, Yang Y. De novo transcriptome assembly of the bamboo snout beetle Cyrtotrachelus buqueti reveals ability to degrade lignocellulose of bamboo feedstock. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:292. [PMID: 30386429 PMCID: PMC6204003 DOI: 10.1186/s13068-018-1291-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/15/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND The bamboo weevil Cyrtotrachelus buqueti, which is considered a pest species, damages bamboo shoots via its piercing-sucking mode of feeding. C. buqueti is well known for its ability to transform bamboo shoot biomass into nutrients and energy for growth, development and reproduction with high specificity and efficacy of bioconversion. Woody bamboo is a perennial grass that is a potential feedstock for lignocellulosic biomass because of its high growth rate and lignocellulose content. To verify our hypothesis that C. buqueti efficiently degrades bamboo lignocellulose, we assessed the bamboo lignocellulose-degrading ability of this insect through RNA sequencing for identifying a potential route for utilisation of bamboo biomass. RESULTS Analysis of carbohydrate-active enzyme (CAZyme) family genes in the developmental transcriptome of C. buqueti revealed 1082 unigenes, including 55 glycoside hydrolases (GH) families containing 309 GHs, 51 glycosyltransferases (GT) families containing 329 GTs, 8 carbohydrate esterases (CE) families containing 174 CEs, 6 polysaccharide lyases (PL) families containing 11 PLs, 8 auxiliary activities (AA) families containing 131 enzymes with AAs and 17 carbohydrate-binding modules (CBM) families containing 128 CBMs. We used weighted gene co-expression network analysis to analyse developmental RNA sequencing data, and 19 unique modules were identified in the analysis. Of these modules, the expression of MEyellow module genes was unique and the module included numerous CAZyme family genes. CAZyme genes in this module were divided into two groups depending on whether gene expression was higher in the adult/larval stages or in the egg/pupal stages. Enzyme assays revealed that cellulase activity was highest in the midgut whereas lignin-degrading enzyme activity was highest in the hindgut, consistent with findings from intestinal gene expression studies. We also analysed the expression of CAZyme genes in the transcriptome of C. buqueti from two cities and found that several genes were also assigned to CAZyme families. The insect had genes and enzymes associated with lignocellulose degradation, the expression of which differed with developmental stage and intestinal region. CONCLUSION Cyrtotrachelus buqueti exhibits lignocellulose degradation-related enzymes and genes, most notably CAZyme family genes. CAZyme family genes showed differences in expression at different developmental stages, with adults being more effective at cellulose degradation and larvae at lignin degradation, as well as at different regions of the intestine, with the midgut being more cellulolytic than the hindgut. This degradative system could be utilised for the bioconversion of bamboo lignocellulosic biomass.
Collapse
Affiliation(s)
- Chaobing Luo
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 China
| | - Yuanqiu Li
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 China
- College of Food and Biological Engineering, Xihua University, Chengdu, China
| | - Hong Liao
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 China
| | - Yaojun Yang
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 China
| |
Collapse
|
68
|
Rashid GMM, Zhang X, Wilkinson RC, Fülöp V, Cottyn B, Baumberger S, Bugg TDH. Sphingobacterium sp. T2 Manganese Superoxide Dismutase Catalyzes the Oxidative Demethylation of Polymeric Lignin via Generation of Hydroxyl Radical. ACS Chem Biol 2018; 13:2920-2929. [PMID: 30247873 DOI: 10.1021/acschembio.8b00557] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sphingobacterium sp. T2 contains two extracellular manganese superoxide dismutase enzymes which exhibit unprecedented activity for lignin oxidation but via an unknown mechanism. Enzymatic treatment of lignin model compounds gave products whose structures were indicative of aryl-Cα oxidative cleavage and demethylation, as well as alkene dihydroxylation and alcohol oxidation. 18O labeling studies on the SpMnSOD-catalyzed oxidation of lignin model compound guiaiacylglycerol-β-guaiacyl ether indicated that the an oxygen atom inserted by the enzyme is derived from superoxide or peroxide. Analysis of an alkali lignin treated by SpMnSOD1 by quantitative 31P NMR spectroscopy demonstrated 20-40% increases in phenolic and aliphatic OH content, consistent with lignin demethylation and some internal oxidative cleavage reactions. Assay for hydroxyl radical generation using a fluorometric hydroxyphenylfluorescein assay revealed the release of 4.1 molar equivalents of hydroxyl radical by SpMnSOD1. Four amino acid replacements in SpMnSOD1 were investigated, and A31H or Y27H site-directed mutant enzymes were found to show no lignin demethylation activity according to 31P NMR analysis. Structure determination of the A31H and Y27H mutant enzymes reveals the repositioning of an N-terminal protein loop, leading to widening of a solvent channel at the dimer interface, which would provide increased solvent access to the Mn center for hydroxyl radical generation.
Collapse
Affiliation(s)
| | | | | | | | - Betty Cottyn
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS,
Université Paris-Saclay, 78000 Versailles, France
| | - Stéphanie Baumberger
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS,
Université Paris-Saclay, 78000 Versailles, France
| | | |
Collapse
|
69
|
Guan ZB, Luo Q, Wang HR, Chen Y, Liao XR. Bacterial laccases: promising biological green tools for industrial applications. Cell Mol Life Sci 2018; 75:3569-3592. [PMID: 30046841 PMCID: PMC11105425 DOI: 10.1007/s00018-018-2883-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/30/2018] [Accepted: 07/19/2018] [Indexed: 11/26/2022]
Abstract
Multicopper oxidases (MCOs) are a pervasive family of enzymes that oxidize a wide range of phenolic and nonphenolic aromatic substrates, concomitantly with the reduction of dioxygen to water. MCOs are usually divided into two functional classes: metalloxidases and laccases. Given their broad substrate specificity and eco-friendliness (molecular oxygen from air as is used as the final electron acceptor and they only release water as byproduct), laccases are regarded as promising biological green tools for an array of applications. Among these laccases, those of bacterial origin have attracted research attention because of their notable advantages, including broad substrate spectrum, wide pH range, high thermostability, and tolerance to alkaline environments. This review aims to summarize the significant research efforts on the properties, mechanisms and structures, laccase-mediator systems, genetic engineering, immobilization, and biotechnological applications of the bacteria-source laccases and laccase-like enzymes, which principally include Bacillus laccases, actinomycetic laccases and some other species of bacterial laccases. In addition, these enzymes may offer tremendous potential for environmental and industrial applications.
Collapse
Affiliation(s)
- Zheng-Bing Guan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Quan Luo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hao-Ran Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yu Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Xiang-Ru Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| |
Collapse
|
70
|
Oinuma KI, Yamaguchi I, Shindo D, Fujimoto M, Nishiyama T, Takano H, Takaya N, Ueda K. Extracytoplasmic diaphorase activity of Streptomyces coelicolor A3(2). Biochem Biophys Res Commun 2018; 503:1581-1586. [PMID: 30054046 DOI: 10.1016/j.bbrc.2018.07.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/17/2018] [Indexed: 11/18/2022]
Abstract
Metabolism and utilization of plant-derived aromatic substances are fundamental to the saprophytic growth of Streptomyces. Here, we studied an enzyme activity reducing 2,6-dichlorophenolindophenol and nitroblue tetrazolium in the culture supernatant of Streptomyces coelicolor A3(2). N-terminal amino acid sequencing of a nitroblue tetrazolium-reducing enzyme revealed that the enzyme corresponds to the SCO2180 product. The protein exhibited a marked similarity with dihydrolipoamide dehydrogenase, the E3 subunit of 2-oxo-acid dehydrogenase complex. A recombinant SCO2180 protein formed a homodimer and exhibited a diaphorase activity catalyzing NADH-dependent reduction of various quinonic substrates. Similar nitroblue tetrazolium-reducing activities were observed for other Streptomyces strains isolated from soil, implying that the diaphorase-catalyzed reduction of quinonic substances widely occurs in the extracytoplasmic space of Streptomyces.
Collapse
Affiliation(s)
- Ken-Ichi Oinuma
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan.
| | - Itaru Yamaguchi
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Daiki Shindo
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Masahiro Fujimoto
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Tatsuya Nishiyama
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hideaki Takano
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Naoki Takaya
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kenji Ueda
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
71
|
Goacher RE, Braham EJ, Michienzi CL, Flick RM, Yakunin AF, Master ER. Direct analysis by time-of-flight secondary ion mass spectrometry reveals action of bacterial laccase-mediator systems on both hardwood and softwood samples. PHYSIOLOGIA PLANTARUM 2018; 164:5-16. [PMID: 29286544 DOI: 10.1111/ppl.12688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/20/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
The modification and degradation of lignin play a vital role in carbon cycling as well as production of biofuels and bioproducts. The possibility of using bacterial laccases for the oxidation of lignin offers a route to utilize existing industrial protein expression techniques. However, bacterial laccases are most frequently studied on small model compounds that do not capture the complexity of lignocellulosic materials. This work studied the action of laccases from Bacillus subtilis and Salmonella typhimurium (EC 1.10.3.2) on ground wood samples from yellow birch (Betula alleghaniensis) and red spruce (Picea rubens). The ability of bacterial laccases to modify wood can be facilitated by small molecule mediators. Herein, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), gallic acid and sinapic acid mediators were tested. Direct analysis of the wood samples was achieved by time-of-flight secondary ion mass spectrometry (ToF-SIMS), a surface sensitive mass spectrometry technique that has characteristic peaks for H, G and S lignin. The action of the bacterial laccases on both wood samples was demonstrated and revealed a strong mediator influence. The ABTS mediator led to delignification, evident in an overall increase of polysaccharide peaks in the residual solid, along with equal loss of G and S-lignin peaks. The gallic acid mediator demonstrated minimal laccase activity. Meanwhile, the sinapic acid mediator altered the S/G peak ratio consistent with mediator attaching to the wood solids. The current investigation demonstrates the action of bacterial laccase-mediator systems directly on woody materials, and the potential of using ToF-SIMS to uncover the fundamental and applied role of bacterial enzymes in lignocellulose conversion.
Collapse
Affiliation(s)
- Robyn E Goacher
- Department of Biochemistry, Chemistry and Physics, Niagara University, 5795 Lewiston Road, Lewiston, NY, 14109, USA
| | - Erick J Braham
- Department of Biochemistry, Chemistry and Physics, Niagara University, 5795 Lewiston Road, Lewiston, NY, 14109, USA
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, TX, 77843, USA
| | - Courtney L Michienzi
- Department of Biochemistry, Chemistry and Physics, Niagara University, 5795 Lewiston Road, Lewiston, NY, 14109, USA
| | - Robert M Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | - Emma R Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
- Department of Bioproducts and Biosystems, Aalto University, FI-00076 Aalto, Kemistintie 1, Espoo, Finland
| |
Collapse
|
72
|
Spasic J, Mandic M, Radivojevic J, Jeremic S, Vasiljevic B, Nikodinovic-Runic J, Djokic L. Biocatalytic potential of Streptomyces spp. isolates from rhizosphere of plants and mycorrhizosphere of fungi. Biotechnol Appl Biochem 2018; 65:822-833. [PMID: 29797672 DOI: 10.1002/bab.1664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/10/2018] [Indexed: 11/09/2022]
Abstract
Biocatalytic potential of Streptomyces strains isolated from the rhizosphere of plants and from mycorrhizosphere of fungi has been investigated. A total of 118 Streptomyces isolates were selected and functionally screened for 10 different biotechnologically important enzymatic activities: hydrolase (cellulase, cutinase, gelatinase, lipase, protease, polyhydroxyalkanoate (PHA) depolymerase), phenol oxidase and peroxidase (laccase, tyrosinase, and lignin peroxidase), and aminotransferase. Out of 118 tested Streptomyces spp., 90% showed at least one enzymatic activity. The most abundant were enzymes involved in the biomass degradation, as the production of cutinase, cellulase, and lignin peroxidase were detected in 31%, 40%, and 48% of the isolates, respectively. The improved specific activities of lipase (isolates BV315 and BV100) and tyrosinase (isolates BV87 and BV88) were shown in comparison with the industrially relevant activities of Pseudomonas strains. Plant rhizosphere soils were more prolific source of Streptomyces strains with biocatalytic potential in comparison with mycorrhizosphere soils. Overall, 284 enzyme activities among 118 Streptomyces isolates have been detected. This is the first comprehensive screening of Streptomyces isolates from rhizosphere and mycorrhizosphere soils for novel biocatalysts, showing that specific environmental habitats, such as rhizosphere soils, are "treasure troves" of Streptomyces with biocatalytic potential.
Collapse
Affiliation(s)
- Jelena Spasic
- Institute of Molecular Genetics and Genetic Engineering , University of Belgrade, Belgrade, Serbia
| | - Mina Mandic
- Institute of Molecular Genetics and Genetic Engineering , University of Belgrade, Belgrade, Serbia
| | - Jelena Radivojevic
- Institute of Molecular Genetics and Genetic Engineering , University of Belgrade, Belgrade, Serbia
| | - Sanja Jeremic
- Institute of Molecular Genetics and Genetic Engineering , University of Belgrade, Belgrade, Serbia
| | - Branka Vasiljevic
- Institute of Molecular Genetics and Genetic Engineering , University of Belgrade, Belgrade, Serbia
| | | | - Lidija Djokic
- Institute of Molecular Genetics and Genetic Engineering , University of Belgrade, Belgrade, Serbia
| |
Collapse
|
73
|
Zhuo S, Yan X, Liu D, Si M, Zhang K, Liu M, Peng B, Shi Y. Use of bacteria for improving the lignocellulose biorefinery process: importance of pre-erosion. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:146. [PMID: 29796087 PMCID: PMC5964970 DOI: 10.1186/s13068-018-1146-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/11/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Biological pretreatment is an important alternative strategy for biorefining lignocellulose and has attracted increasing attention in recent years. However, current designs for this pretreatment mainly focus on using various white rot fungi, overlooking the bacteria. To the best of our knowledge, for the first time, we evaluated the potential contribution of bacteria to lignocellulose pretreatment, with and without a physicochemical process, based on the bacterial strain Pandoraea sp. B-6 (hereafter B-6) that was isolated from erosive bamboo slips. Moreover, the mechanism of the improvement of reducing sugar yield by bacteria was elucidated via analyses of the physicochemical changes of corn stover (CS) before and after pretreatment. RESULTS The digestibility of CS pretreated with B-6 was equivalent to that of untreated CS. The recalcitrant CS surface provided fewer mediators for contact with the extracellular enzymes of B-6. A pre-erosion strategy using a tetrahydrofuran-water co-solvent system was shown to destroy the recalcitrant CS surface. The optimal condition for pre-erosion showed a 6.5-fold increase in enzymatic digestibility compared with untreated CS. The pre-erosion of CS can expose more phenolic compounds that were chelated to oxidized Mn3+ and also provided mediators for combination with laccase, which was attributable to B-6 pretreatment. B-6 pretreatment following pre-erosion exhibited a sugar yield that was 91.2 mg/g greater than that of pre-erosion alone and 7.5-fold higher than that of untreated CS. This pre-erosion application was able to destroy the recalcitrant CS surface, thus leading to a rough and porous architecture that better facilitated the diffusion and transport of lignin derivatives. This enhanced the ability of laccase and manganese peroxidase secreted by B-6 to improve the efficiency of this biological pretreatment. CONCLUSION Bacteria were not found useful alone as a biological pretreatment, but they significantly improved enzymatic digestion after lignocellulose breakdown via other physicochemical methods. Nonetheless, phenyl or phenoxy radicals were used by laccase and manganese peroxidase in B-6 for lignin attack or lignin depolymerization. These particular mediators released from the recalcitrance network of lignocellulose openings are important for the efficacy of this bacterial pretreatment. Our findings thus offer a novel perspective on the effective design of biological pretreatment methods for lignocellulose.
Collapse
Affiliation(s)
- Shengnan Zhuo
- School of Metallurgy and Environment, Central South University, Changsha, 410083 China
| | - Xu Yan
- School of Metallurgy and Environment, Central South University, Changsha, 410083 China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083 China
| | - Dan Liu
- School of Metallurgy and Environment, Central South University, Changsha, 410083 China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha, 410083 China
| | - Kejing Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083 China
| | - Mingren Liu
- School of Metallurgy and Environment, Central South University, Changsha, 410083 China
| | - Bing Peng
- School of Metallurgy and Environment, Central South University, Changsha, 410083 China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083 China
| | - Yan Shi
- School of Metallurgy and Environment, Central South University, Changsha, 410083 China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083 China
| |
Collapse
|
74
|
Granja-Travez RS, Wilkinson RC, Persinoti GF, Squina FM, Fülöp V, Bugg TDH. Structural and functional characterisation of multi-copper oxidase CueO from lignin-degrading bacterium Ochrobactrum sp. reveal its activity towards lignin model compounds and lignosulfonate. FEBS J 2018; 285:1684-1700. [PMID: 29575798 DOI: 10.1111/febs.14437] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/23/2018] [Accepted: 03/09/2018] [Indexed: 01/09/2023]
Abstract
The identification of enzymes responsible for oxidation of lignin in lignin-degrading bacteria is of interest for biotechnological valorization of lignin to renewable chemical products. The genome sequences of two lignin-degrading bacteria, Ochrobactrum sp., and Paenibacillus sp., contain no B-type DyP peroxidases implicated in lignin degradation in other bacteria, but contain putative multicopper oxidase genes. Multi-copper oxidase CueO from Ochrobactrum sp. was expressed and reconstituted as a recombinant laccase-like enzyme, and kinetically characterized. Ochrobactrum CueO shows activity for oxidation of β-aryl ether and biphenyl lignin dimer model compounds, generating oxidized dimeric products, and shows activity for oxidation of Ca-lignosulfonate, generating vanillic acid as a low molecular weight product. The crystal structure of Ochrobactrum CueO (OcCueO) has been determined at 1.1 Å resolution (PDB: 6EVG), showing a four-coordinate mononuclear type I copper center with ligands His495, His434 and Cys490 with Met500 as an axial ligand, similar to that of Escherichia coli CueO and bacterial azurin proteins, whereas fungal laccase enzymes contain a three-coordinate type I copper metal center. A trinuclear type 2/3 copper cluster was modeled into the active site, showing similar structure to E. coli CueO and fungal laccases, and three solvent channels leading to the active site. Site-directed mutagenesis was carried out on amino acid residues found in the solvent channels, indicating the importance for residues Asp102, Gly103, Arg221, Arg223, and Asp462 for catalytic activity. The work identifies a new bacterial multicopper enzyme with activity for lignin oxidation, and implicates a role for bacterial laccase-like multicopper oxidases in some lignin-degrading bacteria. DATABASE Structural data are available in the PDB under the accession number 6EVG.
Collapse
Affiliation(s)
| | | | - Gabriela Felix Persinoti
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brasil
| | - Fabio M Squina
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba, Brazil
| | - Vilmos Fülöp
- School of Life Sciences, University of Warwick, Coventry, UK
| | | |
Collapse
|
75
|
Streptomyces spp. in the biocatalysis toolbox. Appl Microbiol Biotechnol 2018; 102:3513-3536. [PMID: 29502181 DOI: 10.1007/s00253-018-8884-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/17/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
Abstract
About 20,100 research publications dated 2000-2017 were recovered searching the PubMed and Web of Science databases for Streptomyces, which are the richest known source of bioactive molecules. However, these bacteria with versatile metabolism are powerful suppliers of biocatalytic tools (enzymes) for advanced biotechnological applications such as green chemical transformations and biopharmaceutical and biofuel production. The recent technological advances, especially in DNA sequencing coupled with computational tools for protein functional and structural prediction, and the improved access to microbial diversity enabled the easier access to enzymes and the ability to engineer them to suit a wider range of biotechnological processes. The major driver behind a dramatic increase in the utilization of biocatalysis is sustainable development and the shift toward bioeconomy that will, in accordance to the UN policy agenda "Bioeconomy to 2030," become a global effort in the near future. Streptomyces spp. already play a significant role among industrial microorganisms. The intention of this minireview is to highlight the presence of Streptomyces in the toolbox of biocatalysis and to give an overview of the most important advances in novel biocatalyst discovery and applications. Judging by the steady increase in a number of recent references (228 for the 2000-2017 period), it is clear that biocatalysts from Streptomyces spp. hold promises in terms of valuable properties and applicative industrial potential.
Collapse
|
76
|
Cook R, Hannon D, Southard JN, Majumdar S. Small laccase from streptomyces coelicolor-an ideal model protein/enzyme for undergraduate laboratory experience. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 46:172-181. [PMID: 29274256 DOI: 10.1002/bmb.21102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/30/2017] [Accepted: 11/27/2017] [Indexed: 06/07/2023]
Abstract
A one semester undergraduate biochemistry laboratory experience is described for an understanding of recombinant technology from gene cloning to protein characterization. An integrated experimental design includes three sequential modules: molecular cloning, protein expression and purification, and protein analysis and characterization. Students perform the tasks of cloning, expression, purification, analysis, and characterization of small laccase (SLAC) from Streptomyces coelicolor. SLAC is an extremely robust well-characterized protein/enzyme, which serves as an ideal model for undergraduate teaching laboratories. Also, this goal-oriented research-like approach helps students to unite the concepts of biochemistry and molecular biology and appreciate the utility of the methods more effectively. A student assessment before and after the course demonstrated an overall increase in learning and enthusiasm on the topic of modern protein chemistry. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(2):172-181, 2018.
Collapse
Affiliation(s)
- Ryan Cook
- Department of Chemistry, Indiana University of Pennsylvania, Indiana, Pennsylvania, 15705
| | - Drew Hannon
- Department of Chemistry, Indiana University of Pennsylvania, Indiana, Pennsylvania, 15705
| | - Jonathan N Southard
- Department of Chemistry, Indiana University of Pennsylvania, Indiana, Pennsylvania, 15705
| | - Sudipta Majumdar
- Department of Chemistry, Indiana University of Pennsylvania, Indiana, Pennsylvania, 15705
| |
Collapse
|
77
|
Zhang K, Si M, Liu D, Zhuo S, Liu M, Liu H, Yan X, Shi Y. A bionic system with Fenton reaction and bacteria as a model for bioprocessing lignocellulosic biomass. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:31. [PMID: 29445420 PMCID: PMC5803899 DOI: 10.1186/s13068-018-1035-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/27/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND The recalcitrance of lignocellulosic biomass offers a series of challenges for biochemical processing into biofuels and bio-products. For the first time, we address these challenges with a biomimetic system via a mild yet rapid Fenton reaction and lignocellulose-degrading bacterial strain Cupriavidus basilensis B-8 (here after B-8) to pretreat the rice straw (RS) by mimicking the natural fungal invasion process. Here, we also elaborated the mechanism through conducting a systematic study of physicochemical changes before and after pretreatment. RESULTS After synergistic Fenton and B-8 pretreatment, the reducing sugar yield was increased by 15.6-56.6% over Fenton pretreatment alone and 2.7-5.2 times over untreated RS (98 mg g-1). Morphological analysis revealed that pretreatment changed the surface morphology of the RS, and the increase in roughness and hydrophilic sites enhanced lignocellulose bioavailability. Chemical components analyses showed that B-8 removed part of the lignin and hemicellulose which caused the cellulose content to increase. In addition, the important chemical modifications also occurred in lignin, 2D NMR analysis of the lignin in residues indicated that the Fenton pretreatment caused partial depolymerization of lignin mainly by cleaving the β-O-4 linkages and by demethoxylation to remove the syringyl (S) and guaiacyl (G) units. B-8 could depolymerize amount of the G units by cleaving the β-5 linkages that interconnect the lignin subunits. CONCLUSIONS A biomimetic system with a biochemical Fenton reaction and lignocellulose-degrading bacteria was confirmed to be able for the pretreatment of RS to enhance enzymatic hydrolysis under mild conditions. The high digestibility was attributed to the destruction of the lignin structure, partial hydrolysis of the hemicellulose and partial surface oxidation of the cellulose. The mechanism of synergistic Fenton and B-8 pretreatment was also explored to understand the change in the RS and the bacterial effects on enzymatic hydrolysis. Furthermore, this biomimetic system offers new insights into the pretreatment of lignocellulosic biomass.
Collapse
Affiliation(s)
- Kejing Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083 People’s Republic of China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083 People’s Republic of China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha, 410083 People’s Republic of China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083 People’s Republic of China
| | - Dan Liu
- School of Metallurgy and Environment, Central South University, Changsha, 410083 People’s Republic of China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083 People’s Republic of China
| | - Shengnan Zhuo
- School of Metallurgy and Environment, Central South University, Changsha, 410083 People’s Republic of China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083 People’s Republic of China
| | - Mingren Liu
- School of Metallurgy and Environment, Central South University, Changsha, 410083 People’s Republic of China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083 People’s Republic of China
| | - Hui Liu
- School of Metallurgy and Environment, Central South University, Changsha, 410083 People’s Republic of China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083 People’s Republic of China
| | - Xu Yan
- School of Metallurgy and Environment, Central South University, Changsha, 410083 People’s Republic of China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083 People’s Republic of China
| | - Yan Shi
- School of Metallurgy and Environment, Central South University, Changsha, 410083 People’s Republic of China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083 People’s Republic of China
| |
Collapse
|
78
|
Shen Z, Zhang K, Si M, Liu M, Zhuo S, Liu D, Ren L, Yan X, Shi Y. Synergy of lignocelluloses pretreatment by sodium carbonate and bacterium to enhance enzymatic hydrolysis of rice straw. BIORESOURCE TECHNOLOGY 2018; 249:154-160. [PMID: 29040849 DOI: 10.1016/j.biortech.2017.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 05/27/2023]
Abstract
We studied a new strategy for pretreatment of rice straw (RS) to enhance enzymatic hydrolysis under mild condition. This approach uses the synergy of sodium carbonate (Na2CO3) and the bacterial strain Cupriavidus basilensis B-8 (hereafter B-8). After synergistic Na2CO3 and B-8 pretreatment (SNBP), the reducing sugar yield varied from 335.3mg/g to 799.6mg/g under different conditions. This increased by 13-31% over Na2CO3 pretreatment (284.2-719.2mg/g) and 3.42-8.15times over the untreated RS (98mg/g). Moreover, the composition of RS was changed significantly through decreases in lignin and hemicellulose. We confirmed this change by compositional analysis and physicochemical characterization of the structure of RS before and after pretreatment. We also elaborated a mechanism for SNBP to better explain RS changes and bacterial effects on enzymatic hydrolysis.
Collapse
Affiliation(s)
- Zhanhui Shen
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang 453007, PR China; Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China; School of Environment, Henan Normal University, Xinxiang 453007, PR China
| | - Kejing Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Mingren Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Shengnan Zhuo
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Dan Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Lili Ren
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Xu Yan
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Yan Shi
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang 453007, PR China; Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China; School of Environment, Henan Normal University, Xinxiang 453007, PR China; School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China.
| |
Collapse
|
79
|
Raveendran S, Parameswaran B, Ummalyma SB, Abraham A, Mathew AK, Madhavan A, Rebello S, Pandey A. Applications of Microbial Enzymes in Food Industry. Food Technol Biotechnol 2018; 56:16-30. [PMID: 29795993 DOI: 10.17113/ftb.56.01.18.5491] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The use of enzymes or microorganisms in food preparations is an age-old process. With the advancement of technology, novel enzymes with wide range of applications and specificity have been developed and new application areas are still being explored. Microorganisms such as bacteria, yeast and fungi and their enzymes are widely used in several food preparations for improving the taste and texture and they offer huge economic benefits to industries. Microbial enzymes are the preferred source to plants or animals due to several advantages such as easy, cost-effective and consistent production. The present review discusses the recent advancement in enzyme technology for food industries. A comprehensive list of enzymes used in food processing, the microbial source of these enzymes and the wide range of their application are discussed.
Collapse
Affiliation(s)
- Sindhu Raveendran
- Centre for Biofuels, National Institute for Interdisciplinary Science and Technology, CSIR, 695019 Trivandrum, India
| | - Binod Parameswaran
- Centre for Biofuels, National Institute for Interdisciplinary Science and Technology, CSIR, 695019 Trivandrum, India
| | - Sabeela Beevi Ummalyma
- Centre for Biofuels, National Institute for Interdisciplinary Science and Technology, CSIR, 695019 Trivandrum, India.,Institute of Bioresources and Sustainable Development, 795001 Imphal, India
| | - Amith Abraham
- Centre for Biofuels, National Institute for Interdisciplinary Science and Technology, CSIR, 695019 Trivandrum, India
| | - Anil Kuruvilla Mathew
- Centre for Biofuels, National Institute for Interdisciplinary Science and Technology, CSIR, 695019 Trivandrum, India
| | | | - Sharrel Rebello
- Communicable Disease Research Laboratory, St. Joseph's College, 680121 Irinjalakuda, India
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 226001 Lucknow, India
| |
Collapse
|
80
|
Ece S, Lambertz C, Fischer R, Commandeur U. Heterologous expression of a Streptomyces cyaneus laccase for biomass modification applications. AMB Express 2017; 7:86. [PMID: 28439850 PMCID: PMC5403781 DOI: 10.1186/s13568-017-0387-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 11/24/2022] Open
Abstract
Laccases are used for the conversion of biomass into fermentable sugars but it is difficult to produce high yields of active laccases in heterologous expression systems. We overcame this challenge by expressing Streptomyces cyaneus CECT 3335 laccase in Escherichia coli (ScLac) and we achieved a yield of up to 104 mg L-1 following purification by one-step affinity chromatography. Stability and activity assays using simple lignin model substrates showed that the purified enzyme preparation was active over a broad pH range and at high temperatures, suggesting it would be suitable for biomass degradation. The reusability of ScLac was also demonstrated by immobilizing the enzyme on agarose beads with a binding yield of 33%, and by the synthesis of cross-linked enzyme aggregates with an initial activity recovery of 72%.
Collapse
Affiliation(s)
- Selin Ece
- Institute for Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Camilla Lambertz
- Institute for Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Rainer Fischer
- Institute for Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Ulrich Commandeur
- Institute for Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
81
|
Blánquez A, Ball AS, González-Pérez JA, Jiménez-Morillo NT, González-Vila F, Arias ME, Hernández M. Laccase SilA from Streptomyces ipomoeae CECT 3341, a key enzyme for the degradation of lignin from agricultural residues? PLoS One 2017; 12:e0187649. [PMID: 29112957 PMCID: PMC5675413 DOI: 10.1371/journal.pone.0187649] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/22/2017] [Indexed: 12/03/2022] Open
Abstract
The role of laccase SilA produced by Streptomyces ipomoeae CECT 3341 in lignocellulose degradation was investigated. A comparison of the properties and activities of a laccase-negative mutant strain (SilA-) with that of the wild-type was studied in terms of their ability to degrade lignin from grass lignocellulose. The yields of solubilized lignin (acid precipitable polymeric lignin, APPL) obtained from wheat straw by both strains in Solid State Fermentation (SSF) conditions demonstrated the importance of SilA laccase in lignin degradation with the wild-type showing 5-fold more APPL produced compared with the mutant strain (SilA-). Analytical pyrolysis and FT-IR (Fourier Transform Infrared Spectroscopy) confirmed that the APPL obtained from the substrate fermented by wild-type strain was dominated by lignin derived methoxyphenols whereas those from SilA- and control APPLs were composed mainly of polysaccharides. This is the first report highlighting the role of this laccase in lignin degradation.
Collapse
Affiliation(s)
- Alba Blánquez
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Andrew S. Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, Australia
| | - José Antonio González-Pérez
- Departamento de Biogeoquímica, Ecología Vegetal y Microbiana, Instituto de Recursos Naturales y Agrobiología (IRNAS-CSIC), Sevilla, Spain
| | - Nicasio T. Jiménez-Morillo
- Departamento de Biogeoquímica, Ecología Vegetal y Microbiana, Instituto de Recursos Naturales y Agrobiología (IRNAS-CSIC), Sevilla, Spain
| | - Francisco González-Vila
- Departamento de Biogeoquímica, Ecología Vegetal y Microbiana, Instituto de Recursos Naturales y Agrobiología (IRNAS-CSIC), Sevilla, Spain
| | - M. Enriqueta Arias
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Manuel Hernández
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
82
|
De La Torre M, Martín-Sampedro R, Fillat Ú, Eugenio ME, Blánquez A, Hernández M, Arias ME, Ibarra D. Comparison of the efficiency of bacterial and fungal laccases in delignification and detoxification of steam-pretreated lignocellulosic biomass for bioethanol production. ACTA ACUST UNITED AC 2017; 44:1561-1573. [DOI: 10.1007/s10295-017-1977-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/05/2017] [Indexed: 11/30/2022]
Abstract
Abstract
This study evaluates the potential of a bacterial laccase from Streptomyces ipomoeae (SilA) for delignification and detoxification of steam-exploded wheat straw, in comparison with a commercial fungal laccase from Trametes villosa. When alkali extraction followed by SilA laccase treatment was applied to the water insoluble solids fraction, a slight reduction in lignin content was detected, and after a saccharification step, an increase in both glucose and xylose production (16 and 6%, respectively) was observed. These effects were not produced with T. villosa laccase. Concerning to the fermentation process, the treatment of the steam-exploded whole slurry with both laccases produced a decrease in the phenol content by up to 35 and 71% with bacterial and fungal laccases, respectively. The phenols reduction resulted in an improved performance of Saccharomyces cerevisiae during a simultaneous saccharification and fermentation (SSF) process, improving ethanol production rate. This enhancement was more marked with a presaccharification step prior to the SSF process.
Collapse
Affiliation(s)
- María De La Torre
- 0000 0004 1937 0239 grid.7159.a Departamento de Biomedicina y Biotecnología Universidad de Alcalá Autovía A-2, Km 33.600 28805 Alcalá De Henares Madrid Spain
| | | | - Úrsula Fillat
- Forestry Products Department INIA-CIFOR Ctra. de La Coruña Km 7.5 28040 Madrid Spain
| | - María E Eugenio
- Forestry Products Department INIA-CIFOR Ctra. de La Coruña Km 7.5 28040 Madrid Spain
| | - Alba Blánquez
- 0000 0004 1937 0239 grid.7159.a Departamento de Biomedicina y Biotecnología Universidad de Alcalá Autovía A-2, Km 33.600 28805 Alcalá De Henares Madrid Spain
| | - Manuel Hernández
- 0000 0004 1937 0239 grid.7159.a Departamento de Biomedicina y Biotecnología Universidad de Alcalá Autovía A-2, Km 33.600 28805 Alcalá De Henares Madrid Spain
| | - María E Arias
- 0000 0004 1937 0239 grid.7159.a Departamento de Biomedicina y Biotecnología Universidad de Alcalá Autovía A-2, Km 33.600 28805 Alcalá De Henares Madrid Spain
| | - David Ibarra
- Forestry Products Department INIA-CIFOR Ctra. de La Coruña Km 7.5 28040 Madrid Spain
| |
Collapse
|
83
|
Yang CX, Wang T, Gao LN, Yin HJ, Lü X. Isolation, identification and characterization of lignin-degrading bacteria from Qinling, China. J Appl Microbiol 2017; 123:1447-1460. [PMID: 28801977 DOI: 10.1111/jam.13562] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 07/19/2017] [Accepted: 08/01/2017] [Indexed: 11/30/2022]
Abstract
AIMS Lignin is an aromatic heteropolymer forming a physical barrier and it is a big challenge in biomass utilization. This paper first investigated lignin-degradation bacteria from rotten wood in Qinling Mountain. METHODS AND RESULTS Nineteen potential strains were selected and ligninolytic enzyme activities were determined over 84 h. Strains that had higher enzyme activities were selected. Further, the biodegradation of wheat straw lignin and alkali lignin was evaluated indicating that Burkholderia sp. H1 had the highest capability. It was confirmed by gel permeation chromatography and field emission scanning electron microscope that alkali lignin was depolymerized into small fragments. The degraded products were analysed using gas chromatography-mass spectrometry. The total ion chromatograph of products treated for 7 days showed the formation of aromatic compounds, an important intermediate from lignin degradation. Interestingly, they disappeared in 15 days while the aldehyde and ester compounds increased. CONCLUSIONS The results suggest that the lignin-degrading bacteria are abundant in rotten wood and strain H1 has high potential to break down lignin. SIGNIFICANCE AND IMPACT OF THE STUDY The diversity of lignin-degrading bacteria in Qinling Mountain is revealed. The study of Burkholderia sp. H1 expands the range of bacteria for lignin degradation and provides novel bacteria for application to lignocellulosic biomass.
Collapse
Affiliation(s)
- C-X Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling District, Shaanxi Province, China
| | - T Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling District, Shaanxi Province, China
| | - L-N Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling District, Shaanxi Province, China
| | - H-J Yin
- College of Food Science and Engineering, Northwest A&F University, Yangling District, Shaanxi Province, China
| | - X Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling District, Shaanxi Province, China
| |
Collapse
|
84
|
Orellana R, Chaput G, Markillie LM, Mitchell H, Gaffrey M, Orr G, DeAngelis KM. Multi-time series RNA-seq analysis of Enterobacter lignolyticus SCF1 during growth in lignin-amended medium. PLoS One 2017; 12:e0186440. [PMID: 29049419 PMCID: PMC5648182 DOI: 10.1371/journal.pone.0186440] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022] Open
Abstract
The production of lignocellulosic-derived biofuels is a highly promising source of alternative energy, but it has been constrained by the lack of a microbial platform capable to efficiently degrade this recalcitrant material and cope with by-products that can be toxic to cells. Species that naturally grow in environments where carbon is mainly available as lignin are promising for finding new ways of removing the lignin that protects cellulose for improved conversion of lignin to fuel precursors. Enterobacter lignolyticus SCF1 is a facultative anaerobic Gammaproteobacteria isolated from tropical rain forest soil collected in El Yunque forest, Puerto Rico under anoxic growth conditions with lignin as sole carbon source. Whole transcriptome analysis of SCF1 during E.lignolyticus SCF1 lignin degradation was conducted on cells grown in the presence (0.1%, w/w) and the absence of lignin, where samples were taken at three different times during growth, beginning of exponential phase, mid-exponential phase and beginning of stationary phase. Lignin-amended cultures achieved twice the cell biomass as unamended cultures over three days, and in this time degraded 60% of lignin. Transcripts in early exponential phase reflected this accelerated growth. A complement of laccases, aryl-alcohol dehydrogenases, and peroxidases were most up-regulated in lignin amended conditions in mid-exponential and early stationary phases compared to unamended growth. The association of hydrogen production by way of the formate hydrogenlyase complex with lignin degradation suggests a possible value added to lignin degradation in the future.
Collapse
Affiliation(s)
- Roberto Orellana
- Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Gina Chaput
- Microbiology Department, University of Massachusetts Amherst, Amherst, United States of America
| | - Lye Meng Markillie
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Hugh Mitchell
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Matt Gaffrey
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Galya Orr
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Kristen M. DeAngelis
- Microbiology Department, University of Massachusetts Amherst, Amherst, United States of America
- * E-mail:
| |
Collapse
|
85
|
Kong W, Fu X, Wang L, Alhujaily A, Zhang J, Ma F, Zhang X, Yu H. A novel and efficient fungal delignification strategy based on versatile peroxidase for lignocellulose bioconversion. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:218. [PMID: 28924453 PMCID: PMC5598073 DOI: 10.1186/s13068-017-0906-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/07/2017] [Indexed: 05/15/2023]
Abstract
BACKGROUND The selective lignin-degrading white-rot fungi are regarded to be the best lignin degraders and have been widely used for reducing the saccharification recalcitrance of lignocellulose. However, the biological delignification and conversion of lignocellulose in biorefinery is still limited. It is necessary to develop novel and more efficient bio-delignification systems. RESULTS Physisporinus vitreus relies on a new versatile peroxidase (VP)-based delignification strategy to remove enzymatic recalcitrance of corn stover efficiently, so that saccharification of corn stover was significantly enhanced to 349.1 mg/g biomass (yield of glucose) and 91.5% (hydrolysis yield of cellulose) at 28 days, as high as levels reached by thermochemical treatment. Analysis of the lignin structure using pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) showed that the total abundance of lignin-derived compounds decreased by 54.0% and revealed a notable demethylation during lignin degradation by P. vitreus. Monomeric and dimeric lignin model compounds were used to confirm the ligninolytic capabilities of extracellular ligninases secreted by P. vitreus. The laccase (Lac) from P. vitreus could not oxidize nonphenolic lignin compounds and polymerized β-O-4 and 5-5' dimers to precipitate which had a negative effect on the enzymatic hydrolysis of corn stover in vitro. However, the VP from P. vitreus could oxidize both phenolic and nonphenolic lignin model compounds as well as break the β-O-4 and 5-5' dimers into monomeric compounds, which were measured by high-performance liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). Moreover, we showed that addition of purified VP in vitro improved the enzymatic hydrolysis of corn stover by 14.1%. CONCLUSIONS From the highly efficient system of enzymatic recalcitrance removal by new white-rot fungus, we identified a new delignification strategy based on VP which could oxidize both phenolic and nonphenolic lignin units and break different linkages in lignin. In addition, this is the first evidence that VP could break 5-5' linkage efficiently in vitro. Moreover, VP improved the enzymatic hydrolysis of corn stover in vitro. The remarkable lignin-degradative potential makes VP attractive for biotechnological applications.
Collapse
Affiliation(s)
- Wen Kong
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Xiao Fu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Lei Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Ahmad Alhujaily
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Jingli Zhang
- College of Life Science and Technology, WuHan University of Technology, Wuhan, 430070 People’s Republic of China
| | - Fuying Ma
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Xiaoyu Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Hongbo Yu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| |
Collapse
|
86
|
Tao L, Stich TA, Liou SH, Soldatova AV, Delgadillo DA, Romano CA, Spiro TG, Goodin DB, Tebo BM, Casey WH, Britt RD. Copper Binding Sites in the Manganese-Oxidizing Mnx Protein Complex Investigated by Electron Paramagnetic Resonance Spectroscopy. J Am Chem Soc 2017; 139:8868-8877. [DOI: 10.1021/jacs.7b02277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | | | - Alexandra V. Soldatova
- Department
of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - David A. Delgadillo
- Department of Chemistry & Chemical Biology, University of California, 5200 North Lake Road, Merced, California 95343, United States
| | - Christine A. Romano
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Thomas G. Spiro
- Department
of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | | | - Bradley M. Tebo
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | | | | |
Collapse
|
87
|
|
88
|
Ihssen J, Jankowska D, Ramsauer T, Reiss R, Luchsinger R, Wiesli L, Schubert M, Thöny-Meyer L, Faccio G. Engineered Bacillus pumilus laccase-like multi-copper oxidase for enhanced oxidation of the lignin model compound guaiacol. Protein Eng Des Sel 2017; 30:449-453. [DOI: 10.1093/protein/gzx026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/13/2017] [Indexed: 11/13/2022] Open
|
89
|
Influences of Media Compositions on Characteristics of Isolated Bacteria Exhibiting Lignocellulolytic Activities from Various Environmental Sites. Appl Biochem Biotechnol 2017; 183:931-942. [PMID: 28405916 DOI: 10.1007/s12010-017-2474-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 04/05/2017] [Indexed: 02/08/2023]
Abstract
Efficient isolation of lignocellulolytic bacteria is essential for the utilization of lignocellulosic biomass. In this study, bacteria with cellulolytic, xylanolytic, and lignolytic activities were isolated from environmental sites such as mountain, wetland, and mudflat using isolation media containing the combination of lignocellulose components (cellulose, xylan, and lignin). Eighty-nine isolates from the isolation media were characterized by analyzing taxonomic ranks and cellulolytic, xylanolytic, and lignolytic activities. Most of the cellulolytic bacteria showed multienzymatic activities including xylanolytic activity. The isolation media without lignin were efficient in isolating bacteria exhibiting multienzymatic activities even including lignolytic activity, whereas a lignin-containing medium was effective to isolate bacteria exhibiting lignolytic activity only. Multienzymatic activities were mainly observed in Bacillus and Streptomyces, while Burkholderia was the most abundant genus with lignolytic activity only. This study provides insight into isolation medium for efficient isolation of lignocellulose-degrading microorganisms.
Collapse
|
90
|
Enhanced delignification of steam-pretreated poplar by a bacterial laccase. Sci Rep 2017; 7:42121. [PMID: 28169340 PMCID: PMC5294454 DOI: 10.1038/srep42121] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/05/2017] [Indexed: 11/09/2022] Open
Abstract
The recalcitrance of woody biomass, particularly its lignin component, hinders its sustainable transformation to fuels and biomaterials. Although the recent discovery of several bacterial ligninases promises the development of novel biocatalysts, these enzymes have largely been characterized using model substrates: direct evidence for their action on biomass is lacking. Herein, we report the delignification of woody biomass by a small laccase (sLac) from Amycolatopsis sp. 75iv3. Incubation of steam-pretreated poplar (SPP) with sLac enhanced the release of acid-precipitable polymeric lignin (APPL) by ~6-fold, and reduced the amount of acid-soluble lignin by ~15%. NMR spectrometry revealed that the APPL was significantly syringyl-enriched relative to the original material (~16:1 vs. ~3:1), and that sLac preferentially oxidized syringyl units and altered interunit linkage distributions. sLac's substrate preference among monoaryls was also consistent with this observation. In addition, sLac treatment reduced the molar mass of the APPL by over 50%, as determined by gel-permeation chromatography coupled with multi-angle light scattering. Finally, sLac acted synergistically with a commercial cellulase cocktail to increase glucose production from SPP ~8%. Overall, this study establishes the lignolytic activity of sLac on woody biomass and highlights the biocatalytic potential of bacterial enzymes.
Collapse
|
91
|
Sana B, Chia KHB, Raghavan SS, Ramalingam B, Nagarajan N, Seayad J, Ghadessy FJ. Development of a genetically programed vanillin-sensing bacterium for high-throughput screening of lignin-degrading enzyme libraries. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:32. [PMID: 28174601 PMCID: PMC5291986 DOI: 10.1186/s13068-017-0720-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 01/28/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Lignin is a potential biorefinery feedstock for the production of value-added chemicals including vanillin. A huge amount of lignin is produced as a by-product of the paper industry, while cellulosic components of plant biomass are utilized for the production of paper pulp. In spite of vast potential, lignin remains the least exploited component of plant biomass due to its extremely complex and heterogenous structure. Several enzymes have been reported to have lignin-degrading properties and could be potentially used in lignin biorefining if their catalytic properties could be improved by enzyme engineering. The much needed improvement of lignin-degrading enzymes by high-throughput selection techniques such as directed evolution is currently limited, as robust methods for detecting the conversion of lignin to desired small molecules are not available. RESULTS We identified a vanillin-inducible promoter by RNAseq analysis of Escherichia coli cells treated with a sublethal dose of vanillin and developed a genetically programmed vanillin-sensing cell by placing the 'very green fluorescent protein' gene under the control of this promoter. Fluorescence of the biosensing cell is enhanced significantly when grown in the presence of vanillin and is readily visualized by fluorescence microscopy. The use of fluorescence-activated cell sorting analysis further enhances the sensitivity, enabling dose-dependent detection of as low as 200 µM vanillin. The biosensor is highly specific to vanillin and no major response is elicited by the presence of lignin, lignin model compound, DMSO, vanillin analogues or non-specific toxic chemicals. CONCLUSIONS We developed an engineered E. coli cell that can detect vanillin at a concentration as low as 200 µM. The vanillin-sensing cell did not show cross-reactivity towards lignin or major lignin degradation products including vanillin analogues. This engineered E. coli cell could potentially be used as a host cell for screening lignin-degrading enzymes that can convert lignin to vanillin.
Collapse
Affiliation(s)
- Barindra Sana
- p53 Laboratory, Agency for Science Technology And Research (A*STAR), 8A Biomedical Grove, #06-04/05 Neuros/Immunos, Singapore, 138648 Singapore
| | - Kuan Hui Burton Chia
- Genome Institute of Singapore, 60 Biopolis Street, Genome, #02-01, Singapore, 138672 Singapore
| | - Sarada S. Raghavan
- p53 Laboratory, Agency for Science Technology And Research (A*STAR), 8A Biomedical Grove, #06-04/05 Neuros/Immunos, Singapore, 138648 Singapore
| | - Balamurugan Ramalingam
- Institute of Chemical and Engineering Sciences, 8 Biomedical Grove, Neuros, #07-01, Singapore, 138665 Singapore
| | - Niranjan Nagarajan
- Genome Institute of Singapore, 60 Biopolis Street, Genome, #02-01, Singapore, 138672 Singapore
| | - Jayasree Seayad
- Institute of Chemical and Engineering Sciences, 8 Biomedical Grove, Neuros, #07-01, Singapore, 138665 Singapore
| | - Farid J. Ghadessy
- p53 Laboratory, Agency for Science Technology And Research (A*STAR), 8A Biomedical Grove, #06-04/05 Neuros/Immunos, Singapore, 138648 Singapore
| |
Collapse
|
92
|
Casciello C, Tonin F, Berini F, Fasoli E, Marinelli F, Pollegioni L, Rosini E. A valuable peroxidase activity from the novel species Nonomuraea gerenzanensis growing on alkali lignin. ACTA ACUST UNITED AC 2017; 13:49-57. [PMID: 28352563 PMCID: PMC5361131 DOI: 10.1016/j.btre.2016.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/07/2016] [Accepted: 12/21/2016] [Indexed: 11/22/2022]
Abstract
Actinomycetes represent an attractive source of ligninolytic enzymes. 43 actinomycetes were screened for laccase and peroxidase activities. The novel species N. gerenzanensis produces a valuable bacterial peroxidase activity. The dye-decolorizing activity paves the way for an industrial use of this peroxidase.
Degradation of lignin constitutes a key step in processing biomass to become useful monomers but it remains challenging. Compared to fungi, bacteria are much less characterized with respect to their lignin metabolism, although it is reported that many soil bacteria, especially actinomycetes, attack and solubilize lignin. In this work, we screened 43 filamentous actinomycetes by assaying their activity on chemically different substrates including a soluble and semi-degraded lignin derivative (known as alkali lignin or Kraft lignin), and we discovered a novel and valuable peroxidase activity produced by the recently classified actinomycete Nonomuraea gerenzanensis. Compared to known fungal manganese and versatile peroxidases, the stability of N. gerenzanensis peroxidase activity at alkaline pHs and its thermostability are significantly higher. From a kinetic point of view, N. gerenzanensis peroxidase activity shows a Km for H2O2 similar to that of Phanerochaete chrysosporium and Bjerkandera enzymes and a lower affinity for Mn2+, whereas it differs from the six Pleurotus ostreatus manganese peroxidase isoenzymes described in the literature. Additionally, N. gerenzanensis peroxidase shows a remarkable dye-decolorizing activity that expands its substrate range and paves the way for an industrial use of this enzyme. These results confirm that by exploring new bacterial diversity, we may be able to discover and exploit alternative biological tools putatively involved in lignin modification and degradation.
Collapse
Key Words
- 2,4-DCP, 2,4-dichlorophenol
- 2,6-DMP, 2,6-dimethoxyphenol
- ABTS, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)
- Alkali lignin
- DyP, dye decolorizing peroxidase
- Filamentous actinomycetes
- Kraft lignin
- LiP, lignin peroxidase
- MAM, mannitol agar medium
- MM-L, minimal salt medium plus lignin
- MnP, manganese peroxidase
- Nonomuraea gerenzanensis
- Peroxidases
- RB5, reactive black 5
- RBBR, remazol brilliant blue R
- VP, versatile peroxidase
Collapse
Affiliation(s)
- Carmine Casciello
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; The Protein Factory Research Center, Politecnico of Milano and University of Insubria, via Mancinelli 7, 20131 Milano, Italy
| | - Fabio Tonin
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; The Protein Factory Research Center, Politecnico of Milano and University of Insubria, via Mancinelli 7, 20131 Milano, Italy
| | - Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; The Protein Factory Research Center, Politecnico of Milano and University of Insubria, via Mancinelli 7, 20131 Milano, Italy
| | - Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico of Milano, via Mancinelli 7, 20131, Milano, Italy
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; The Protein Factory Research Center, Politecnico of Milano and University of Insubria, via Mancinelli 7, 20131 Milano, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; The Protein Factory Research Center, Politecnico of Milano and University of Insubria, via Mancinelli 7, 20131 Milano, Italy
| | - Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; The Protein Factory Research Center, Politecnico of Milano and University of Insubria, via Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
93
|
Rahmanpour R, King LD, Bugg TD. Identification of an extracellular bacterial flavoenzyme that can prevent re-polymerisation of lignin fragments. Biochem Biophys Res Commun 2017; 482:57-61. [DOI: 10.1016/j.bbrc.2016.10.144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/29/2016] [Indexed: 11/28/2022]
|
94
|
Rais D, Zibek S. Biotechnological and Biochemical Utilization of Lignin. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 166:469-518. [PMID: 28540404 DOI: 10.1007/10_2017_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This chapter provides an overview of the biosynthesis and structure of lignin. Moreover, examples of the commercial use of lignin and its promising future implementation are briefly described. Many applications are still hampered by the properties of technical lignins. Thus, the major challenge is the conversion of lignins into suitable building blocks or aromatics in order to open up new avenues for the usage of this renewable raw material. This chapter focuses on details about natural lignin degradation by fungi and bacteria, which harbor potential tools for lignin degradation and modification, which might help to develop eco-efficient processes for lignin utilization.
Collapse
Affiliation(s)
| | - Susanne Zibek
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany.
| |
Collapse
|
95
|
Ramalingam B, Sana B, Seayad J, Ghadessy FJ, Sullivan MB. Towards understanding of laccase-catalysed oxidative oligomerisation of dimeric lignin model compounds. RSC Adv 2017. [DOI: 10.1039/c6ra26975c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The isolation of early intermediates in the laccase-catalysed oligomerisation of lignin model compounds indicated the preferential formation of C5–C5′ over C5–O–C4′ linkages.
Collapse
Affiliation(s)
- B. Ramalingam
- Organic Chemistry
- Institute of Chemical and Engineering Sciences
- Singapore 138 665
| | - B. Sana
- p53 Laboratory
- Singapore 138 648
| | - J. Seayad
- Organic Chemistry
- Institute of Chemical and Engineering Sciences
- Singapore 138 665
| | | | - M. B. Sullivan
- Institute of High Performance Computing
- Singapore 138 632
| |
Collapse
|
96
|
Zhu D, Zhang P, Xie C, Zhang W, Sun J, Qian WJ, Yang B. Biodegradation of alkaline lignin by Bacillus ligniniphilus L1. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:44. [PMID: 28239416 PMCID: PMC5320714 DOI: 10.1186/s13068-017-0735-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/14/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Lignin is the most abundant aromatic biopolymer in the biosphere and it comprises up to 30% of plant biomass. Although lignin is the most recalcitrant component of the plant cell wall, still there are microorganisms able to decompose it or degrade it. Fungi are recognized as the most widely used microbes for lignin degradation. However, bacteria have also been known to be able to utilize lignin as a carbon or energy source. Bacillus ligniniphilus L1 was selected in this study due to its capability to utilize alkaline lignin as a single carbon or energy source and its excellent ability to survive in extreme environments. RESULTS To investigate the aromatic metabolites of strain L1 decomposing alkaline lignin, GC-MS analysis was performed and fifteen single phenol ring aromatic compounds were identified. The dominant absorption peak included phenylacetic acid, 4-hydroxy-benzoicacid, and vanillic acid with the highest proportion of metabolites resulting in 42%. Comparison proteomic analysis was carried out for further study showed that approximately 1447 kinds of proteins were produced, 141 of which were at least twofold up-regulated with alkaline lignin as the single carbon source. The up-regulated proteins contents different categories in the biological functions of protein including lignin degradation, ABC transport system, environmental response factors, protein synthesis, assembly, etc. CONCLUSIONS GC-MS analysis showed that alkaline lignin degradation of strain L1 produced 15 kinds of aromatic compounds. Comparison proteomic data and metabolic analysis showed that to ensure the degradation of lignin and growth of strain L1, multiple aspects of cells metabolism including transporter, environmental response factors, and protein synthesis were enhanced. Based on genome and proteomic analysis, at least four kinds of lignin degradation pathway might be present in strain L1, including a Gentisate pathway, the benzoic acid pathway and the β-ketoadipate pathway. The study provides an important basis for lignin degradation by bacteria.
Collapse
Affiliation(s)
- Daochen Zhu
- School of Environment and safty Engineering, Jiangsu University, Zhenjiang, Jiangsu China
- State Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, Guangdong China
| | - Peipei Zhang
- School of Environment and safty Engineering, Jiangsu University, Zhenjiang, Jiangsu China
| | - Changxiao Xie
- School of Environment and safty Engineering, Jiangsu University, Zhenjiang, Jiangsu China
| | - Weimin Zhang
- State Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, Guangdong China
| | - Jianzhong Sun
- School of Environment and safty Engineering, Jiangsu University, Zhenjiang, Jiangsu China
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Bin Yang
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354 USA
| |
Collapse
|
97
|
Priyadarshinee R, Kumar A, Mandal T, Dasguptamandal D. Unleashing the potential of ligninolytic bacterial contributions towards pulp and paper industry: key challenges and new insights. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:23349-23368. [PMID: 27687765 DOI: 10.1007/s11356-016-7633-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/07/2016] [Indexed: 05/07/2023]
Abstract
Lignocellulose biomass predominantly constitutes the main feedstock for pulp and paper industry. Though some products of pulp and paper industry require the presence of lignin content, for most of the useful products formation lies in the efficient and selective removal of lignin component to make use of the intact cellulose fraction during the pretreatment of pulp. Lignin is a recalcitrant heteropolymer comprised of several complex stable bonds and linkages. The chemicals or intense energy processes used for delignification process release the hazardous chemicals compounds in the wastewater which cause toxicity and environmental pollution. The implementation of bacterial species has elucidated an effective approach in the generation of value-added products while degrading lignin from pulp biomass as well as detoxification of effluent. The direct use of bacterial cells in lignocellulose biomass and wastewater streams is promising as it outperforms the practical and technical constraints largely confronted by fungal and enzymatic means. The present review paper thus unleashed the potential of ligninolytic bacteria towards delignification of pulp biomass and treatment of effluent together with bioconversion of biomass and lignin into value-added products. Graphical abstract Schematic illustration of potential possible contribution of ligninolytic bacteria towards pulp and paper industry.
Collapse
Affiliation(s)
- Rashmi Priyadarshinee
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Anuj Kumar
- Department of Chemical Engineering, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Tamal Mandal
- Department of Chemical Engineering, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Dalia Dasguptamandal
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India.
| |
Collapse
|
98
|
Isolation and Physicochemical Characterization of Laccase from Ganoderma lucidum-CDBT1 Isolated from Its Native Habitat in Nepal. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3238909. [PMID: 27822471 PMCID: PMC5086383 DOI: 10.1155/2016/3238909] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/25/2016] [Accepted: 09/21/2016] [Indexed: 11/21/2022]
Abstract
At present, few organisms are known to and capable of naturally producing laccases and white rot fungi are one such group. In the present study, three fungal species, namely, Ganoderma lucidum-CDBT1, Ganoderma japonicum, and Lentinula edodes, isolated from their native habitat in Nepal were screened for laccase production, and G. lucidum-CDBT1 was found to express highest levels of enzyme (day 10 culture media showed 0.92 IU/mg total protein or 92 IU/mL laccase activity with ABTS as substrate). Lignin extracted from rice straw was used in Olga medium for laccase production and isolation from G. lucidum-CDBT1. Presence of lignin (5 g/L) and copper sulfate (30 μM) in the media increased the extracellular laccase content by 111% and 114%, respectively. The laccase enzyme produced by G. lucidum-CDBT1 was fractionated by ammonium sulfate and purified by DEAE Sepharose anion exchange chromatography. The purified enzyme was found to have a molecular mass of 43 kDa and exhibits optimal activity at pH 5.0 and 30°C. The isolated laccase was thermally stable for up to 70°C for 1 h and exhibited broad pH stability. The kinetic constants, Km, Vmax, and Kcat, determined using 2,2′-azinobis-(-3-ethylbenzothiazoline-6-sulfonic acid) as substrate were found to be 110 μM, 36 μmol/min/mg, and 246 min−1, respectively. The isolated thermostable laccase will be used in future experiments for delignification process.
Collapse
|
99
|
Recovery and Utilization of Lignin Monomers as Part of the Biorefinery Approach. ENERGIES 2016. [DOI: 10.3390/en9100808] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
100
|
de Gonzalo G, Colpa DI, Habib MH, Fraaije MW. Bacterial enzymes involved in lignin degradation. J Biotechnol 2016; 236:110-9. [DOI: 10.1016/j.jbiotec.2016.08.011] [Citation(s) in RCA: 315] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/16/2016] [Indexed: 01/01/2023]
|